JP5410094B2 - Conductive film, method for producing the same, and high-frequency component - Google Patents

Conductive film, method for producing the same, and high-frequency component Download PDF

Info

Publication number
JP5410094B2
JP5410094B2 JP2008550187A JP2008550187A JP5410094B2 JP 5410094 B2 JP5410094 B2 JP 5410094B2 JP 2008550187 A JP2008550187 A JP 2008550187A JP 2008550187 A JP2008550187 A JP 2008550187A JP 5410094 B2 JP5410094 B2 JP 5410094B2
Authority
JP
Japan
Prior art keywords
thin film
metal thin
film
metal
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008550187A
Other languages
Japanese (ja)
Other versions
JPWO2008075746A1 (en
Inventor
清二 加川
Original Assignee
清二 加川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清二 加川 filed Critical 清二 加川
Priority to JP2008550187A priority Critical patent/JP5410094B2/en
Publication of JPWO2008075746A1 publication Critical patent/JPWO2008075746A1/en
Application granted granted Critical
Publication of JP5410094B2 publication Critical patent/JP5410094B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

本発明は高周波伝送率の周波数依存性を有する導電フィルム、その製造方法、及びかかる導電フィルムを用いた高周波部品に関する。   The present invention relates to a conductive film having a frequency dependency of a high-frequency transmission rate, a manufacturing method thereof, and a high-frequency component using the conductive film.

パーソナルコンピュータ等の情報処理機器、携帯電話等の無線通信機器等に従来から使用されている高周波伝送線路として、図35に示すように内導体110、誘電体200及び外導体110'からなる同軸ケーブルや、図36に示すように四角い断面を有する金属製の導波管120等がある。同軸ケーブル及び導波管は等方的(両方向とも同じ)伝送特性を有する。   As a high-frequency transmission line conventionally used in information processing equipment such as personal computers and wireless communication equipment such as mobile phones, a coaxial cable comprising an inner conductor 110, a dielectric 200 and an outer conductor 110 ′ as shown in FIG. Alternatively, as shown in FIG. 36, there is a metal waveguide 120 having a square cross section. Coaxial cables and waveguides have isotropic (same in both directions) transmission characteristics.

また誘電体基板210の一面に平行な一対の帯状導体130,130を設けた高周波伝送線路(図37)、誘電体基板210の両面に接地導体140,140を設け、中心部に導体130を設けた高周波伝送線路(図38)、誘電体基板210の一面に接地導体130を設け、他面に帯状導体140を設けた高周波伝送線路(図39)、セラミック誘電体基板210の一面に帯状導体130を設け、その両側に接地導体140,140を配置した高周波伝送線路(図40)等がある。   Also, a high-frequency transmission line (FIG. 37) provided with a pair of strip-like conductors 130, 130 parallel to one surface of the dielectric substrate 210, ground conductors 140, 140 are provided on both surfaces of the dielectric substrate 210, and a conductor 130 is provided in the center. The high-frequency transmission line (FIG. 38), the ground conductor 130 is provided on one surface of the dielectric substrate 210, and the strip conductor 140 is provided on the other surface, and the strip-shaped conductor 130 is provided on one surface of the ceramic dielectric substrate 210. And a high-frequency transmission line (FIG. 40) having ground conductors 140 and 140 disposed on both sides thereof.

特開平7-336113号は、使用周波数における表皮深さの1.14〜2.75倍の膜厚を有する導体膜を有する高周波伝送線路を開示している。この高周波伝送線路の構成例を図37及び40に示す。セラミック誘電体基板210の上に平行に設けられた導体膜130,140には、周波数に応じて高周波伝送率の周波数依存性がない。しかし、高周波伝送率の周波数依存性があれば、種々の有用な高周波部品が得られる。   Japanese Patent Application Laid-Open No. 7-336113 discloses a high-frequency transmission line having a conductor film having a film thickness of 1.14 to 2.75 times the skin depth at the operating frequency. A configuration example of this high-frequency transmission line is shown in FIGS. The conductor films 130 and 140 provided in parallel on the ceramic dielectric substrate 210 have no frequency dependency of the high-frequency transmission rate depending on the frequency. However, if the high frequency transmission rate is dependent on the frequency, various useful high frequency components can be obtained.

従って本発明の目的は、高周波伝送率の周波数依存性を有する導電フィルム、その製造方法、及びかかる導電フィルムを用いた高周波部品を提供することである。   Accordingly, an object of the present invention is to provide a conductive film having a frequency dependency of a high-frequency transmission rate, a manufacturing method thereof, and a high-frequency component using such a conductive film.

上記目的に鑑み鋭意研究の結果、本発明者は、プラスチックフィルムに傾斜組成層を介して接合する異なる電気抵抗の二層の金属薄膜を形成した後、通電中に加圧しながら多数の微細な孔又は凹部を形成すると、高周波伝送率の周波数依存性を有する導電フィルムが得られることを発見し、本発明に想到した。
As a result of earnest research in view of the above object, the present inventor has formed a number of fine pores while applying pressure during energization after forming a two-layer metal thin film having different electrical resistances to be joined to a plastic film via a gradient composition layer. Alternatively, the inventors have found that a conductive film having a frequency dependency of a high-frequency transmission rate can be obtained by forming a concave portion, and have arrived at the present invention.

すなわち、本発明の導電フィルムは、プラスチックフィルムと、その少なくとも一面に設けた第一の金属の薄膜と、その上に形成した第二の金属の薄膜とを有し、前記第一及び第二の金属の薄膜は異なる電気抵抗を有し、電気抵抗が小さい方の金属の薄膜の厚さは0.1〜1μmであり、電気抵抗が大きい方の金属の薄膜の厚さは10〜70 nmであり、前記第一の金属の薄膜と前記第二の金属の薄膜との間に、金属組成比が厚さ方向に変化する傾斜組成層が形成されており、前記傾斜組成層において前記第二の金属の組成比は前記第二の金属の薄膜から前記第一の金属の薄膜にかけて減少しており、少なくとも前記第二の金属の薄膜の側に開口する多数の微細な孔又は凹部を有し、前記孔又は凹部は前記第二の金属の薄膜に通電中に加圧しながら形成されたことを特徴とする。
That is, the conductive film of the present invention has a plastic film, a first metal thin film provided on at least one surface thereof, and a second metal thin film formed thereon, and the first and second The metal thin film has different electric resistance, the thickness of the metal thin film with the smaller electric resistance is 0.1-1 μm, the thickness of the metal thin film with the larger electric resistance is 10-70 nm, Between the first metal thin film and the second metal thin film, a gradient composition layer is formed in which the metal composition ratio changes in the thickness direction, and in the gradient composition layer, the second metal thin film is formed . The composition ratio decreases from the second metal thin film to the first metal thin film, and has at least a number of fine holes or recesses opened on the second metal thin film side. Alternatively, the recess is formed while pressing the second metal thin film during energization. It is characterized in.

この導電フィルムは、前記プラスチックフィルムと前記第一の金属の薄膜との間にも、前記第一の金属の薄膜から前記プラスチックフィルム10にかけて前記第一の金属の割合が減少する傾斜組成層が形成されているのが好ましい。
In this conductive film, a gradient composition layer in which the proportion of the first metal decreases from the first metal thin film to the plastic film 10 is also formed between the plastic film and the first metal thin film. It is preferable.

導電フィルムの好ましい例では、第一の金属はニッケルであり、第二の金属は銅である。この場合、第一の金属の薄膜と前記第二の金属の薄膜との厚さ比は1/20〜1/2であるのが好ましい。具体的には、第一の金属の薄膜の厚さは10〜70 nmであり、第二の金属の薄膜の厚さは0.1〜1μmであるのが好ましい。   In a preferred example of the conductive film, the first metal is nickel and the second metal is copper. In this case, the thickness ratio between the first metal thin film and the second metal thin film is preferably 1/20 to 1/2. Specifically, the thickness of the first metal thin film is preferably 10 to 70 nm, and the thickness of the second metal thin film is preferably 0.1 to 1 μm.

導電フィルムの別の好ましい例では、第一の金属は銅であり、第二の金属はニッケルである。この場合、第一の金属の薄膜と第二の金属の薄膜との厚さ比は2/1〜20/1であるのが好ましい。具体的には、第一の金属の薄膜の厚さは0.1〜1μmであり、前記第二の金属の薄膜の厚さは10〜70 nmであるのが好ましい。   In another preferred example of the conductive film, the first metal is copper and the second metal is nickel. In this case, the thickness ratio of the first metal thin film to the second metal thin film is preferably 2/1 to 20/1. Specifically, the thickness of the first metal thin film is preferably 0.1 to 1 μm, and the thickness of the second metal thin film is preferably 10 to 70 nm.

導電フィルムのさらに別の好ましい例では、前記第二の金属の薄膜が蒸着層である   In still another preferred example of the conductive film, the second metal thin film is a deposited layer.

導電フィルムのさらに別の好ましい例では、前記第二の金属の薄膜が前記第二の金属の蒸着層と前記第二の金属のメッキ層とからなる。   In still another preferred example of the conductive film, the second metal thin film is composed of the second metal deposition layer and the second metal plating layer.

導電フィルムのさらに別の好ましい例では、前記第一の金属の薄膜が蒸着層である。   In still another preferred example of the conductive film, the first metal thin film is a deposited layer.

前記微細な孔又は凹部は0.1〜100μmの平均開口径を有するのが好ましい。前記微細な孔又は凹部の平均密度は500個/cm2以上であるのが好ましい。The fine holes or recesses preferably have an average opening diameter of 0.1 to 100 μm. The average density of the fine holes or recesses is preferably 500 / cm 2 or more.

本発明の導電フィルムの製造方法は、プラスチックフィルムの少なくとも一面に第一の金属の薄膜及び第二の金属の薄膜を順に形成し、得られた複合フィルムを多数の硬質粒子が表面に付着した第一ロールと表面が平滑な第二ロールとの間を通過させることにより、少なくとも前記第二の金属の薄膜の側に開口する多数の微細な孔又は凹部を形成し、その際前記第二の金属の薄膜に通電することを特徴とする。   In the method for producing a conductive film of the present invention, a first metal thin film and a second metal thin film are sequentially formed on at least one surface of a plastic film, and the obtained composite film is bonded to the surface with a large number of hard particles. By passing between one roll and a second roll having a smooth surface, a plurality of fine holes or recesses that are opened at least on the thin film side of the second metal are formed. The thin film is energized.

前記ロールの押圧力は70 kgf/mm幅以上であるのが好ましい。前記第二の金属の薄膜に印加する電圧及び電流密度はそれぞれ5V以上及び20 A/m2以上であるのが好ましい。The pressing force of the roll is preferably 70 kgf / mm width or more. The voltage and current density applied to the second metal thin film are preferably 5 V or more and 20 A / m 2 or more, respectively.

本発明の高周波部品は上記導電フィルムを具備する。   The high frequency component of the present invention includes the conductive film.

高周波部品の好ましい例として、前記導電フィルムを二つ平行に配置してなる高周波伝送線路、及びこの高周波伝送線路を具備する高周波フィルタがある。   Preferred examples of the high-frequency component include a high-frequency transmission line in which two conductive films are arranged in parallel, and a high-frequency filter having the high-frequency transmission line.

本発明の導電フィルムは高周波伝送率の周波数依存性を有するので、各種の高周波部品に有用である。例えば高周波伝送線路に利用すると、所望の周波数帯域を効率良く伝送するとともに、それ以外の周波数帯域をカットすることができる。   Since the conductive film of the present invention has frequency dependency of the high-frequency transmission rate, it is useful for various high-frequency components. For example, when used in a high-frequency transmission line, it is possible to efficiently transmit a desired frequency band and cut other frequency bands.

