JP5410919B2 - Biaxially oriented multilayer laminate film and laminate - Google Patents

Biaxially oriented multilayer laminate film and laminate Download PDF

Info

Publication number
JP5410919B2
JP5410919B2 JP2009240446A JP2009240446A JP5410919B2 JP 5410919 B2 JP5410919 B2 JP 5410919B2 JP 2009240446 A JP2009240446 A JP 2009240446A JP 2009240446 A JP2009240446 A JP 2009240446A JP 5410919 B2 JP5410919 B2 JP 5410919B2
Authority
JP
Japan
Prior art keywords
film
layer
biaxially oriented
surface roughness
oriented multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009240446A
Other languages
Japanese (ja)
Other versions
JP2011084036A (en
Inventor
真 飯田
英司 木下
剛 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin DuPont Films Japan Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2009240446A priority Critical patent/JP5410919B2/en
Publication of JP2011084036A publication Critical patent/JP2011084036A/en
Application granted granted Critical
Publication of JP5410919B2 publication Critical patent/JP5410919B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Magnetic Record Carriers (AREA)

Description

本発明は吸水率0.1重量%以下の疎水性樹脂と芳香族ポリエステルを用いた二軸配向多層積層フィルムおよびそれを用いた積層体に関する。   The present invention relates to a biaxially oriented multilayer laminated film using a hydrophobic resin having a water absorption of 0.1% by weight or less and an aromatic polyester, and a laminate using the same.

ポリエチレンテレフタレートやポリエチレン−2,6−ナフタレートに代表される芳香族ポリエステルは優れた機械的特性、寸法安定性および耐熱性を有することから、フィルムなどに幅広く使用されている。特にポリエチレン−2,6−ナフタレートは、ポリエチレンテレフタレートよりも優れた機械的特性、寸法安定性および耐熱性を有することから、それらの要求の厳しい用途、例えば高密度磁気記録媒体などのベースフィルムなどに使用されている。しかしながら、近年の高密度磁気記録媒体などでの寸法安定性の要求はますます高くなってきており、さらなる特性の向上が求められている。   Aromatic polyesters typified by polyethylene terephthalate and polyethylene-2,6-naphthalate have excellent mechanical properties, dimensional stability and heat resistance, and thus are widely used for films and the like. In particular, polyethylene-2,6-naphthalate has mechanical properties, dimensional stability, and heat resistance superior to those of polyethylene terephthalate, so that it is used in demanding applications such as a base film for high-density magnetic recording media. It is used. However, the demand for dimensional stability in high-density magnetic recording media and the like in recent years is increasing, and further improvement of characteristics is required.

そこで、特許文献1では、シンジオタティックポリスチレンなどのポリオレフィンと、ポリエチレン−2,6−ナフタレンジカルボキシレートなどのポリエステルとを、ブレンドまたは積層することが提案されている。しかしながら、ブレンドは、相溶性が乏しいためか、得られるフィルムの表面が荒れやすく、他方2層などの積層フィルムでは、カールなどが発生しやすいという問題があった。一方、特許文献1には、ポリオレフィンとポリエステルとを交互に積層した多層積層フィルムも開示されている。この多層積層フィルムであれば、前述のようなフィルムの表面が粗くなったり、フィルム自体がカールしたりといった問題はない。   Therefore, Patent Document 1 proposes blending or laminating a polyolefin such as syndiotactic polystyrene and a polyester such as polyethylene-2,6-naphthalenedicarboxylate. However, the blend has a problem that the surface of the obtained film is likely to be rough because the compatibility is poor, and on the other hand, the laminated film such as two layers is likely to be curled. On the other hand, Patent Document 1 also discloses a multilayer laminated film in which polyolefin and polyester are alternately laminated. With this multilayer laminated film, there is no problem that the surface of the film becomes rough or the film itself is curled.

しかしながら、その層構成からも明らかな通り、フィルムの一方の面と他方の面とが、ほぼ同様な表面の状態となるため、磁気記録テープなどのベースフィルムとして使用する場合、フィルムの巻取り性と磁気記録テープとしたときの電磁変換特性とを、高度に両立させることが困難であった。   However, as is clear from the layer structure, the film has one surface and the other surface that have almost the same surface, so that the film can be wound when used as a base film such as a magnetic recording tape. It was difficult to achieve a high degree of compatibility between the electromagnetic conversion characteristics of the magnetic recording tape and the magnetic recording tape.

また、ポリエステルフィルムの片面または両面に金属などの層(M層)を設ける方法(特許文献2〜5など)が開示されている。しかしながら、湿度膨張係数を小さくするなど寸法安定性のためにM層の厚みを厚くしていくと、M層にクラックが入りやすくなり、M層による改善だけでは限界があった。   Moreover, the method (patent documents 2-5 etc.) which provides layers (M layer), such as a metal, on the single side | surface or both surfaces of a polyester film is disclosed. However, if the thickness of the M layer is increased for dimensional stability, such as by reducing the humidity expansion coefficient, cracks are likely to occur in the M layer, and there is a limit to the improvement by the M layer alone.

国際公開第2005/073318号パンフレットInternational Publication No. 2005/073318 Pamphlet 特開2003−30818号公報JP 2003-30818 A 特開2005−196944号公報JP 2005-196944 A 特開2006−277920号公報JP 2006-277920 A 特開2003−242630号公報JP 2003-242630 A

本発明の目的は、湿度変化に対する極めて優れた寸法安定性と、表面性と巻取り性の両立が可能な二軸配向多層積層フィルムおよびそれを用いた積層体を提供することにある。   An object of the present invention is to provide a biaxially oriented multilayer laminated film capable of achieving both excellent dimensional stability against changes in humidity, surface properties and winding properties, and a laminate using the same.

本発明者らは、上記課題を解決しようと鋭意研究したところ、多層積層フィルムの一方の表面を、表面粗さ0.5〜5nmという範囲とし、かつ他方の表面粗さをそれよりも1nm以上大きくすることで、目的とする表面性と巻取り性の両立が得られることを見出し、本発明に到達した。   As a result of diligent research to solve the above problems, the inventors of the present invention set one surface of the multilayer laminated film to have a surface roughness in the range of 0.5 to 5 nm, and the other surface has a surface roughness of 1 nm or more. The inventors found that by increasing the size, both the desired surface property and winding property can be obtained, and the present invention has been achieved.

かくして本発明によれば、芳香族ポリエステル(A)からなるフィルム層(A)と吸水率が0.1%以下の疎水性樹脂(B)からなるフィルム層(B)とを交互に11層以上積層した積層構造を有する二軸配向多層積層フィルムであって、一方の表面粗さ(RaX)が0.5−5nmの範囲で、他方の表面粗さ(RaY)がRaXよりも1nm以上大きく、かつ10nm以下であり、フィルム層AまたはBのいずれか一方のフィルム層が2つの最表層の両方を形成し、最表層を形成しない側のフィルム層は平均粒経0.01−1.0μmの不活性粒子を0.001−5重量%含み、最表層を形成する側のフィルム層は不活性粒子を含有しないか、前記最表層を形成しない側のフィルム層よりも平均粒経の小さな粒子を含有するか、同じ平均粒経の不活性粒子をより少ない含有量で含有し、さらに表面粗さの小さな最表層を形成するフィルム層の厚み(tX)が、表面粗さの大きな最表層を形成するフィルム層の厚み(tY)の厚みに対して、1.5倍以上である二軸配向多層積層フィルムが提供される。 Thus, according to the present invention, the film layer (A) made of the aromatic polyester (A) and the film layer (B) made of the hydrophobic resin (B) having a water absorption of 0.1% or less are alternately 11 or more layers. A biaxially oriented multilayer laminated film having a laminated structure in which one surface roughness (RaX) is in the range of 0.5-5 nm and the other surface roughness (RaY) is 1 nm or more larger than RaX, and 10nm Ri der hereinafter either the film layer of the film layer a or B forms both of the two outermost layer side of the film layer not forming the outermost surface layer has an average particle diameter 0.01-1.0μm The particles on the side forming the outermost layer do not contain inert particles, or particles having a smaller average particle size than the film layer on the side not forming the outermost layer. Contain the same average grain The thickness (tX) of the film layer forming the outermost layer having a small surface roughness and the outermost layer having a small surface roughness is the thickness (tY) of the film layer forming the outermost layer having a large surface roughness. A biaxially oriented multilayer laminated film that is 1.5 times or more of the thickness is provided.

また、本発明によれば、芳香族ポリエステル(A)からなるフィルム層(A)と吸水率が0.1%以下の疎水性樹脂(B)からなるフィルム層(B)とを交互に11層以上積層した積層構造を有する二軸配向多層積層フィルムであって、一方の表面粗さ(RaX)が0.5−5nmの範囲で、他方の表面粗さ(RaY)がRaXよりも1nm以上大きく、かつ10nm以下であり、フィルム層AまたはBのいずれか一方のフィルム層が表面粗さの大きな最表層を形成し、かつ平均粒経0.01−1.0μmの不活性粒子を0.001−5重量%含み、表面粗さの大きな最表層を形成しない側のフィルム層が、表面粗さの小さな最表層を形成し、かつ不活性粒子を含有しないか、表面粗さの大きな最表層を形成する側のフィルム層よりも平均粒経の小さな粒子を含有するか、同じ平均粒経の不活性粒子をBより少ない含有量で含有する二軸配向多層積層フィルムが提供される。また、その好ましい態様として、表面粗さの小さな最表層の厚み(tX(nm))、表面粗さの大きな最表層の厚み(tY(nm))、表面粗さの小さな最表層に隣接するフィルム層の厚み(tX’(nm))と表面粗さの大きな最表層に隣接するフィルム層の厚み(tY’(nm))が次の関係式
(式1) tX>1.5×tX’
(式2) tY>1.5×tY’
のいずれか少なくともひとつを満たす二軸配向多層積層フィルムも提供される。さらにまた、本発明によれば、芳香族ポリエステル(A)からなるフィルム層(A)と吸水率が0.1%以下の疎水性樹脂(B)からなるフィルム層(B)とを交互に11層以上積層した積層構造を有する二軸配向多層積層フィルムであって、一方の表面粗さ(RaX)が0.5−5nmの範囲で、他方の表面粗さ(RaY)がRaXよりも1nm以上大きく、かつ10nm以下であり、2軸配向積層ポリエステルフィルムの表面粗さの大きい最表層が、平均粒経0.01−1.0μmの不活性粒子を0.001−5重量%含む第3の層(C層)からなり、積層構造を形成するフィルム層AおよびBは、不活性粒子を含有しないか、該表面粗さの大きい最表層を形成するフィルム層よりも平均粒経の小さな粒子を含有するか、同じ平均粒経の不活性粒子をより少ない含有量で含有する二軸配向多層積層フィルムも提供される。また、本発明の好ましい態様として、2軸配向積層ポリエステルフィルムの少なくとも片面の最表層が不活性粒子を有する塗膜層(第4の層、D層)であること、フィルム層Aおよびフィルム層Bが不活性粒子を含有しないこと、疎水性樹脂(B)がシンジオタクティック構造を有するスチレン系重合体であること、疎水性樹脂(B)がポリフェニレンスルフィドであること、疎水性樹脂(B)がシクロオレフィンであること、フィルムの製膜方向及び幅方向のヤング率がそれぞれ4.5GPa以上であること、フィルムの幅方向の湿度膨張係数が0.1×10−6〜9×10−6RHであること、フィルムの幅方向の温度膨張係数が−10×10−6〜10×10−6/℃であること、フィルムの厚みが1−10μmの範囲にあること、二軸配向多層積層フィルムが、磁気記録媒体のベースフィルムに用いられることの少なくともいずれかを具備する二軸配向多層積層フィルムも提供される。
Moreover, according to this invention, the film layer (A) which consists of aromatic polyester (A), and the film layer (B) which consists of hydrophobic resin (B) whose water absorption is 0.1% or less are alternately 11 layers. A biaxially oriented multilayer laminated film having a laminated structure as described above, wherein one surface roughness (RaX) is in the range of 0.5-5 nm and the other surface roughness (RaY) is 1 nm or more larger than RaX. And the film layer of either one of the film layers A and B forms the outermost layer having a large surface roughness, and 0.001 inactive particles having an average particle size of 0.01 to 1.0 μm. The film layer on the side containing −5% by weight and not forming the outermost layer having a large surface roughness forms the outermost layer having a small surface roughness and does not contain inert particles, or the outermost layer having a large surface roughness. Average grain than the film layer on the forming side Or containing small particles of a biaxially oriented multi-layer laminate film containing the inert particles having the same average particle diameter with less content than B is provided. In addition, as a preferred embodiment, the thickness of the outermost layer having a small surface roughness (tX (nm)), the thickness of the outermost layer having a large surface roughness (tY (nm)), and a film adjacent to the outermost layer having a small surface roughness. The thickness of the layer (tX ′ (nm)) and the thickness of the film layer (tY ′ (nm)) adjacent to the outermost layer having a large surface roughness are expressed by the following relational expression (formula 1) tX> 1.5 × tX ′
(Formula 2) tY> 1.5 × tY ′
A biaxially oriented multilayer laminated film satisfying at least one of the above is also provided. Furthermore , according to the present invention, the film layers (A) made of the aromatic polyester (A) and the film layers (B) made of the hydrophobic resin (B) having a water absorption of 0.1% or less are alternately 11 A biaxially oriented multilayer laminated film having a laminated structure in which one or more layers are laminated, wherein one surface roughness (RaX) is in the range of 0.5-5 nm and the other surface roughness (RaY) is 1 nm or more than RaX. The outermost layer having a large surface roughness of the biaxially oriented laminated polyester film that is large and 10 nm or less contains 0.001-5 wt% of inert particles having an average particle size of 0.01-1.0 μm. Film layers A and B, which are composed of layers (C layer) and form a laminated structure, contain no inert particles or particles having a smaller average particle size than the film layer forming the outermost layer having the large surface roughness. Of the same average particle size Biaxially oriented multilayer laminate film containing a smaller amount of the active particles are also provided. Moreover, as a preferable aspect of the present invention, at least one outermost layer of the biaxially oriented laminated polyester film is a coating layer (fourth layer, D layer) having inert particles, film layer A and film layer B. Does not contain inert particles, the hydrophobic resin (B) is a styrene polymer having a syndiotactic structure, the hydrophobic resin (B) is polyphenylene sulfide, and the hydrophobic resin (B) It is a cycloolefin, the Young's modulus in the film forming direction and the width direction of each film is 4.5 GPa or more, and the humidity expansion coefficient in the width direction of the film is 0.1 × 10 −6 to 9 × 10 −6 / it% is RH, the temperature expansion coefficient in the width direction of the film is -10 × 10 -6 ~10 × 10 -6 / ℃, the thickness of the film is in the range of 1-10μm When biaxially oriented multi-layer laminated film, the biaxially oriented multi-layer laminate film comprising at least one of that used for the base film of the magnetic recording medium it is also provided.

さらにまた、本発明によれば、さらに上記本発明の二軸配向多層積層フィルムの片面または両面に金属類または金属系無機化合物からなる層(M層)が設けられたさらに環境変化に対する寸法安定性をより高めた積層体、特に磁気記録媒体のベースフィルムに用いられる積層体も提供される。   Furthermore, according to the present invention, the biaxially oriented multilayer laminated film of the present invention is further provided with a layer (M layer) made of a metal or a metal-based inorganic compound on one or both sides, and further dimensional stability against environmental changes. There is also provided a laminate having a higher height, particularly a laminate used for a base film of a magnetic recording medium.

本発明によれば、湿度変化に対する寸法変化が極めて小さく、表面が平坦でかつ巻取り性の良好な二軸配向多層積層フィルムが提供される。
したがって、本発明の二軸配向多層積層フィルムを用いれば、優れた湿度変化に対する寸法安定性を有する高密度磁気記録媒体なども効率的に提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the dimensional change with respect to a humidity change is very small, the surface is flat, and the biaxially oriented multilayer laminated film with favorable winding property is provided.
Therefore, if the biaxially oriented multilayer laminated film of the present invention is used, a high-density magnetic recording medium having excellent dimensional stability against changes in humidity can be efficiently provided.

また、本発明によれば、上記二軸配向多層積層フィルムの片面または両面に金属などの層(M層)を設けることで、さらに環境変化に対する寸法安定性をより高めた積層体も提供でき、それを特に磁気記録媒体のベースフィルムに用いれば、優れた湿度変化に対する寸法安定性を有する高密度磁気記録媒体なども効率的に提供できる。   In addition, according to the present invention, by providing a layer (M layer) such as a metal on one or both sides of the biaxially oriented multilayer laminate film, a laminate with further improved dimensional stability against environmental changes can be provided, If it is used particularly as a base film of a magnetic recording medium, a high-density magnetic recording medium having excellent dimensional stability against changes in humidity can be efficiently provided.