本発明の一実施例による導電フィルムを示す断面図である。It is sectional drawing which shows the electrically conductive film by one Example of this invention. 図1(a)のA部分を概略的に示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view schematically showing a portion A in FIG. 図1(b)のA'部分を概略的に示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view schematically showing an A ′ portion of FIG. 1 (b). 図1(b)のA''部分を概略的に示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view schematically showing a portion A ″ in FIG. 1 (b). 本発明の別の実施例による導電フィルムを示す断面図である。It is sectional drawing which shows the conductive film by another Example of this invention. 図2(a)のB部分を概略的に示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view schematically showing a B part in FIG. 2 (a). 本発明のさらに別の実施例による導電フィルムを示す断面図である。It is sectional drawing which shows the electrically conductive film by another Example of this invention. 図3(a) のC部分を概略的に示す拡大断面図である。FIG. 4 is an enlarged cross-sectional view schematically showing a C portion in FIG. 3 (a). 本発明のさらに別の実施例による導電フィルムを示す断面図である。It is sectional drawing which shows the electrically conductive film by another Example of this invention. 図4(a)のD部分を概略的に示す拡大断面図である。FIG. 5 is an enlarged cross-sectional view schematically showing a D part in FIG. 4 (a). 本発明のさらに別の実施例による導電フィルムを示す斜視図である。It is a perspective view which shows the electrically conductive film by another Example of this invention. 本発明のさらに別の実施例による導電フィルムを示す斜視図である。It is a perspective view which shows the electrically conductive film by another Example of this invention. 本発明のさらに別の実施例による導電フィルムを示す斜視図である。It is a perspective view which shows the electrically conductive film by another Example of this invention. 複合フィルムに微細孔を形成しながら通電する装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus which supplies with electricity, forming a micropore in a composite film. 図8の装置の部分拡大斜視図である。FIG. 9 is a partially enlarged perspective view of the apparatus of FIG. 図8の装置において、一面に金属薄膜を有する複合フィルムに微細孔を形成しながら通電する様子を示す部分拡大断面図である。FIG. 9 is a partial enlarged cross-sectional view showing a state where electricity is supplied while forming fine holes in a composite film having a metal thin film on one surface in the apparatus of FIG. 図8の装置において、両面に金属薄膜を有する複合フィルムに微細孔を形成しながら通電する様子を示す部分拡大断面図であるFIG. 9 is a partially enlarged cross-sectional view showing a state where power is supplied while forming fine holes in a composite film having metal thin films on both sides in the apparatus of FIG. 本発明の一実施例によるによる高周波伝送線路を示す斜視図である。1 is a perspective view showing a high frequency transmission line according to an embodiment of the present invention. 本発明の一実施例による高周波フィルタを示す斜視図である。It is a perspective view which shows the high frequency filter by one Example of this invention. 高周波伝送線路に発振器及び受信器を接続した状態を示す概略図である。It is the schematic which shows the state which connected the oscillator and the receiver to the high frequency transmission line. 高周波伝送率の測定に使用した発振器の構成を概略的に示す回路図である。It is a circuit diagram which shows roughly the structure of the oscillator used for the measurement of a high frequency transmission rate. 発振器から信号が(+)側から出力するように伝送した場合の信号パターンを示す概略図である。It is the schematic which shows the signal pattern at the time of transmitting so that a signal may be output from the (+) side from an oscillator. 発振器から信号が(−)側から出力するように伝送した場合の信号パターンを示す概略図である。It is the schematic which shows the signal pattern at the time of transmitting so that a signal may be output from the (-) side from an oscillator. 実施例1の高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。3 is a graph showing the relationship between the frequency and the high-frequency transmission rate in the high-frequency transmission line of Example 1. 実施例2の高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。6 is a graph showing the relationship between the frequency and the high-frequency transmission rate in the high-frequency transmission line of Example 2. 実施例3の高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。6 is a graph showing the relationship between the frequency and the high-frequency transmission rate in the high-frequency transmission line of Example 3. 実施例4の高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。6 is a graph showing the relationship between the frequency and the high-frequency transmission rate in the high-frequency transmission line of Example 4. 実施例5の高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。6 is a graph showing the relationship between the frequency and the high-frequency transmission rate in the high-frequency transmission line of Example 5. 図21の拡大図である。FIG. 22 is an enlarged view of FIG. 実施例6の高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。10 is a graph showing the relationship between the frequency and the high-frequency transmission rate in the high-frequency transmission line of Example 6. 図23の拡大図である。FIG. 24 is an enlarged view of FIG. 実施例7の高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。10 is a graph showing the relationship between the frequency and the high-frequency transmission rate in the high-frequency transmission line of Example 7. 実施例8の高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。10 is a graph showing the relationship between the frequency and the high-frequency transmission rate in the high-frequency transmission line of Example 8. 実施例9の高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。10 is a graph showing the relationship between the frequency and the high-frequency transmission rate in the high-frequency transmission line of Example 9. 図27の拡大図である。FIG. 28 is an enlarged view of FIG. 27. 比較例1の高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。6 is a graph showing the relationship between the frequency and the high-frequency transmission rate in the high-frequency transmission line of Comparative Example 1. 比較例2の高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。6 is a graph showing the relationship between the frequency and the high-frequency transmission rate in the high-frequency transmission line of Comparative Example 2. 比較例3の高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。10 is a graph showing the relationship between the frequency and the high-frequency transmission rate in the high-frequency transmission line of Comparative Example 3. 比較例4の高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。6 is a graph showing the relationship between the frequency and the high-frequency transmission rate in the high-frequency transmission line of Comparative Example 4. 比較例5の高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。10 is a graph showing the relationship between the frequency and the high-frequency transmission rate in the high-frequency transmission line of Comparative Example 5. 比較例6の高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。14 is a graph showing the relationship between the frequency and the high-frequency transmission rate in the high-frequency transmission line of Comparative Example 6. 従来の高周波伝送線路の例を示す斜視図である。It is a perspective view which shows the example of the conventional high frequency transmission line. 従来の高周波伝送線路の別の例を示す斜視図である。It is a perspective view which shows another example of the conventional high frequency transmission line. 従来の高周波伝送線路のさらに別の例を示す斜視図である。It is a perspective view which shows another example of the conventional high frequency transmission line. 従来の高周波伝送線路のさらに別の例を示す斜視図である。It is a perspective view which shows another example of the conventional high frequency transmission line. 従来の高周波伝送線路のさらに別の例を示す斜視図である。It is a perspective view which shows another example of the conventional high frequency transmission line. 従来の高周波伝送線路のさらに別の例を示す斜視図である。It is a perspective view which shows another example of the conventional high frequency transmission line.

[1] 導電フィルム
(1) 構造
図1(a)〜(d) は、本発明の導電フィルムの一例を示す。プラスチックフィルム10の一面に第一及び第二の金属の薄膜11a,11bが一様に形成されており、両金属薄膜11a,11bの間に、第一の金属と第二の金属との組成比が厚さ方向に変化する傾斜組成層12が形成されており、両金属薄膜11a,11bに、通電中に加圧しながら形成された多数の微細孔14が設けられている。
[1] Conductive film
(1) Structure FIGS. 1 (a) to (d) show an example of the conductive film of the present invention. The first and second metal thin films 11a and 11b are uniformly formed on one surface of the plastic film 10, and the composition ratio between the first metal and the second metal is between the metal thin films 11a and 11b. A gradient composition layer 12 that changes in the thickness direction is formed, and a plurality of fine holes 14 are formed in both metal thin films 11a and 11b while being pressed during energization.

傾斜組成層12では、金属組成比がほぼ連続的に変化しているのが好ましい。プラスチックフィルム10と金属薄膜11aとの間は、金属の割合が金属薄膜11aからプラスチックフィルム10にかけて減少する傾斜組成層12'となっているのが好ましい。図1(c) は、第二の金属原子11b'が第一の金属原子11a'の間に部分的に進入した様子を概略的に示し、図1(d) は、第一の金属原子11a'がフィルム10のプラスチック分子10'の間に部分的に進入した様子を概略的に示す。   In the gradient composition layer 12, the metal composition ratio is preferably changed substantially continuously. It is preferable that a gradient composition layer 12 ′ in which the metal ratio decreases from the metal thin film 11 a to the plastic film 10 is provided between the plastic film 10 and the metal thin film 11 a. FIG. 1 (c) schematically shows a state in which the second metal atom 11b ′ partially enters between the first metal atoms 11a ′, and FIG. 1 (d) shows the first metal atom 11a 1 schematically shows a state where 'partially enters between the plastic molecules 10' of the film 10.

多数の微細孔14は、後述するように高硬度の微粒子を表面に有するロールにより形成するので種々の深さを有するが、プラスチックフィルム10を貫通する必要はない。   The large number of fine holes 14 are formed by a roll having fine particles with high hardness on the surface as will be described later, and thus have various depths, but need not penetrate through the plastic film 10.

図2(a) 及び図2(b) は導電フィルムの別の例を示す。この導電フィルムでは第一の金属薄膜11aが金属箔からなるので、第一の金属薄膜11aとプラスチックフィルム10との間に接着層13が設けられている。この導電フィルムは接着層13以外図1に示すものと同じである。   FIG. 2 (a) and FIG. 2 (b) show another example of the conductive film. In this conductive film, since the first metal thin film 11a is made of a metal foil, an adhesive layer 13 is provided between the first metal thin film 11a and the plastic film 10. This conductive film is the same as that shown in FIG.

図3(a) 及び図3(b) は導電フィルムのさらに別の例を示す。この導電フィルムは、プラスチックフィルム10の両面に第一及び第二の金属薄膜11a,11bが一様に形成されており、第一及び第二の金属薄膜11a,11bに多数の微細孔14が設けられている以外、図1に示すものと同じである。   FIG. 3 (a) and FIG. 3 (b) show still another example of the conductive film. In this conductive film, the first and second metal thin films 11a and 11b are uniformly formed on both surfaces of the plastic film 10, and a plurality of fine holes 14 are provided in the first and second metal thin films 11a and 11b. Except for this, it is the same as that shown in FIG.

図4は導電フィルムのさらに別の例を示す。プラスチックフィルム10の両面に第一及び第二の金属の薄膜11a,11bが形成されており、かつ多数の微細孔14はほぼ導電フィルムを貫通している。金属薄膜11a,11bは貫通孔の形成中に塑性変形すると考えられる。   FIG. 4 shows still another example of the conductive film. First and second metal thin films 11a and 11b are formed on both surfaces of the plastic film 10, and a large number of fine holes 14 substantially penetrate the conductive film. The metal thin films 11a and 11b are considered to be plastically deformed during the formation of the through holes.

図5は導電フィルムのさらに別の例を示す。この導電フィルムは、プラスチックフィルム10の一面に、第一及び第二の金属の薄膜11a,11bからなる二つの帯状の積層金属薄膜が平行に形成されている以外、図1に示すものと同じである。   FIG. 5 shows still another example of the conductive film. This conductive film is the same as that shown in FIG. 1, except that two strip-shaped laminated metal thin films made of the first and second metal thin films 11a and 11b are formed on one surface of the plastic film 10. is there.

図6は導電フィルムのさらに別の例を示す。この導電フィルムは、プラスチックフィルム10の一面に一つの帯状の積層金属薄膜(第一及び第二の金属の薄膜11a,11bからなる)が形成されており、他面に積層金属薄膜(第一及び第二の金属の薄膜11a,11bからなる)が一様に形成されている以外、図1に示すものと同じである。   FIG. 6 shows still another example of the conductive film. In this conductive film, one belt-like laminated metal thin film (consisting of first and second metal thin films 11a and 11b) is formed on one surface of the plastic film 10, and the laminated metal thin films (first and second thin films 11a and 11b) are formed on the other surface. 1 is the same as that shown in FIG. 1 except that the second metal thin films 11a and 11b are uniformly formed.

図7は導電フィルムのさらに別の例を示す。この導電フィルムは、プラスチックフィルム10の一面に三本の帯状の積層金属薄膜(各々第一及び第二の金属の薄膜11a,11bからなる)が設けられている以外、図1に示すものと同じである。   FIG. 7 shows still another example of the conductive film. This conductive film is the same as that shown in FIG. 1 except that three belt-like laminated metal thin films (each comprising first and second metal thin films 11a and 11b) are provided on one surface of the plastic film 10. It is.