<疎水性樹脂(B)>
本発明における疎水性樹脂(B)としては、脂肪族(脂環式含む)または芳香族ポリオレフィン、液晶性ポリエステル、ポリエーテルエーテルケトン、ポリフェニレンスルフィドなどが挙げられる。これらの中でも、シンジオタクティック構造を有するポリスチレン、シクロオレフィンポリマー、ポリフェニレンスルフィドなどの樹脂が、得られる二軸配向多層積層フィルムの温湿度の変化に対する寸法安定性を高度に上げつつ、優れた機械特性などを発現しやすいことから好ましい。
<Hydrophobic resin (B)>
Examples of the hydrophobic resin (B) in the present invention include aliphatic (including alicyclic) or aromatic polyolefin, liquid crystalline polyester, polyether ether ketone, polyphenylene sulfide and the like. Among these, resins with syndiotactic structure such as polystyrene, cycloolefin polymer, polyphenylene sulfide, etc. have excellent mechanical properties while improving the dimensional stability against changes in temperature and humidity of the resulting biaxially oriented multilayer laminated film. Etc. are preferable because they are easily expressed.

具体的なシンジオタクティック構造を有するポリスチレンとしては、立体化学構造がシンジオタクティック構造を有するポリスチレンであり、核磁気共鳴法(13C−NMR法)により測定されるタクティシティーが、ダイアッド(構成単位が2個)で75%以上、好ましくは85%以上、ペンタッド(構成単位が5個)で30%以上、好ましくは50%以上であることが好ましい。 As a specific polystyrene having a syndiotactic structure, the stereochemical structure is a polystyrene having a syndiotactic structure, and the tacticity measured by a nuclear magnetic resonance method ( 13 C-NMR method) is dyad (structural unit). 2) is 75% or more, preferably 85% or more, and pentad (5 structural units) is 30% or more, preferably 50% or more.

かかるSPSとしては、ポリスチレン、ポリ(アルキルスチレン)として、ポリ(メチルスチレン)、ポリ(エチルスチレン)、ポリ(プロピルスチレン)、ポリ(ブチルスチレン)が挙げられ、これらのうち、ポリスチレン、ポリ(p−メチルスチレン)、ポリ(m−メチルスチレン)、ポリ(p−ターシャリーブチルスチレン)が好ましく例示される。また、SPSは、数平均分子量が10,000以上、さらに50,000以上であることが好ましい。数平均分子量が下限に満たない場合、耐熱性や機械特性が不十分である。一方、数平均分子量の上限は500,000以下であることが好ましい。かかる上限を超える場合、製膜性に乏しくなる場合がある。   Examples of such SPS include polystyrene, poly (alkyl styrene), poly (methyl styrene), poly (ethyl styrene), poly (propyl styrene), and poly (butyl styrene). Among these, polystyrene, poly (p -Methylstyrene), poly (m-methylstyrene), and poly (p-tertiarybutylstyrene) are preferably exemplified. SPS has a number average molecular weight of 10,000 or more, preferably 50,000 or more. When the number average molecular weight is less than the lower limit, heat resistance and mechanical properties are insufficient. On the other hand, the upper limit of the number average molecular weight is preferably 500,000 or less. When this upper limit is exceeded, film-forming property may become poor.

また、具体的なシクロオレフィンポリマーとしては、ノルボルネン系のポリシクロオレフィンなどが挙げられ、日本ゼオン株式会社製の商品名「ZEONEX」や商品名「ZEONOR」、またJSR株式会社製の商品名「ARTON」、ポリプラスチックス株式会社製の商品名「TOPAS」などが挙げられる。   Specific examples of the cycloolefin polymer include norbornene-based polycycloolefins. The product names “ZEONEX” and “ZEONOR” manufactured by ZEON CORPORATION, and the product name “ARTON” manufactured by JSR Corporation. ", Trade name" TOPAS "manufactured by Polyplastics Co., Ltd. and the like.

さらにまた、具体的なポリフェニレンスルフィドとしては、繰り返し単位の80モル%以上、好ましくは90モル%以上が下記一般式で示される構造単位からなる重合体をいう。   Furthermore, specific polyphenylene sulfide refers to a polymer in which 80 mol% or more, preferably 90 mol% or more of repeating units are composed of structural units represented by the following general formula.

Figure 0005410919
Figure 0005410919

上記一般式に示す構造単位からなる重合体成分が80モル%未満ではポリマーの結晶性、軟化点等が低くなり、得られるフィルムの耐熱性、寸法安定性および機械的特性などを損なう。繰り返し単位の20モル%未満、好ましくは10モル%未満であれば、共重合可能なスルフィド結合を含有する単位が含まれていても差し支えない。該重合体の共重合の仕方はランダム、ブロックを問わない。   If the polymer component composed of the structural unit represented by the above general formula is less than 80 mol%, the crystallinity, softening point, etc. of the polymer are lowered, and the heat resistance, dimensional stability and mechanical properties of the resulting film are impaired. If the repeating unit is less than 20 mol%, preferably less than 10 mol%, a unit containing a copolymerizable sulfide bond may be contained. The copolymerization method of the polymer may be random or block.

これらの疎水性樹脂(B)の中でも、シンジオタクティック構造を有するポリスチレン、ポリフェニレンスルフィド、シクロオレフィンポリマーが特に好ましい。
これらの疎水性樹脂(B)は、それ自体公知の方法で製造できる。
Among these hydrophobic resins (B), polystyrene, polyphenylene sulfide, and cycloolefin polymers having a syndiotactic structure are particularly preferable.
These hydrophobic resins (B) can be produced by a method known per se.

<芳香族ポリエステル(A)>
本発明における芳香族ポリエステル(A)は、フィルム層(A)を構成するポリエステル樹脂組成物としてみたときのDSCにおけるTg(ガラス転移温度)が70℃以上、さらに95℃以上、特に110℃以上であることが好ましい。好ましい芳香族ポリエステル(A)のガラス転移温度の上限は特に制限されないがフィルム層(B)と積層したときの製膜性の点から170℃以下、さらに150℃以下が好ましい。
<Aromatic polyester (A)>
The aromatic polyester (A) in the present invention has a Tg (glass transition temperature) in DSC of 70 ° C. or higher, more preferably 95 ° C. or higher, particularly 110 ° C. or higher when viewed as a polyester resin composition constituting the film layer (A). Preferably there is. The upper limit of the glass transition temperature of the preferred aromatic polyester (A) is not particularly limited, but is preferably 170 ° C. or lower, more preferably 150 ° C. or lower from the viewpoint of film forming properties when laminated with the film layer (B).

このような点から、具体的な芳香族ポリエステル(A)としては、繰り返し単位の95モル%以上がエチレン−2,6−ナフタレンジカルボキシレートからなるポリエチレン−2,6−ナフタレンジカルボキシレートが最も好ましく、さらにTgを高くできるような成分を共重合したり、ブレンドしたものであっても良い。ところで、芳香族ポリエステル(A)はエチレンテレフタレートを主たる繰り返し単位とするポリエチレンテレフタレートであってもよい。ただし、ポリエチレンテレフタレートの場合は、前述のポリエチレン−2,6−ナフタレンジカルボキシレートと異なり、ホモポリマーにしただけではTgが低くなりやすく、ガラス転移温度を高くできる共重合成分を共重合したり、ポリエーテルイミドや液晶樹脂をブレンドすること(例えば、特開2000−355631号公報、特開2000−141475号公報および特開平11−1568号公報などを参照)が好ましい。本発明における芳香族ポリエステル(A)は、DSCで測定した融点が、240〜300℃の範囲、さらに250〜290℃の範囲、特に260〜280℃の範囲にあることが製膜性の点から好ましい。融点が上記上限を越えると、低温では溶融粘度が大きく溶融押し出しして成形する際に流動性が劣って層厚構成などが不均一化しやすく、高温にするとポリマーの熱劣化が進みやすくなり、結果として製膜性が低下しやすい。一方、上記下限未満になると、製膜性は優れるものの、加工時の伸び抑制効果が不十分となりやすい。   From such a point, as a specific aromatic polyester (A), polyethylene-2,6-naphthalene dicarboxylate having 95% by mole or more of repeating units composed of ethylene-2,6-naphthalene dicarboxylate is the most. Preferably, a component capable of further increasing Tg may be copolymerized or blended. By the way, the aromatic polyester (A) may be polyethylene terephthalate whose main repeating unit is ethylene terephthalate. However, in the case of polyethylene terephthalate, unlike the above-mentioned polyethylene-2,6-naphthalenedicarboxylate, Tg tends to be low only by making it a homopolymer, and a copolymerization component capable of increasing the glass transition temperature is copolymerized, It is preferable to blend polyetherimide or a liquid crystal resin (see, for example, JP-A Nos. 2000-355631, 2000-141475, and 11-11568). The aromatic polyester (A) in the present invention has a melting point measured by DSC in the range of 240 to 300 ° C., further in the range of 250 to 290 ° C., particularly in the range of 260 to 280 ° C. preferable. If the melting point exceeds the above upper limit, the melt viscosity is large at low temperatures, and the fluidity is poor when molding by extrusion, and the layer thickness structure tends to become non-uniform. As a result, the film-forming property tends to decrease. On the other hand, when it is less than the above lower limit, although the film forming property is excellent, the elongation suppressing effect at the time of processing tends to be insufficient.

また、さらに温湿度変化に対する寸法安定性を高める観点から、国際公開2008/153188号パンフレットなどに挙げられる6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸を共重合したポリマーであってもよい。   In addition, from the viewpoint of further improving the dimensional stability against changes in temperature and humidity, it is a polymer obtained by copolymerization of 6,6 ′-(alkylenedioxy) di-2-naphthoic acid mentioned in International Publication No. 2008/153188 pamphlet and the like. Also good.

<二軸配向多層積層フィルム>
本発明の二軸配向多層積層フィルムは、前述のとおり、フィルム層(A)とフィルム層(B)とを交互に11層以上積層した積層構造を有するものである。好ましい積層数は、フィルム層(A)とフィルム層(B)の合計層数で下限が15以上、さらに21以上、特に31以上、最も好ましくは41以上で、他方上限は10001以下、さらに1001以下の範囲にあることが層構成の均一性と効果の発現性の点から好ましい。積層数が下限未満であると、カールの発生を抑制しがたくなったり、フィルムの延伸特性が悪化して分子鎖が配向しにくくなり、所望の湿度膨張係数を持ったフィルムを製造しがたくなる場合がある。なお、積層数の上限は特に制限されないが、積層構造を維持しやすい点から、10001以下であることが好ましい。
<Biaxially oriented multilayer laminated film>
The biaxially oriented multilayer laminated film of the present invention has a laminated structure in which 11 or more film layers (A) and film layers (B) are alternately laminated as described above. The preferred number of layers is the total number of layers of the film layer (A) and the film layer (B), the lower limit being 15 or more, further 21 or more, particularly 31 or more, most preferably 41 or more, and the other upper limit is 10001 or less, further 1001 or less. It is preferable from the point of the uniformity of a layer structure and the expression of an effect that it exists in the range. When the number of layers is less than the lower limit, it is difficult to suppress the occurrence of curling, the film stretching characteristics deteriorate and the molecular chains are difficult to align, and it is difficult to produce a film having a desired humidity expansion coefficient. There is a case. The upper limit of the number of stacked layers is not particularly limited, but is preferably 10001 or less from the viewpoint of easily maintaining the stacked structure.

もちろん、本発明の効果を損なわない範囲で、他のフィルム層を積層したり、塗膜層を設けたりしても良い。なお、フィルム層(B)は、より環境変化に対する寸法安定性を向上させる観点から、フィルム中に占める体積分率が大きいことが好ましい。そのような観点から、本発明の二軸配向多層積層フィルムは、フィルム層(B)の厚みの合計が、二軸配向多層積層フィルムの厚みに対して、下限が10%以上、より20%以上、さらに30%以上、よりさらに50%以上、特に55%以上、最も好ましくは60%以上であることが好ましく、他方上限は95%以下、さらに90%以下、よりさらに85%以下、特に80%以下の範囲にあることが好ましい。このような範囲とすることで、湿度変化に対する寸法安定性向上効果と加工時の伸び抑制効果とをより高度に発現出来る。下限未満では湿度膨張係数の低減効果が乏しくなりやすく、他方上限を超えるとフィルム層(A)による加工時の伸び抑制効果が乏しくなりやすい。   Of course, other film layers may be laminated or a coating layer may be provided as long as the effects of the present invention are not impaired. The film layer (B) preferably has a large volume fraction in the film from the viewpoint of further improving the dimensional stability against environmental changes. From such a viewpoint, in the biaxially oriented multilayer laminated film of the present invention, the total thickness of the film layer (B) is 10% or more, more preferably 20% or more, with respect to the thickness of the biaxially oriented multilayer laminated film. 30% or more, more preferably 50% or more, particularly 55% or more, and most preferably 60% or more. On the other hand, the upper limit is 95% or less, further 90% or less, further 85% or less, particularly 80%. It is preferable to be in the following range. By setting it as such a range, the dimensional stability improvement effect with respect to a humidity change and the elongation inhibitory effect at the time of a process can be expressed more highly. If it is less than the lower limit, the effect of reducing the humidity expansion coefficient tends to be poor, and if it exceeds the other upper limit, the effect of suppressing elongation at the time of processing by the film layer (A) tends to be poor.

本発明の二軸配向多層積層フィルムは、一方の表面粗さ(RaX)が0.5−5nmの範囲で、他方の表面粗さ(RaY)がRaXよりも1nm以上大きく、かつ10nm以下である必要がある。RaXが0.5nmよりも小さいと滑り性が悪化し巻取り性が悪化する。5nmを超えると磁気テープとしたときに電磁変換特性が悪化してしまう。RaXのより好ましい範囲は1−4nm、さらに好ましくは1.5−3nmである。RaYがRaXよりも1nm以上大きくないと、表面が平坦になりすぎるため巻取り性が悪化してしまい、一方10nmを越えるときには、磁気テープとしたときに磁性層表面に転写してしまうことにより、電磁変換特性の悪化やエラーレートの悪化をもたらす。より好ましいRaYの範囲は2−9nm、さらに好ましくは3−8nm、特に好ましくは4−7nmである。   In the biaxially oriented multilayer laminated film of the present invention, one surface roughness (RaX) is in the range of 0.5-5 nm, and the other surface roughness (RaY) is 1 nm or more larger than RaX and 10 nm or less. There is a need. When RaX is smaller than 0.5 nm, the slipping property is deteriorated and the winding property is deteriorated. If the thickness exceeds 5 nm, the electromagnetic conversion characteristics deteriorate when the magnetic tape is used. A more preferable range of RaX is 1-4 nm, and more preferably 1.5-3 nm. If RaY is not larger than RaX by 1 nm or more, the surface becomes too flat and the winding property deteriorates. On the other hand, when it exceeds 10 nm, the magnetic tape is transferred to the surface of the magnetic layer. It causes deterioration of electromagnetic conversion characteristics and error rate. A more preferable range of RaY is 2-9 nm, more preferably 3-8 nm, and particularly preferably 4-7 nm.

通常フィルムの表面粗さを粗くするには、フィルム層に不活性粒子を含有させたりして、突起を形成すればよい。含有させる不活性粒子としては、(1)耐熱性ポリマー粒子(例えば、架橋シリコーン樹脂、架橋ポリスチレン、架橋アクリル樹脂、メラミン−ホルムアルデヒド樹脂、芳香族ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、架橋ポリエステルなどからなる粒子)、(2)金属酸化物(例えば、酸化アルミニウム、二酸化チタン、二酸化ケイ素(シリカ)、酸化マグネシウム、酸化亜鉛、酸化ジルコニウムなど)、金属の炭酸塩(例えば、炭酸マグネシウム、炭酸カルシウムなど)、金属の硫酸塩(例えば、硫酸カルシウム、硫酸バリウムなど)、炭素(例えば、カーボンブラック、グラファイト、ダイアモンドなど)および粘土鉱物(例えば、カオリン、クレー、ベントナイトなど)などのような無機化合物からなる粒子、さらに(3)異なる素材を例えばコアとシェルに用いたコアシェル型などの複合粒子など粒子の状態で添加する外部添加粒子や(4)触媒などの析出によって形成する内部析出粒子などを挙げることができる。これらの中で特に架橋シリコーン樹脂、架橋アクリル樹脂、架橋ポリエステル、架橋ポリスチレン、酸化アルミニウム、二酸化チタン、二酸化ケイ素、カオリン及びクレーからなる群から選ばれる少なくとも1種の粒子であることが好ましく、特に架橋シリコーン樹脂、架橋アクリル樹脂、架橋ポリエステル、架橋ポリスチレンおよび二酸化ケイ素(但し、多孔質シリカなどは除く)からなる群から選ばれる少なくとも1種の粒子であることが、粒子の粒径のバラツキを小さくしやすいことから好ましい。もちろん、これらは2種以上を併用しても良い。   Usually, in order to increase the surface roughness of the film, the film layer may contain inert particles to form protrusions. As the inert particles to be contained, (1) heat resistant polymer particles (for example, crosslinked silicone resin, crosslinked polystyrene, crosslinked acrylic resin, melamine-formaldehyde resin, aromatic polyamide resin, polyimide resin, polyamideimide resin, crosslinked polyester, etc.) Particles), (2) metal oxides (eg, aluminum oxide, titanium dioxide, silicon dioxide (silica), magnesium oxide, zinc oxide, zirconium oxide, etc.), metal carbonates (eg, magnesium carbonate, calcium carbonate, etc.) Particles made of inorganic compounds such as metal sulfates (eg calcium sulfate, barium sulfate etc.), carbon (eg carbon black, graphite, diamond etc.) and clay minerals (eg kaolin, clay, bentonite etc.) And more (3) and the like inside precipitated particles formed by precipitation, such as externally added particles are added in the form of composite particles such as particles, such as different materials shell type using for example the core and the shell or (4) a catalyst. Among these, at least one kind of particles selected from the group consisting of a crosslinked silicone resin, a crosslinked acrylic resin, a crosslinked polyester, a crosslinked polystyrene, aluminum oxide, titanium dioxide, silicon dioxide, kaolin and clay is particularly preferable. At least one kind of particles selected from the group consisting of silicone resin, cross-linked acrylic resin, cross-linked polyester, cross-linked polystyrene, and silicon dioxide (excluding porous silica etc.) reduces the variation in particle size. It is preferable because it is easy. Of course, these may be used in combination of two or more.