(2) プラスチックフィルム
プラスチックフィルム10を構成する樹脂は特に制限されず、例えばポリエステル、ポリフェニレンサルファイド、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリカーボネート、アクリル樹脂、ポリスチレン、ABS樹脂、ポリウレタン、フッ素樹脂、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリ塩化ビニル、熱可塑性エラストマー等が挙げられる。中でもポリエステル、ポリフェニレンサルファイド、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルフォン及びポリエーテルエーテルケトンのような高耐熱性樹脂が好ましく、特にポリエステル、ポリフェニレンサルファイド及びポリイミドが好ましい。ポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられる。中でもPETフィルム及びPBTフィルムは安価に市販されているので好ましい。
(2) Plastic film The resin constituting the plastic film 10 is not particularly limited. For example, polyester, polyphenylene sulfide, polyamide, polyimide, polyamideimide, polyethersulfone, polyetheretherketone, polycarbonate, acrylic resin, polystyrene, ABS resin , Polyurethane, fluororesin, polyolefin (polyethylene, polypropylene, etc.), polyvinyl chloride, thermoplastic elastomer and the like. Among them, high heat resistant resins such as polyester, polyphenylene sulfide, polyamide, polyimide, polyamideimide, polyethersulfone and polyetheretherketone are preferable, and polyester, polyphenylene sulfide and polyimide are particularly preferable. Examples of the polyester include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate, and polybutylene naphthalate. Of these, PET films and PBT films are preferred because they are commercially available at low cost.

(3) 金属薄膜
第一及び第二の金属薄膜11a,11bは電気抵抗が異なるのが好ましい。第一及び第二の金属薄膜11a,11bの電気抵抗の差は、常温で2×10-6 Ω・cm以上であるのが好ましく、4×10-6 Ω・cm以上であるのがより好ましい。
(3) Metal thin film It is preferable that the first and second metal thin films 11a and 11b have different electric resistances. The difference in electrical resistance between the first and second metal thin films 11a and 11b is preferably 2 × 10 −6 Ω · cm or more at room temperature, and more preferably 4 × 10 −6 Ω · cm or more. .

第一及び第二の金属として、銅[抵抗率(20℃):1.6730×10-6 Ω・cm]、アルミニウム[抵抗率(20℃):2.6548×10-6Ω・cm]、銀[抵抗率(20℃):1.59×10-6Ω・cm]、金[抵抗率(20℃):2.35×10-6Ω・cm]、白金[抵抗率(20℃):10.6×10-6Ω・cm]、ニッケル[抵抗率(20℃):6.84×10-6Ω・cm]、コバルト[抵抗率(20℃):6.24×10-6Ω・cm]、パラジウム[抵抗率(20℃):10.8×10-6Ω・cm]、錫[抵抗率(0℃):11.0×10-6Ω・cm]、及びこれらの合金等が挙げられる。As the first and second metals, copper [resistivity (20 ° C.): 1.6730 × 10 −6 Ω · cm], aluminum [resistivity (20 ° C.): 2.6548 × 10 −6 Ω · cm], silver [resistance Rate (20 ° C): 1.59 × 10 -6 Ω · cm], Gold [Resistivity (20 ° C): 2.35 × 10 -6 Ω · cm], Platinum [Resistivity (20 ° C): 10.6 × 10 -6 Ω・ Cm], nickel [resistivity (20 ° C): 6.84 × 10 -6 Ω · cm], cobalt [resistivity (20 ° C): 6.24 × 10 -6 Ω · cm], palladium [resistivity (20 ° C) : 10.8 × 10 −6 Ω · cm], tin [resistivity (0 ° C.): 11.0 × 10 −6 Ω · cm], and alloys thereof.

第一及び第二の金属は、電気抵抗が異なるように上記の中から選択する。第一の金属/第二の金属の好ましい組合せは、銅/ニッケル及びニッケル/銅である。   The first and second metals are selected from the above so as to have different electric resistances. Preferred combinations of the first metal / second metal are copper / nickel and nickel / copper.

第一の金属及び第二の金属の電気抵抗の大小にかかわらず、電気抵抗が小さい方の金属の薄膜と、電気抵抗が大きい方の金属の薄膜との厚さ比を2/1〜20/1とするのが好ましい。特に両金属薄膜が蒸着膜の場合、この比を3/1〜15/1とするのが好ましい。具体的には、電気抵抗が小さい方の金属の薄膜の厚さは0.1〜35μmが好ましく、0.1〜1μmがより好ましく、0.2〜0.7μmが最も好ましい。また電気抵抗が大きい方の金属の薄膜の厚さは10 nm〜20μmが好ましく、10〜70 nmがより好ましく、20〜60 nmが最も好ましい。電気抵抗が小さい方の金属薄膜の厚さが0.1μm未満だと、高周波伝送効率が悪い。一方1μm超だと、高周波伝送率の周波数依存性が低下する。   Regardless of the electric resistance of the first metal and the second metal, the thickness ratio of the metal thin film having the smaller electric resistance and the metal thin film having the larger electric resistance is 2/1 to 20 / 1 is preferable. In particular, when both metal thin films are vapor-deposited films, this ratio is preferably 3/1 to 15/1. Specifically, the thickness of the metal thin film having the smaller electric resistance is preferably 0.1 to 35 μm, more preferably 0.1 to 1 μm, and most preferably 0.2 to 0.7 μm. Further, the thickness of the metal thin film having the larger electric resistance is preferably 10 nm to 20 μm, more preferably 10 to 70 nm, and most preferably 20 to 60 nm. If the thickness of the metal thin film having the smaller electrical resistance is less than 0.1 μm, the high-frequency transmission efficiency is poor. On the other hand, if it exceeds 1 μm, the frequency dependency of the high-frequency transmission rate is reduced.

第一の金属薄膜11aは蒸着又は箔により形成するのが好ましい。第二の金属薄膜11bは、少なくとも第一の金属薄膜11aと接合する層を蒸着により形成する。従って、第二の金属薄膜11bは蒸着膜でも、蒸着膜+めっき層でも良い。   The first metal thin film 11a is preferably formed by vapor deposition or foil. The second metal thin film 11b is formed by vapor deposition of at least a layer bonded to the first metal thin film 11a. Therefore, the second metal thin film 11b may be a deposited film or a deposited film + plated layer.

(4) 傾斜組成層
(a) 第一の金属の薄膜と第二の金属の薄膜の間
図1(c)に示すように、傾斜組成層12では、第二の金属原子11b'は第一の金属原子11a'の間に部分的に進入しているので、第二の金属原子11b'の組成比(濃度)は第二の金属の薄膜11bから第一の金属の薄膜11aにかけて減少する。両金属原子11a',11b'の濃度が徐々に変化する傾斜組成層12は非晶質であると推定される。
(4) Gradient composition layer
(a) Between the first metal thin film and the second metal thin film, as shown in FIG. 1 (c), in the graded composition layer 12, the second metal atom 11b ′ is the same as the first metal atom 11a ′. Since it has partially penetrated, the composition ratio (concentration) of the second metal atom 11b ′ decreases from the second metal thin film 11b to the first metal thin film 11a. The gradient composition layer 12 in which the concentrations of both metal atoms 11a ′ and 11b ′ gradually change is estimated to be amorphous.

(b) 金属薄膜とプラスチックフィルムの間
図1(d)に示すように、傾斜組成層12’では、第一の金属原子11a'はフィルム10のプラスチック分子10’の間に部分的に進入しているので、第一の金属原子11a'の組成比(濃度)は第一の金属の薄膜11aからプラスチックフィルム10にかけて減少する。
(b) Between the metal thin film and the plastic film As shown in FIG. 1 (d), in the gradient composition layer 12 ′, the first metal atoms 11a ′ partially enter between the plastic molecules 10 ′ of the film 10. Therefore, the composition ratio (concentration) of the first metal atom 11a ′ decreases from the first metal thin film 11a to the plastic film 10.

(5) 微細孔又は凹部
優れた高周波伝送特性を得るために、導電フィルム1に微細孔又は凹部(まとめて「微細孔」ということもある)14を形成する。図1に示すように、微細孔14は、少なくとも金属薄膜11a,11bを貫通していれば、プラスチックフィルム10の途中まででも良い。勿論図4に示すように、微細孔14はプラスチックフィルム10を貫通してもよい。
(5) Micropores or recesses In order to obtain excellent high-frequency transmission characteristics, micropores or recesses (sometimes collectively referred to as “micropores”) 14 are formed in the conductive film 1. As shown in FIG. 1, the fine hole 14 may be partway through the plastic film 10 as long as it penetrates at least the metal thin films 11a and 11b. Of course, as shown in FIG. 4, the fine holes 14 may penetrate the plastic film 10.

微細孔14の平均開口径は0.1〜100μmが好ましく、0.5〜50μmがより好ましい。微細孔14の平均開口径を0.1μm未満とするのは技術的に困難である。また微細孔14の平均開口径を100μm超にすると、導電フィルム1の強度が低下する。良好な伝送損失を有するために、平均開口径の上限は20μmが特に好ましく、10μmが最も好ましい。平均開口径は、導電フィルム1の原子間力顕微鏡写真の任意の視野において複数の微細孔14の開口径を測定し、平均することにより求める。   The average opening diameter of the micropores 14 is preferably 0.1 to 100 μm, and more preferably 0.5 to 50 μm. It is technically difficult to make the average opening diameter of the fine holes 14 less than 0.1 μm. On the other hand, when the average opening diameter of the micropores 14 exceeds 100 μm, the strength of the conductive film 1 decreases. In order to have good transmission loss, the upper limit of the average aperture diameter is particularly preferably 20 μm, and most preferably 10 μm. The average opening diameter is obtained by measuring and averaging the opening diameters of the plurality of fine holes 14 in an arbitrary field of view of the atomic force micrograph of the conductive film 1.

微細孔14の平均密度は500個/cm2以上であるのが好ましく、5×103個/cm2以上であるのがより好ましい。微細孔14の平均密度が500個/cm2未満であると、伝送損失が大きすぎる。伝送損失を抑制するために、微細孔14の平均密度は1×104〜3×105個/cm2であるのが好ましく、1×104〜2×105個/cm2であるのがより好ましい。微細孔14の平均密度も、導電フィルム1の原子間力顕微鏡写真の任意の視野において微細孔14の数を計測し、単位面積当たりに平均することにより求める。The average density of the fine holes 14 is preferably 500 / cm 2 or more, and more preferably 5 × 10 3 / cm 2 or more. If the average density of the fine holes 14 is less than 500 / cm 2 , the transmission loss is too large. In order to suppress the transmission loss, the average density of the micropores 14 is preferably in the range of 1 × 10 4 ~3 × 10 5 cells / cm 2, a 1 × 10 4 ~2 × 10 5 cells / cm 2 Is more preferable. The average density of the micropores 14 is also determined by measuring the number of micropores 14 in an arbitrary field of view of the atomic force micrograph of the conductive film 1 and averaging it per unit area.

図4(b) に示すように、微細孔14の形成により金属薄膜11a,11bは塑性変形し、それらの一部は微細孔14の壁面に沿って延びる。金属薄膜11a,11bの塑性変形により、高周波伝送率の周波数依存性が向上する。これは、金属薄膜11a,11bの塑性変形により傾斜組成層12で両金属が混合するためであると考えられる。   As shown in FIG. 4 (b), the metal thin films 11 a and 11 b are plastically deformed by the formation of the fine holes 14, and some of them extend along the wall surface of the fine holes 14. Due to plastic deformation of the metal thin films 11a and 11b, the frequency dependence of the high-frequency transmission rate is improved. This is considered to be because both metals are mixed in the gradient composition layer 12 due to plastic deformation of the metal thin films 11a and 11b.

(6) 抵抗率
高周波伝送率の高い周波数依存性を得るため、金属薄膜11a,11bからなる積層体の抵抗率(単に「導電フィルムの抵抗率」という)は、銅とニッケルの組合せの場合、2×10-6〜150×10-6Ω・cmが好ましく、3×10-6〜100×10-6 Ω・cmがより好ましい。
(6) Resistivity In order to obtain high frequency dependency of the high frequency transmission rate, the resistivity of the laminate composed of the metal thin films 11a and 11b (simply referred to as “the resistivity of the conductive film”) is the combination of copper and nickel. 2 × 10 −6 to 150 × 10 −6 Ω · cm is preferable, and 3 × 10 −6 to 100 × 10 −6 Ω · cm is more preferable.