ただ、前述の積層構造を形成するフィルム層AおよびBだけでこのような表面粗さを満足させるのは、単純に一方のフィルム層に不活性粒子を含有させることだけでは難しい。そこで、好ましいフィルムの層構成について、さらに詳述する。   However, it is difficult to satisfy such surface roughness only with the film layers A and B forming the above-described laminated structure simply by containing inert particles in one film layer. Therefore, the preferred layer structure of the film will be described in detail.

まず、第1の層構成としては、フィルム層AまたはBのいずれか一方のフィルム層が2つの最表層の両方を形成する、すなわちフィルム層AとBの合計が奇数層の場合、最表層を形成しない側のフィルム層は平均粒経0.01−1.0μmの不活性粒子を0.001−5重量%含み、最表層を形成する側のフィルム層は不活性粒子を含有しないか、前記最表層を形成しない側のフィルム層よりも平均粒経の小さな粒子を含有するか、同じ平均粒経の不活性粒子をより少ない含有量で含有し、さらに表面粗さの小さな最表層を形成するフィルム層の厚み(tX)が、表面粗さの大きな最表層を形成するフィルム層の厚み(tY)の厚みに対して、1.5倍以上であることが好ましい。tXをtY対比、1.5倍以上にすることで、内側のフィルム層に内在する不活性粒子による影響を抑え、表面粗さの小さな最表層をより平坦に調整することができる。   First, as the first layer configuration, one of the film layers A and B forms both of the two outermost layers, that is, when the total of the film layers A and B is an odd number layer, The film layer on the non-forming side contains 0.001 to 5% by weight of inert particles having an average particle size of 0.01 to 1.0 μm, and the film layer on the side forming the outermost layer does not contain inert particles, or Contains particles with a smaller average grain size than the film layer on the side that does not form the outermost layer, or contains inert particles with the same average particle size at a lower content, and forms the outermost layer with a smaller surface roughness. The thickness (tX) of the film layer is preferably 1.5 times or more with respect to the thickness (tY) of the film layer forming the outermost layer having a large surface roughness. By making tX 1.5 times or more as compared with tY, it is possible to suppress the influence of inert particles present in the inner film layer, and to adjust the outermost layer having a small surface roughness more flatly.

次に、第2の層構成については、フィルム層AとBとでそれぞれの最表層を形成させる、すなわちフィルム層AとBの合計を偶数層とし、フィルム層AまたはBのいずれか一方のフィルム層が表面粗さの大きな最表層を形成し、かつ平均粒経0.01−1.0μmの不活性粒子を0.001−5重量%含み、表面粗さの大きな最表層を形成しない側のフィルム層が、表面粗さの小さな最表層を形成し、かつ不活性粒子を含有しないか、表面粗さの大きな最表層を形成する側のフィルム層よりも平均粒経の小さな粒子を含有するか、同じ平均粒経の不活性粒子をBより少ない含有量で含有するようにすることが好ましい。この際、表面粗さの小さい最表層の厚み(tX(nm))、表面粗さの大きい最表層が厚み(tY(nm))、表面粗さの小さい最表層に隣接するフィルム層の厚み(tX’(nm))、表面粗さの大きい最表層に隣接するフィルム層の厚み(tY’(nm))は、次の関係式のいずれか少なくともひとつを満たすことが本発明の効果がより顕著となるので好ましい。
(式1) tX>1.5×tX’
(式2) tY>1.5×tY’
Next, with respect to the second layer structure, the outermost layers are formed by the film layers A and B, that is, the total of the film layers A and B is an even layer, and either the film layer A or B film The layer forms the outermost layer having a large surface roughness and contains 0.001 to 5% by weight of inert particles having an average particle size of 0.01 to 1.0 μm and does not form the outermost layer having a large surface roughness. Whether the film layer forms the outermost layer having a small surface roughness and does not contain inert particles, or contains particles having a smaller average particle size than the film layer on the side forming the outermost layer having a large surface roughness It is preferable to contain inert particles having the same average particle size in a smaller content than B. At this time, the thickness (tX (nm)) of the outermost layer having a small surface roughness, the thickness (tY (nm)) of the outermost layer having a large surface roughness, and the thickness of the film layer adjacent to the outermost layer having a small surface roughness ( tX ′ (nm)) and the thickness (tY ′ (nm)) of the film layer adjacent to the outermost layer having a large surface roughness satisfy at least one of the following relational expressions. Therefore, it is preferable.
(Formula 1) tX> 1.5 × tX ′
(Formula 2) tY> 1.5 × tY ′

式1、式2における厚み比は、より好ましくは2倍以上、さらに好ましくは5倍以上、特に好ましくは10倍以上である。上限は特に制限されないが、通常500倍以下、さらに300倍以下であることが好ましい。tXとtX’が上記(式1)を満たすことにより、表面粗さをより平坦にしやすく、他方tYとtY’が上記(式2)を満たすことにより、表面粗さをより大きく調整しやすくなる。なお、前述のフィルム層(A)と(B)は、どちらを表面粗さの小さい最表層にしても良いし、またどちらを表面粗さの大きい最表層ににしても良い。含有させる不活性粒子は、前述の物が好適に利用でき、特に表面粗さの大きな最表層に含有させる不活性粒子は、磁気記録媒体にするときのキュア工程での背面転写抑制の観点から有機粒子が好ましく、特に架橋ポリスチレン有機粒子、シリコーン樹脂粒子が好ましい。他方、表面粗さの小さな最表層に含有させる不活性粒子としては、小粒子径の均一な粒子径を有する不活性粒子を、凝集させることなく均一に分散させることが好ましく、そのような観点から球状の不活性粒子が好ましく、特に真球状シリカ粒子が好ましい。   The thickness ratio in Formula 1 and Formula 2 is more preferably 2 times or more, still more preferably 5 times or more, and particularly preferably 10 times or more. The upper limit is not particularly limited, but is usually 500 times or less, more preferably 300 times or less. When tX and tX ′ satisfy the above (Equation 1), the surface roughness can be more easily flattened. On the other hand, when tY and tY ′ satisfy the above (Equation 2), the surface roughness can be more easily adjusted. . Note that either of the above-described film layers (A) and (B) may be the outermost layer having a small surface roughness, and either may be the outermost layer having a large surface roughness. As the inert particles to be included, the above-mentioned ones can be suitably used. In particular, the inert particles to be included in the outermost layer having a large surface roughness are organic from the viewpoint of suppressing backside transfer in the curing step when making a magnetic recording medium. Particles are preferable, and crosslinked polystyrene organic particles and silicone resin particles are particularly preferable. On the other hand, as the inert particles to be contained in the outermost layer having a small surface roughness, it is preferable to uniformly disperse the inert particles having a uniform particle size with a small particle size without agglomeration. Spherical inert particles are preferred, and true spherical silica particles are particularly preferred.

ところで、本発明の二軸配向多層積層フィルムは、フィルム層AとBとを交互に11層以上積層した積層構造を有しておればよく、それとは別の第3のフィルム層を形成しても良い。特にフィルム層の厚みを薄くする必要があるときに、前記積層構造を形成す部分のみでは滑り性と表面平坦性を両立する表面の形成が困難となるが、このような第3の層を設けることで、より容易に滑り性と表面平坦性を両立する表面の形成ができる。第3の層を設ける場合、二軸配向多層積層フィルムの表面粗さの大きい最表層が、平均粒経0.01−1.0μmの不活性粒子を0.001−5重量%含む第3の層(C層)からなり、積層構造を形成するフィルム層AおよびBは、不活性粒子を含有しないか、該表面粗さの大きい最表層を形成するフィルム層よりも平均粒経の小さな粒子を含有するか、同じ平均粒経の不活性粒子をより少ない含有量で含有することが好ましい。なお、第3の層は、前述のフィルム層AまたはBと含有する不活性粒子の種類、大きさまたは量を異にすることが、表面粗さに違いを持たせる上で好ましい。一方、第3の層のポリマー自体の組成は、特に制限されず、ポリエステル以外の他それ自体公知の熱可塑性樹脂であっても良いが、好ましくは前述のフィルム層AやBと同じポリマーである。また、第3の層の厚みを厚くする場合、カールをより抑えやすいことから、第3の層のポリマー自体の組成は、前述の積層構造を形成するフィルム層AとBの中間の組成を有することが好ましい。   By the way, the biaxially oriented multilayer laminated film of the present invention only needs to have a laminated structure in which 11 or more film layers A and B are alternately laminated, and a third film layer different from that is formed. Also good. In particular, when it is necessary to reduce the thickness of the film layer, it is difficult to form a surface that achieves both slipperiness and surface flatness only at the portion where the laminated structure is formed, but such a third layer is provided. Thus, it is possible to more easily form a surface having both slipperiness and surface flatness. In the case of providing the third layer, the outermost layer having a large surface roughness of the biaxially oriented multilayer laminated film contains a third particle containing 0.001 to 5% by weight of inert particles having an average particle size of 0.01 to 1.0 μm. Film layers A and B, which are composed of layers (C layer) and form a laminated structure, contain no inert particles or particles having a smaller average particle size than the film layer forming the outermost layer having the large surface roughness. It is preferable to contain inert particles having the same average particle size or less. In addition, it is preferable that the third layer is different from the above-described film layer A or B in the kind, size, or amount of the inert particles contained in order to have a difference in surface roughness. On the other hand, the composition of the polymer of the third layer is not particularly limited, and may be a known thermoplastic resin other than polyester, but is preferably the same polymer as the above-described film layers A and B. . In addition, when the thickness of the third layer is increased, curling is more easily suppressed. Therefore, the composition of the polymer of the third layer has an intermediate composition between the film layers A and B forming the above-described laminated structure. It is preferable.

なお、第3の層を積層する面は、フィルム層(A)または(B)のいずれの表面でもよく、前述の組合せのほかに、第3の層を表面粗さの小さな最表層を形成する層としてもよい。また、第3の層に含有させる不活性粒子は、有機粒子または有機粒子と無機粒子の組み合わせが好ましく、有機粒子としては架橋ポリスチレン、シリコーン樹脂粒子、無機粒子としては球状シリカ、酸化チタンなどが好ましい。   The surface on which the third layer is laminated may be any surface of the film layer (A) or (B). In addition to the above-mentioned combination, the third layer is formed as the outermost layer having a small surface roughness. It is good also as a layer. The inert particles contained in the third layer are preferably organic particles or a combination of organic particles and inorganic particles. The organic particles are preferably crosslinked polystyrene, silicone resin particles, and inorganic particles are preferably spherical silica, titanium oxide, or the like. .

本発明の二軸配向多層積層フィルムは、その少なくとも片面に、滑り性や接着性を向上させるために、塗膜層(以下、第4の層またはD層と称することがある)を形成されたものであっても良い。塗膜層を有する場合、表面粗さは、塗膜層の表面を測定した状態で満足すればよい。この塗膜層は製膜工程中の延伸完了前の未延伸または1軸延伸フィルムへの水溶性樹脂のコーティングあるいは、製膜完了後のフィルムへのホットメルトコートまたは、製膜完了後のフィルムへの溶剤に溶解した樹脂の塗布乾燥により得ることができる。塗膜層を積層する面はフィルム層(A),(B)、さらに第3の層のいずれの面であってもよく、片面だけでなく両面であってもよい。なお、塗膜層を形成する面が、表面粗さの小さな平坦な面である場合は、塗膜層は平均粒径が1−40nmの小粒径の不活性粒子を含有していることが好ましい。好ましい不活性粒子の平均粒径は2−30nm、特に5−25nmである。他方、塗膜層を形成する面が、表面粗さの大きな粗面である場合は、塗膜層は平均粒径が30−100nmの粒子を含有していることが好ましい。好ましい不活性粒子の平均粒径は、35−80nm、特に35−60nmである。粒子の種類は球状の有機粒子が好ましく、架橋ポリスチレン、シリコーン樹脂粒子などが例示される。また、粗面に塗布する場合には、メチルセルロースなどの硬い樹脂を含有させると、ロール状態としたときのブロッキングも抑制できることから好ましい。なお、本発明において、塗膜層を有する場合、前述のtXおよびtYは、塗膜層の内側に位置するそれぞれ最表層側に位置するフィルム層を意味する。   The biaxially oriented multilayer laminated film of the present invention has a coating layer (hereinafter sometimes referred to as a fourth layer or a D layer) formed on at least one surface in order to improve slipperiness and adhesion. It may be a thing. When it has a coating film layer, surface roughness should just be satisfied in the state which measured the surface of the coating film layer. This coating layer is formed by coating a water-soluble resin on an unstretched or uniaxially stretched film before the completion of stretching during the film-forming process, hot-melt coating on a film after the film-forming is completed, or on a film after the film-forming is completed. It can be obtained by applying and drying a resin dissolved in the above solvent. The surface on which the coating layer is laminated may be any surface of the film layers (A) and (B) and the third layer, and may be not only one surface but also both surfaces. When the surface on which the coating layer is formed is a flat surface with a small surface roughness, the coating layer may contain inert particles having a small particle size with an average particle size of 1 to 40 nm. preferable. The average particle size of the preferred inert particles is 2-30 nm, especially 5-25 nm. On the other hand, when the surface on which the coating film layer is formed is a rough surface having a large surface roughness, the coating film layer preferably contains particles having an average particle diameter of 30 to 100 nm. Preferred inert particles have an average particle size of 35-80 nm, in particular 35-60 nm. The type of particles is preferably spherical organic particles, and examples thereof include crosslinked polystyrene and silicone resin particles. Moreover, when apply | coating to a rough surface, when hard resin, such as methylcellulose, is contained, since blocking when it is set as a roll state can also be suppressed, it is preferable. In addition, in this invention, when it has a coating film layer, the above-mentioned tX and tY mean the film layer located in the outermost layer side respectively located inside a coating film layer.

本発明の二軸配向多層積層フィルムの交互積層された多層部分の厚みは、上記のように最外層とそれ以外で厚みを変えることが好ましいが、その厚みの変化は、最外層のみ厚くすることも可能であるし、また、交互積層部分の厚みを厚み方向に連続的に変化させることも可能である。   As described above, the thickness of the alternately laminated multilayer portions of the biaxially oriented multilayer laminate film of the present invention is preferably changed between the outermost layer and the others, but the change in thickness is to increase only the outermost layer. It is also possible to change the thickness of the alternately laminated portions continuously in the thickness direction.

なお、二軸配向多層積層フィルムの前記積層構造を形成する最表層以外のフィルム層の平均厚み(フィルム層Aの平均厚み:tA(nm)、フィルム層Bの平均厚み:tB(nm))には特に制約はないが、延伸性を確保するための総層数と全厚みの関係から、0.5−1000nmが好ましく、より好ましくは1−300nm、さらに好ましくは2−200nm、特に好ましくは3−100nmである。   In addition, to the average thickness (average thickness of the film layer A: tA (nm), average thickness of the film layer B: tB (nm)) of the film layers other than the outermost layer forming the laminated structure of the biaxially oriented multilayer laminated film Is not particularly limited, but from the relationship between the total number of layers and the total thickness for ensuring stretchability, 0.5 to 1000 nm is preferable, more preferably 1 to 300 nm, still more preferably 2 to 200 nm, and particularly preferably 3 −100 nm.

本発明の二軸配向多層積層フィルムの好ましい態様について、さらに詳述する。
本発明の二軸配向多層積層フィルムは、磁気テープなどのベースフィルムとして用いたとき、ベースフィルムが伸びないようにフィルム面方向における少なくとも一方向は、ヤング率が6.0GPa以上という高いヤング率を有することが好ましい。しかも、このようにヤング率を高くすることで、より湿度膨張係数を小さくすることができる。ヤング率の上限は制限されないが、通常18GPaである。好ましいヤング率は、フィルムの長手方向が4〜11GPa、さらに5〜10GPa、特に5.5〜9GPaの範囲であり、フィルムの幅方向が5〜18GPa、さらに6〜15GPa、さらに7〜12GPa、特に8〜10GPaの範囲である。
The preferred embodiment of the biaxially oriented multilayer laminated film of the present invention will be described in further detail.
When the biaxially oriented multilayer laminated film of the present invention is used as a base film such as a magnetic tape, at least one direction in the film surface direction has a high Young's modulus of 6.0 GPa or more so that the base film does not stretch. It is preferable to have. Moreover, the humidity expansion coefficient can be further reduced by increasing the Young's modulus in this way. The upper limit of Young's modulus is not limited, but is usually 18 GPa. Preferred Young's modulus is 4 to 11 GPa in the longitudinal direction of the film, more preferably 5 to 10 GPa, particularly 5.5 to 9 GPa, and 5 to 18 GPa in the width direction of the film, further 6 to 15 GPa, and more preferably 7 to 12 GPa. It is in the range of 8-10 GPa.