[2] 導電フィルムの製造方法
導電フィルム1は、プラスチックフィルム10の一面又は両面に蒸着法又は箔接合法により第一の金属薄膜11aを形成し、その上に蒸着法又は蒸着法及びめっき法により第二の金属薄膜11bを形成し、得られた複合フィルムを多数の硬質粒子が表面に付着した第一ロールと表面が平滑な第二ロールとの間を通過させることにより、少なくとも第二の金属薄膜11bの側に開口する多数の微細孔14を形成し、その際第二の金属薄膜11bに対して通電することにより製造する。第一の金属薄膜11aと第二の金属薄膜11bとの間に傾斜組成層12が形成されるので、プラスチックフィルム10と第一の金属薄膜11aとの間に傾斜組成層12’が形成される必要はない。例えば図2に示す導電フィルム1では、金属箔からなる第一の金属薄膜11aをプラスチックフィルム10に接着し、蒸着法又は蒸着法及びめっき法により第二の金属薄膜11bを形成した後、微細孔14を形成しながら通電する。
[2] Method for Producing Conductive Film Conductive film 1 is formed by forming first metal thin film 11a on one surface or both surfaces of plastic film 10 by vapor deposition or foil bonding, and then depositing it on the film by vapor deposition, vapor deposition or plating. The second metal thin film 11b is formed, and the resulting composite film is passed between a first roll having a large number of hard particles attached to the surface and a second roll having a smooth surface, thereby at least a second metal. A large number of fine holes 14 are formed on the thin film 11b side, and the second metal thin film 11b is energized at that time. Since the gradient composition layer 12 is formed between the first metal thin film 11a and the second metal thin film 11b, the gradient composition layer 12 ′ is formed between the plastic film 10 and the first metal thin film 11a. There is no need. For example, in the conductive film 1 shown in FIG. 2, the first metal thin film 11a made of a metal foil is bonded to the plastic film 10, and the second metal thin film 11b is formed by a vapor deposition method or a vapor deposition method and a plating method. Energize while forming 14.

(1) 金属薄膜の形成
金属の蒸着は、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法、プラズマCVD法、熱CVD法、光CVD法等の化学気相蒸着法等により行うことができる。第二の金属薄膜11bが蒸着層及びめっき層からなる場合、めっき層は公知の方法により形成できる。
(1) Formation of metal thin film Metal vapor deposition is performed by, for example, physical vapor deposition such as vacuum vapor deposition, sputtering, or ion plating, chemical vapor deposition such as plasma CVD, thermal CVD, or photo CVD. It can be carried out. When the 2nd metal thin film 11b consists of a vapor deposition layer and a plating layer, a plating layer can be formed by a well-known method.

(2) 微細孔の形成
図8は、プラスチックフィルム10に第一及び第二の金属薄膜11a,11bを形成した複合フィルム1'に、通電しながら微細孔14を形成する装置を示す。巻出機55から巻き戻した複合フィルム1'を、ダンサーロール60及びエキスパンダーロール61を経て、高硬度の微粒子を表面に多数有する第一ロール64と、表面が平滑な第二ロール65との間に、均一な押圧力下で通過させることにより、少なくとも第二の金属薄膜11bの側に開口する多数の微細孔14を形成し、その際第二の金属薄膜11bに対して電極ロール62a,62bにより通電する。得られた導電フィルム1は、一対のZラップロール67,67及びダンサーロール68を経て、巻取機56に巻き取る。
(2) Formation of micropores FIG. 8 shows an apparatus for forming micropores 14 while energizing a composite film 1 ′ in which first and second metal thin films 11a and 11b are formed in a plastic film 10. The composite film 1 ′ unwound from the unwinder 55 is passed through a dancer roll 60 and an expander roll 61, and between a first roll 64 having a large number of high-hardness fine particles on the surface and a second roll 65 having a smooth surface. In addition, a large number of fine holes 14 opened at least on the second metal thin film 11b side are formed by passing under a uniform pressing force, and at this time, electrode rolls 62a and 62b are formed with respect to the second metal thin film 11b. Energize by. The obtained conductive film 1 is wound around a winder 56 through a pair of Z wrap rolls 67 and 67 and a dancer roll 68.

図9に示すように、一対の電極ロール62a,62bは第一ロール64の前後に設けられており、一対の電極ロール63a,63bは第二ロール65の前後に設けられている。電極ロール62a,62b(63a,63b)を支持するボックス620a,620b(630a,630b)に、電源70a(70b)が接続されており、電極ロール62a,62b(63a,63b)に電圧をかけることができる。、   As shown in FIG. 9, the pair of electrode rolls 62a and 62b are provided before and after the first roll 64, and the pair of electrode rolls 63a and 63b are provided before and after the second roll 65. A power source 70a (70b) is connected to the boxes 620a and 620b (630a and 630b) that support the electrode rolls 62a and 62b (63a and 63b), and voltage is applied to the electrode rolls 62a and 62b (63a and 63b). Can do. ,

第一ロール64は、金属製ロールの表面に多数の硬質微粒子(ダイヤモンド微粒子)をニッケル又はクロムめっきの電着法により付着させたもの(ダイヤモンドロール)である。第二ロール65は硬質金属ロールである。ダイヤモンドロールの詳細は特開2002-59487号に記載されている。   The first roll 64 is obtained by attaching a large number of hard fine particles (diamond fine particles) to the surface of a metal roll by a nickel or chromium plating electrodeposition method (diamond roll). The second roll 65 is a hard metal roll. Details of the diamond roll are described in JP-A-2002-59487.

(a) 一面に金属薄膜を有する場合
図10は、通電しながら第一及び第二の金属薄膜11a,11bを有する複合フィルム1'に微細孔を形成する様子を示す。金属薄膜を第一ロール64の側にして、複合フィルム1'を第一及び第二のロール64,65間に均一な押圧力下で通過させながら、電極ロール62a,62bにより第二の金属薄膜11bに対して通電する。
(a) When having a metal thin film on one surface FIG. 10 shows a state in which fine holes are formed in the composite film 1 ′ having the first and second metal thin films 11a and 11b while being energized. With the metal thin film facing the first roll 64, the second metal thin film is transferred by the electrode rolls 62a and 62b while the composite film 1 'is passed between the first and second rolls 64 and 65 under a uniform pressing force. Energize 11b.

電源70aは直流電源及び交流電源のいずれでもよい。直流電圧はパルス電圧でも良い。電圧及び電流密度は、高周波信号の周波数に応じて適宜設定する。電圧は5 V以上が好ましく、8 V以上がより好ましい。電圧が5 V未満だと、抵抗の増加が不十分である。電圧の上限は30 Vが好ましく、25 Vがより好ましい。交流電源を用いる場合、周波数は10 Hz〜1 MHzが好ましく、100〜10,000 Hzがより好ましい。電流密度は20 A/m2以上が好ましく、25 A/m2以上がより好ましい。電流密度の上限は、70 A/m2が好ましく、50 A/m2がより好ましい。The power source 70a may be either a DC power source or an AC power source. The DC voltage may be a pulse voltage. The voltage and current density are appropriately set according to the frequency of the high frequency signal. The voltage is preferably 5 V or more, and more preferably 8 V or more. If the voltage is less than 5 V, the increase in resistance is insufficient. The upper limit of the voltage is preferably 30 V, and more preferably 25 V. When an AC power source is used, the frequency is preferably 10 Hz to 1 MHz, and more preferably 100 to 10,000 Hz. The current density is preferably 20 A / m 2 or more, and more preferably 25 A / m 2 or more. The upper limit of the current density is preferably 70 A / m 2 and more preferably 50 A / m 2 .

第一及び第二のロール64,65により複合フィルム1'に掛ける押圧力は、高周波信号の周波数に応じて適宜設定すればよいが、70 kgf/mm幅以上が好ましく、80〜1,000 kgf/mm幅がより好ましい。   The pressing force applied to the composite film 1 ′ by the first and second rolls 64 and 65 may be appropriately set according to the frequency of the high frequency signal, but is preferably 70 kgf / mm width or more, and 80 to 1,000 kgf / mm. The width is more preferable.

複合フィルム1'の搬送速度は20〜100 m/分が好ましく、25〜80 m/分がより好ましい。この速度が20 m/分未満だと、プラスチックフィルム10が劣化する恐れがある。一方100 m/分超とすると、電気抵抗が十分に増加しない。   The conveying speed of the composite film 1 ′ is preferably 20 to 100 m / min, and more preferably 25 to 80 m / min. If this speed is less than 20 m / min, the plastic film 10 may be deteriorated. On the other hand, if it exceeds 100 m / min, the electrical resistance will not increase sufficiently.

なお必要に応じて、複合フィルム1'を第一及び第二のロール64,65間に通過させる際、金属薄膜を第二ロール65の側にしても良い。   In addition, when passing composite film 1 'between the 1st and 2nd rolls 64 and 65 as needed, you may make a metal thin film the 2nd roll 65 side.

(b) 両面に金属薄膜を有する場合
図11は、通電しながら両面に第一及び第二の金属薄膜11a,11bを有する複合フィルム1'に微細孔を形成する様子を示す。この場合、金属薄膜11bに対して一対の電極ロール62a,62bにより通電するとともに、金属薄膜11bに対して一対の電極ロール63a,63bにより通電する。
(b) Case of having metal thin films on both surfaces FIG. 11 shows a state in which fine holes are formed in the composite film 1 ′ having the first and second metal thin films 11a and 11b on both surfaces while being energized. In this case, the metal thin film 11b is energized by the pair of electrode rolls 62a and 62b, and the metal thin film 11b is energized by the pair of electrode rolls 63a and 63b.

以上のような加圧通電により、優れた高周波伝送率の周波数依存性が得られる。   By applying the pressure as described above, excellent frequency dependence of the high-frequency transmission rate can be obtained.

[3] 高周波部品
本発明の高周波部品は上記導電フィルムを具備する。高周波部品の好ましい例として、高周波伝送線路及び高周波フィルタが挙げられる。
[3] High-frequency component The high-frequency component of the present invention includes the conductive film. Preferred examples of the high frequency component include a high frequency transmission line and a high frequency filter.

(1) 高周波伝送線路
図12は本発明の高周波伝送線路の一例を示す。この高周波伝送線路は、二本の帯状導電フィルム100,100が、プラスチック、絶縁性セラミックス等からなる誘電体基板2の上面に平行に配置されている。帯状導電フィルム100,100は導電フィルム1を公知の方法によりスリットしたものである。二本の帯状導電フィルム100,100の間に電界が集中するので、高周波信号を効率良く伝送することができる。優れた高周波伝送性を得るために、誘電体基板2は、二本の帯状導電フィルム100,100間に凸部20を有するのが好ましい。
(1) High-frequency transmission line FIG. 12 shows an example of the high-frequency transmission line of the present invention. In this high-frequency transmission line, two strip-like conductive films 100, 100 are arranged in parallel on the upper surface of a dielectric substrate 2 made of plastic, insulating ceramics or the like. The strip-shaped conductive films 100 and 100 are obtained by slitting the conductive film 1 by a known method. Since the electric field concentrates between the two strip-shaped conductive films 100, 100, a high-frequency signal can be transmitted efficiently. In order to obtain an excellent high frequency transmission property, the dielectric substrate 2 preferably has a convex portion 20 between the two strip-like conductive films 100 and 100.

各導電フィルム100,100の幅d1は、高周波信号の周波数及び振幅等に応じて適宜設定するが、1〜10 mmであるのが好ましく、1.5〜7mmであるのがより好ましい。幅d1が1mm以上であれば、十分な高周波信号伝送性を有する。また幅d1を10 mm超としても、高周波信号伝送性のさらなる向上は得られない。Width d 1 of each conductive film 100, 100 is appropriately set according to the frequency and amplitude such as of a high-frequency signal is preferably in the range of 1 to 10 mm, and more preferably 1.5 to 7 mm. If the width d 1 is 1mm or more, with sufficient frequency signal transmission property. Further, even if the width d 1 is greater than 10 mm, further improvement in high-frequency signal transmission is not obtained.

二本の帯状導電フィルム100,100の間隔d2は1〜10 mmであるのが好ましく、1.5〜7mmであるのがより好ましい。間隔d2が1mm未満だと高周波信号伝送性が不十分であり、一方10 mm超だと放射損失が多い。凸部20の高さhは1〜10 mmであるのが好ましく、1.5〜7mmであるのがより好ましい。The distance d2 between the two strip-like conductive films 100, 100 is preferably 1 to 10 mm, and more preferably 1.5 to 7 mm. Distance d 2 is that it is less than 1mm is insufficient high frequency signal transmission property, whereas the radiation loss is large but 10 mm greater. The height h of the convex portion 20 is preferably 1 to 10 mm, and more preferably 1.5 to 7 mm.

導電フィルム100,100は、誘電体基板の同一面上に配置されていることに限定されず、断面コの字状誘電体基板の対向内面上や、断面L字状の誘電体基板の直交内面上に配置されていてもよい。   The conductive films 100 and 100 are not limited to being disposed on the same surface of the dielectric substrate, but are on the opposite inner surface of the U-shaped dielectric substrate or the orthogonal inner surface of the L-shaped dielectric substrate. It may be arranged above.

本発明の高周波伝送線路は優れた周波数依存性及び高周波伝送率を有し、しかも高周波特性の経時変化がない。また比較的高い電気抵抗を有するので、終端抵抗を省略できる場合もある。本発明の導電フィルムは、高周波伝送率が100%以上の周波数帯域と、高周波伝送率がほぼ0%の周波数帯域があるので、優れたフィルタ機能を有する。また伝送方向に異方性があるので、外部からの信号の進入を防止するハッカー防止機能も有する。   The high-frequency transmission line of the present invention has excellent frequency dependence and high-frequency transmission rate, and does not change with time in high-frequency characteristics. In addition, since it has a relatively high electrical resistance, the termination resistor may be omitted in some cases. The conductive film of the present invention has an excellent filter function because it has a frequency band with a high-frequency transmission rate of 100% or more and a frequency band with a high-frequency transmission rate of almost 0%. Further, since there is anisotropy in the transmission direction, it also has a hacker prevention function that prevents the entry of signals from the outside.

(2) 高周波フィルタ
本発明の高周波フィルタは、上記高周波伝送線路に入力端子及び出力端子を接続した簡単な構造を有する。図13はかかる高周波フィルタの一例を示す。第二の金属薄膜11bが第一の金属薄膜11aより小さな電気抵抗を有する場合、第二の金属薄膜11bに端子4を設けるのが好ましい。本発明の高周波フィルタは優れた周波数依存性及び高周波伝送率を有する。
(2) High-frequency filter The high-frequency filter of the present invention has a simple structure in which an input terminal and an output terminal are connected to the high-frequency transmission line. FIG. 13 shows an example of such a high frequency filter. When the second metal thin film 11b has an electric resistance smaller than that of the first metal thin film 11a, it is preferable to provide the terminal 4 on the second metal thin film 11b. The high frequency filter of the present invention has excellent frequency dependence and high frequency transmission rate.

(3) その他の高周波部品
その他の高周波部品として、高周波共振器、高周波電極、高周波信号用分配器、平面伝送線路−導波管線路変換器、高周波増幅素子、アンテナ(例えば電子タグ用アンテナ)等も挙げられる。これらの高周波部品も、上記高周波伝送線路に入力端子及び出力端子を接続した簡単な構造で良い。
(3) Other high-frequency components Other high-frequency components include high-frequency resonators, high-frequency electrodes, high-frequency signal distributors, planar transmission line-waveguide line converters, high-frequency amplification elements, antennas (for example, antennas for electronic tags), etc. Also mentioned. These high frequency components may also have a simple structure in which an input terminal and an output terminal are connected to the high frequency transmission line.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

実施例1
(1) 帯状導電フィルムの作製
(i) 複合フィルムの作製
二軸延伸PETフィルム[厚さ:12μm、誘電率:3.2(1 MHz)、誘電正接:1.0%(1 MHz)、融点:265℃、ガラス転移温度:75℃]の一面に、真空蒸着法により厚さ0.3μmの銅層を形成し、その上に真空蒸着法により厚さ20 nmのニッケル層を形成した。得られた複合フィルムを50 cm×3 mmにカットした試験片に対して電気抵抗を長さ方向に測定した結果、8Ωであった。
Example 1
(1) Production of strip-shaped conductive film
(i) Preparation of composite film Biaxially stretched PET film [thickness: 12 μm, dielectric constant: 3.2 (1 MHz), dielectric loss tangent: 1.0% (1 MHz), melting point: 265 ° C, glass transition temperature: 75 ° C] A copper layer having a thickness of 0.3 μm was formed on one surface by a vacuum evaporation method, and a nickel layer having a thickness of 20 nm was formed thereon by a vacuum evaporation method. As a result of measuring the electrical resistance in the length direction of the test piece obtained by cutting the obtained composite film into 50 cm × 3 mm, it was 8Ω.

(ii) 加圧通電
図8に示す装置を用い、第一ロール(ダイヤモンド微粒子の粒径3μm)64と第二ロール65との間に、100 kgf/mm幅の圧力下、30 m/分の速度で複合フィルムを通過させながら、ニッケル層を一対の電極ロール62a,62bに接触させ、電源70aから24 Vのパルス電圧(オン/オフともに30ミリ秒)を印加した。電流密度は35 A/m2であった。得られた導電フィルムの微細孔の平均密度は5×104個/cm2であった。導電フィルムを50 cm×3 mmにカットした試験片の電気抵抗(長さ方向に測定)は100Ωであった。
(ii) Pressurization energization Using the apparatus shown in FIG. 8, between the first roll (diamond fine particle size 3 μm) 64 and the second roll 65, under a pressure of 100 kgf / mm width, 30 m / min. While passing through the composite film at a speed, the nickel layer was brought into contact with the pair of electrode rolls 62a and 62b, and a pulse voltage of 24 V (30 milliseconds for both on and off) was applied from the power source 70a. The current density was 35 A / m 2. The average density of micropores in the obtained conductive film was 5 × 10 4 holes / cm 2 . The electrical resistance (measured in the length direction) of the test piece obtained by cutting the conductive film into 50 cm × 3 mm was 100Ω.

(2) 高周波伝送線路の作製
帯状導電フィルム2本を、PETフィルムが基板側となるように、塩化ビニル樹脂製基板に平行に接着し、図12に示す平行線路型の高周波伝送線路を作製した(長さ:50 cm、二本の帯状導電フィルムの間隔d2:3mm)。
(2) Production of a high-frequency transmission line Two strip-shaped conductive films were bonded in parallel to a vinyl chloride resin substrate so that the PET film was on the substrate side, and a parallel-line type high-frequency transmission line shown in FIG. 12 was produced. (Length: 50 cm, distance d 2 between the two strip-like conductive films: 3 mm).

実施例2
15 Vのパルス電圧(35 A/m2の電流密度)を印加した以外実施例1と同様にして、帯状導電フィルムを作製した。帯状導電フィルムの電気抵抗は32Ωで、微細孔の平均密度は5×104個/cm2であった。この帯状導電フィルムを用いた以外実施例1と同様にして高周波伝送線路を作製した。
Example 2
A strip-shaped conductive film was produced in the same manner as in Example 1 except that a pulse voltage of 15 V (current density of 35 A / m 2 ) was applied. The electric resistance of the strip-shaped conductive film was 32Ω, and the average density of micropores was 5 × 10 4 pieces / cm 2 . A high frequency transmission line was produced in the same manner as in Example 1 except that this strip-like conductive film was used.

実施例3
18 Vのパルス電圧(35 A/m2の電流密度)を印加した以外実施例1と同様にして、帯状導電フィルムを作製した。帯状導電フィルムの電気抵抗は49Ωで、微細孔の平均密度は5×104個/cm2であった。この帯状導電フィルムを用いた以外実施例1と同様にして高周波伝送線路を作製した。
Example 3
A strip-shaped conductive film was produced in the same manner as in Example 1 except that a pulse voltage of 18 V (current density of 35 A / m 2 ) was applied. The electric resistance of the strip-shaped conductive film was 49Ω, and the average density of micropores was 5 × 10 4 pieces / cm 2 . A high frequency transmission line was produced in the same manner as in Example 1 except that this strip-like conductive film was used.

実施例4
60 m/分の速度の複合フィルムに18 Vのパルス電圧(35 A/m2の電流密度)を印加した以外実施例1と同様にして、帯状導電フィルムを作製した。帯状導電フィルムの電気抵抗は18Ωで、微細孔の平均密度は5×104個/cm2であった。この帯状導電フィルムを用いた以外実施例1と同様にして高周波伝送線路を作製した。
Example 4
A strip-shaped conductive film was produced in the same manner as in Example 1 except that a pulse voltage of 18 V (current density of 35 A / m 2 ) was applied to the composite film at a speed of 60 m / min. The electric resistance of the strip-shaped conductive film was 18Ω, and the average density of micropores was 5 × 10 4 pieces / cm 2 . A high frequency transmission line was produced in the same manner as in Example 1 except that this strip-like conductive film was used.

実施例5
周波数5,000 Hzで10 Vの交流電圧(45 A/m2の電流密度)を印加した後、5 mm幅でカットした以外実施例1と同様にして、帯状導電フィルムを作製した。帯状導電フィルムの電気抵抗は52Ωで、微細孔の平均密度は5×104個/cm2であった。この帯状導電フィルムを用いた以外実施例1と同様にして高周波伝送線路を作製した。
Example 5
A strip-shaped conductive film was produced in the same manner as in Example 1 except that an AC voltage of 10 V (current density of 45 A / m 2 ) was applied at a frequency of 5,000 Hz and then cut at a width of 5 mm. The electric resistance of the strip-shaped conductive film was 52Ω, and the average density of micropores was 5 × 10 4 pieces / cm 2 . A high frequency transmission line was produced in the same manner as in Example 1 except that this strip-like conductive film was used.

実施例6
周波数5,000 Hzで10 Vの交流電圧(30 A/m2の電流密度)を印加した後、5 mm幅でカットした以外実施例1と同様にして、帯状導電フィルムを作製した。帯状導電フィルムの電気抵抗は47 Ωで、微細孔の平均密度は5×104個/cm2であった。この帯状導電フィルムを用いた以外実施例1と同様にして高周波伝送線路を作製した。
Example 6
A strip-shaped conductive film was produced in the same manner as in Example 1 except that an alternating voltage of 10 V (current density of 30 A / m 2 ) was applied at a frequency of 5,000 Hz, and then cut at a width of 5 mm. The electric resistance of the strip-shaped conductive film was 47 Ω, and the average density of micropores was 5 × 10 4 pieces / cm 2 . A high frequency transmission line was produced in the same manner as in Example 1 except that this strip-like conductive film was used.

実施例7
PETフィルムの一面に、真空蒸着法により厚さ0.3μmの銅層を形成した後、厚さ50 nmのニッケル層を形成した。得られた複合フィルムを50 cm×5 mmにカットした試験片の電気抵抗(長手方向に測定)は8Ωであった。複合フィルムを500 kgf/mm幅の圧力下30 m/分の速度でロール対64,65を通過させながら、10 Vのパルス電圧(電流密度は30 A/m2)を印加した、5 mm幅でカットした以外実施例1と同様にして、帯状導電フィルムを作製した。帯状導電フィルムの電気抵抗は16Ωで、微細孔の平均密度は5×104個/cm2であった。この帯状導電フィルムを用いた以外実施例1と同様にして高周波伝送線路を作製した。
Example 7
A copper layer having a thickness of 0.3 μm was formed on one surface of the PET film by a vacuum deposition method, and then a nickel layer having a thickness of 50 nm was formed. The electrical resistance (measured in the longitudinal direction) of a test piece obtained by cutting the obtained composite film into 50 cm × 5 mm was 8Ω. The composite film was passed through the roll pairs 64 and 65 at a speed of 30 m / min under a pressure of 500 kgf / mm width, and a pulse voltage of 10 V (current density was 30 A / m 2 ) was applied. A strip-shaped conductive film was produced in the same manner as in Example 1 except that the film was cut in step 1. The electric resistance of the strip-shaped conductive film was 16Ω, and the average density of micropores was 5 × 10 4 pieces / cm 2 . A high frequency transmission line was produced in the same manner as in Example 1 except that this strip-like conductive film was used.