本発明の二軸配向多層積層フィルムは、少なくとも一方向の湿度膨張係数が0.1〜9ppm/%RH、さらには1〜6ppm/%RH、特に2〜5ppm/%RHの範囲にあることが、磁気記録テープにしたときの寸法安定性の点で好ましい。特に、磁気記録テープにベースフィルムに用いる場合、湿度膨張係数の小さい方向が二軸配向ポリエステルフィルムの幅方向であることが、トラックずれなどを極めて抑制できることから好ましい。なお、本発明において、フィルムの幅方向とは、フィルムの製膜方向(長手方向、縦方向と称することもある。)に直交する方向であり、横方向と称することもある。   The biaxially oriented multilayer laminated film of the present invention has a humidity expansion coefficient in at least one direction of 0.1 to 9 ppm /% RH, more preferably 1 to 6 ppm /% RH, and particularly 2 to 5 ppm /% RH. From the viewpoint of dimensional stability when a magnetic recording tape is used. In particular, when used as a base film for a magnetic recording tape, it is preferable that the direction in which the humidity expansion coefficient is small is the width direction of the biaxially oriented polyester film because track deviation and the like can be extremely suppressed. In the present invention, the width direction of the film is a direction orthogonal to the film forming direction of the film (also referred to as a longitudinal direction or a longitudinal direction), and is sometimes referred to as a lateral direction.

本発明の二軸配向多層積層フィルムは、幅方向の温度膨張係数が−10〜+10ppm/℃、さらには−5〜+5ppm/℃、特に−5〜0ppm/℃の範囲にあることが、磁気記録テープにしたときの寸法安定性の点で好ましい。
本発明の二軸配向多層積層フィルムの好ましい全厚みは1−10μm、さらには2−8μm、特に好ましくは3−7μmである。
The biaxially oriented multilayer laminated film of the present invention has a temperature expansion coefficient in the width direction of −10 to +10 ppm / ° C., more preferably −5 to +5 ppm / ° C., particularly −5 to 0 ppm / ° C. This is preferable in terms of dimensional stability when formed into a tape.
The preferred total thickness of the biaxially oriented multilayer laminate film of the present invention is 1-10 μm, further 2-8 μm, particularly preferably 3-7 μm.

<芳香族ポリエステル(A)および疎水性樹脂(B)の製造方法>
本発明で使用する芳香族ポリエステル(A)および疎水性樹脂(B)は、それ自体公知の方法で製造することができる。
なお、本発明における芳香族ポリエステル(A)および疎水性樹脂(B)には、本発明の効果を阻害しない範囲で、他の熱可塑性ポリマー、紫外線吸収剤等の安定剤、酸化防止剤、可塑剤、滑剤、難燃剤、離型剤、顔料、核剤、充填剤あるいはガラス繊維、炭素繊維、層状ケイ酸塩などを必要に応じて配合しても良い。他種熱可塑性ポリマーとしては、脂肪族ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート、ABS樹脂、ポリメチルメタクリレート、ポリアミド系エラストマー、ポリエステル系エラストマー、ポリエーテルイミド、ポリイミドなどが挙げられる。
<Method for producing aromatic polyester (A) and hydrophobic resin (B)>
The aromatic polyester (A) and the hydrophobic resin (B) used in the present invention can be produced by a method known per se.
In addition, the aromatic polyester (A) and the hydrophobic resin (B) in the present invention include other thermoplastic polymers, stabilizers such as ultraviolet absorbers, antioxidants, plastics, and the like within a range not inhibiting the effects of the present invention. Agents, lubricants, flame retardants, release agents, pigments, nucleating agents, fillers, glass fibers, carbon fibers, layered silicates and the like may be blended as necessary. Examples of other types of thermoplastic polymers include aliphatic polyester resins, polyamide resins, polycarbonates, ABS resins, polymethyl methacrylate, polyamide elastomers, polyester elastomers, polyetherimides, polyimides, and the like.

<不活性粒子の添加方法>
本発明における前述の不活性粒子の、フィルム層(A)、(B)および第3の層への添加方法は、特に制限されず、それぞれの層を構成する樹脂の重合段階で添加したり、重合後に二軸懇練押出機などで練り込んだりすればよい。好ましくは、フィルム層中での粒子の分散性をより向上させやすいことから、重合段階で最終のフィルムでの使用よりも多量に不活性粒子を含有させたマスターポリマーを作成し、それを不活性粒子を含有しないポリマーで所望の粒子濃度になるように希釈する方法が好ましい。その際、フィルターなどのろ過によって、粗大粒子などを取り除くことが好ましい。
<Inert particle addition method>
The method for adding the above-described inert particles in the present invention to the film layers (A), (B) and the third layer is not particularly limited, and may be added at the polymerization stage of the resin constituting each layer, What is necessary is just to knead with a twin-screw kneading extruder etc. after superposition | polymerization. Preferably, since it is easier to improve the dispersibility of the particles in the film layer, a master polymer containing a larger amount of inert particles in the polymerization stage than that used in the final film is prepared, and it is made inert. A method of diluting with a polymer containing no particles to a desired particle concentration is preferred. At that time, it is preferable to remove coarse particles by filtration with a filter or the like.

<フィルムの製造方法>
本発明の二軸配向多層積層フィルムは、製膜方向と幅方向に延伸してそれぞれの方向の分子配向を高めたものであり、例えば以下のような方法で製造することが、製膜性を維持しつつ、ヤング率を向上させやすいことから好ましい。
<Film production method>
The biaxially oriented multilayer laminated film of the present invention is obtained by stretching in the film forming direction and the width direction to enhance the molecular orientation in each direction. For example, it can be produced by the following method to improve the film forming property. It is preferable because the Young's modulus can be easily improved while maintaining.

まず、芳香族ポリエステル(A)と疎水性樹脂(B)とを原料とし、これらを乾燥後、溶融状態、好ましくはそれぞれの層を形成するポリマーの融点(Tm:℃)ないし(Tm+70)℃の温度で溶融した後に流路中で所定の層数だけ分割を行ない、交互に積層した後に口金から吐出させ、急冷固化して積層未延伸フィルムとし、さらに該積層未延伸フィルムを二軸延伸する。このとき分岐流路の形状を工夫することにより、最外層の厚みのみを厚くすることや、厚み方向で厚みを徐々に変えることも可能である。また、交互積層している層を形成後、口金から押し出す前の段階までに、第3の樹脂を合流させてどちらかの最外層に積層させた構造体を作ることも可能である。   First, the aromatic polyester (A) and the hydrophobic resin (B) are used as raw materials, and after drying these, the melting state, preferably the melting point (Tm: ° C.) to (Tm + 70) ° C. of the polymer forming each layer. After melting at a temperature, the film is divided by a predetermined number of layers in the flow path, alternately laminated, then discharged from the die, rapidly solidified to form a laminated unstretched film, and the laminated unstretched film is biaxially stretched. At this time, by devising the shape of the branch flow path, it is possible to increase only the thickness of the outermost layer or to gradually change the thickness in the thickness direction. It is also possible to make a structure in which the third resin is merged and laminated on one of the outermost layers after forming the alternately laminated layers and before pushing out from the die.

二軸延伸としては、逐次二軸延伸でも同時二軸延伸でもよい。
ここでは、逐次二軸延伸で、縦延伸、横延伸および熱処理をこの順で行う製造方法を一例として挙げて説明する。まず、最初の縦延伸は芳香族ポリエステル(A)もしくは疎水性樹脂(B)のどちらか高いほうのガラス転移温度(Tg:℃)ないし(Tg+40)℃の温度で、3〜10倍に延伸し、次いで横方向に先の縦延伸よりも高温で(Tg+10)〜(Tg+50)℃の温度で3〜10倍に延伸し、さらに熱処理としてポリマーの融点以下の温度でかつ(Tg+50)〜(Tg+150)℃の温度で1〜20秒、さらに1〜15秒熱固定処理するのが好ましい。特に、熱固定処理の温度は180〜220℃、さらに好ましくは190〜210℃の範囲で行うことが好ましい。
Biaxial stretching may be sequential biaxial stretching or simultaneous biaxial stretching.
Here, a manufacturing method in which longitudinal stretching, lateral stretching, and heat treatment are performed in this order by sequential biaxial stretching will be described as an example. First, the first longitudinal stretching is performed by stretching 3 to 10 times at a glass transition temperature (Tg: ° C.) to (Tg + 40) ° C., whichever is higher, of the aromatic polyester (A) or the hydrophobic resin (B). Then, the film is stretched 3 to 10 times at a temperature of (Tg + 10) to (Tg + 50) ° C. at a higher temperature than the longitudinal stretching in the transverse direction, and further at a temperature below the melting point of the polymer as a heat treatment and (Tg + 50) to (Tg + 150). It is preferable to perform heat setting treatment at a temperature of 1 ° C. for 1 to 20 seconds, and further for 1 to 15 seconds. In particular, the temperature of the heat setting treatment is preferably 180 to 220 ° C, more preferably 190 to 210 ° C.

前述の説明は逐次二軸延伸について説明したが、本発明の二軸配向多層積層フィルムは縦延伸と横延伸とを同時に行う同時二軸延伸でも製造でき、例えば先で説明した延伸倍率や延伸温度などを参考にすればよい。   Although the above description has been made on sequential biaxial stretching, the biaxially oriented multilayer laminated film of the present invention can be produced by simultaneous biaxial stretching in which longitudinal stretching and transverse stretching are simultaneously performed, for example, the stretching ratio and stretching temperature described above. You can refer to these.

さらには、滑り性向上や、易接着性を目的としてコーティング層を設けることも可能である。コーティング層は製膜工程中の未延伸フィルムや一軸延伸フィルムに水性塗液を塗布して延伸および熱固定しながら乾燥させることも可能であるし、2軸延伸終了後に塗布することで形成させることもできる。   Furthermore, it is also possible to provide a coating layer for the purpose of improving slipperiness and easy adhesion. The coating layer can be formed by applying an aqueous coating solution to an unstretched film or a uniaxially stretched film during the film-forming process and drying it while stretching and heat-setting, or by applying it after the biaxial stretching is completed. You can also.

本発明の二軸配向多層積層フィルムの厚みは、用途に応じて適宜決めればよく、磁気記録テープのベースフィルムに用いる場合は、2〜10μm、さらに3〜7μm、特に4〜6μmの範囲が好ましい。   The thickness of the biaxially oriented multilayer laminated film of the present invention may be appropriately determined according to the use. When used for the base film of a magnetic recording tape, the thickness is preferably 2 to 10 μm, more preferably 3 to 7 μm, and particularly preferably 4 to 6 μm. .

なお、粒子を含有させる方法については、それ自体公知の方法を採用でき、例えば芳香族ポリエステル(A)や疎水性樹脂(B)の製造工程において、反応系に添加しても良いし、芳香族ポリエステル(A)や疎水性樹脂(B)に溶融混練によって添加してもよい。粒子の分散性の点から、好ましくは芳香族ポリエステル(A)や疎水性樹脂(B)の反応系に添加して、粒子濃度の高い芳香族ポリエステル(A)や疎水性樹脂(B)をマスターポリマーとして製造し、該マスターポリマーを、粒子を含まないか、粒子濃度が低いポリエステル組成物と混ぜ合わせる方法が好ましい。   In addition, about the method of containing particle | grains, a publicly known method can be employ | adopted, for example, in the manufacturing process of aromatic polyester (A) or hydrophobic resin (B), you may add to a reaction system, or aromatic You may add to a polyester (A) and hydrophobic resin (B) by melt-kneading. From the viewpoint of the dispersibility of the particles, the aromatic polyester (A) or the hydrophobic resin (B) having a high particle concentration is preferably added to the reaction system of the aromatic polyester (A) or the hydrophobic resin (B). A method of producing as a polymer and mixing the master polymer with a polyester composition containing no particles or having a low particle concentration is preferred.

本発明によれば、本発明の上記二軸配向多層積層フィルムをベースフィルムとし、その平坦面側の表面に非磁性層および磁性層がこの順で形成され、走行面側の表面にバックコート層を形成することなどで磁気記録テープとすることができる。   According to the present invention, the biaxially oriented multilayer laminated film of the present invention is used as a base film, and a nonmagnetic layer and a magnetic layer are formed in this order on the surface on the flat surface side, and the backcoat layer is formed on the surface on the running surface side. It can be set as a magnetic recording tape by forming.

<積層体>
ところで、本発明の二軸配向多層積層フィルムは、それ自体を磁気記録媒体のベースフィルムとして用いても良いが、さらに本発明の二軸配向多層積層フィルムの片方の表面もしくは両方の表面上に金属類または金属系無機化合物からなる層(M層)が形成された積層体としてもよく、それによってさらに寸法変化をより小さくすることができる。金属類としては、例えば、Cu、Zn、Al、Si、Fe、Ag、Ti、Mg、Sn、Zr、In、Cr、Mn、V、Ni、Mo、Ce、Ga、Hf、Nb、Ta、Y、Wなどが挙げられ、金属系無機化合物としてはこれらの金属類を酸化させたものが挙げられる。
<Laminate>
By the way, the biaxially oriented multilayer laminated film of the present invention may be used as a base film of a magnetic recording medium, but a metal is further formed on one surface or both surfaces of the biaxially oriented multilayer laminated film of the present invention. It is good also as a laminated body in which the layer (M layer) which consists of a kind or a metallic inorganic compound was formed, and a dimensional change can be made still smaller by it. Examples of metals include Cu, Zn, Al, Si, Fe, Ag, Ti, Mg, Sn, Zr, In, Cr, Mn, V, Ni, Mo, Ce, Ga, Hf, Nb, Ta, and Y. , W and the like, and examples of the metal-based inorganic compound include those obtained by oxidizing these metals.

上記のM層を両面に形成する場合、両表面で異なる金属成分を含んでいてもよく、また、複数種の金属成分を混合して含んでいても構わないが、より好ましくは両表面で同一種の金属成分を含む方が良い。中でも、金属系酸化物は、酸化度の制御性、寸法安定性、生産性、環境性の観点から、アルミニウム、銅、亜鉛、銀、珪素元素の少なくとも一種を含んでいることが好ましく、より好ましくはアルミニウム元素が主成分となっていることが好ましい。   When the M layer is formed on both surfaces, different metal components may be included on both surfaces, and a plurality of types of metal components may be mixed, but more preferably on both surfaces. It is better to contain a kind of metal component. Among these, the metal-based oxide preferably contains at least one of aluminum, copper, zinc, silver, and silicon elements from the viewpoints of controllability of the degree of oxidation, dimensional stability, productivity, and environmental properties, and more preferably. Is preferably composed mainly of an aluminum element.

本発明では、M層の厚みは、それぞれ15〜90nmの範囲にあることが好ましい。M層の厚みが15nmより小さい場合、補強効果が小さく、温度・湿度による環境変化や高温での加工時の伸びの低減効果が小さくなりやすい。M層の厚みの下限は、好ましくは20nm、より好ましくは25nmである。一方、M層の厚みが90nmより大きい場合は、曲げ剛性が大きくなりやすく、結晶粒などによって表面が粗れやすくなる。M層の厚みの上限は、好ましくは80nm、より好ましくは70nmである。M層の厚みは、上記の範囲であれば、両表面で異なる厚みでもよい。両表面を同じ厚みに制御すると、得られた支持体がフラットな形状になりやすいので好ましい。また、両表面を異なる厚みに制御すると、得られた支持体がカッピングを起こすことがあるが、磁気記録媒体に使用するために、必要に応じて、カッピングを有する支持体であると、磁気ヘッドあたりが良好であることがある。その場合、磁性層を設ける側の表面(A)と磁性層を設けない側の表面、すなわちバックコート層側の表面(B)とでは、磁性層を設ける側の表面(A)が凸面になるカッピング形状であることが好ましい。このようなカッピング形状を実現するためには、A面側のM層の厚みとB面側のM層の厚みをそれぞれMa、Mbとしたとき、その厚み比(Ma/Mb)を1〜5とすることが好ましい。Ma/Mbは、より好ましくは1〜3、さらに好ましくは1〜2である。   In the present invention, the thickness of each M layer is preferably in the range of 15 to 90 nm. When the thickness of the M layer is smaller than 15 nm, the reinforcing effect is small, and the environmental change due to temperature and humidity and the effect of reducing elongation during processing at high temperatures tend to be small. The lower limit of the thickness of the M layer is preferably 20 nm, more preferably 25 nm. On the other hand, when the thickness of the M layer is larger than 90 nm, the bending rigidity tends to increase, and the surface tends to become rough due to crystal grains or the like. The upper limit of the thickness of the M layer is preferably 80 nm, more preferably 70 nm. The thickness of the M layer may be different on both surfaces as long as it is within the above range. It is preferable to control both surfaces to the same thickness because the obtained support tends to be flat. In addition, when the two surfaces are controlled to have different thicknesses, the obtained support may cause cupping. However, if necessary, the magnetic head can be used for a magnetic recording medium. The hit may be good. In that case, the surface (A) on the side where the magnetic layer is provided is convex between the surface (A) on the side where the magnetic layer is provided and the surface on the side where the magnetic layer is not provided, ie, the surface (B) on the backcoat layer side. A cupping shape is preferred. In order to realize such a cupping shape, when the thickness of the M layer on the A plane side and the thickness of the M layer on the B plane side are Ma and Mb, respectively, the thickness ratio (Ma / Mb) is 1 to 5 It is preferable that Ma / Mb is more preferably 1 to 3, and further preferably 1 to 2.