実施例8
厚さ16μmの二軸延伸PETフィルムを用い、銅層の厚さを0.5μmとした以外実施例7と同様にして、複合フィルムを作製した。複合フィルムを50 cm×5 mmにカットした試験片の電気抵抗は8Ωであった。複合フィルムに対して実施例7と同様に微細孔を形成し、カットすることにより得られた帯状導電フィルムの電気抵抗は17Ωで、微細孔の平均密度は5×104個/cm2であった。この帯状導電フィルムを用いた以外実施例1と同様にして高周波伝送線路を作製した。
Example 8
A composite film was produced in the same manner as in Example 7 except that a biaxially stretched PET film having a thickness of 16 μm was used and the thickness of the copper layer was changed to 0.5 μm. The electrical resistance of the test piece obtained by cutting the composite film into 50 cm × 5 mm was 8Ω. The electric resistance of the strip-shaped conductive film obtained by forming and cutting micropores in the composite film in the same manner as in Example 7 was 17Ω, and the average density of micropores was 5 × 10 4 holes / cm 2. It was. A high frequency transmission line was produced in the same manner as in Example 1 except that this strip-like conductive film was used.

実施例9
二軸延伸ポリフェニレンサルファイドフィルム[厚さ:12μm、誘電率:3(1 MHz)、誘電正接:0.002(1 MHz)、融点:285℃、ガラス転移温度:90℃]の一面に、真空蒸着法により厚さ50 nmのニッケル層を形成した後、厚さ0.2μmの銅層を形成した。得られた複合フィルムを50 cm×3 mmにカットして得られた試験片の電気抵抗は10Ωであった。複合フィルムに対して実施例7と同様に微細孔を形成し、カットすることにより得られた帯状導電フィルムの電気抵抗は16Ωで、微細孔の平均密度は5×104個/cm2であった。この帯状導電フィルムを用いた以外実施例1と同様にして高周波伝送線路を作製した。
Example 9
Biaxially stretched polyphenylene sulfide film (thickness: 12μm, dielectric constant: 3 (1 MHz), dielectric loss tangent: 0.002 (1 MHz), melting point: 285 ° C, glass transition temperature: 90 ° C) by vacuum evaporation After forming a nickel layer having a thickness of 50 nm, a copper layer having a thickness of 0.2 μm was formed. The test piece obtained by cutting the obtained composite film into 50 cm × 3 mm had an electric resistance of 10Ω. The electric resistance of the strip-shaped conductive film obtained by forming and cutting micropores in the composite film in the same manner as in Example 7 was 16Ω, and the average density of micropores was 5 × 10 4 holes / cm 2. It was. A high frequency transmission line was produced in the same manner as in Example 1 except that this strip-like conductive film was used.

比較例1
二軸延伸ポリイミドフィルム[厚さ:25μm、誘電率:3.3(1 MHz)、誘電正接:0.0079(1 MHz)、ガラス転移温度:280℃以上]の一面に、厚さ12μmの圧延銅箔を接着した。得られた積層膜に18 Vのパルス電圧(35 A/m2の電流密度)を印加した以外実施例1と同様にして、帯状導電フィルムを作製した。加圧通電前後で電気抵抗の変化はなかった。この帯状導電フィルムを用いた以外実施例1と同様にして高周波伝送線路を作製した。
Comparative Example 1
Biaxially stretched polyimide film (thickness: 25 μm, dielectric constant: 3.3 (1 MHz), dielectric loss tangent: 0.0079 (1 MHz), glass transition temperature: 280 ° C or higher) is bonded to 12 μm thick rolled copper foil. did. A strip-shaped conductive film was produced in the same manner as in Example 1 except that a pulse voltage of 18 V (current density of 35 A / m 2 ) was applied to the obtained laminated film. There was no change in electrical resistance before and after applying pressure. A high frequency transmission line was produced in the same manner as in Example 1 except that this strip-like conductive film was used.

比較例2
20 Vのパルス電圧(40 A/m2の電流密度)を印加した以外比較例1と同様にして、帯状導電フィルムを作製した。加圧通電前後で電気抵抗の変化はなかった。この帯状導電フィルムを用いた以外実施例1と同様にして高周波伝送線路を作製した。
Comparative Example 2
A strip-shaped conductive film was produced in the same manner as in Comparative Example 1 except that a pulse voltage of 20 V (current density of 40 A / m 2 ) was applied. There was no change in electrical resistance before and after applying pressure. A high frequency transmission line was produced in the same manner as in Example 1 except that this strip-like conductive film was used.

比較例3
25 Vのパルス電圧(50 A/m2の電流密度)を印加した以外比較例1と同様にして、帯状導電フィルムを作製した。加圧通電前後で電気抵抗の変化はなかった。この導電フィルムを用いた以外実施例1と同様にして高周波伝送線路を作製した。
Comparative Example 3
A strip-shaped conductive film was produced in the same manner as in Comparative Example 1 except that a pulse voltage of 25 V (current density of 50 A / m 2 ) was applied. There was no change in electrical resistance before and after applying pressure. A high frequency transmission line was produced in the same manner as in Example 1 except that this conductive film was used.

比較例4
ポリイミドフィルムの一面に、真空蒸着法により3.0μmの厚さの銅層を形成し、その上に10μmのニッケル層を形成した。得られた複合フィルムに対して実施例7と同様に微細孔を形成し、カットすることにより得られた帯状導電フィルムの電気抵抗は0.1Ωで、微細孔の平均密度は5×104個/cm2であった。この帯状導電フィルムを用いた以外実施例1と同様にして高周波伝送線路を作製した。
Comparative Example 4
A copper layer having a thickness of 3.0 μm was formed on one surface of the polyimide film by a vacuum deposition method, and a nickel layer having a thickness of 10 μm was formed thereon. In the same manner as in Example 7 for the obtained composite film, micropores were formed and the strip-like conductive film obtained by cutting had an electric resistance of 0.1Ω, and the average density of micropores was 5 × 10 4 / cm 2 . A high frequency transmission line was produced in the same manner as in Example 1 except that this strip-like conductive film was used.

比較例5
微細孔を形成しなかった以外実施例7と同様にして帯状導電フィルムを作製した。帯状導電フィルムの電気抵抗は8Ωであった。この帯状導電フィルムを用いた以外実施例1と同様にして高周波伝送線路を作製した。
Comparative Example 5
A strip-shaped conductive film was produced in the same manner as in Example 7 except that the fine holes were not formed. The electric resistance of the strip-shaped conductive film was 8Ω. A high frequency transmission line was produced in the same manner as in Example 1 except that this strip-like conductive film was used.

比較例6
通電せずに500 kgf/mm幅の圧力下30 m/分の速度でロール対64,65を通過させながら微細孔を形成した以外実施例7と同様にして帯状導電フィルムを作製した。帯状導電フィルムの電気抵抗は13Ωで、微細孔の平均密度は5×104個/cm2であった。この帯状導電フィルムを用いた以外実施例1と同様にして高周波伝送線路を作製した。
Comparative Example 6
A strip-shaped conductive film was produced in the same manner as in Example 7 except that fine holes were formed while passing through the roll pairs 64 and 65 at a speed of 30 m / min under a pressure of 500 kgf / mm width without energization. The electric resistance of the strip-shaped conductive film was 13Ω, and the average density of micropores was 5 × 10 4 pieces / cm 2 . A high frequency transmission line was produced in the same manner as in Example 1 except that this strip-like conductive film was used.

実施例1〜9及び比較例1〜6の帯状導電フィルムの作製条件及び物性を表1に示す。   Table 1 shows the production conditions and physical properties of the strip-like conductive films of Examples 1 to 9 and Comparative Examples 1 to 6.

Figure 0005410094
Figure 0005410094

表1(続き)

Figure 0005410094
Table 1 (continued)
Figure 0005410094

表1(続き)

Figure 0005410094
Table 1 (continued)
Figure 0005410094

表1(続き)

Figure 0005410094
Table 1 (continued)
Figure 0005410094

注:(1) 第一及び第二の金属薄膜からなる積層金属の抵抗率。積層金属の長さは50 cmであり、幅は3 mm(実施例1〜4)及び5 mm(実施例5〜9、比較例5,6)であった。
(2) 第一及び第二の金属薄膜及びその間の傾斜組成層からなる積層金属の抵抗率。積層金属の長さは50 cmであり、幅は3 mm(実施例1〜4)及び5 mm(実施例5〜9、比較例4〜6)であった。
(3) パルス電圧(オン/オフともに30ミリ秒)を印加。
(4) 微細孔の形成時に通電せず。
Notes: (1) Resistivity of laminated metal consisting of first and second metal thin films. The length of the laminated metal was 50 cm, and the width was 3 mm (Examples 1 to 4) and 5 mm (Examples 5 to 9, Comparative Examples 5 and 6).
(2) Resistivity of laminated metal composed of first and second metal thin films and a gradient composition layer therebetween. The length of the laminated metal was 50 cm, and the width was 3 mm (Examples 1 to 4) and 5 mm (Examples 5 to 9 and Comparative Examples 4 to 6).
(3) Apply pulse voltage (30 milliseconds for both on / off).
(4) No energization when forming fine holes.

実施例1〜9及び比較例1〜6で得られた高周波伝送線路の高周波伝送率を以下の方法により測定した。   The high frequency transmission rates of the high frequency transmission lines obtained in Examples 1 to 9 and Comparative Examples 1 to 6 were measured by the following method.

(a) 高周波発振器のスプリアス特性測定
(i) スプリアス特性測定用高周波伝送線路の作製
二軸延伸PETフィルムの一面に、真空蒸着法により厚さ0.3μmの銅層を形成し、5 mmの幅にスリットした。長さ50 cmの2本の帯状の銅/PETフィルムをPETフィルムを下にして塩化ビニル樹脂製基板に3 mmの間隔d2で平行に接着し、実施例1と同様にして平行線路型のスプリアス特性測定用高周波伝送線路を作製した。
(a) Measuring spurious characteristics of high-frequency oscillators
(i) Production of high-frequency transmission line for measuring spurious characteristics A copper layer having a thickness of 0.3 μm was formed on one surface of a biaxially stretched PET film by a vacuum deposition method, and slit to a width of 5 mm. Two strips of copper / PET film with a length of 50 cm were bonded in parallel to the vinyl chloride resin substrate with a distance of d 2 of 3 mm with the PET film facing down. A high-frequency transmission line for measuring spurious characteristics was fabricated.

(ii) スプリアス特性測定
図14に示すように、ケーブル70及び鰐口クリップ7を介して、スプリアス特性測定用高周波伝送線路の積層膜1'',1''の一端に高周波発振器5を接続し、他端に高周波受信器6を接続した。インピーダンスを整合し、高周波伝送率を精確に測定するために、整合器8を高周波発振器5の直後及び受信器6の直前に設けた。図15に示すように、高周波発振器5は、電圧制御発振器(VCO)51、伝送する信号の周波数に応じて切り替えるようになっている3個の高周波発振モジュール52,52',52''及び2個の高周波アンプ53,53'を具備している。高周波発振器5は、100〜200 MHz、260〜550 MHz及び600〜1,050 MHzの範囲の信号を伝送することができる。発振器5から100、200、300、500、700及び1,000 MHzの信号を伝送し、スプリアス特性を調べた。結果を表2に示す。この高周波発振器5は高調波の発生が少なく、高調波以外のスプリアスがなかった。
(ii) Spurious characteristic measurement As shown in FIG. 14, a high-frequency oscillator 5 is connected to one end of a laminated film 1 '', 1 '' of a high-frequency transmission line for measuring spurious characteristics via a cable 70 and a hook clip 7. A high frequency receiver 6 was connected to the other end. In order to match the impedance and accurately measure the high-frequency transmission rate, the matching unit 8 is provided immediately after the high-frequency oscillator 5 and immediately before the receiver 6. As shown in FIG. 15, a high-frequency oscillator 5 includes a voltage-controlled oscillator (VCO) 51, three high-frequency oscillation modules 52, 52 ′, 52 ″ and 2 that are switched according to the frequency of a signal to be transmitted. A plurality of high-frequency amplifiers 53 and 53 ′ are provided. The high frequency oscillator 5 can transmit signals in the ranges of 100 to 200 MHz, 260 to 550 MHz, and 600 to 1,050 MHz. Signals of 100, 200, 300, 500, 700 and 1,000 MHz were transmitted from the oscillator 5, and the spurious characteristics were examined. The results are shown in Table 2. This high-frequency oscillator 5 generated less harmonics and had no spurious other than harmonics.

Figure 0005410094
Figure 0005410094

(b) 伝送係数の設定
ケーブル70(図14参照)で発振器5と受信器6を接続し、1.0 Vの出力振幅で、120 MHzから1,050 MHzまで2〜6 MHz間隔で周波数を上げながら、発振器5から信号を伝送した。図16(a)に示すように、発振器5の出力端子50,50から信号が(+)側から出力するように伝送した場合(信号パターン1)と、図16(b)に示すように、発振器5の出力端子50,50から信号が(−)側から出力するように伝送した場合(信号パターン2:信号パターン1に対して位相が1/2波長ずれている)との両方について入力振幅を求めた。式:伝送係数=入力振幅(V)/出力振幅(V)に従い、各周波数における伝送係数を求め、信号パターン1及び2の各々について周波数−伝送係数曲線を作成した。
(b) Transmission coefficient setting Connect oscillator 5 and receiver 6 with cable 70 (see Fig. 14), and increase the frequency from 120 MHz to 1,050 MHz at intervals of 2 to 6 MHz with an output amplitude of 1.0 V. The signal was transmitted from 5. As shown in FIG. 16 (a), when the signal is transmitted from the output terminals 50, 50 of the oscillator 5 so as to output from the (+) side (signal pattern 1), as shown in FIG. 16 (b), Input amplitude when both signals are transmitted from the output terminals 50 and 50 of the oscillator 5 so that the signal is output from the (-) side (signal pattern 2: phase shifted by 1/2 wavelength with respect to signal pattern 1) Asked. According to the formula: transmission coefficient = input amplitude (V) / output amplitude (V), the transmission coefficient at each frequency was obtained, and a frequency-transmission coefficient curve was created for each of signal patterns 1 and 2.

(c) 高周波伝送率の測定
実施例1〜9及び比較例1〜6で作製した高周波伝送線路に、上記と同様にして発振器5及び受信器6を接続し、整合器8を発振器5の直後及び受信器6の直前に設けた(図14参照)。1.0 Vの出力振幅(V)で、120 MHzから1,050 MHzまで2〜6 MHz間隔で周波数を上げながら、発振器5から信号(信号パターン1及び2)を伝送し、入力振幅(V)を求めた。上記周波数−伝送係数曲線から求められる伝送係数を用い、各測定周波数における高周波伝送率(%)を、式:高周波伝送率(%)=入力振幅(V)/(出力振幅(V)×伝送係数)×100に従い、算出した。周波数と高周波伝送率の関係をプロットした結果を図17〜34に示す。
(c) Measurement of the high-frequency transmission rate The oscillator 5 and the receiver 6 are connected to the high-frequency transmission lines manufactured in Examples 1 to 9 and Comparative Examples 1 to 6 in the same manner as described above, and the matching unit 8 is immediately after the oscillator 5. And provided immediately before the receiver 6 (see FIG. 14). The signal (signal patterns 1 and 2) was transmitted from the oscillator 5 while increasing the frequency from 120 MHz to 1,050 MHz at intervals of 2 to 6 MHz with an output amplitude (V) of 1.0 V, and the input amplitude (V) was obtained. . Using the transmission coefficient obtained from the above-mentioned frequency-transmission coefficient curve, the high frequency transmission rate (%) at each measurement frequency is expressed by the formula: high frequency transmission rate (%) = input amplitude (V) / (output amplitude (V) × transmission coefficient. ) × 100. The results of plotting the relationship between the frequency and the high-frequency transmission rate are shown in FIGS.

図17〜20から、実施例1〜4の高周波伝送線路では、信号パターン1に対して、高周波伝送率が、概ね320〜350 MHz及び760〜820 MHzの帯域で100%以上であり、概ね600〜700 MHzの広い帯域で0%であり、周波数依存性を有していた。信号パターン2に対して、高周波伝送率が、概ね140〜180 MHz、380〜430 MHz、及び620〜730 MHzの帯域で100%以上であり、伝送性に優れていた。信号パターンの違いにより、高周波伝送率の高い帯域が異なっていた。   17 to 20, in the high-frequency transmission lines of Examples 1 to 4, the high-frequency transmission rate is approximately 100% or more in the bands of 320 to 350 MHz and 760 to 820 MHz with respect to the signal pattern 1, and is generally 600. It was 0% in a wide band of ~ 700 MHz and had frequency dependence. With respect to the signal pattern 2, the high-frequency transmission rate was approximately 100% or more in the bands of 140 to 180 MHz, 380 to 430 MHz, and 620 to 730 MHz, and the transmission characteristics were excellent. Due to the difference in signal pattern, the high frequency transmission rate band was different.

図21〜24から、実施例5及び6の高周波伝送線路では、信号パターン1に対して、高周波伝送率が、概ね650〜700 MHzの帯域で100%以上であり、概ね400〜500 MHzの広い帯域で0%であった。信号パターン2に対して、高周波伝送率が、概ね320〜360 MHzの帯域で100%以上であり、概ね600〜700 MHz及び870〜970 MHzの広い帯域で0%であった。信号パターン1及び2に対して、高周波伝送率の周波数依存性を有していた。   From FIGS. 21 to 24, in the high-frequency transmission lines of Examples 5 and 6, the high-frequency transmission rate with respect to the signal pattern 1 is approximately 100% or more in a band of approximately 650 to 700 MHz, and is broad as approximately 400 to 500 MHz. It was 0% in the band. For signal pattern 2, the high-frequency transmission rate was approximately 100% or more in the band of approximately 320 to 360 MHz, and approximately 0% in the broad bands of approximately 600 to 700 MHz and 870 to 970 MHz. For signal patterns 1 and 2, the frequency dependence of the high-frequency transmission rate was present.

図25から、実施例7の高周波伝送線路では、信号パターン1に対して、高周波伝送率が、概ね140〜220 MHz、370〜420 MHz及び660〜710 MHzの帯域で100%以上であり、750〜800 MHzの帯域で0%であった。特に177 MHzでは770%の伝送率を示した。信号パターン2に対して、高周波伝送率が、概ね150〜230 MHz、330〜350 MHz及び730〜820 MHzの帯域で100%以上であった。信号パターン2に対しては、高周波伝送率が0%の帯域がなく、帯域除去性が見られなかったことから、信号パターンの違いにより、整流作用が得られることが分かった。   From FIG. 25, in the high-frequency transmission line of Example 7, the high-frequency transmission rate with respect to the signal pattern 1 is approximately 100% or more in the bands of 140 to 220 MHz, 370 to 420 MHz, and 660 to 710 MHz. It was 0% in the band of ~ 800 MHz. In particular, 177 MHz showed a transmission rate of 770%. For signal pattern 2, the high-frequency transmission rate was approximately 100% or more in the bands of approximately 150 to 230 MHz, 330 to 350 MHz, and 730 to 820 MHz. For signal pattern 2, there was no band with a high-frequency transmission rate of 0%, and no band-removability was observed. Thus, it was found that a rectifying action was obtained due to the difference in signal pattern.

図26から、実施例8の高周波伝送線路は、信号パターン1に対して、高周波伝送率が、概ね120〜460 MHz、750〜840 MHz及び900〜1,010 MHzの帯域で100%以上であり、伝送性に優れていた。信号パターン2に対して、高周波伝送率が、概ね190〜310 MHz、600〜660 MHz、770〜800 MHz及び970〜1,010 MHzの帯域で100%以上であり、690〜730 MHzの帯域で0%であった。信号パターン1に対しては帯域除去性が見られなかったことから、信号パターンの違いにより、整流作用が得られることが分かった。   From FIG. 26, the high-frequency transmission line of Example 8 has a high-frequency transmission rate of approximately 100% or more in the bands of 120 to 460 MHz, 750 to 840 MHz, and 900 to 1,010 MHz with respect to the signal pattern 1 and transmitted. It was excellent in nature. For signal pattern 2, the high-frequency transmission rate is approximately 100% or more in the bands of 190 to 310 MHz, 600 to 660 MHz, 770 to 800 MHz, and 970 to 1,010 MHz, and 0% in the band of 690 to 730 MHz. Met. Since no band-removability was observed for signal pattern 1, it was found that a rectifying action was obtained due to the difference in signal pattern.

図27及び28から、実施例9の高周波伝送線路では、信号パターン1に対して、高周波伝送率が、概ね130〜180 MHz、370〜410 MHz及び970〜1,010 MHzの帯域で100%以上であり、430〜530 MHz及び750〜780 MHzの帯域で0%であった。信号パターン2に対して、高周波伝送率が、概ね130〜180 MHz、240〜300 MHz、320〜360 MHz及び780〜860 MHzの帯域で100%以上であり、640〜720 MHzの帯域で0%であった。特に344 MHzでは2,715%の伝送率を示した。信号パターンの違いにより、高周波が伝送されない帯域及び高周波伝送率の高い帯域が異なっていた。   From FIGS. 27 and 28, in the high-frequency transmission line of Example 9, the high-frequency transmission rate with respect to the signal pattern 1 is generally 100% or more in the bands of 130 to 180 MHz, 370 to 410 MHz, and 970 to 1,010 MHz. 0% in the 430-530 MHz and 750-780 MHz bands. For signal pattern 2, the high-frequency transmission rate is approximately 100% or more in the bands of 130 to 180 MHz, 240 to 300 MHz, 320 to 360 MHz, and 780 to 860 MHz, and 0% in the band of 640 to 720 MHz. Met. In particular, the transmission rate was 2,715% at 344 MHz. Due to the difference in the signal pattern, the band where the high frequency is not transmitted and the band where the high frequency transmission rate is high are different.

これに対して比較例1〜3(図29〜31参照)の高周波伝送線路では、銅箔を用いたため、実施例1〜9に比べて、高周波伝送率が100%以上の帯域及び高周波伝送率が0%の帯域が狭く、高周波伝送率の周波数依存性が低かった。   On the other hand, in the high-frequency transmission lines of Comparative Examples 1 to 3 (see FIGS. 29 to 31), since copper foil was used, a band and a high-frequency transmission rate where the high-frequency transmission rate was 100% or more compared to Examples 1 to 9 However, the 0% band was narrow and the frequency dependence of the high-frequency transmission rate was low.

図32から明らかなように、比較例4の高周波伝送線路では、導電フィルムのニッケル層が70 nm超であり、銅層が1μm超であるので、高周波伝送率が0%の帯域が発現しなかった。   As is clear from FIG. 32, in the high-frequency transmission line of Comparative Example 4, the nickel layer of the conductive film is more than 70 nm and the copper layer is more than 1 μm, so the band where the high-frequency transmission rate is 0% does not appear. It was.

図33から明らかなように、比較例5の高周波伝送線路では、信号パターン1に対して、700〜730 MHzの帯域で高周波伝送率が0%であった。しかし、この伝送線路の導電フィルムは加圧通電していないので、実施例1〜9より高周波伝送率が0%の帯域が狭かった。また伝送率の最大値が580.1%であり、加圧通電した実施例7より低かった。   As is clear from FIG. 33, the high frequency transmission line of Comparative Example 5 had a high frequency transmission rate of 0% in the band of 700 to 730 MHz with respect to the signal pattern 1. However, since the conductive film of this transmission line was not energized under pressure, the band where the high-frequency transmission rate was 0% was narrower than in Examples 1-9. In addition, the maximum value of the transmission rate was 580.1%, which was lower than Example 7 in which pressure was applied.

図34から明らかなように、比較例6の高周波伝送線路では、高周波伝送率が、信号パターン1に対して、430〜500 MHz及び750〜770 MHzの帯域で0%であり、信号パターン2に対して、610〜650 MHz及び900〜930 MHzの帯域で0%であった。しかし、この導電フィルムは加圧通電をしていないので、伝送率の最大値が578.4%と、加圧通電した実施例7より低かった。   As is clear from FIG. 34, in the high-frequency transmission line of Comparative Example 6, the high-frequency transmission rate is 0% in the band of 430 to 500 MHz and 750 to 770 MHz with respect to the signal pattern 1, and the signal pattern 2 In contrast, it was 0% in the bands of 610 to 650 MHz and 900 to 930 MHz. However, since this conductive film was not energized under pressure, the maximum value of the transmission rate was 578.4%, which was lower than Example 7 under energization under pressure.