ところで、本発明の積層体は、積層体の縦方向のヤング率(GPa)と支持体の厚み(μm)の積が30以上であることが好ましい。この積が30未満では、例えば磁気テープとする際に、塗布工程での張力により長手方向に延びて幅方向にシワが入りやすく、または磁気テープとしたときに、磁気テープの走行方向にかかる張力で長手方向(縦方向)に延びて幅方向に縮み、トラックズレなどを引き起こしやくなるからである。もちろん、この積を大きくするには、支持体の縦方向のヤング率(GPa)と支持体の厚み(μm)とを大きくすれば良いのであるが、前述のとおり、記憶容量の観点からは支持体の厚みは薄いほどよい。その点、本発明の積層体は、二軸配向多層積層フィルムが非常に寸法安定性を有することから、M層を薄くしつつ、さらに積層体の厚みを4.5μm以下、さらに4μm以下といった非常に薄いものとしても、塗布適性を高度に維持することができる。   By the way, in the laminate of the present invention, the product of the Young's modulus (GPa) in the longitudinal direction of the laminate and the thickness (μm) of the support is preferably 30 or more. If this product is less than 30, for example, when a magnetic tape is used, it extends in the longitudinal direction due to the tension in the coating process and tends to wrinkle in the width direction, or when used as a magnetic tape, the tension applied in the running direction of the magnetic tape. This is because it extends in the longitudinal direction (longitudinal direction) and contracts in the width direction, which easily causes track misalignment. Of course, in order to increase this product, the Young's modulus (GPa) in the longitudinal direction of the support and the thickness (μm) of the support should be increased, but as described above, it is supported from the viewpoint of storage capacity. The thinner the body, the better. In that respect, since the biaxially oriented multilayer laminate film has very dimensional stability, the laminate of the present invention has an extremely low thickness of 4.5 μm or less, and further 4 μm or less while making the M layer thinner. Even if it is very thin, application suitability can be maintained at a high level.

本発明の積層体は、優れた寸法安定性、特に磁気テープなどのベースフィルムとして用いたとき、トラックズレなどを抑制する観点から、積層体の幅方向の温度膨張係数(αt)が−10〜10ppm/℃以下であることが好ましい。好ましい積層体の幅方向の温度膨張係数(αt)は、−7〜5ppm/℃、さらに−5〜0ppm/℃の範囲である。このような温度膨張係数(αt)は、二軸配向多層積層フィルムのαtやM層の材質や厚さなどで調整できる。また、本発明の積層体は、優れた寸法安定性、特に磁気テープなどのベースフィルムとして用いたとき、トラックズレなどを抑制する観点から、フィルムの幅方向における湿度膨張係数(αh)が、0〜5ppm/%RH、さらに1〜4.5ppm/%RHの範囲にあることが好ましい。このような湿度膨張係数(αh)は、二軸配向多層積層フィルムのαhやM層の材質や厚さなどで調整できる。   The laminate of the present invention has excellent dimensional stability, particularly when used as a base film such as a magnetic tape, and the temperature expansion coefficient (αt) in the width direction of the laminate is −10 to −10 from the viewpoint of suppressing track misalignment. It is preferably 10 ppm / ° C. or less. The temperature expansion coefficient (αt) in the width direction of the preferred laminate is in the range of −7 to 5 ppm / ° C., more preferably −5 to 0 ppm / ° C. Such a temperature expansion coefficient (αt) can be adjusted by αt of the biaxially oriented multilayer laminated film, the material and thickness of the M layer, and the like. In addition, the laminate of the present invention has excellent dimensional stability, in particular, a humidity expansion coefficient (αh) in the width direction of the film of 0 when used as a base film such as a magnetic tape, from the viewpoint of suppressing track shift and the like. It is preferable to be in the range of ˜5 ppm /% RH, more preferably 1 to 4.5 ppm /% RH. Such a humidity expansion coefficient (αh) can be adjusted by αh of the biaxially oriented multilayer laminated film, the material and thickness of the M layer, and the like.

また、本発明の積層体は、支持体の長手方向と幅方向のヤング率の和が10〜22GPaであり、かつ、長手方向のヤング率Emと幅方向のヤング率Etの比Em/Etが0.5〜1.0の範囲にあることが、上記のような寸法安定性を具備させつつ、製造工程を安定化しやすいことから好ましい。   In the laminate of the present invention, the sum of the Young's modulus in the longitudinal direction and the width direction of the support is 10 to 22 GPa, and the ratio Em / Et between the Young's modulus Em in the longitudinal direction and the Young's modulus Et in the width direction is It is preferable that it is in the range of 0.5 to 1.0 because the manufacturing process can be easily stabilized while having the above dimensional stability.

<支持体の製造方法>
まず、前述のようにして得られた二軸配向多層積層フィルムにM層を形成する方法を、真空蒸着装置を用いて両面にM層を設ける方法を例にとって説明する。
まず、真空蒸着装置においては、真空チャンバの内部を二軸配向多層積層フィルムが巻出しロール部から冷却ドラムを経て巻取りロール部へと走行する。そのときに、るつぼ内に金属材料を入れ、そこに電子銃から照射した電子ビームを当てるなどして加熱蒸発させ、冷却ドラム上の二軸配向多層積層フィルムに蒸着する。このとき、酸素供給ノズルから酸素ガスを導入すれば、蒸発した金属を酸化反応させながら蒸着することができる。また、片方の表面(1面目)に蒸着した後巻取りロール部から片面蒸着したものを取り外し、それを巻出しロール部にセットし同じように反対側の表面(2面目)に蒸着することで両面に形成できる。
<Method for producing support>
First, a method for forming the M layer on the biaxially oriented multilayer laminated film obtained as described above will be described by taking as an example a method for forming the M layer on both sides using a vacuum deposition apparatus.
First, in a vacuum deposition apparatus, a biaxially oriented multilayer laminated film travels from an unwinding roll part to a winding roll part through a cooling drum inside a vacuum chamber. At that time, a metal material is put in a crucible and heated and evaporated by applying an electron beam irradiated from an electron gun to the crucible, and deposited on a biaxially oriented multilayer laminated film on a cooling drum. At this time, if oxygen gas is introduced from the oxygen supply nozzle, the evaporated metal can be deposited while undergoing an oxidation reaction. Also, after vapor deposition on one surface (first side), remove the one-side vapor deposition from the winding roll part, set it on the unwinding roll part, and vapor deposition on the opposite side surface (second side) in the same way Can be formed on both sides.

ここで、真空チャンバ12の内部は、1.0×10−8〜1.0×10Paに減圧することが好ましい。さらに緻密で劣化部分の少ないM層を形成させるためには、1.0×10−6〜1.0×10−1Paに減圧することが好ましい。また、冷却ドラムは、その表面温度を−40〜60℃の範囲内にすることが好ましい。より好ましくは−35〜30℃、さらに好ましくは−30〜0℃である。電子ビームを用いる場合は、その出力が2.0〜8.0kWの範囲内のもので行うのが好ましい。より好ましくは3.0〜7.0kW、さらに好ましくは4.0〜6.0kWの範囲内である。なお、直接ルツボを加熱することで金属材料を加熱蒸発させてもよい。 Here, the inside of the vacuum chamber 12 is preferably decompressed to 1.0 × 10 −8 to 1.0 × 10 2 Pa. Further, in order to form a dense M layer with few deteriorated portions, it is preferable to reduce the pressure to 1.0 × 10 −6 to 1.0 × 10 −1 Pa. The cooling drum preferably has a surface temperature in the range of −40 to 60 ° C. More preferably, it is -30-30 degreeC, More preferably, it is -30-30 degreeC. When an electron beam is used, it is preferable that the output is within a range of 2.0 to 8.0 kW. More preferably, it is 3.0-7.0 kW, More preferably, it exists in the range of 4.0-6.0 kW. Note that the metal material may be evaporated by heating the crucible directly.

酸素ガスは、ガス流量制御装置を用いて0.5〜10L/minの流量で真空チャンバ内部に導入するのが好ましい。より好ましくは1.5〜8L/min、さらに好ましくは2.0〜5L/minである。   The oxygen gas is preferably introduced into the vacuum chamber at a flow rate of 0.5 to 10 L / min using a gas flow rate control device. More preferably, it is 1.5-8 L / min, More preferably, it is 2.0-5 L / min.

真空チャンバの内部における二軸配向多層積層フィルムの搬送速度は20〜200m/minが好ましい。より好ましくは30〜100m/min、さらに好ましくは40〜80m/minである。搬送速度が20m/minより遅い場合、上記のようなM層厚みに制御するためには金属の蒸発量をかなり小さくする必要がある。厚みや酸化度の制御が非常に難しくなる。搬送速度が200m/minより速くなると、冷却ドラムとの接触時間が短くなるため熱による破れやシワが発生し、生産性が低下する傾向がある。また、金属蒸気と酸素ガスとが不充分な反応状態で成膜されやすく、酸化度の制御が難しくなる場合がある。蒸着は片面ずつ行ってもよいし、両面を1工程で行ってもよい。   The conveying speed of the biaxially oriented multilayer laminated film inside the vacuum chamber is preferably 20 to 200 m / min. More preferably, it is 30-100 m / min, More preferably, it is 40-80 m / min. When the conveyance speed is slower than 20 m / min, it is necessary to considerably reduce the evaporation amount of the metal in order to control the M layer thickness as described above. Control of thickness and oxidation degree becomes very difficult. When the conveyance speed is higher than 200 m / min, the contact time with the cooling drum is shortened, so that tears and wrinkles are generated due to heat, and productivity tends to be reduced. In addition, the metal vapor and the oxygen gas are likely to be formed in an insufficient reaction state, and the degree of oxidation may be difficult to control. Vapor deposition may be performed one side at a time, or both sides may be performed in one step.

蒸着後、M層を安定化させ、緻密性を高めるためには、真空蒸着装置内を常圧に戻して、巻取ったフィルムを巻き返すことが好ましい。特に、未結合原子を減らすためには加湿巻き返しを行うことが水蒸気とM層が接触する機会が長くなるため好ましい。加湿巻き返しは20〜40℃で60〜80%RHで行うことが好ましい。さらに、20〜50℃の温度で1〜3日間エージングすることが好ましく、さらに好ましくは湿度60%以上の結露しない程度の環境下でエージングすることが好ましい。   In order to stabilize the M layer and improve the denseness after the deposition, it is preferable to return the inside of the vacuum deposition apparatus to normal pressure and to rewind the wound film. In particular, in order to reduce the number of unbonded atoms, it is preferable to perform humidification rewinding because the chance of contact between the water vapor and the M layer is increased. The humidification rewinding is preferably performed at 20 to 40 ° C. and 60 to 80% RH. Further, aging is preferably performed at a temperature of 20 to 50 ° C. for 1 to 3 days, and more preferably, aging is performed in an environment where the humidity is 60% or more and no condensation occurs.

次に、磁気記録媒体を製造する方法を説明する。上記のようにして得られた積層体を、磁気記録媒体用支持体として用いる場合、たとえば0.1〜3m幅にスリットし、速度20〜300m/min、張力50〜300N/mで搬送しながら、一方の面(A)に磁性塗料および非磁性塗料をエクストルージョンコーターにより重層塗布する。なお、上層に磁性塗料を厚み0.1〜0.3μmで塗布し、下層に非磁性塗料を厚み0.5〜1.5μmで塗布する。その後、磁性塗料および非磁性塗料が塗布された支持体を磁気配向させ、温度80〜130℃で乾燥させる。次いで、反対側の面(B)にバックコートを厚み0.3〜0.8μmで塗布し、カレンダー処理した後、巻き取る。なお、カレンダー処理は、小型テストカレンダー装置(スチール/ナイロンロール、5段)を用い、温度70〜120℃、線圧0.5〜5kN/cmで行う。その後、60〜80℃にて24〜72時間エージング処理し、1/2インチ(1.27cm)幅にスリットし、パンケーキを作製する。次いで、このパンケーキから特定の長さ分をカセットに組み込んで、カセットテープ型磁気記録媒体とする。   Next, a method for manufacturing a magnetic recording medium will be described. When the laminated body obtained as described above is used as a support for a magnetic recording medium, for example, it is slit to a width of 0.1 to 3 m and conveyed at a speed of 20 to 300 m / min and a tension of 50 to 300 N / m. On one surface (A), a magnetic coating material and a non-magnetic coating material are applied in multiple layers using an extrusion coater. A magnetic paint is applied to the upper layer with a thickness of 0.1 to 0.3 μm, and a nonmagnetic paint is applied to the lower layer with a thickness of 0.5 to 1.5 μm. Thereafter, the support coated with the magnetic coating material and the nonmagnetic coating material is magnetically oriented and dried at a temperature of 80 to 130 ° C. Next, a back coat is applied to the opposite surface (B) with a thickness of 0.3 to 0.8 μm, calendered, and then wound up. The calendering is performed using a small test calender (steel / nylon roll, 5 stages) at a temperature of 70 to 120 ° C. and a linear pressure of 0.5 to 5 kN / cm. Thereafter, the film is aged at 60 to 80 ° C. for 24 to 72 hours, slit to a width of 1/2 inch (1.27 cm), and a pancake is produced. Next, a specific length from this pancake is incorporated into a cassette to obtain a cassette tape type magnetic recording medium.

ここで、磁性塗料などの組成は、例えば後述の実施例の測定にある組成などが挙げられる。磁気記録媒体は上記に示した以外に、コバルト、ニッケル、鉄などを蒸着やスパッタなどにより設けた強磁性薄膜型磁性層を有するものでもかまわない。   Here, examples of the composition of the magnetic paint include the composition in the measurement of Examples described later. In addition to the above, the magnetic recording medium may have a ferromagnetic thin film type magnetic layer provided with cobalt, nickel, iron or the like by vapor deposition or sputtering.

このようにして得られた磁気記録媒体は、例えば、データ記録用途、具体的にはコンピュータデータのバックアップ用途(例えばリニアテープ式の記録媒体(LTO4やLTO5など))や映像などのデジタル画像の記録用途などに好適に用いることができる。   The magnetic recording medium thus obtained can be used, for example, for data recording, specifically for computer data backup (for example, linear tape recording media (LTO4, LTO5, etc.)) and digital image recording such as video. It can use suitably for a use etc.

以下に実施例及び比較例を挙げ、本発明をより具体的に説明する。なお、本発明では、以下の方法により、その特性を測定および評価した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In the present invention, the characteristics were measured and evaluated by the following methods.

(1)固有粘度
得られたポリエステルの固有粘度はo-クロロフェノールを用いてポリマーを溶解して35℃で測定して求めた。
(1) Intrinsic viscosity The intrinsic viscosity of the obtained polyester was determined by dissolving the polymer using o-chlorophenol and measuring it at 35 ° C.

(2)ガラス転移点および融点
ガラス転移点および融点は、それぞれの層に用いる芳香族ポリエステル(A)と疎水性樹脂(B)とを用意し、DSC(TAインスツルメンツ株式会社製、商品名:Thermal lyst2920)により、昇温速度20℃/minで測定した。
(2) Glass transition point and melting point Glass transition point and melting point are prepared by preparing aromatic polyester (A) and hydrophobic resin (B) used for each layer, DSC (trade name: Thermal, manufactured by TA Instruments Co., Ltd.). lyst 2920) at a temperature rising rate of 20 ° C./min.

(3)ヤング率
得られた二軸配向多層積層フィルムおよび積層体を試料巾10mm、長さ15cmで切り取り、チャック間100mm、引張速度10mm/分、チャート速度500mm/分の条件で万能引張試験装置(東洋ボールドウィン製、商品名:テンシロン)にて引っ張る。得られた荷重―伸び曲線の立ち上がり部の接線よりヤング率を計算した。
(3) Young's modulus The obtained biaxially oriented multilayer laminated film and laminate are cut out with a sample width of 10 mm and a length of 15 cm, and a universal tensile testing device under the conditions of 100 mm between chucks, a tensile speed of 10 mm / min, and a chart speed of 500 mm / min. Pull with Toyo Baldwin (trade name: Tensilon). The Young's modulus was calculated from the tangent of the rising portion of the obtained load-elongation curve.

(4)湿度膨張係数(αh、CHE)
得られた二軸配向多層積層フィルムおよび積層体を、フィルムの製膜方向または幅方向が測定方向となるように長さ15mm、幅5mmに切り出し、真空理工製TMA3000にセットし、30℃の窒素雰囲気下で、湿度30%RHと湿度70%RHにおけるそれぞれのサンプルの長さを測定し、次式にて湿度膨張係数を算出する。なお、測定方向が切り出した試料の長手方向であり、5回測定し、その平均値をαhとした。
αh=(L70−L30)/(L30×△H)
ここで、上記式中のL30は30%RHのときのサンプル長(mm)、L70は70%RHのときのサンプル長(mm)、△H:40(=70−30)%RHである。
(4) Humidity expansion coefficient (αh, CHE)
The obtained biaxially oriented multilayer laminated film and laminate were cut into a length of 15 mm and a width of 5 mm so that the film forming direction or the width direction of the film was the measuring direction, set in TMA3000 manufactured by Vacuum Riko, and nitrogen at 30 ° C. Under the atmosphere, the length of each sample at a humidity of 30% RH and a humidity of 70% RH is measured, and a humidity expansion coefficient is calculated by the following equation. In addition, the measurement direction is the longitudinal direction of the cut out sample, the measurement was performed 5 times, and the average value was αh.
αh = (L 70 −L 30 ) / (L 30 × ΔH)
Here, L 30 in the above formula is a sample length (mm) when 30% RH, L 70 is a sample length (mm) when 70% RH, ΔH: 40 (= 70-30)% RH is there.

(5)温度膨張係数(αt、CTE)
得られた二軸配向多層積層フィルムおよび積層体を、フィルムの製膜方向または幅方向が測定方向となるようにそれぞれ長さ15mm、幅5mmに切り出し、真空理工製TMA3000にセットし、窒素雰囲気下(0%RH)、60℃で30分前処理し、その後室温まで降温させる。その後25℃から70℃まで2℃/minで昇温して、各温度でのサンプル長を測定し、次式より温度膨張係数(αt)を算出する。なお、測定方向が切り出した試料の長手方向であり、5回測定し、その平均値を用いた。
αt={(L60−L40)}/(L40×△T)}+0.5
ここで、上記式中のL40は40℃のときのサンプル長(mm)、L60は60℃のときのサンプル長(mm)、△Tは20(=60−40)℃、0.5は石英ガラスの温度膨張係数(ppm/℃)である。
(5) Temperature expansion coefficient (αt, CTE)
The obtained biaxially oriented multilayer laminated film and laminate were cut into a length of 15 mm and a width of 5 mm, respectively, so that the film forming direction or the width direction of the film was the measurement direction, and set in TMA3000 manufactured by Vacuum Riko, under a nitrogen atmosphere. (0% RH), pre-treatment at 60 ° C. for 30 minutes, and then cooled to room temperature. Thereafter, the temperature is raised from 25 ° C. to 70 ° C. at 2 ° C./min, the sample length at each temperature is measured, and the temperature expansion coefficient (αt) is calculated from the following equation. In addition, the measurement direction is the longitudinal direction of the sample cut out, the measurement was performed 5 times, and the average value was used.
αt = {(L 60 −L 40 )} / (L 40 × ΔT)} + 0.5
Here, L 40 in the above formula is the sample length (mm) at 40 ° C., L 60 is the sample length (mm) at 60 ° C., ΔT is 20 (= 60-40) ° C., 0.5 Is the temperature expansion coefficient (ppm / ° C.) of quartz glass.

(6)二軸配向多層積層フィルム、積層体、各フィルム層およびM層の厚み
得られた二軸配向多層積層フィルムまたは積層体を、層間の空気を排除しながら10枚重ね、JIS規格のC2151に準拠し、(株)ミツトヨ製ダイヤルゲージMDC−25Sを用いて、10枚重ね法にて厚みを測定し、1枚当りの二軸配向多層積層フィルムおよび積層体の厚みを計算する。この測定を10回繰り返して、その平均値を1枚あたりの二軸配向多層積層フィルムおよび積層体の全体の厚みとした。
一方、M層、フィルム層(A)およびフィルム層(B)の厚みは、フィルムの小片をエポキシ樹脂にて固定成形し、ミクロトームにて約60nmの厚みの超薄切片(フィルムの製膜方向および厚み方向に平行に切断する)を作成する。この超薄切片の試料を透過型電子顕微鏡(日立製作所製H−800型)にて観察しその境界をからM層、フィルム層(A)、フィルム層(B)、フィルム層(C)の厚みを求めた。
(6) Thickness of biaxially oriented multilayer laminated film, laminated body, each film layer and M layer 10 layers of the obtained biaxially oriented multilayer laminated film or laminated body are removed while excluding air between layers. In accordance with the above, the thickness is measured by a 10-sheet overlapping method using a dial gauge MDC-25S manufactured by Mitutoyo Corporation, and the thicknesses of the biaxially oriented multilayer laminated film and the laminated body per sheet are calculated. This measurement was repeated 10 times, and the average value was taken as the total thickness of the biaxially oriented multilayer laminate film and laminate per sheet.
On the other hand, the thicknesses of the M layer, the film layer (A), and the film layer (B) are obtained by fixing a small piece of the film with an epoxy resin, and using an ultrathin section having a thickness of about 60 nm with a microtome (the film forming direction and Cut in parallel to the thickness direction). The sample of this ultra-thin section was observed with a transmission electron microscope (H-800 type manufactured by Hitachi, Ltd.), and the thickness of the M layer, the film layer (A), the film layer (B), and the film layer (C) from the boundary. Asked.

(7)巻取り性
製膜の完了した二軸配向多層積層フィルムロールを、幅1m長さ10000mに100本裁断し、以下の判定基準で○以上の本数を合格とし、100本中の良品の本数としてあらわした。
◎ 欠点なし。
○ わずかにシワまたはへこみがある。
△ 顕著なシワまたはへこみまたはブツがある。
× シワとへこみ、ブツの内2つ以上が存在する。
(7) Winding property 100 biaxially oriented multilayer laminated film rolls that have been formed into a film are cut into 100 pieces in a width of 1 m and a length of 10000 m. Expressed as a number.
◎ No drawbacks.
○ There are slight wrinkles or dents.
△ There are noticeable wrinkles or dents or bumps.
× There are two or more of wrinkles and dents.

(8)表面粗さ(Ra)
非接触式三次元表面粗さ計(ZYGO社製:New View5022)を用いて測定倍率25倍、測定面積283μm×213μm(=0.0603mm)の条件にて測定し、該粗さ計に内蔵された表面解析ソフトMetro Proにより中心面平均粗さ(Ra)を求めた。なお、第3の層や第4の層がある場合は、その表面を測定した。
(8) Surface roughness (Ra)
Measured using a non-contact type three-dimensional surface roughness meter (manufactured by ZYGO: New View 5022) at a measurement magnification of 25 times and a measurement area of 283 μm × 213 μm (= 0.0603 mm 2 ), and incorporated in the roughness meter The center surface average roughness (Ra) was determined by the surface analysis software Metro Pro. In addition, the surface was measured when there existed the 3rd layer and the 4th layer.

(9)データストレージ(磁気テープ)の作成
ダイコーターで、20MPaの張力条件で、幅500mmにスリットされた長さ850mの二軸配向多層積層フィルムまたは積層体の表面粗さが小さいほうの表面に、下記組成の非磁性塗料、磁性塗料を同時に、乾燥後の非磁性層および磁性層の厚みが、それぞれ1.2μmおよび0.1μmとなるように膜厚を変えて塗布し、磁気配向させて120℃×30秒の条件で乾燥させる。さらに、小型テストカレンダ−装置(スチ−ルロール/ナイロンロール、5段)で、温度:70℃、線圧:200kg/cmでカレンダ−処理した後、70℃、48時間キュアリングする。
非磁性塗料の組成
・二酸化チタン微粒子:100重量部
・エスレックA(積水化学製塩化ビニル/酢酸ビニル共重合体:10重量部
・ニッポラン2304(日本ポリウレタン製ポリウレタンエラストマ):10重量部
・コロネートL(日本ポリウレタン製ポリイソシアネート) : 5重量部
・レシチン: 1重量部
・メチルエチルケトン:75重量部
・メチルイソブチルケトン:75重量部
・トルエン:75重量部
・カーボンブラック: 2重量部
・ラウリン酸:1.5重量部
磁性塗料の組成
・鉄(長さ:0.3μm、針状比:10/1、1800エルステッド)
:100重量部
・エスレックA(積水化学製塩化ビニル/酢酸ビニル共重合体:10重量部
・ニッポラン2304(日本ポリウレタン製ポリウレタンエラストマ):10重量部
・コロネートL(日本ポリウレタン製ポリイソシアネート) : 5重量部
・レシチン: 1重量部
・メチルエチルケトン:75重量部
・メチルイソブチルケトン:75重量部
・トルエン:75重量部
・カーボンブラック: 2重量部
・ラウリン酸:1.5重量部
このようにして作成した磁性層付フィルムを用意し、その磁性層の反対面に下記組成のバックコートを固形分の厚みが0.5μmとなるように塗布した後、小型テストカレンダー装置(スチール/ナイロンロール、5段)で、温度85℃、線圧200kg/cmでカレンダー処理し、巻き取る。上記テープ原反を1/2インチ幅にスリットし、それをLTO用のケースに組み込み、長さが850mで磁気記録容量が0.8TBのデータストレージカートリッジを作成した。
(バックコートの組成)
・カーボンブラック(平均粒径20nm) : 95重量部
・カーボンブラック(平均粒径280nm): 10重量部
・αアルミナ : 0.1重量部
・変成ポリウレタン : 20重量部
・変成塩化ビニル共重合体 : 30重量部
・シクロヘキサノン : 200重量部
・メチルエチルケトン : 300重量部
・トルエン : 100重量部
(9) Creation of data storage (magnetic tape)
A non-magnetic paint or magnetic paint having the following composition is applied to the surface of the biaxially oriented multi-layer laminated film having a length of 850 m, which is slit to a width of 500 mm under a tension condition of 20 MPa, or the surface roughness of the laminated body is smaller. At the same time, the non-magnetic layer and the magnetic layer after drying are applied by changing the film thickness so that the thicknesses are 1.2 μm and 0.1 μm, respectively, magnetically oriented, and dried at 120 ° C. for 30 seconds. Further, after calendering with a small test calender (steel roll / nylon roll, 5 stages) at a temperature of 70 ° C. and a linear pressure of 200 kg / cm, curing is performed at 70 ° C. for 48 hours.
Composition of non-magnetic coating material: Titanium dioxide fine particles: 100 parts by weight Esrec A (Sekisui Chemical vinyl chloride / vinyl acetate copolymer: 10 parts by weight Nipporan 2304 (Japan polyurethane polyurethane elastomer): 10 parts by weight Coronate L ( Polyisocyanate made of Japanese polyurethane): 5 parts by weight, lecithin: 1 part by weight, methyl ethyl ketone: 75 parts by weight, methyl isobutyl ketone: 75 parts by weight, toluene: 75 parts by weight, carbon black: 2 parts by weight, lauric acid: 1.5 Composition of parts by weight of magnetic paint Iron (length: 0.3 μm, needle ratio: 10/1, 1800 oersted)
: 100 parts by weight-ESREC A (Sekisui Chemical's vinyl chloride / vinyl acetate copolymer: 10 parts by weight-Nipponran 2304 (polyurethane elastomer made by Nippon Polyurethane): 10 parts by weight-Coronate L (polyisocyanate made by Nippon Polyurethane): 5 parts by weight Parts, lecithin: 1 part by weight, methyl ethyl ketone: 75 parts by weight, methyl isobutyl ketone: 75 parts by weight, toluene: 75 parts by weight, carbon black: 2 parts by weight, lauric acid: 1.5 parts by weight A layered film is prepared, and a back coat having the following composition is applied to the opposite surface of the magnetic layer so that the thickness of the solid content is 0.5 μm, and then a small test calender device (steel / nylon roll, 5 stages). And calendering and winding at a temperature of 85 ° C. and a linear pressure of 200 kg / cm. Was inserted into a case for LTO, and a data storage cartridge having a length of 850 m and a magnetic recording capacity of 0.8 TB was produced.
(Backcoat composition)
Carbon black (average particle size 20 nm): 95 parts by weight
Carbon black (average particle size 280 nm): 10 parts by weight
・ Α alumina: 0.1 parts by weight
・ Modified polyurethane: 20 parts by weight
-Modified vinyl chloride copolymer: 30 parts by weight
・ Cyclohexanone: 200 parts by weight
・ Methyl ethyl ketone: 300 parts by weight
・ Toluene: 100 parts by weight

(10)電磁変換特性
上記(9)の方法で作成した磁気テープを、市販のLTO−G3ドライブ(IBM社製、MR再生ヘッドを搭載)を用いて、BBSNR(平均信号強度と広帯域積分平均雑音との比)を測定した。なお、結果は、実施例1の結果を基準として評価した。
(10) Electromagnetic conversion characteristics Using a commercially available LTO-G3 drive (manufactured by IBM Corporation, equipped with an MR reproducing head), the magnetic tape produced by the method of (9) above is subjected to BBSNR (average signal intensity and broadband integrated average noise). Ratio). The results were evaluated based on the results of Example 1.

(11)吸水率
各層に用いる樹脂を厚み100μmの未延伸フィルムを作成し、JIS K7209A法に準拠して測定した。
(11) Water absorption rate An unstretched film having a thickness of 100 μm was prepared from the resin used for each layer, and measured according to the JIS K7209A method.

(12)M層の厚み
下記条件にて断面観察を行い、得られた合計9点の厚み(nm)の平均値を算出し、M層の厚み(nm)とする。
・測定装置:透過型電子顕微鏡(TEM) 日立製H−7100FA型
・測定条件:加速電圧 100kV
・測定倍率:20万倍
・試料調製:超薄膜切片法
・観察面 :TD−ZD断面
・測定回数:1視野につき3点、3視野を測定する。
(12) Thickness of M layer
Cross-sectional observation is performed under the following conditions, and the average value of the obtained thicknesses (nm) of a total of nine points is calculated to obtain the thickness (nm) of the M layer.
Measurement device: Transmission electron microscope (TEM) Hitachi H-7100FA type
・ Measurement conditions: Acceleration voltage 100kV
・ Measurement magnification: 200,000 times
・ Sample preparation: Ultra-thin film section method
-Observation surface: TD-ZD cross section
-Number of measurements: 3 points per field of view and 3 fields of view are measured.

[実施例1]
テレフタル酸ジメチルとエチレングリコールとを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行い、グリコール成分の1.5モル%がジエチレングリコール成分であるポリエチレン−テレフタレートのペレットを得た。得られたポリエチレンテレフタレートの固有粘度は0.65であった。得られたペレットにポリエーテルイミドを10%濃度となるように混合し、同回転2軸押出機により混練した後に再度ペレット化してA層用のポリマー(A−1)とした。
また、シンジオタクティックポリスチレン樹脂として出光石油化学製ZAREC 130ZCに平均粒経0.25μmの架橋ポリスチレン粒子をペレット中の濃度が0.1重量%となるように同方向回転二軸混練機を用いて添加し、フィルム層(B)用の疎水性樹脂(B−1)を得た。
[Example 1]
Polyethylene terephthalate and ethylene glycol are subjected to an esterification reaction and a transesterification reaction in the presence of titanium tetrabutoxide, followed by a polycondensation reaction, and 1.5 mol% of a glycol component is a polyethylene-diethylene glycol component. A terephthalate pellet was obtained. The intrinsic viscosity of the obtained polyethylene terephthalate was 0.65. Polyetherimide was mixed with the obtained pellets so as to have a concentration of 10%, kneaded by the same rotating twin screw extruder, and then pelletized again to obtain a polymer for layer A (A-1).
In addition, using synergistic polystyrene resin, ZAREC 130ZC manufactured by Idemitsu Petrochemical Co., Ltd., using cross-linked polystyrene particles having an average particle size of 0.25 μm using a co-rotating twin-screw kneader so that the concentration in the pellet is 0.1% by weight. The hydrophobic resin (B-1) for film layer (B) was added.

このようにして得られた(A−1)と(B−1)を170℃で3時間乾燥後、それぞれ押出機に供給し、295℃まで加熱して溶融状態とし、(A−1)を101層、(B−1)を100層に分岐させた後、(A−1)の層と(B−1)の層が交互に積層するように多層フィードブロック装置により積層した。なお、(A−1)の最外層となる部分1層は多層に分岐前に分岐して、A−1層100層とB−1層100層の交互積層後に積層した。つぎに、その積層状態を保持したままダイへと導き、溶融状態で回転中の温度20℃の冷却ドラム上にシート状に押し出し、(A−1)の層と(B−1)の層が交互に積層された総数201層の未延伸多層積層フィルムを作成した。尚、B層とA層の吐出比率は3:2とした。得られた未延伸積層フィルムを、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が105℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率4.4倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、125℃で横方向(幅方向)に延伸倍率3.9倍で延伸し、その後200℃で5秒間熱固定処理を行い、厚さ5μmの二軸配向多層積層フィルムを得た。
得られた二軸配向多層積層フィルムの特性を表1に示す。
(A-1) and (B-1) thus obtained were dried at 170 ° C. for 3 hours and then supplied to an extruder, heated to 295 ° C. to a molten state, and (A-1) After the 101 layer and (B-1) were branched into 100 layers, the layers (A-1) and (B-1) were laminated by a multilayer feedblock device so that the layers were alternately laminated. In addition, the partial 1 layer which is the outermost layer of (A-1) was branched into multiple layers before branching, and was laminated after alternating lamination of the A-1 layer 100 layer and the B-1 layer 100 layer. Next, it is led to a die while maintaining the laminated state, and is extruded in a sheet shape onto a cooling drum having a rotating temperature of 20 ° C. in a molten state, and the layers (A-1) and (B-1) are formed. A total of 201 unstretched multilayer laminated films laminated alternately were prepared. The discharge ratio of the B layer and the A layer was 3: 2. The obtained unstretched laminated film is heated between two sets of rollers having different rotation speeds along the film forming direction from above with an IR heater so that the film surface temperature becomes 105 ° C. Direction) was performed at a draw ratio of 4.4 times to obtain a uniaxially stretched film. Then, this uniaxially stretched film is led to a stenter, stretched in the transverse direction (width direction) at 125 ° C. at a stretching ratio of 3.9 times, and then heat-set at 200 ° C. for 5 seconds to form a biaxially oriented film having a thickness of 5 μm. A multilayer laminated film was obtained.
The properties of the obtained biaxially oriented multilayer laminated film are shown in Table 1.

[実施例2]
2,6−ナフタレンジカルボン酸ジメチルとエチレングリコールとを、チタンテトラブトキシドの存在下でエステル化反応およびエステル交換反応を行い、さらに引き続いて重縮合反応を行い、グリコール成分の1.5モル%がジエチレングリコール成分であるフィルム層(A)用のポリエチレン−2,6−ナフタレート(A−2)を得た。得られたポリエチレン−2,6−ナフタレートの固有粘度は0.63であった。なお、ポリエチレン−2,6−ナフタレート(A−2)には、重縮合反応前に得られる樹脂組成物の重量を基準として、平均粒径0.1μmのシリカ粒子を0.1重量%含有させた。B層用の樹脂は、実施例1で用いた(B−1)を用いた。
[Example 2]
Dimethyl 2,6-naphthalenedicarboxylate and ethylene glycol are esterified and transesterified in the presence of titanium tetrabutoxide, followed by a polycondensation reaction, and 1.5 mol% of the glycol component is diethylene glycol. Polyethylene-2,6-naphthalate (A-2) for film layer (A) as a component was obtained. The intrinsic viscosity of the obtained polyethylene-2,6-naphthalate was 0.63. Polyethylene-2,6-naphthalate (A-2) contains 0.1% by weight of silica particles having an average particle diameter of 0.1 μm based on the weight of the resin composition obtained before the polycondensation reaction. It was. As the resin for the B layer, (B-1) used in Example 1 was used.

このようにして得られた芳香族ポリエステル(A−2)と(B−1)を170℃で6時間乾燥後、押出し機に供給し、295℃まで加熱して溶融状態とし、(A−2)の層用ポリエステルを最表層(AX層)用としてまず1層分岐させ、次いで残りの(A−2)を50層、(B−1)の疎水性樹脂を50層に分岐させた後、(A−2)の層と(B−1)の層が交互に積層するような多層フィードブロック装置を使用して積層した後に、最表層のAX層を積層した。この積層状態を保持したままダイへと導き、溶融状態で回転中の温度50℃の冷却ドラム上にシート状に押し出し、(A−2)の層と(B−1)の層が交互に積層された総数101層の未延伸多層積層フィルムを作成した。尚、B層とA層の吐出比率は3:1.2とした。た。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度が135℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率5.1倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、145℃で横方向(幅方向)に延伸倍率6.7倍で延伸し、その後215℃で5秒間熱固定処理を行い、厚さ4.2μmの二軸配向多層積層フィルムを得た。
得られた二軸配向多層積層フィルムの特性を表1に示す。
The aromatic polyesters (A-2) and (B-1) thus obtained were dried at 170 ° C. for 6 hours, then supplied to an extruder, heated to 295 ° C. to be in a molten state, (A-2 ) For the outermost layer (AX layer), and then the remaining (A-2) is branched into 50 layers, and the hydrophobic resin of (B-1) is branched into 50 layers. After the layers (A-2) and (B-1) were stacked using a multilayer feed block device in which layers were alternately stacked, the outermost AX layer was stacked. While maintaining this laminated state, it is led to a die, extruded in a sheet form onto a cooling drum having a rotating temperature of 50 ° C. in a molten state, and the layers (A-2) and (B-1) are alternately laminated. A total of 101 unstretched multilayer laminated films were produced. The ejection ratio of the B layer and the A layer was 3: 1.2. It was. Then, between two sets of rollers having different rotational speeds along the film forming direction, the film surface temperature is heated from above by an IR heater so that the film surface temperature becomes 135 ° C., and stretching in the machine direction (film forming direction) is performed. A uniaxially stretched film was obtained at a magnification of 5.1 times. Then, this uniaxially stretched film is guided to a stenter, stretched in the transverse direction (width direction) at 145 ° C. at a stretching ratio of 6.7 times, and then subjected to heat setting treatment at 215 ° C. for 5 seconds to obtain a thickness of 4.2 μm. An axially oriented multilayer laminated film was obtained.
The properties of the obtained biaxially oriented multilayer laminated film are shown in Table 1.

[実施例3]
A層用ポリエステル(A−3)には不活性粒子を含まないポリエチレンテレフタレート、B層用樹脂(B−3)として、αメチルスチレンを共重合した出光石油化学性ZAREC142AEを準備した。また、C層用ポリエステル(C−3)として、ポリエチレンテレフタレートに平均粒経0.25μmの架橋ポリスチレン粒子を0.1重量%添加したものを準備した。これらを170℃で4時間乾燥後それぞれ3台の押出機に供給し、A−3とB−3はそれぞれ11層、10層に分岐後交互積層し、その後片面にC層を積層させた。延伸倍率を長手方向3.0倍、幅方向5.0倍とした以外は実施例1と同様にして二軸配向多層積層フィルムを得た。
得られた二軸配向多層積層フィルムの特性を表1に示す。
[Example 3]
As the polyester for layer A (A-3), Idemitsu Petrochemical ZAREC142AE copolymerized with α-methylstyrene was prepared as polyethylene terephthalate containing no inert particles and the resin for layer B (B-3). Moreover, what added 0.1 weight% of crosslinked polystyrene particles with an average particle diameter of 0.25 micrometer to polyethylene terephthalate as C layer polyester (C-3) was prepared. These were dried at 170 ° C. for 4 hours and then supplied to three extruders, respectively. A-3 and B-3 were branched into 11 layers and 10 layers, respectively, and then alternately laminated, and then a C layer was laminated on one side. A biaxially oriented multilayer laminate film was obtained in the same manner as in Example 1 except that the draw ratio was 3.0 times in the longitudinal direction and 5.0 times in the width direction.
The properties of the obtained biaxially oriented multilayer laminated film are shown in Table 1.

[実施例4]
B層用の樹脂をPPS(ポリプラスチックス社製フォートロン0220A9)とし、この樹脂にあらかじめ平均粒経0.3μmの真球状シリカを0.2重量%添加した樹脂B−4を準備した。A−2のポリエステルとB−4の樹脂を170℃で6時間乾燥後2台の押出機を用いて溶融させた。交互積層の前に最外層用のA−2樹脂およびB−4樹脂を一旦分岐し、さらにA−2樹脂を24層、B−4樹脂を24層に交互積層した後に、最外層用のA−2樹脂およびB−4樹脂を積層した。その後縦延伸倍率を4.8倍とする以外は実施例2と同様にして、一軸延伸フィルムを得た。得られたフィルムに、下記の組成からなるコーティング液を、A−2の最外層に塗布し、続いて連続的にテンターに導入して、幅方向に6.8倍延伸し、220℃で4秒間熱固定をすることにより、二軸配向多層積層フィルムを得た。
得られた二軸配向多層積層フィルムの特性を表1に示す。
[Example 4]
Resin B-4 was prepared by using PPS (Fortron 0220A9 manufactured by Polyplastics Co., Ltd.) as the resin for the B layer, and adding 0.2% by weight of true spherical silica having an average particle size of 0.3 μm to the resin. The polyester of A-2 and the resin of B-4 were dried at 170 ° C. for 6 hours and then melted using two extruders. Before the alternate lamination, the A-2 resin and B-4 resin for the outermost layer are once branched, and further, the A-2 resin is alternately laminated to 24 layers and the B-4 resin is alternately laminated to 24 layers. -2 resin and B-4 resin were laminated. Thereafter, a uniaxially stretched film was obtained in the same manner as in Example 2 except that the longitudinal stretching ratio was 4.8 times. A coating liquid having the following composition was applied to the outermost layer of A-2 on the obtained film, then continuously introduced into the tenter, stretched 6.8 times in the width direction, and 4 at 220 ° C. A biaxially oriented multilayer laminated film was obtained by heat setting for 2 seconds.
The properties of the obtained biaxially oriented multilayer laminated film are shown in Table 1.

[実施例5]
A層用として、A−1樹脂の添加粒子を平均粒経0.06μmの架橋ポリスチレン粒子に変更したA−5を準備し、B層用としては実施例4と同じB−4を用いた。それぞれを170℃で4時間乾燥後に2台の押出機から供給し、A−5は最終厚みが100−5nmとなるように、B−4は最終厚みが20−70nmとなるように、それぞれ厚み配分を連続的に変化させて41層に分岐し、交互に積層した。なお積層にあたっては、A層及びB層の最も厚い層がそれぞれ両最外層となるように積層し、実施例1と同様に未延伸シートを得た。得られた未延伸シートを長手方向3.0倍、幅方向6.5倍に延伸する以外は実施例1と同様にして二軸配向多層積層フィルムを得た。
得られた二軸配向多層積層フィルムの特性を表1に示す。
[Example 5]
For the A layer, A-5 in which the additive particles of the A-1 resin were changed to crosslinked polystyrene particles having an average particle size of 0.06 μm was prepared, and for the B layer, the same B-4 as in Example 4 was used. Each was dried at 170 ° C. for 4 hours and then supplied from two extruders. A-5 had a final thickness of 100-5 nm and B-4 had a final thickness of 20-70 nm. The distribution was continuously changed to branch into 41 layers, which were alternately stacked. In addition, in lamination | stacking, it laminated | stacked so that the thickest layer of A layer and B layer might become both outermost layers, respectively, and the unstretched sheet was obtained similarly to Example 1. FIG. A biaxially oriented multilayer laminated film was obtained in the same manner as in Example 1 except that the obtained unstretched sheet was stretched 3.0 times in the longitudinal direction and 6.5 times in the width direction.
The properties of the obtained biaxially oriented multilayer laminated film are shown in Table 1.

[実施例6]
A層用のポリエステルとしての6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分をPENに24モル%共重合し平均粒経0.1μmの真球状シリカを0.1重両%添加したA−6を準備した。B層用としてはシクロオレフィンコポリマー(ポリプラスチックス製、商品名:TOPAS 6017、ガラス転移温度178℃)に平均粒経0.25μmの架橋ポリスチレン粒子を0.1重量%添加したB−6を準備した。A−6,B−6をそれぞれ170℃6時間乾燥した後に実施礼2と同様に操作し、延伸倍率を長手方向5.3倍幅方向7.7倍とする以外は実施例2と同様にして、二軸配向多層積層フィルムを得た。
得られた二軸配向多層積層フィルムの特性を表1に示す。
[Example 6]
The 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component as polyester for layer A is copolymerized with PEN at 24 mol%, and 0.1 g both of spherical silica having an average particle size of 0.1 μm is obtained. Added A-6 was prepared. For layer B, B-6 prepared by adding 0.1% by weight of crosslinked polystyrene particles having an average particle size of 0.25 μm to a cycloolefin copolymer (manufactured by Polyplastics, trade name: TOPAS 6017, glass transition temperature 178 ° C.) is prepared. did. A-6 and B-6 were each dried at 170 ° C. for 6 hours, and then operated in the same manner as in Example 2 except that the draw ratio was 5.3 times in the longitudinal direction and 7.7 times in the width direction. Thus, a biaxially oriented multilayer laminated film was obtained.
The properties of the obtained biaxially oriented multilayer laminated film are shown in Table 1.

[比較例1]
実施例1において、B層用の樹脂をSPSではなく、ポリエーテルイミドを10重量%添加したものを使用し延伸倍率を長手方向4.2倍幅方向3.8倍とした以外は実施例1と同様にして二軸配向多層積層フィルムを得た。
得られた二軸配向多層積層フィルムの特性を表1に示す。
[Comparative Example 1]
In Example 1, the resin for the B layer was not SPS, but 10% by weight of polyetherimide was used, and the draw ratio was changed to 4.2 times in the longitudinal direction and 3.8 times in the width direction. In the same manner as above, a biaxially oriented multilayer laminated film was obtained.
The properties of the obtained biaxially oriented multilayer laminated film are shown in Table 1.

[比較例2]
実施例2において、フィルムB層に添加する粒子と添加量を表1の通りとするほかは実施例2と同様にして、二軸配向多層積層フィルムを得た。
得られた二軸配向多層積層フィルムの特性を表1に示す。
[Comparative Example 2]
In Example 2, a biaxially oriented multilayer laminated film was obtained in the same manner as in Example 2 except that the particles added to the film B layer and the amount added were as shown in Table 1.
The properties of the obtained biaxially oriented multilayer laminated film are shown in Table 1.

[比較例3]
A層の最表層の形成を行わない以外は実施例4と同様にして、二軸配向多層積層フィルムを得た。
得られた二軸配向多層積層フィルムの特性を表1に示す。
[Comparative Example 3]
A biaxially oriented multilayer laminated film was obtained in the same manner as in Example 4 except that the outermost layer of the A layer was not formed.
The properties of the obtained biaxially oriented multilayer laminated film are shown in Table 1.

[比較例4]
実施例2において、多層積層とせず、1層のA層と1層のB層の2層積層フィルムと変更する以外は、実施例1と同様な操作を繰り返そうとしたが、縦方向の延伸過程においてフィルムのカールと層間剥離が発生し、横方向の延伸工程でクリップ把持することができず、二軸配向フィルムを得ることができなかった。
[Comparative Example 4]
In Example 2, the same operation as in Example 1 was repeated except that it was changed to a two-layer laminated film of one A layer and one B layer instead of multilayer lamination. In this case, curling and delamination of the film occurred, the clip could not be gripped in the transverse stretching process, and a biaxially oriented film could not be obtained.

Figure 0005410919
Figure 0005410919

ここで、表1中の、PETはポリエチレンテレフタレートを、PENはポリエチレン2,6-ナフタレートを、PEIはポリエーテルイミドを、SPSはシンジオタクティックポリスチレンを、PPSはポリエーテルサルフォンを、COPはシクロオレフィンポリマーを、ANAは6,6’−(アルキレンジオキシ)ジ−2−ナフトエ酸成分を、PESはポリエステルを、PSは架橋ポリスチレン粒子、シリカはシリカ粒子、CTEは温度膨張係数(αt)、CHEは湿度膨張係数(αt)を意味する。   In Table 1, PET is polyethylene terephthalate, PEN is polyethylene 2,6-naphthalate, PEI is polyetherimide, SPS is syndiotactic polystyrene, PPS is polyethersulfone, and COP is cyclohexane. The olefin polymer, ANA is 6,6 ′-(alkylenedioxy) di-2-naphthoic acid component, PES is polyester, PS is crosslinked polystyrene particle, silica is silica particle, CTE is temperature expansion coefficient (αt), CHE means the humidity expansion coefficient (αt).

[実施例7]
実施例5で作成した二軸配向多層積層フィルムの両面に、以下の方法で、M層を設けた。まず、真空蒸着装置内に設置されたフィルム走行装置に、得られた二軸配向多層積層フィルムをセットし、1.00×10−3Paの高真空にした後に、20℃の冷却金属ドラムを介して走行させた。このとき、アルミのターゲットを電子ビームで加熱蒸発させ、酸素を導入して、アルミと酸素のモル比が42:58の部分酸化アルミのM層(厚み:60nm)を形成し、さらに連続で、反対側の面に同様にしてM層を形成し、積層体を作成した。
得られた積層体は、幅方向の温度膨張係数が−1.9ppm/℃、幅方向の湿度膨張係数が1.6ppm/%RH、ヤング率が製膜方向6.6GPa、幅方向10.5GPa、RaX側の表面のRaが3.5nm、RaY側の表面のRaが6.0nmであった。
[Example 7]
M layers were provided on both sides of the biaxially oriented multilayer laminate film produced in Example 5 by the following method. First, the obtained biaxially oriented multilayer laminated film was set in a film traveling device installed in a vacuum deposition apparatus, and after a high vacuum of 1.00 × 10 −3 Pa was applied, a cooling metal drum at 20 ° C. Ran through. At this time, the aluminum target was heated and evaporated with an electron beam, oxygen was introduced, and an M layer (thickness: 60 nm) of partially oxidized aluminum having a molar ratio of aluminum to oxygen of 42:58 was formed. In the same manner, an M layer was formed on the opposite surface to prepare a laminate.
The obtained laminate has a temperature expansion coefficient in the width direction of −1.9 ppm / ° C., a humidity expansion coefficient in the width direction of 1.6 ppm /% RH, a Young's modulus of 6.6 GPa in the film forming direction, and 10.5 GPa in the width direction. Ra on the surface on the RaX side was 3.5 nm, and Ra on the surface on the RaY side was 6.0 nm.

[実施例8]
実施例7において、アルミの代わりにシリカ(SiO)を用い、珪素と酸素のモル比が37:63の部分酸化ケイ素とし、かつその厚みをそれぞれ80nmとなるように変更した以外は、実施例7同様にして、M層を形成し、積層体を作成した。
得られた積層体は、幅方向の温度膨張係数が2.6ppm/℃、幅方向の湿度膨張係数が1.7ppm/%RH、ヤング率が製膜方向6.1GPa、幅方向10.0GPa、RaX側の表面のRaが3.5nm、RaY側の表面のRaが6.0nmであった。
[Example 8]
Example 7 is the same as Example 7 except that silica (SiO) is used instead of aluminum, the silicon oxide is a partial silicon oxide having a molar ratio of 37:63, and the thickness is changed to 80 nm. In the same manner, an M layer was formed to produce a laminate.
The obtained laminate has a temperature expansion coefficient in the width direction of 2.6 ppm / ° C., a humidity expansion coefficient in the width direction of 1.7 ppm /% RH, a Young's modulus of 6.1 GPa in the film forming direction, 10.0 GPa in the width direction, Ra on the RaX side surface was 3.5 nm, and Ra on the RaY side surface was 6.0 nm.

[実施例9]
実施例7において、酸素導入をしなかった以外は、実施例7同様にして、M層を形成し、積層体を作成した。
得られた積層体は、幅方向の温度膨張係数が4.4ppm/℃、幅方向の湿度膨張係数が1.6ppm/%RH、ヤング率が製膜方向5.9GPa、幅方向9.8GPa、RaX側の表面のRaが3.5nm、RaY側の表面のRaが6.0nmであった。
[Example 9]
In Example 7, except that oxygen was not introduced, the M layer was formed in the same manner as in Example 7 to prepare a laminate.
The obtained laminate has a temperature expansion coefficient in the width direction of 4.4 ppm / ° C., a humidity expansion coefficient in the width direction of 1.6 ppm /% RH, a Young's modulus of 5.9 GPa in the film forming direction, and 9.8 GPa in the width direction. Ra on the RaX side surface was 3.5 nm, and Ra on the RaY side surface was 6.0 nm.

本発明の二軸配向多層積層フィルムおよび積層体は、優れた寸法安定性と表面の平坦性を兼ね備えていることから、さまざまな用途に利用でき、特に高密度磁気記録媒体の支持体として好適に利用できる。   Since the biaxially oriented multilayer laminated film and laminate of the present invention have excellent dimensional stability and surface flatness, they can be used in various applications and are particularly suitable as a support for high-density magnetic recording media. Available.

Claims (13)

芳香族ポリエステル(A)からなるフィルム層Aと吸水率が0.1%以下の疎水性樹脂(B)からなるフィルム層Bとを交互に11層以上積層した積層構造を有する二軸配向多層積層フィルムであって、一方の表面粗さ(RaX)が0.5−5nmの範囲で、他方の表面粗さ(RaY)がRaXよりも1nm以上大きく、かつ10nm以下であり、フィルム層AまたはBのいずれか一方のフィルム層が2つの最表層の両方を形成し、最表層を形成しない側のフィルム層は平均粒経0.01−1.0μmの不活性粒子を0.001−5重量%含み、最表層を形成する側のフィルム層は不活性粒子を含有しないか、前記最表層を形成しない側のフィルム層よりも平均粒経の小さな粒子を含有するか、同じ平均粒経の不活性粒子をより少ない含有量で含有し、さらに表面粗さの小さな最表層を形成するフィルム層の厚み(tX)が、表面粗さの大きな最表層を形成するフィルム層の厚み(tY)の厚みに対して、1.5倍以上であることを特徴とする二軸配向多層積層フィルム。 Biaxially oriented multilayer laminate having a laminated structure in which film layers A made of aromatic polyester (A) and film layers B made of hydrophobic resin (B) having a water absorption of 0.1% or less are alternately laminated. Film having one surface roughness (RaX) in the range of 0.5-5 nm, the other surface roughness (RaY) being 1 nm or more larger than RaX and 10 nm or less, and film layer A or B Any one of the film layers forms both of the two outermost layers, and the film layer on the side not forming the outermost layer contains 0.001 to 5% by weight of inert particles having an average particle size of 0.01 to 1.0 μm. The film layer on the side forming the outermost layer does not contain inert particles, or contains particles having a smaller average particle size than the film layer on the side not forming the outermost layer, or is inert with the same average particle size Less content of particles The thickness (tX) of the film layer that contains and further forms the outermost layer with a small surface roughness is 1.5 times the thickness of the film layer (tY) that forms the outermost layer with a large surface roughness. A biaxially oriented multilayer laminated film characterized by the above. 芳香族ポリエステル(A)からなるフィルム層Aと吸水率が0.1%以下の疎水性樹脂(B)からなるフィルム層Bとを交互に11層以上積層した積層構造を有する二軸配向多層積層フィルムであって、一方の表面粗さ(RaX)が0.5−5nmの範囲で、他方の表面粗さ(RaY)がRaXよりも1nm以上大きく、かつ10nm以下であり、フィルム層AまたはBのいずれか一方のフィルム層が表面粗さの大きな最表層を形成し、かつ平均粒経0.01−1.0μmの不活性粒子を0.001−5重量%含み、表面粗さの大きな最表層を形成しない側のフィルム層が、表面粗さの小さな最表層を形成し、かつ不活性粒子を含有しないか、表面粗さの大きな最表層を形成する側のフィルム層よりも平均粒経の小さな粒子を含有するか、同じ平均粒経の不活性粒子をBより少ない含有量で含有することを特徴とする二軸配向多層積層フィルム。 Biaxially oriented multilayer laminate having a laminated structure in which film layers A made of aromatic polyester (A) and film layers B made of hydrophobic resin (B) having a water absorption of 0.1% or less are alternately laminated. Film having one surface roughness (RaX) in the range of 0.5-5 nm, the other surface roughness (RaY) being 1 nm or more larger than RaX and 10 nm or less, and film layer A or B Any one of the above film layers forms the outermost layer having a large surface roughness, and contains 0.001 to 5% by weight of inert particles having an average particle size of 0.01 to 1.0 μm, and has the largest surface roughness. The film layer on the side that does not form the surface layer forms the outermost layer with a small surface roughness and does not contain inert particles, or the average particle size of the film layer on the side that forms the outermost layer with a large surface roughness Contain small particles or Biaxially oriented multi-layer laminated film characterized in that it contains inert particles having an average particle diameter with less content than B. 表面粗さの小さな最表層の厚み(tX(nm))、表面粗さの大きな最表層の厚み(tY(nm))、表面粗さの小さな最表層に隣接するフィルム層の厚み(tX’(nm))と表面粗さの大きな最表層に隣接するフィルム層の厚み(tY’(nm))が次の関係式のいずれか少なくともひとつを満たす請求項記載の二軸配向多層積層フィルム。
(式1) tX>1.5×tX’
(式2) tY>1.5×tY’
The thickness of the outermost layer having a small surface roughness (tX (nm)), the thickness of the outermost layer having a large surface roughness (tY (nm)), and the thickness of the film layer adjacent to the outermost layer having a small surface roughness (tX ′ ( nm)) thickness of the surface roughness of the film layer adjacent to the large outermost layer (tY '(nm)) is biaxially oriented multilayer laminate film according to claim 2, wherein satisfies at least any one of the following relationship.
(Formula 1) tX> 1.5 × tX ′
(Formula 2) tY> 1.5 × tY ′
芳香族ポリエステル(A)からなるフィルム層Aと吸水率が0.1%以下の疎水性樹脂(B)からなるフィルム層Bとを交互に11層以上積層した積層構造を有する二軸配向多層積層フィルムであって、一方の表面粗さ(RaX)が0.5−5nmの範囲で、他方の表面粗さ(RaY)がRaXよりも1nm以上大きく、かつ10nm以下であり、二軸配向多層積層フィルムの表面粗さの大きい最表層が、平均粒経0.01−1.0μmの不活性粒子を0.001−5重量%含む第3の層(C層)からなり、積層構造を形成するフィルム層AおよびBは、不活性粒子を含有しないか、該表面粗さの大きい最表層を形成するフィルム層よりも平均粒経の小さな粒子を含有するか、同じ平均粒経の不活性粒子をより少ない含有量で含有する、ことを特徴とする二軸配向多層積層フィルム。 Biaxially oriented multilayer laminate having a laminated structure in which film layers A made of aromatic polyester (A) and film layers B made of hydrophobic resin (B) having a water absorption of 0.1% or less are alternately laminated. Biaxially oriented multilayer laminate , wherein one surface roughness (RaX) is in the range of 0.5-5 nm and the other surface roughness (RaY) is 1 nm or more and 10 nm or less than RaX. The outermost layer having a large surface roughness of the film is composed of a third layer (C layer) containing 0.001 to 5% by weight of inert particles having an average particle size of 0.01 to 1.0 μm to form a laminated structure. The film layers A and B do not contain inert particles, contain particles having a smaller average particle size than the film layer forming the outermost layer having a large surface roughness, or contain inert particles having the same average particle size. containing a smaller amount, it Biaxially oriented multi-layer laminated film characterized. 二軸配向多層積層フィルムの少なくとも片面の最表層が不活性粒子を有する塗膜層(第4の層、D層)である、請求項1、2または4のいずれかに記載の二軸配向多層積層フィルム。 5. The biaxially oriented multilayer according to claim 1 , wherein at least one outermost layer of the biaxially oriented multilayer laminated film is a coating layer (fourth layer, D layer) having inert particles. Laminated film. フィルム層Aおよびフィルム層Bが不活性粒子を含有しない請求項4または5のいずれかに記載の二軸配向多層積層フィルム。 The biaxially oriented multilayer laminated film according to claim 4 or 5, wherein the film layer A and the film layer B do not contain inert particles. 疎水性樹脂(B)が、シンジオタクティック構造を有するスチレン系重合体、ポリフェニレンスルフィド、シクロオレフィンからなる群より選ばれる少なくとも1種である請求項1〜のいずれかに記載の二軸配向多層積層フィルム。 The biaxially oriented multilayer according to any one of claims 1 to 6 , wherein the hydrophobic resin (B) is at least one selected from the group consisting of a styrene polymer having a syndiotactic structure, polyphenylene sulfide, and cycloolefin. Laminated film. フィルムの製膜方向及び幅方向のヤング率がそれぞれ4.5GPa以上である請求項1〜のいずれかに記載の二軸配向多層積層フィルム。 The biaxially oriented multilayer laminated film according to any one of claims 1 to 7 , wherein the Young's modulus in the film forming direction and the width direction of the film is 4.5 GPa or more, respectively. フィルムの幅方向の湿度膨張係数が0.1×10−6〜9×10−6RHである請求項1〜のいずれかに記載の二軸配向多層積層フィルム。 The biaxially oriented multilayer laminated film according to any one of claims 1 to 8 , which has a humidity expansion coefficient in the width direction of the film of 0.1 x 10-6 to 9 x 10-6 / % RH. フィルムの幅方向の温度膨張係数が−10×10−6〜10×10−6/℃である請求項1〜のいずれかに記載の二軸配向多層積層フィルム。 The biaxially oriented multilayer laminated film according to any one of claims 1 to 9 , wherein the film has a temperature expansion coefficient in the width direction of -10 x 10 -6 to 10 x 10 -6 / ° C. フィルムの厚みが1〜10μmの範囲にある請求項1〜10のいずれかに記載の二軸配向多層積層フィルム。 The biaxially oriented multilayer laminated film according to any one of claims 1 to 10 , wherein the thickness of the film is in the range of 1 to 10 µm. 二軸配向多層積層フィルムが、磁気記録媒体のベースフィルムに用いられる請求項1〜11のいずれかに記載の二軸配向多層積層フィルム。 The biaxially oriented multilayer laminated film according to any one of claims 1 to 11 , wherein the biaxially oriented multilayer laminated film is used as a base film of a magnetic recording medium. 請求項1〜11のいずれかに記載の二軸配向多層積層フィルムの少なくとも片面に、金属類または金属系無機化合物からなる層(M層)が設けられた積層体。 At least one side, metals or metallic made of an inorganic compound layer (M layer) laminate is provided a biaxially oriented multilayer laminate film according to any one of claims 1 to 11.
JP2009240446A 2009-10-19 2009-10-19 Biaxially oriented multilayer laminate film and laminate Active JP5410919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009240446A JP5410919B2 (en) 2009-10-19 2009-10-19 Biaxially oriented multilayer laminate film and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009240446A JP5410919B2 (en) 2009-10-19 2009-10-19 Biaxially oriented multilayer laminate film and laminate

Publications (2)

Publication Number Publication Date
JP2011084036A JP2011084036A (en) 2011-04-28
JP5410919B2 true JP5410919B2 (en) 2014-02-05

Family

ID=44077353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009240446A Active JP5410919B2 (en) 2009-10-19 2009-10-19 Biaxially oriented multilayer laminate film and laminate

Country Status (1)

Country Link
JP (1) JP5410919B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013121833A1 (en) * 2012-02-16 2015-05-11 東レ株式会社 Biaxially oriented laminated film
US11367460B2 (en) 2018-03-29 2022-06-21 Fujifilm Corporation Magnetic recording medium and magnetic recording and reproducing device
JP7003072B2 (en) 2019-01-31 2022-01-20 富士フイルム株式会社 Magnetic tapes, magnetic tape cartridges and magnetic tape devices
JP7003074B2 (en) 2019-01-31 2022-01-20 富士フイルム株式会社 Magnetic tapes, magnetic tape cartridges and magnetic tape devices
JP7098562B2 (en) 2019-03-22 2022-07-11 富士フイルム株式会社 Magnetic tape, magnetic tape cartridge and magnetic recording / playback device
JP7105211B2 (en) 2019-03-28 2022-07-22 富士フイルム株式会社 Magnetic tapes, magnetic tape cartridges and magnetic recording/playback devices
JP7128147B2 (en) 2019-04-26 2022-08-30 富士フイルム株式会社 Magnetic recording medium and magnetic recording/reproducing device
JP6778787B1 (en) * 2019-05-15 2020-11-04 富士フイルム株式会社 Magnetic recording medium and magnetic recording / playback device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09174650A (en) * 1995-12-26 1997-07-08 Teijin Ltd Manufacture of multilayer film
JP4168627B2 (en) * 2000-12-13 2008-10-22 東レ株式会社 Polyester film for magnetic recording medium, method for producing the same, and magnetic recording medium
JP4220933B2 (en) * 2004-05-17 2009-02-04 帝人デュポンフィルム株式会社 Biaxially oriented laminated film and magnetic recording medium
JP4805608B2 (en) * 2004-05-17 2011-11-02 帝人デュポンフィルム株式会社 Biaxially oriented laminated film and magnetic recording medium
JP5271124B2 (en) * 2009-03-12 2013-08-21 帝人株式会社 Biaxially oriented multilayer laminated polyester film

Also Published As

Publication number Publication date
JP2011084036A (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5410919B2 (en) Biaxially oriented multilayer laminate film and laminate
JP2007226943A (en) Base for magnetic recording medium and magnetic recording medium thereof
JP4270318B2 (en) Support for magnetic recording medium and magnetic recording medium
JP2009087518A (en) Support for magnetic recording medium, and magnetic recording medium
JP2010264683A (en) Substrate
WO2008153188A1 (en) Biaxially oriented multilayer film
KR101545371B1 (en) Biaxially oriented multilayer film
JP2007287215A (en) Support for magnetic recording medium and magnetic recording medium
JP2011084037A (en) Biaxial orientation multilayer laminate film
JP5763456B2 (en) Biaxially oriented film
JP5271124B2 (en) Biaxially oriented multilayer laminated polyester film
JP5177096B2 (en) Polyester film and method for producing the same
JP2006277920A (en) Supporting body for magnetic recording medium and magnetic recording medium
JP4557017B2 (en) Support for magnetic recording medium
JP2009140532A (en) Support for magnetic recording medium, and magnetic recording medium
JP4066768B2 (en) Biaxially oriented polyester film
JP2005196944A (en) Substrate for magnetic recording medium, and magnetic recording medium
JP5112923B2 (en) Magnetic recording medium support
JP2010052416A (en) Laminated body, support for magnetic recording medium, and magnetic recording medium
JP2011243240A (en) Biaxially-oriented laminated film
JP5226597B2 (en) Biaxially oriented laminated film
JP5332436B2 (en) Support for magnetic recording medium and magnetic recording medium
JP2011245641A (en) Laminated biaxially-oriented polyester film
JP2010023311A (en) Laminated film and magnetic recording medium
JP2010030116A (en) Biaxially oriented laminated film and magnetic recording medium using the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110701

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110701

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131107

R150 Certificate of patent or registration of utility model

Ref document number: 5410919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250