Claims (12)

プラスチックフィルムと、その少なくとも一面に設けた第一の金属の薄膜と、その上に形成した第二の金属の薄膜とを有し、前記第一及び第二の金属の薄膜は異なる電気抵抗を有し、電気抵抗が小さい方の金属の薄膜の厚さは0.1〜1μmであり、電気抵抗が大きい方の金属の薄膜の厚さは10〜70 nmであり、前記第一の金属の薄膜と前記第二の金属の薄膜との間に、金属組成比が厚さ方向に変化する傾斜組成層が形成されており、前記傾斜組成層において前記第二の金属の組成比は前記第二の金属の薄膜から前記第一の金属の薄膜にかけて減少しており、少なくとも前記第二の金属の薄膜の側に開口する多数の微細な孔又は凹部を有し、前記孔又は凹部は前記第二の金属の薄膜に通電中に加圧しながら形成されたことを特徴とする導電フィルム。 A plastic film, a first metal thin film provided on at least one surface of the plastic film, and a second metal thin film formed on the plastic film, wherein the first and second metal thin films have different electric resistances. The thickness of the metal thin film having the smaller electric resistance is 0.1 to 1 μm, the thickness of the metal thin film having the larger electric resistance is 10 to 70 nm, and the first metal thin film and the A gradient composition layer in which the metal composition ratio changes in the thickness direction is formed between the second metal thin film and the composition ratio of the second metal in the gradient composition layer is that of the second metal. The thin film decreases from the thin film to the first metal thin film, and has at least a plurality of fine holes or recesses opened on the second metal thin film side. A conductive film formed by applying pressure to a thin film during energization. 請求項1に記載の導電フィルムにおいて、前記プラスチックフィルムと前記第一の金属の薄膜との間にも、前記第一の金属の薄膜から前記プラスチックフィルム10にかけて前記第一の金属の割合が減少する傾斜組成層が形成されていることを特徴とする導電フィルム。 2. The conductive film according to claim 1, wherein the ratio of the first metal decreases from the first metal thin film to the plastic film 10 between the plastic film and the first metal thin film. An electrically conductive film having a gradient composition layer formed thereon. 請求項1又は2に記載の導電フィルムにおいて、前記第一の金属がニッケルであり、前記第二の金属が銅であり、前記第一の金属の薄膜と前記第二の金属の薄膜との厚さ比が1/20〜1/2であることを特徴とする導電フィルム。 3. The conductive film according to claim 1 or 2, wherein the first metal is nickel, the second metal is copper , and a thickness of the first metal thin film and the second metal thin film. A conductive film having a thickness ratio of 1/20 to 1/2 . 請求項1又は2に記載の導電フィルムにおいて、前記第一の金属が銅であり、前記第二の金属がニッケルであり、前記第一の金属の薄膜と前記第二の金属の薄膜との厚さ比が2/1〜20/1であることを特徴とする導電フィルム。 3. The conductive film according to claim 1 or 2, wherein the first metal is copper, the second metal is nickel , and the thickness of the first metal thin film and the second metal thin film. A conductive film having a thickness ratio of 2/1 to 20/1 . 請求項1〜4のいずれかに記載の導電フィルムにおいて、前記微細な孔又は凹部は0.1〜100μmの平均開口径を有することを特徴とする導電フィルム。 Conductive film in the conductive film according to any one of claims 1-4, wherein the fine holes or recesses, characterized in that it has a mean opening diameter of 0.1 to 100 [mu] m. 請求項5に記載の導電フィルムにおいて、前記微細な孔又は凹部の平均密度は500個/cm2以上であることを特徴とする導電フィルム。 6. The conductive film according to claim 5 , wherein an average density of the fine holes or recesses is 500 / cm 2 or more. 請求項1〜6のいずれかに記載の導電フィルムにおいて、前記第二の金属の薄膜が蒸着層、又は蒸着層とメッキ層とからなることを特徴とする導電フィルム。 In conductive film according to any one of claims 1 to 6 conductive film thin of the second metal is characterized by comprising a deposited layer, or deposited layer and the plating layer. 請求項1〜7のいずれかに記載の導電フィルムにおいて、前記第一の金属の薄膜が蒸着層であることを特徴とする導電フィルム。 In conductive film according to any one of claims 1 to 7 conductive film thin the first metal is characterized in that a vapor-deposited layer. プラスチックフィルムと、その少なくとも一面に設けた第一の金属の薄膜と、その上に形成した第二の金属の薄膜とを有し、前記第一及び第二の金属の薄膜は異なる電気抵抗を有し、電気抵抗が小さい方の金属の薄膜の厚さは0.1〜1μmであり、電気抵抗が大きい方の金属の薄膜の厚さは10〜70 nmであり、前記第一の金属の薄膜と前記第二の金属の薄膜との間に、金属組成比が厚さ方向に変化する傾斜組成層が形成されており、前記傾斜組成層において前記第二の金属の組成比は前記第二の金属の薄膜から前記第一の金属の薄膜にかけて減少しており、少なくとも前記第二の金属の薄膜の側に開口する多数の微細な孔又は凹部を有する導電フィルムの製造方法であって、(1) 前記プラスチックフィルムの少なくとも一面に前記第一の金属の薄膜及び前記第二の金属の薄膜を順に形成し、(2) 得られた複合フィルムを多数の硬質粒子が表面に付着した第一ロールと表面が平滑な第二ロールとの間を通過させることにより、少なくとも前記第二の金属の薄膜の側に開口する多数の微細な孔又は凹部を形成し、その際前記第二の金属の薄膜に対して通電することを特徴とする導電フィルムの製造方法。 A plastic film, a first metal thin film provided on at least one surface of the plastic film, and a second metal thin film formed on the plastic film, wherein the first and second metal thin films have different electric resistances. The thickness of the metal thin film having the smaller electric resistance is 0.1 to 1 μm, the thickness of the metal thin film having the larger electric resistance is 10 to 70 nm, and the first metal thin film and the A gradient composition layer in which the metal composition ratio changes in the thickness direction is formed between the second metal thin film and the composition ratio of the second metal in the gradient composition layer is that of the second metal. A method for producing a conductive film having a large number of fine holes or recesses which are reduced from a thin film to the first metal thin film and open at least on the second metal thin film side, (1) A thin film of the first metal on at least one surface of the plastic film; Serial to form a thin film of a second metal in sequence, by passing between the (2) a first roll and the surface obtained number of the hard particles the composite film was adheres to the smooth surface second roll, A method for producing a conductive film, comprising forming a large number of fine holes or recesses opened on at least the second metal thin film side, and energizing the second metal thin film. 請求項9に記載の導電フィルムの製造方法において、前記ロールの押圧力は70 kgf/mm幅以上であり、前記第二の金属の薄膜に印加する電圧及び電流密度はそれぞれ5V以上及び20 A/m2以上であることを特徴とする方法。 10. The method for producing a conductive film according to claim 9 , wherein the pressing force of the roll is 70 kgf / mm width or more, and the voltage and current density applied to the second metal thin film are 5 V or more and 20 A / m 2 or more. 請求項1〜8のいずれかに記載の導電フィルムを具備することを特徴とする高周波部品。 High-frequency component, characterized by comprising a conductive film according to any one of claims 1-8. 請求項11に記載の高周波部品において、前記導電フィルムを二つ平行に配置してなる高周波伝送線路であることを特徴とする高周波部品。
12. The high frequency component according to claim 11 , wherein the high frequency component is a high frequency transmission line in which the two conductive films are arranged in parallel.
JP2008550187A 2006-12-20 2007-12-20 Conductive film, method for producing the same, and high-frequency component Expired - Fee Related JP5410094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008550187A JP5410094B2 (en) 2006-12-20 2007-12-20 Conductive film, method for producing the same, and high-frequency component

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006343396 2006-12-20
JP2006343396 2006-12-20
JP2007086047 2007-03-28
JP2007086047 2007-03-28
JP2008550187A JP5410094B2 (en) 2006-12-20 2007-12-20 Conductive film, method for producing the same, and high-frequency component
PCT/JP2007/074574 WO2008075746A1 (en) 2006-12-20 2007-12-20 Conductive film, method for manufacturing the conductive film, and high frequency component

Publications (2)

Publication Number Publication Date
JPWO2008075746A1 JPWO2008075746A1 (en) 2010-04-15
JP5410094B2 true JP5410094B2 (en) 2014-02-05

Family

ID=39536374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008550187A Expired - Fee Related JP5410094B2 (en) 2006-12-20 2007-12-20 Conductive film, method for producing the same, and high-frequency component

Country Status (3)

Country Link
JP (1) JP5410094B2 (en)
TW (1) TWI455400B (en)
WO (1) WO2008075746A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101572459B1 (en) 2008-06-26 2015-11-27 세이지 까가와 Electromagnetic wave absorptive film and electromagnetic wave absorbent
JP5150534B2 (en) 2009-03-06 2013-02-20 信越ポリマー株式会社 Coverlay film, method for producing the same, and flexible printed wiring board
JP5542139B2 (en) * 2009-12-25 2014-07-09 清二 加川 Composite electromagnetic wave absorbing film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102217A (en) * 1995-03-06 1997-04-15 W L Gore & Assoc Inc Composite conductor with improved high-frequency signal transmission characteristic
JP2004039455A (en) * 2002-07-03 2004-02-05 Seiji Kagawa Metal deposition conductive thin film with conductive hole, and its manufacturing method and application
JP2007221713A (en) * 2006-02-20 2007-08-30 Seiji Kagawa High frequency transmission line
WO2008026743A1 (en) * 2006-08-31 2008-03-06 Seiji Kagawa Gradient bonding conductive film, high-frequency transmission line and high-frequency filter using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102217A (en) * 1995-03-06 1997-04-15 W L Gore & Assoc Inc Composite conductor with improved high-frequency signal transmission characteristic
JP2004039455A (en) * 2002-07-03 2004-02-05 Seiji Kagawa Metal deposition conductive thin film with conductive hole, and its manufacturing method and application
JP2007221713A (en) * 2006-02-20 2007-08-30 Seiji Kagawa High frequency transmission line
WO2008026743A1 (en) * 2006-08-31 2008-03-06 Seiji Kagawa Gradient bonding conductive film, high-frequency transmission line and high-frequency filter using the same

Also Published As

Publication number Publication date
TW200835045A (en) 2008-08-16
WO2008075746A1 (en) 2008-06-26
TWI455400B (en) 2014-10-01
JPWO2008075746A1 (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP5038497B2 (en) Electromagnetic wave absorbing film and electromagnetic wave absorber using the same
JP4976316B2 (en) Electromagnetic wave absorbing film
KR101366906B1 (en) Process for producing wiring board covered with thermoplastic liquid crystal polymer film
KR101344952B1 (en) Copper-clad laminate and method for manufacturing same
JP5542139B2 (en) Composite electromagnetic wave absorbing film
US9445493B2 (en) Signal line and manufacturing method therefor
CN108932997B (en) Electromagnetic wave absorption filter
JP5410094B2 (en) Conductive film, method for producing the same, and high-frequency component
JP6027281B1 (en) Near-field electromagnetic wave absorbing film
TW301810B (en)
JP2007221713A (en) High frequency transmission line
CN102638929B (en) Printed wiring board
JP5203295B2 (en) Electromagnetic wave absorbing film
CN110167752A (en) Graphite composite film and its manufacturing method
JP2010283154A (en) Visible-light transmissive electromagnetic wave absorbing film, and visible-light transmissive electromagnetic wave absorber using the same
JPH0555746A (en) High frequency copper clad laminated board and printed circuit board
JP5186375B2 (en) Gradient junction conductive film for high-frequency transmission line, high-frequency transmission line and high-frequency filter using the same
JP4803838B2 (en) Band-shaped high-frequency transmission line and parallel-type high-frequency transmission line
JP5292033B2 (en) Printed wiring board
JP2008028468A (en) High-frequency transmission line and high-frequency filter
CN116685051B (en) Metal foil, carrier foil, metal-clad laminate, printed wiring board, and battery
JP2005159239A (en) High frequency copper foil and copper clad laminate using the same
WO2005089076A2 (en) Film type conductive sheet, method for manufacturing the same, and conductive tape using the same
JP2001223451A (en) Circuit board and method for manufacturing the same
JP2007027522A (en) Electromagnetic shield material and electromagnetic shield member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131106

R150 Certificate of patent or registration of utility model

Ref document number: 5410094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees