JP4803838B2 - Band-shaped high-frequency transmission line and parallel-type high-frequency transmission line - Google Patents

Band-shaped high-frequency transmission line and parallel-type high-frequency transmission line Download PDF

Info

Publication number
JP4803838B2
JP4803838B2 JP2008027057A JP2008027057A JP4803838B2 JP 4803838 B2 JP4803838 B2 JP 4803838B2 JP 2008027057 A JP2008027057 A JP 2008027057A JP 2008027057 A JP2008027057 A JP 2008027057A JP 4803838 B2 JP4803838 B2 JP 4803838B2
Authority
JP
Japan
Prior art keywords
frequency transmission
transmission line
frequency
metal thin
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008027057A
Other languages
Japanese (ja)
Other versions
JP2009188770A (en
Inventor
清二 加川
Original Assignee
清二 加川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清二 加川 filed Critical 清二 加川
Priority to JP2008027057A priority Critical patent/JP4803838B2/en
Publication of JP2009188770A publication Critical patent/JP2009188770A/en
Application granted granted Critical
Publication of JP4803838B2 publication Critical patent/JP4803838B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Structure Of Printed Boards (AREA)

Description

本発明は印加電圧に応じて高周波信号の伝送をオンオフできる帯状高周波伝送線路及びそれを用いた並列型高周波伝送線路に関する。   The present invention relates to a belt-like high-frequency transmission line that can turn on / off transmission of a high-frequency signal according to an applied voltage, and a parallel-type high-frequency transmission line using the same.

従来から高周波伝送線路として同軸ケーブルや金属製の導波管等が使用されているが、これらは高周波信号をノイズなく伝送できても、電圧による伝送の制御ができない。またセラミック誘電体基板の一面に帯状導体を設けてなる高周波伝送線路として、特開平7-336113号には、セラミック誘電体基板400の一面に平行な一対の帯状導体110,110を設けた高周波伝送線路(図20)、及びセラミック誘電体基板400の一面に帯状導体110及びその両側の接地導体120,120を設けた高周波伝送線路(図21)が開示されている。しかしこれらの高周波伝送線路も電圧による伝送の制御ができない。このように従来は電圧制御が可能な高周波伝送線路は存在しなかったが、このような高周波伝送線路があれば、例えばスイッチング素子等の種々の用途に有効であると考えられる。   Conventionally, coaxial cables, metal waveguides, and the like have been used as high-frequency transmission lines. However, even though these can transmit high-frequency signals without noise, they cannot control transmission by voltage. In addition, as a high-frequency transmission line in which a strip conductor is provided on one surface of a ceramic dielectric substrate, Japanese Patent Application Laid-Open No. 7-336113 discloses a high-frequency transmission in which a pair of strip conductors 110 and 110 are provided in parallel on one surface of a ceramic dielectric substrate 400. A line (FIG. 20) and a high-frequency transmission line (FIG. 21) in which a strip conductor 110 and ground conductors 120, 120 on both sides thereof are provided on one surface of a ceramic dielectric substrate 400 are disclosed. However, these high-frequency transmission lines cannot control voltage transmission. As described above, there is no conventional high-frequency transmission line capable of voltage control. However, such a high-frequency transmission line is considered to be effective for various uses such as a switching element.

特開平7-336113号公報JP-A-7-336113

従って本発明の目的は電圧制御が可能な帯状高周波伝送線路及びそれを用いた並列型高周波伝送線路を提供することである。   Accordingly, an object of the present invention is to provide a strip-shaped high-frequency transmission line capable of voltage control and a parallel-type high-frequency transmission line using the same.

上記目的に鑑み鋭意研究の結果、本発明者は、帯状のプラスチックフィルムの一面に設けた二層の金属薄膜に、実質的に幅方向の多数の線状痕を形成すると、電圧制御が可能な帯状高周波伝送線路が得られることを発見し、本発明に想到した。   As a result of diligent research in view of the above object, the present inventor can control the voltage when a large number of linear traces in the width direction are formed on the two-layered metal thin film provided on one surface of the belt-shaped plastic film. The inventors have found that a band-like high-frequency transmission line can be obtained, and have arrived at the present invention.

すなわち、本発明の帯状高周波伝送線路は、プラスチックフィルムの一面に順に形成した第一及び第二の金属薄膜に、高硬度の微粒子を表面に有するロールを摺接させることにより線状痕を全面に形成した後、前記線状痕が幅方向に延在するようにスリットしてなり、前記線状痕の幅の分布は0.1〜50μmであり、前記線状痕の平均分布密度は1,000〜5,000本/cm幅であり、前記線状痕の少なくとも一部は前記第一及び第二の金属薄膜を貫通し、もって前記第一及び第二の金属薄膜は長手方向において少なくとも部分的に分離されていることを特徴とする。
That is, the band-shaped high-frequency transmission line of the present invention has linear traces on the entire surface by sliding a roll having fine particles of high hardness on the first and second metal thin films formed in order on one surface of the plastic film. After forming, the linear traces are slit so as to extend in the width direction, the width distribution of the linear traces is 0.1 to 50 μm, and the average distribution density of the linear traces is 1,000 to 5,000. / Cm width, at least a part of the linear trace penetrates the first and second metal thin films, and the first and second metal thin films are at least partially separated in the longitudinal direction. It is characterized by that.

帯状高周波伝送線路の好ましい例では、第一の金属は銅であり、第二の金属はニッケルである。帯状高周波伝送線路の別の好ましい例では、第一の金属はニッケルであり、第二の金属は銅である。   In a preferred example of the strip-shaped high-frequency transmission line, the first metal is copper and the second metal is nickel. In another preferred example of the strip-shaped high-frequency transmission line, the first metal is nickel and the second metal is copper.

帯状高周波伝送線路のさらに別の好ましい例では、前記第一及び第二の金属薄膜は蒸着層である。
In still another preferred example of the belt-like high-frequency transmission line, the first and second metal thin films are vapor deposition layers.

第二の金属の薄膜の上にプラスチック層が設けられているのが好ましい。   A plastic layer is preferably provided on the second metal thin film.

本発明の並列型高周波伝送線路は、二つの離隔した上記帯状高周波伝送線路を並列に具備することを特徴とする。二つの前記帯状高周波伝送線路が誘電体基板の同一面上に配置されているのが好ましい。   The parallel-type high-frequency transmission line of the present invention is characterized by comprising two above-described band-shaped high-frequency transmission lines in parallel. The two strip-shaped high-frequency transmission lines are preferably arranged on the same surface of the dielectric substrate.

本発明の帯状高周波伝送線路は電圧制御が可能であるので、各種の高周波部品に有用である。例えば伝送ケーブルに利用すると、印加電圧の制御により、所望の周波数帯域を効率良く伝送するとともに、それ以外の周波数帯域をカットすることができる。   Since the strip-shaped high-frequency transmission line of the present invention can be voltage-controlled, it is useful for various high-frequency components. For example, when used in a transmission cable, it is possible to efficiently transmit a desired frequency band by controlling the applied voltage and cut other frequency bands.

[1] 帯状高周波伝送線路
図1(a)〜(d)は、本発明の帯状高周波伝送線路の一例を示す。この帯状高周波伝送線路は、プラスチックフィルム10の一面に第一及び第二の金属の薄膜11a,11bが形成されており、第二の金属の薄膜11bの側に実質的に幅方向の多数の線状痕14が全面的に形成されている。
[1] Band-shaped high-frequency transmission line FIGS. 1A to 1D show examples of the band-shaped high-frequency transmission line of the present invention. In this belt-like high-frequency transmission line, first and second metal thin films 11a and 11b are formed on one surface of a plastic film 10, and a number of lines in the width direction are substantially formed on the second metal thin film 11b side. A trace 14 is formed on the entire surface.

(1) プラスチックフィルム
プラスチックフィルム10を形成する樹脂は、絶縁性、変形性及び加工性を有する限り特に制限されず、例えばポリエステル、ポリアリーレンサルファイド(ポリフェニレンサルファイド等)、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリカーボネート、アクリル樹脂、ポリスチレン、ABS樹脂、ポリウレタン、フッ素樹脂、ポリオレフィン(ポリエチレン、ポリプロピレン等)、ポリ塩化ビニル、熱可塑性エラストマー等が挙げられる。中でもポリエステル、ポリアリーレンサルファイド、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルフォン及びポリエーテルエーテルケトンのような高耐熱性樹脂が好ましく、特にポリエステル、ポリフェニレンサルファイド及びポリイミドが好ましい。ポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられる。中でもPET及びPBTはフィルムとして安価に市販されているので好ましい。
(1) Plastic film The resin forming the plastic film 10 is not particularly limited as long as it has insulating properties, deformability, and processability. For example, polyester, polyarylene sulfide (polyphenylene sulfide, etc.), polyamide, polyimide, polyamideimide, poly Examples include ether sulfone, polyether ether ketone, polycarbonate, acrylic resin, polystyrene, ABS resin, polyurethane, fluororesin, polyolefin (polyethylene, polypropylene, etc.), polyvinyl chloride, and thermoplastic elastomer. Among them, high heat resistant resins such as polyester, polyarylene sulfide, polyamide, polyimide, polyamideimide, polyethersulfone and polyetheretherketone are preferable, and polyester, polyphenylene sulfide and polyimide are particularly preferable. Examples of the polyester include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate, and polybutylene naphthalate. Among these, PET and PBT are preferable because they are commercially available as films at low cost.

(2) 金属薄膜
第一及び第二の金属薄膜11a,11bは電気抵抗が異なるのが好ましい。第一及び第二の金属薄膜11a,11bの電気抵抗の差は、常温で2×10-6 Ω・cm以上であるのが好ましく、4×10-6 Ω・cm以上であるのがより好ましい。
(2) Metal thin film It is preferable that the first and second metal thin films 11a and 11b have different electric resistances. The difference in electrical resistance between the first and second metal thin films 11a and 11b is preferably 2 × 10 −6 Ω · cm or more at room temperature, and more preferably 4 × 10 −6 Ω · cm or more. .

第一及び第二の金属として、銅[抵抗率(20℃):1.6730×10-6 Ω・cm]、アルミニウム[抵抗率(20℃):2.6548×10-6Ω・cm]、銀[抵抗率(20℃):1.59×10-6Ω・cm]、金[抵抗率(20℃):2.35×10-6Ω・cm]、白金[抵抗率(20℃):10.6×10-6Ω・cm]、ニッケル[抵抗率(20℃):6.84×10-6Ω・cm]、コバルト[抵抗率(20℃):6.24×10-6Ω・cm]、パラジウム[抵抗率(20℃):10.8×10-6Ω・cm]、錫[抵抗率(0℃):11.0×10-6Ω・cm]、及びこれらの合金等が挙げられる。 As the first and second metals, copper [resistivity (20 ° C.): 1.6730 × 10 −6 Ω · cm], aluminum [resistivity (20 ° C.): 2.6548 × 10 −6 Ω · cm], silver [resistance Rate (20 ° C): 1.59 × 10 -6 Ω · cm], Gold [Resistivity (20 ° C): 2.35 × 10 -6 Ω · cm], Platinum [Resistivity (20 ° C): 10.6 × 10 -6 Ω・ Cm], nickel [resistivity (20 ° C): 6.84 × 10 -6 Ω · cm], cobalt [resistivity (20 ° C): 6.24 × 10 -6 Ω · cm], palladium [resistivity (20 ° C) : 10.8 × 10 −6 Ω · cm], tin [resistivity (0 ° C.): 11.0 × 10 −6 Ω · cm], and alloys thereof.

第一及び第二の金属は、電気抵抗が異なるように上記の中から選択する。第一の金属/第二の金属の好ましい組合せは、銅/ニッケル及びニッケル/銅である。   The first and second metals are selected from the above so as to have different electric resistances. Preferred combinations of the first metal / second metal are copper / nickel and nickel / copper.

第一の金属及び第二の金属の電気抵抗の大小にかかわらず、電気抵抗が小さい方の金属の薄膜と、電気抵抗が大きい方の金属の薄膜との厚さ比を2/1〜20/1とするのが好ましい。特に両金属薄膜が蒸着膜の場合、この比を3/1〜15/1とするのが好ましい。具体的には、電気抵抗が小さい方の金属の薄膜の厚さは0.1〜35μmが好ましく、0.1〜1μmがより好ましく、0.2〜0.7μmが最も好ましい。また電気抵抗が大きい方の金属の薄膜の厚さは10 nm〜20μmが好ましく、10〜70 nmがより好ましく、20〜60 nmが最も好ましい。   Regardless of the electric resistance of the first metal and the second metal, the thickness ratio of the metal thin film having the smaller electric resistance and the metal thin film having the larger electric resistance is 2/1 to 20 / 1 is preferable. In particular, when both metal thin films are vapor-deposited films, this ratio is preferably 3/1 to 15/1. Specifically, the thickness of the metal thin film having the smaller electric resistance is preferably 0.1 to 35 μm, more preferably 0.1 to 1 μm, and most preferably 0.2 to 0.7 μm. Further, the thickness of the metal thin film having the larger electric resistance is preferably 10 nm to 20 μm, more preferably 10 to 70 nm, and most preferably 20 to 60 nm.

第一の金属薄膜11aは蒸着又は箔により形成するのが好ましい。第二の金属薄膜11bは、少なくとも第一の金属薄膜11aと接合する層を蒸着により形成する。従って、第二の金属薄膜11bは蒸着膜でも、蒸着膜+めっき層でも良い。   The first metal thin film 11a is preferably formed by vapor deposition or foil. The second metal thin film 11b is formed by vapor deposition of at least a layer bonded to the first metal thin film 11a. Therefore, the second metal thin film 11b may be a deposited film or a deposited film + plated layer.

(3) 傾斜組成層
図1(d)に示すように、第一の金属の薄膜11aと第二の金属の薄膜11bとの間では、第二の金属原子11b'が第一の金属原子11a'の間に部分的に進入し、いわゆる傾斜組成層12を形成しているのが好ましい。傾斜組成層12では、第二の金属原子11b'の組成比(濃度)は第二の金属の薄膜11bから第一の金属の薄膜11aにかけて徐々に減少している。このため、傾斜組成層12は非晶質であると推定される。
(3) Gradient composition layer As shown in FIG. 1 (d), between the first metal thin film 11a and the second metal thin film 11b, the second metal atoms 11b ′ are converted into the first metal atoms 11a. It is preferable that a so-called gradient composition layer 12 is formed by partially entering between the two. In the gradient composition layer 12, the composition ratio (concentration) of the second metal atoms 11b ′ gradually decreases from the second metal thin film 11b to the first metal thin film 11a. For this reason, it is estimated that the gradient composition layer 12 is amorphous.

(4) 線状痕
優れた電圧制御性を得るために、第二の金属の薄膜11bの側に実質的に幅方向の多数の線状痕14を全面的に形成する。線状痕14は、後述するようにロール上に設けた高硬度微粒子による第二の金属の薄膜11bの塑性変形により生ずる。ロール上での高硬度微粒子の分布はランダムであるので、線状痕14の配列もランダムである。第二の金属の薄膜11bは薄いので、図1(c)に示すように、線状痕14の形成により第一の金属の薄膜11aも塑性変形し、両金属11a'、11b'が部分的に混合すると考えられる。
(4) Linear Traces In order to obtain excellent voltage controllability, a large number of substantially linear traces 14 in the width direction are formed on the entire surface of the second metal thin film 11b. As will be described later, the linear trace 14 is generated by plastic deformation of the second metal thin film 11b by the high-hardness fine particles provided on the roll. Since the distribution of the high hardness fine particles on the roll is random, the arrangement of the linear marks 14 is also random. Since the second metal thin film 11b is thin, as shown in FIG. 1C, the first metal thin film 11a is also plastically deformed by the formation of the linear marks 14, and both the metals 11a 'and 11b' are partially deformed. It is thought to be mixed.

閾値以上の電圧における高周波信号に対して選択的な伝送性を有するために、線状痕14の少なくとも一部が第一及び第二の金属薄膜11a,11bを貫通し、もって第一及び第二の金属薄膜11a,11bが長手方向において少なくとも部分的に分離されているのが好ましい。よって線状痕14は、帯状高周波伝送線路1の幅方向の全範囲に延在し、かつ少なくとも一部が第一の金属薄膜11aを貫通しているのが好ましい。帯状高周波伝送線路1は、後述するようにプラスチックフィルム10に第一及び第二の金属薄膜11a,11bを設けた複合フィルムに線状痕14を形成した後、スリットすることにより製造する。そのため、帯状高周波伝送線路1の所望の幅に応じた長さの線状痕14を複合フィルムに形成し、かつ線状痕14が幅方向の全範囲に延在するようにスリットするのが好ましい。   In order to have a selective transmission property with respect to a high-frequency signal at a voltage equal to or higher than a threshold value, at least a part of the linear scar 14 penetrates the first and second metal thin films 11a and 11b, and thus the first and second The metal thin films 11a and 11b are preferably at least partially separated in the longitudinal direction. Therefore, it is preferable that the linear mark 14 extends over the entire range in the width direction of the belt-shaped high-frequency transmission line 1 and at least a part of the linear mark 14 penetrates the first metal thin film 11a. The band-shaped high-frequency transmission line 1 is manufactured by forming a linear mark 14 on a composite film in which first and second metal thin films 11a and 11b are provided on a plastic film 10 and then slitting as described later. Therefore, it is preferable to form a linear scar 14 having a length corresponding to the desired width of the strip-shaped high-frequency transmission line 1 on the composite film and to slit the linear scar 14 so as to extend over the entire range in the width direction. .

線状痕14の深さはロール表面に設けた高硬度の微粒子の高さにより決まる。また高硬度の微粒子の外径により決まる線状痕14の幅の分布は、0.1〜50μmであるのが好ましく、0.3〜20μmであるのがより好ましい。さらに線状痕14の平均分布密度は1,000〜5,000本/cm幅であるのが好ましい。線状痕14の平均分布密度が1,000本/cm幅未満であると、電圧制御性の向上効果が十分でない。一方5,000本/cm幅超としても、電圧制御性のさらなる向上は得られない。線状痕14の深さ、幅及び平均分布密度は、帯状高周波伝送線路1の光学顕微鏡写真の観察により求めることができる。   The depth of the linear mark 14 is determined by the height of the high-hardness fine particles provided on the roll surface. Further, the distribution of the width of the linear mark 14 determined by the outer diameter of the high hardness fine particles is preferably 0.1 to 50 μm, and more preferably 0.3 to 20 μm. Further, the average distribution density of the linear marks 14 is preferably 1,000 to 5,000 / cm width. If the average distribution density of the linear marks 14 is less than 1,000 lines / cm width, the effect of improving the voltage controllability is not sufficient. On the other hand, even if the width exceeds 5,000 / cm, further improvement in voltage controllability cannot be obtained. The depth, width, and average distribution density of the line marks 14 can be obtained by observing an optical micrograph of the band-shaped high-frequency transmission line 1.

(5) プラスチック層
図2に示すように、第二の金属の薄膜11bの上に、線状痕14を覆うようにプラスチック層10'が形成されているのが好ましい。プラスチック層10'は、第二のプラスチックフィルムを熱ラミネート法等で第二の金属の薄膜11bに接着することにより形成できる。プラスチック層の厚さは10〜100μmが好ましい。
(5) Plastic Layer As shown in FIG. 2, it is preferable that a plastic layer 10 ′ is formed on the second metal thin film 11b so as to cover the linear marks 14. The plastic layer 10 ′ can be formed by adhering the second plastic film to the second metal thin film 11b by a thermal laminating method or the like. The thickness of the plastic layer is preferably 10 to 100 μm.

[2] 帯状高周波伝送線路の製造方法
帯状高周波伝送線路1は、プラスチックフィルム10の一面に蒸着法、めっき法又は箔接合法により第一の金属薄膜11aを形成し、その上に蒸着法又は蒸着法及びめっき法により第二の金属薄膜11bを形成し、得られた複合フィルムの第二の金属薄膜11bの側を多数の高硬度の微粒子を表面に有するロールに摺接させることにより、多数の実質的に平行な線状痕14を形成し、スリットすることにより製造する。
[2] Manufacturing method of band-shaped high-frequency transmission line The band-shaped high-frequency transmission line 1 is formed by forming a first metal thin film 11a on one surface of a plastic film 10 by a vapor deposition method, a plating method, or a foil bonding method, The second metal thin film 11b is formed by the method and the plating method, and the second metal thin film 11b side of the obtained composite film is brought into sliding contact with a roll having a large number of high-hardness fine particles on the surface. It is manufactured by forming substantially parallel linear marks 14 and slitting.

(1) 金属薄膜の形成
金属の蒸着は、例えば真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法、プラズマCVD法、熱CVD法、光CVD法等の化学気相蒸着法等により行うことができる。
(1) Formation of metal thin film Metal vapor deposition is performed by, for example, physical vapor deposition such as vacuum vapor deposition, sputtering, or ion plating, chemical vapor deposition such as plasma CVD, thermal CVD, or photo CVD. It can be carried out.

(2) 線状痕の形成
線状痕14は、例えばWO2003/091003号に記載されている方法により形成することができる。図3(a)及び図3(b)に示すように、鋭い角部を有する多数の高硬度(例えば、モース硬度5以上)の微粒子(例えば、ダイヤモンド微粒子)が表面に付着したロール2に、複合フィルム1''の第二の金属薄膜11bの側を摺接させるのが好ましい。ロール2を、複合フィルム1''の進行方向と逆方向に回転させるのが好ましい。ロール2の前後に設けたニップロール3,3により、複合フィルム1''に張力を掛けるのが好ましい。図3(b)に示すように、ロール2の微粒子が複合フィルム1''のロール摺接面に接触する間に、長さLの線状痕が形成される。このようにして、図3(c)に示すように、多数の実質的に平行な線状痕14がランダムな配列で形成される。線状痕14は複合フィルム1''の全面に均一に設けるのが好ましい。線状痕14の長さLは、帯状高周波伝送線路の所望の幅に応じて適宜設定する。
(2) Formation of linear traces The linear traces 14 can be formed, for example, by the method described in WO2003 / 091003. As shown in FIG. 3 (a) and FIG. 3 (b), a roll 2 having a large number of high hardness (for example, Mohs hardness of 5 or more) particles having sharp corners attached to the surface is provided on the roll 2. The second metal thin film 11b side of the composite film 1 '' is preferably brought into sliding contact. The roll 2 is preferably rotated in the direction opposite to the traveling direction of the composite film 1 ''. It is preferable to apply tension to the composite film 1 ″ by nip rolls 3 and 3 provided before and after the roll 2. As shown in FIG. 3 (b), while the fine particles of the roll 2 are in contact with the roll sliding contact surface of the composite film 1 '', a linear mark having a length L is formed. In this way, as shown in FIG. 3C, a large number of substantially parallel linear marks 14 are formed in a random arrangement. The linear traces 14 are preferably provided uniformly on the entire surface of the composite film 1 ''. The length L of the linear mark 14 is appropriately set according to the desired width of the band-shaped high-frequency transmission line.

以上のような線状痕14の形成により、第一及び第二の金属薄膜11a,11bが線状痕14により実質的に絶縁された多数の導体に分離され、優れた電圧制御性が得られる。限定的ではないが、複合フィルム1''の進行速度は5〜200 m/分が好ましく、ロール2の周速は10〜300 m/分が好ましく、複合フィルム1''に掛ける張力は、0.05〜5 kgf/cm幅が好ましい。   By forming the linear trace 14 as described above, the first and second metal thin films 11a and 11b are separated into a large number of conductors substantially insulated by the linear trace 14, and excellent voltage controllability is obtained. . Although not limited, the traveling speed of the composite film 1 ″ is preferably 5 to 200 m / min, the peripheral speed of the roll 2 is preferably 10 to 300 m / min, and the tension applied to the composite film 1 ″ is 0.05. A width of ˜5 kgf / cm is preferred.

(3) プラスチック層の形成
図2に示すように、第二の金属の薄膜11bの上に、プラスチック層10'を形成する場合、複合フィルム1''に線状痕14を形成した後、第二のプラスチックフィルムを熱ラミネート法等で第二の金属の薄膜11bに接着すればよい。
(3) Formation of Plastic Layer As shown in FIG. 2, when the plastic layer 10 ′ is formed on the second metal thin film 11b, after forming the linear marks 14 on the composite film 1 ″, The second plastic film may be bonded to the second metal thin film 11b by a heat laminating method or the like.

(4) スリット工程
線状痕14を設け、必要に応じてプラスチック層10'を形成した導電性フィルム1'を、公知の方法でスリットすることにより、帯状高周波伝送線路1が得られる。線状痕14が幅方向の全範囲に延在するように導電性フィルム1'をスリットすればよい。
(4) Slit process The strip-shaped high-frequency transmission line 1 is obtained by slitting the conductive film 1 ′ provided with the linear traces 14 and forming the plastic layer 10 ′ as necessary by a known method. What is necessary is just to slit electroconductive film 1 'so that the linear trace 14 may extend in the whole range of the width direction.

[3] 並列型高周波伝送線路
図4は本発明の並列型高周波伝送線路の一例を示す。この並列型高周波伝送線路は、二本の帯状高周波伝送線路1,1が、プラスチック、絶縁性セラミックス等からなる誘電体基板4の上面に平行に配置されている。二本の帯状高周波伝送線路1,1の間に電界が集中するので、高周波信号を効率良く伝送することができる。優れた高周波伝送性を得るために、誘電体基板4は、二本の帯状高周波伝送線路1,1間に凸部40を有するのが好ましい。
[3] Parallel type high frequency transmission line FIG. 4 shows an example of the parallel type high frequency transmission line of the present invention. In this parallel type high-frequency transmission line, two strip-shaped high-frequency transmission lines 1 and 1 are arranged in parallel on the upper surface of a dielectric substrate 4 made of plastic, insulating ceramics or the like. Since the electric field concentrates between the two strip-shaped high-frequency transmission lines 1 and 1, a high-frequency signal can be transmitted efficiently. In order to obtain an excellent high frequency transmission property, the dielectric substrate 4 preferably has a convex portion 40 between the two strip-shaped high frequency transmission lines 1 and 1.

各高周波伝送線路1,1の幅d1は、高周波信号の周波数及び振幅等に応じて適宜設定するが、1〜10 mmであるのが好ましく、1〜7mmであるのがより好ましい。幅d1が1mm以上であれば、十分な高周波信号伝送性を有する。また幅d1を10 mm超としても、高周波信号伝送性のさらなる向上は得られない。 The width d 1 of each high-frequency transmission line 1, 1 is appropriately set according to the frequency and amplitude of the high-frequency signal, but is preferably 1 to 10 mm, and more preferably 1 to 7 mm. If the width d 1 is 1mm or more, with sufficient frequency signal transmission property. Further, even if the width d 1 is greater than 10 mm, further improvement in high-frequency signal transmission is not obtained.

二本の帯状高周波伝送線路1,1の間隔d2は1〜10 mmであるのが好ましく、1.5〜7mmであるのがより好ましい。間隔d2が1mm未満だと高周波信号伝送性が不十分であり、一方10 mm超だと放射損失が多い。凸部40の高さhは1〜10 mmであるのが好ましく、1.5〜7mmであるのがより好ましい。 The distance d 2 between the two strip-shaped high-frequency transmission lines 1 and 1 is preferably 1 to 10 mm, and more preferably 1.5 to 7 mm. Distance d 2 is that it is less than 1mm is insufficient high frequency signal transmission property, whereas the radiation loss is large but 10 mm greater. The height h of the convex portion 40 is preferably 1 to 10 mm, and more preferably 1.5 to 7 mm.

帯状高周波伝送線路1,1は、誘電体基板の同一面上に配置されていることに限定されず、断面コの字状誘電体基板の対向内面上や、断面L字状の誘電体基板の直交内面上に配置されていてもよい。   The band-shaped high-frequency transmission lines 1 and 1 are not limited to be disposed on the same surface of the dielectric substrate, but are formed on the opposing inner surface of the U-shaped dielectric substrate or on the L-shaped dielectric substrate. It may be arranged on the orthogonal inner surface.

本発明の並列型高周波伝送線路は、周波数帯域に関わらず、閾値以上の電圧における高周波信号を選択的に伝送することができる。具体的には、並列型高周波伝送線路は、第一及び第二の金属薄膜11a,11bからなる積層体が銅蒸着膜とニッケル蒸着膜の組合せの場合、印加電圧1V以下の高周波信号に対しては0〜数%の伝送率しか得られず、実質的に伝送性を有しないが、印加電圧1.2Vの高周波信号に対しては30%超の実用的な伝送率が得られる。この場合、印加電圧の閾値は1〜1.2Vの間にある。   The parallel-type high-frequency transmission line of the present invention can selectively transmit a high-frequency signal at a voltage equal to or higher than a threshold regardless of the frequency band. Specifically, the parallel type high-frequency transmission line is adapted to a high-frequency signal with an applied voltage of 1 V or less when the laminate composed of the first and second metal thin films 11a and 11b is a combination of a copper vapor deposition film and a nickel vapor deposition film. Can only obtain a transmission rate of 0 to several percent and has substantially no transmission property, but a practical transmission rate of more than 30% can be obtained for a high-frequency signal with an applied voltage of 1.2V. In this case, the threshold value of the applied voltage is between 1 and 1.2V.

本発明の並列型高周波伝送線路が優れた電圧制御性を有するのは、多数のコンデンサを直列に接続したのと同様な構成となっているためであると推測される。   The reason why the parallel high-frequency transmission line of the present invention has excellent voltage controllability is presumed to be because it has a configuration similar to that in which many capacitors are connected in series.

以上のような特性を有する並列型高周波伝送線路は、閾値以上の電圧における信号のみを伝送し、それ以外の電圧における信号をカットするON-OFF機能を有する伝送ケーブルやスイッチング素子、閾値以上の電圧における信号のみを必要な信号として伝送する高周波アンテナ等の高周波部品として有用である。   Parallel-type high-frequency transmission lines with the above characteristics transmit only signals with voltages above the threshold, and transmission cables and switching elements that have an ON-OFF function to cut signals at other voltages, voltages above the threshold This is useful as a high-frequency component such as a high-frequency antenna that transmits only the signal in FIG.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

実施例1
(1) 帯状高周波伝送線路の作製
(a) 複合フィルムの作製
二軸延伸PETフィルム[厚さ:16μm、誘電率:3.2(1 MHz)、誘電正接:1.0%(1 MHz)、融点:265℃、ガラス転移温度:75℃]の一面に、真空蒸着法により厚さ0.6μmの銅層を形成し、その上に真空蒸着法により厚さ0.05μmのニッケル層を形成し、複合フィルムを作製した。
Example 1
(1) Fabrication of band-shaped high-frequency transmission line
(a) Preparation of composite film Biaxially stretched PET film [thickness: 16 μm, dielectric constant: 3.2 (1 MHz), dielectric loss tangent: 1.0% (1 MHz), melting point: 265 ° C, glass transition temperature: 75 ° C] On one surface, a copper layer having a thickness of 0.6 μm was formed by a vacuum deposition method, and a nickel layer having a thickness of 0.05 μm was formed thereon by a vacuum deposition method to produce a composite film.

(b) 線状痕の形成
図3に示す装置を用い、粒径の分布が50〜80μmのダイヤモンド微粒子を電着したロール2に、ニッケル層をロール2の側にして複合フィルム1''を摺接させた。複合フィルム1''の進行速度を10 m/分とし、ロール2の周速を20 m/分とし、複合フィルム1''に掛ける張力を0.1 kgf/cm幅とした。得られた導電性フィルムの線状痕の深さの分布は0.8〜1.5μmであり、線状痕の幅の分布は0.5〜5μmであり、平均分布密度は4,000本/cm幅であった。導電性フィルムの両面に、熱ラミネート法で厚さ100μmのPETフィルムを接着した後、20 cm×5 mmにカットして帯状高周波伝送線路を得た。
(b) Formation of linear traces Using the apparatus shown in FIG. 3, a composite film 1 ″ with a nickel layer on the roll 2 side is applied to a roll 2 on which diamond fine particles having a particle size distribution of 50 to 80 μm are electrodeposited. Slid in contact. The traveling speed of the composite film 1 ″ was 10 m / min, the peripheral speed of the roll 2 was 20 m / min, and the tension applied to the composite film 1 ″ was 0.1 kgf / cm width. The resulting conductive film had a depth distribution of linear traces of 0.8 to 1.5 μm, a linear trace width distribution of 0.5 to 5 μm, and an average distribution density of 4,000 lines / cm width. A PET film having a thickness of 100 μm was adhered to both surfaces of the conductive film by a thermal laminating method, and then cut into 20 cm × 5 mm to obtain a strip-shaped high-frequency transmission line.

(2) 平行線路型高周波伝送線路の作製
帯状高周波伝送線路2本を、銅層が基板側となるように、塩化ビニル樹脂製基板に平行に接着し、図4に示す平行線路型の高周波伝送線路を作製した(長さ:20 cm、二本の帯状高周波伝送線路の間隔d2:3 mm)。
(2) Production of parallel line type high-frequency transmission line Two parallel high-frequency transmission lines are bonded in parallel to a vinyl chloride resin substrate so that the copper layer is on the substrate side, and the parallel line type high-frequency transmission shown in FIG. A line was prepared (length: 20 cm, distance d 2 between two strip-shaped high-frequency transmission lines: 3 mm).

実施例2
帯状高周波伝送線路の長さを10 cmとした以外実施例1と同様にして、平行線路型高周波伝送線路を作製した(長さ:10 cm、二本の帯状高周波伝送線路の間隔d2:3 mm)。
Example 2
A parallel-line type high-frequency transmission line was produced in the same manner as in Example 1 except that the length of the band-shaped high-frequency transmission line was 10 cm (length: 10 cm, distance d 2 between the two band-shaped high-frequency transmission lines: 3 mm).

実施例3
帯状高周波伝送線路の幅を2mmとした以外実施例1と同様にして、平行線路型高周波伝送線路を作製した(長さ:20 cm、二本の帯状高周波伝送線路の間隔d2:3 mm)。
Example 3
A parallel-line type high-frequency transmission line was manufactured in the same manner as in Example 1 except that the width of the band-shaped high-frequency transmission line was changed to 2 mm (length: 20 cm, distance d 2 between the two band-shaped high-frequency transmission lines: 3 mm). .

実施例4
帯状高周波伝送線路のサイズを2cm×1mmとした以外実施例1と同様にして、平行線路型高周波伝送線路を作製した(長さ:2cm、二本の帯状高周波伝送線路の間隔d2:3 mm)。
Example 4
A parallel-line type high-frequency transmission line was produced in the same manner as in Example 1 except that the size of the band-shaped high-frequency transmission line was set to 2 cm × 1 mm (length: 2 cm, distance d 2 between the two band-shaped high-frequency transmission lines: 3 mm) ).

実施例5
二軸延伸PETフィルムの一面に、真空蒸着法により厚さ0.02μmのニッケル層を形成し、その上に真空蒸着法により厚さ0.3μmの銅層を形成した。得られた複合フィルムの銅層側に、上記と同様にして線状痕を形成した。得られた導電性フィルムの線状痕の深さの分布は0.8〜1.5μmであり、線状痕の幅の分布は0.5〜5μmであり、平均分布密度は4,000本/cm幅であった。導電性フィルムを10 cm×5 mmにカットして帯状高周波伝送線路を得た。帯状高周波伝送線路2本を、PETフィルムが基板側となるように、基板に平行に接着し、平行線路型の高周波伝送線路を作製した(長さ:10 cm、二本の帯状高周波伝送線路の間隔d2:3 mm)。
Example 5
A nickel layer having a thickness of 0.02 μm was formed on one surface of the biaxially stretched PET film by a vacuum deposition method, and a copper layer having a thickness of 0.3 μm was formed thereon by a vacuum deposition method. Linear traces were formed on the copper layer side of the obtained composite film in the same manner as described above. The resulting conductive film had a depth distribution of linear traces of 0.8 to 1.5 μm, a linear trace width distribution of 0.5 to 5 μm, and an average distribution density of 4,000 lines / cm width. The conductive film was cut into 10 cm × 5 mm to obtain a strip-shaped high-frequency transmission line. Two strip-shaped high-frequency transmission lines were bonded in parallel to the substrate so that the PET film was on the substrate side to produce a parallel-line high-frequency transmission line (length: 10 cm, two strip-shaped high-frequency transmission lines Distance d 2 : 3 mm).

実施例1〜5で得られた平行線路型高周波伝送線路の電圧制御性を以下の方法により評価した。   The voltage controllability of the parallel line type high-frequency transmission lines obtained in Examples 1 to 5 was evaluated by the following method.

(a) 高周波発振器のスプリアス特性測定
(i) スプリアス特性測定用高周波伝送線路の作製
二軸延伸PETフィルムの一面に、真空蒸着法により厚さ0.3μmの銅層を形成し、5 mmの幅にスリットした。長さ50 cmの2本の帯状の銅/PETフィルムをPETフィルムを下にして塩化ビニル樹脂製基板に3 mmの間隔d2で平行に接着し、実施例1と同様にして平行線路型のスプリアス特性測定用高周波伝送線路を作製した。
(a) Measuring spurious characteristics of high-frequency oscillators
(i) Production of high-frequency transmission line for measuring spurious characteristics A copper layer having a thickness of 0.3 μm was formed on one surface of a biaxially stretched PET film by a vacuum deposition method, and slit to a width of 5 mm. Two strips of copper / PET film with a length of 50 cm were bonded in parallel to a vinyl chloride resin substrate with a distance of d 2 of 3 mm with the PET film facing down. A high-frequency transmission line for measuring spurious characteristics was fabricated.

(ii) スプリアス特性測定
図5に示すように、ケーブル70及び鰐口クリップ7を介して、スプリアス特性測定用高周波伝送線路の銅/PETフィルム100,100の一端に高周波発振器5を接続し、他端に高周波受信器6を接続した。インピーダンスを整合し、高周波伝送率を精確に測定するために、整合器8を高周波発振器5の直後及び受信器6の直前に設けた。図6に示すように、高周波発振器5は、電圧制御発振器(VCO)51、伝送する信号の周波数に応じて切り替えるようになっている3個の高周波発振モジュール52,52',52''及び2個の高周波アンプ53,53'を具備している。高周波発振器5は、100〜200 MHz、260〜550 MHz及び600〜1,050 MHzの範囲の信号を伝送することができる。発振器5から100、200、300、500、700及び1,000 MHzの信号を伝送し、スプリアス特性を調べた。結果を表1に示す。この高周波発振器5は高調波の発生が少なく、高調波以外のスプリアスがなかった。
(ii) Spurious characteristic measurement As shown in FIG. 5, a high frequency oscillator 5 is connected to one end of a copper / PET film 100, 100 of a high frequency transmission line for spurious characteristic measurement via a cable 70 and a hook clip 7. A high-frequency receiver 6 was connected to. In order to match the impedance and accurately measure the high-frequency transmission rate, the matching unit 8 is provided immediately after the high-frequency oscillator 5 and immediately before the receiver 6. As shown in FIG. 6, the high-frequency oscillator 5 includes a voltage-controlled oscillator (VCO) 51 and three high-frequency oscillation modules 52, 52 ′, 52 ″ and 2 which are switched according to the frequency of a signal to be transmitted. A plurality of high-frequency amplifiers 53 and 53 ′ are provided. The high frequency oscillator 5 can transmit signals in the range of 100 to 200 MHz, 260 to 550 MHz, and 600 to 1,050 MHz. Signals of 100, 200, 300, 500, 700 and 1,000 MHz were transmitted from the oscillator 5, and the spurious characteristics were examined. The results are shown in Table 1. The high-frequency oscillator 5 generated less harmonics and had no spurious other than the harmonics.

Figure 0004803838
Figure 0004803838

(b) 電圧制御性の評価
以下の条件で高周波伝送率を測定することにより、電圧制御性を評価した。
(i) 印加電圧を1.0 Vで一定にした場合
ケーブル70(図5参照)で発振器5と受信器6を接続し、1.0 Vの印加電圧(発振器5から出力し、高周波伝送線路に入力した電圧振幅。以下「出力振幅」とよぶことがある)で、120 MHzから1,050 MHzまで2〜6 MHz間隔で周波数を上げながら、発振器5から信号を伝送した。図7(a)に示すように、発振器5の出力端子50,50から信号が(+)側から出力するように伝送した場合(信号パターン1)と、図7(b)に示すように、発振器5の出力端子50,50から信号が(−)側から出力するように伝送した場合(信号パターン2:信号パターン1に対して位相が1/2波長ずれている)との両方について入力振幅(高周波伝送線路から出力され、受信器に入力された電圧振幅。以下「入力振幅」とよぶ)を求めた。式:伝送係数=入力振幅(V)/出力振幅(V)に従い、各周波数における伝送係数を求め、信号パターン1及び2の各々について周波数−伝送係数曲線を作成した。
(b) Evaluation of voltage controllability Voltage controllability was evaluated by measuring the high-frequency transmission rate under the following conditions.
(i) When the applied voltage is fixed at 1.0 V The oscillator 5 and the receiver 6 are connected by the cable 70 (see FIG. 5), and the applied voltage of 1.0 V (the voltage output from the oscillator 5 and input to the high-frequency transmission line) The signal was transmitted from the oscillator 5 while increasing the frequency at intervals of 2 to 6 MHz from 120 MHz to 1,050 MHz. As shown in FIG. 7 (a), when the signal is transmitted from the output terminals 50, 50 of the oscillator 5 so as to be output from the (+) side (signal pattern 1), as shown in FIG. 7 (b), Input amplitude when both signals are transmitted from the output terminals 50 and 50 of the oscillator 5 so as to be output from the (−) side (signal pattern 2: phase shifted by 1/2 wavelength with respect to signal pattern 1). (Voltage amplitude output from the high-frequency transmission line and input to the receiver, hereinafter referred to as “input amplitude”) was obtained. According to the formula: transmission coefficient = input amplitude (V) / output amplitude (V), the transmission coefficient at each frequency was obtained, and a frequency-transmission coefficient curve was created for each of the signal patterns 1 and 2.

実施例1〜5で作製した平行線路型高周波伝送線路に、上記と同様にして発振器5及び受信器6を接続し、整合器8を発振器5の直後及び受信器6の直前に設けた(図5参照、実施例1〜4の平行線路型高周波伝送線路については、帯状高周波伝送線路1,1の両端部のPETフィルムを剥がし、ニッケル層に鰐口クリップ7を取り付けた)。1.0 Vの出力振幅(V)で、120 MHzから1,050 MHzまで2〜6 MHz間隔で周波数を上げながら、発振器5から信号(信号パターン1及び2)を伝送し、受信器6に入力した信号の振幅(入力振幅(V))を求めた。上記周波数−伝送係数曲線から求められる伝送係数を用い、1.0 Vの出力振幅(V)において、各測定周波数における高周波伝送率(%)を、式:高周波伝送率(%)=入力振幅(V)/(出力振幅(V)×伝送係数)×100に従い、算出した。周波数と高周波伝送率の関係をプロットした結果を図8〜17に示す(信号パターン1について図8,10,12,14,16に示し、信号パターン2について図9,11,13,15,17に示す)。   The oscillator 5 and the receiver 6 are connected to the parallel line type high-frequency transmission line manufactured in the first to fifth embodiments in the same manner as described above, and the matching unit 8 is provided immediately after the oscillator 5 and immediately before the receiver 6 (see FIG. 5, for the parallel line type high-frequency transmission lines of Examples 1 to 4, the PET films on both ends of the strip-shaped high-frequency transmission lines 1 and 1 were peeled off, and the mouth clip 7 was attached to the nickel layer). The signal (signal patterns 1 and 2) is transmitted from the oscillator 5 while increasing the frequency from 120 MHz to 1,050 MHz at intervals of 2 to 6 MHz with an output amplitude (V) of 1.0 V, and the signal input to the receiver 6 The amplitude (input amplitude (V)) was obtained. Using the transmission coefficient obtained from the above frequency-transmission coefficient curve, at the output amplitude (V) of 1.0 V, the high-frequency transmission rate (%) at each measurement frequency is expressed by the formula: high-frequency transmission rate (%) = input amplitude (V) / (Output amplitude (V) × transmission coefficient) × 100. 8 to 17 show the results of plotting the relationship between the frequency and the high-frequency transmission rate (shown in FIGS. 8, 10, 12, 14, and 16 for signal pattern 1 and FIGS. 9, 11, 13, 15, and 17 for signal pattern 2). To show).

(ii) 686 MHzで印加電圧を1.2 Vにした場合
信号パターン1について、図18に示すように、686 MHzで1.2 Vの出力振幅となるように、630 MHzから770 MHzまで出力振幅を漸次変化させた以外上記と同様にして、伝送係数を求めるとともに、高周波伝送率(%)を求めた。周波数と高周波伝送率の関係をプロットした結果を図8,10,12,14,16に示す。
(ii) When the applied voltage is 1.2 V at 686 MHz For signal pattern 1, the output amplitude gradually changes from 630 MHz to 770 MHz so that the output amplitude is 1.2 V at 686 MHz as shown in Fig. 18 Except for the above, the transmission coefficient was obtained in the same manner as described above, and the high-frequency transmission rate (%) was obtained. The results of plotting the relationship between frequency and high-frequency transmission rate are shown in FIGS.

(iii) 941 MHzで印加電圧を1.2 Vにした場合
信号パターン2について、図19に示すように、941 MHzで1.2 Vの出力振幅となるように、出力振幅を急激に変化させた以外上記と同様にして、伝送係数を求めるとともに、高周波伝送率(%)を求めた。周波数と高周波伝送率の関係をプロットした結果を図9,11,13,15,17に示す。
(iii) When the applied voltage is set to 1.2 V at 941 MHz For signal pattern 2, as shown in Fig. 19, the output amplitude is abruptly changed so that the output amplitude is 1.2 V at 941 MHz. Similarly, the transmission coefficient was obtained, and the high frequency transmission rate (%) was obtained. The results of plotting the relationship between the frequency and the high frequency transmission rate are shown in FIGS.

図8〜17から明らかなように、実施例1〜5のいずれにおいても、印加電圧1.0Vでは高周波伝送線率が0〜数%であり、実質的に伝送性を有しないが、印加電圧1.2Vでは30%超の実用的な伝送率が得られた。   As apparent from FIGS. 8 to 17, in any of Examples 1 to 5, the high frequency transmission line rate is 0 to several% at an applied voltage of 1.0 V, and the transmission voltage is not substantially transmitted. With V, a practical transmission rate of over 30% was obtained.

本発明の一実施例による帯状高周波伝送線路を示す断面図である。It is sectional drawing which shows the strip | belt-shaped high frequency transmission line by one Example of this invention. 図1(a)のフィルムの平面図である。FIG. 2 is a plan view of the film of FIG. 1 (a). 図1(a)のA部分を概略的に示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view schematically showing a portion A in FIG. 図1(c)のA'部分を概略的に示す拡大断面図である。FIG. 2 is an enlarged cross-sectional view schematically showing a portion A ′ of FIG. 1 (c). 本発明のさらに別の実施例による帯状高周波伝送線路を示す断面図である。It is sectional drawing which shows the strip | belt-shaped high frequency transmission line by another Example of this invention. 複合フィルムに線状痕を形成する装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus which forms a linear trace in a composite film. 図3(a)の装置において、フィルムがロールと摺接する様子を示す部分拡大断面図である。In the apparatus of Fig.3 (a), it is a partial expanded sectional view which shows a mode that a film slidably contacts with a roll. 線状痕を形成した複合フィルムの一例を示す平面図である。It is a top view which shows an example of the composite film in which the linear trace was formed. 本発明の一実施例による並列型高周波伝送線路を示す斜視図である。It is a perspective view which shows the parallel type | mold high frequency transmission line by one Example of this invention. 平行線路型高周波伝送線路に発振器及び受信器を接続した状態を示す概略図である。It is the schematic which shows the state which connected the oscillator and the receiver to the parallel line type | mold high frequency transmission line. 高周波伝送率の測定に使用した発振器の構成を概略的に示す回路図である。It is a circuit diagram which shows roughly the structure of the oscillator used for the measurement of a high frequency transmission rate. 発振器から信号が(+)側から出力するように伝送した場合の信号パターンを示す概略図である。It is the schematic which shows the signal pattern at the time of transmitting so that a signal may be output from the (+) side from an oscillator. 発振器から信号が(−)側から出力するように伝送した場合の信号パターンを示す概略図である。It is the schematic which shows the signal pattern at the time of transmitting so that a signal may be output from the (-) side from an oscillator. 実施例1の平行線路型高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。3 is a graph showing the relationship between the frequency and the high frequency transmission rate in the parallel line type high frequency transmission line of Example 1. FIG. 実施例1の平行線路型高周波伝送線路における周波数と高周波伝送率の関係を示す別のグラフである。6 is another graph showing the relationship between the frequency and the high-frequency transmission rate in the parallel-line type high-frequency transmission line of Example 1. 実施例2の平行線路型高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。It is a graph which shows the relationship in the parallel line type high frequency transmission line of Example 2, and the high frequency transmission rate. 実施例2の平行線路型高周波伝送線路における周波数と高周波伝送率の関係を示す別のグラフである。It is another graph which shows the relationship in the frequency in the parallel line type | mold high frequency transmission line of Example 2, and a high frequency transmission rate. 実施例3の平行線路型高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。It is a graph which shows the relationship between the frequency in the parallel line type | mold high frequency transmission line of Example 3, and a high frequency transmission rate. 実施例3の平行線路型高周波伝送線路における周波数と高周波伝送率の関係を示す別のグラフである。It is another graph which shows the relationship between the frequency in the parallel line type | mold high frequency transmission line of Example 3, and a high frequency transmission rate. 実施例4の平行線路型高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。It is a graph which shows the relationship in the frequency in the parallel line type | mold high frequency transmission line of Example 4, and a high frequency transmission rate. 実施例4の平行線路型高周波伝送線路における周波数と高周波伝送率の関係を示す別のグラフである。It is another graph which shows the relationship between the frequency in the parallel line type | mold high frequency transmission line of Example 4, and a high frequency transmission rate. 実施例5の平行線路型高周波伝送線路における周波数と高周波伝送率の関係を示すグラフである。It is a graph which shows the relationship between the frequency in the parallel line type | mold high frequency transmission line of Example 5, and a high frequency transmission rate. 実施例5の平行線路型高周波伝送線路における周波数と高周波伝送率の関係を示す別のグラフである。It is another graph which shows the relationship between the frequency in the parallel line type | mold high frequency transmission line of Example 5, and a high frequency transmission rate. 実施例1〜5の平行線路型高周波伝送線路に伝送した信号の周波数と出力振幅の関係を示すグラフである。It is a graph which shows the relationship between the frequency of the signal transmitted to the parallel line type | mold high frequency transmission line of Examples 1-5, and output amplitude. 実施例1〜5の平行線路型高周波伝送線路に伝送した信号の周波数と出力振幅の関係を示す別のグラフである。It is another graph which shows the relationship between the frequency of the signal transmitted to the parallel line type | mold high frequency transmission line of Examples 1-5, and output amplitude. 従来の高周波伝送線路の例を示す斜視図である。It is a perspective view which shows the example of the conventional high frequency transmission line. 従来の高周波伝送線路の別の例を示す斜視図である。It is a perspective view which shows another example of the conventional high frequency transmission line.

符号の説明Explanation of symbols

1・・・帯状高周波伝送線路
10,10’・・・プラスチックフィルム
11a,11b・・・金属薄膜
11a',11b'・・・金属原子
12・・・傾斜組成層
14・・・線状痕
1'・・・導電性フィルム
1''・・・複合フィルム
2・・・ロール
3・・・ニップロール
4・・・基板
40・・・凸部
5・・・高周波発振器
50・・・出力端子
51・・・電圧制御発振器
52,52',52''・・・高周波発振モジュール
53,53'・・・高周波アンプ
6・・・高周波受信器
7・・・鰐口クリップ
8・・・整合器
70・・・ケーブル
1 ... Strip high-frequency transmission line
10, 10 '... Plastic film
11a, 11b ・ ・ ・ Metal thin film
11a ', 11b' ... Metal atoms
12 ... Gradient composition layer
14 ... Linear marks
1 '... conductive film
1 "... Composite film 2 ... Roll 3 ... Nip roll 4 ... Substrate
40 ... convex part 5 ... high frequency oscillator
50 ... Output terminal
51 ・ ・ ・ Voltage controlled oscillator
52, 52 ', 52''・ ・ ・ High frequency oscillation module
53, 53 '... High frequency amplifier 6 ... High frequency receiver 7 ... Higuchi clip 8 ... Matching device
70 ・ ・ ・ Cable

Claims (4)

プラスチックフィルムの一面に順に形成した第一及び第二の金属薄膜に、高硬度の微粒子を表面に有するロールを摺接させることにより線状痕を全面に形成した後、前記線状痕が幅方向に延在するようにスリットしてなる帯状高周波伝送線路であって、前記線状痕の幅の分布は0.1〜50μmであり、前記線状痕の平均分布密度は1,000〜5,000本/cm幅であり、前記線状痕の少なくとも一部は前記第一及び第二の金属薄膜を貫通し、もって前記第一及び第二の金属薄膜は長手方向において少なくとも部分的に分離されていることを特徴とする帯状高周波伝送線路。 After forming linear traces on the entire surface by sliding a roll having fine particles of high hardness on the first and second metal thin films sequentially formed on one surface of the plastic film, the linear traces are in the width direction. A strip-shaped high-frequency transmission line that is slit so as to extend in a width distribution of 0.1 to 50 μm, and the average distribution density of the linear marks is 1,000 to 5,000 lines / cm width. And at least a part of the linear trace penetrates the first and second metal thin films, and the first and second metal thin films are at least partially separated in the longitudinal direction. A band-shaped high-frequency transmission line. 請求項1に記載の帯状高周波伝送線路において、前記第一及び第二の金属薄膜が蒸着層であることを特徴とする帯状高周波伝送線路。 2. The band-shaped high-frequency transmission line according to claim 1, wherein the first and second metal thin films are vapor deposition layers . 請求項1又は2に記載の二つの離隔した帯状高周波伝送線路を並列に具備することを特徴とする並列型高周波伝送線路。 A parallel type high-frequency transmission line comprising the two spaced strip-shaped high-frequency transmission lines according to claim 1 or 2 in parallel. 請求項に記載の並列型高周波伝送線路において、二つの前記帯状高周波伝送線路が誘電体基板の同一面上に配置されていることを特徴とする並列型高周波伝送線路。 4. The parallel type high frequency transmission line according to claim 3 , wherein the two band-like high frequency transmission lines are arranged on the same surface of the dielectric substrate.
JP2008027057A 2008-02-06 2008-02-06 Band-shaped high-frequency transmission line and parallel-type high-frequency transmission line Expired - Fee Related JP4803838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008027057A JP4803838B2 (en) 2008-02-06 2008-02-06 Band-shaped high-frequency transmission line and parallel-type high-frequency transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008027057A JP4803838B2 (en) 2008-02-06 2008-02-06 Band-shaped high-frequency transmission line and parallel-type high-frequency transmission line

Publications (2)

Publication Number Publication Date
JP2009188770A JP2009188770A (en) 2009-08-20
JP4803838B2 true JP4803838B2 (en) 2011-10-26

Family

ID=41071569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008027057A Expired - Fee Related JP4803838B2 (en) 2008-02-06 2008-02-06 Band-shaped high-frequency transmission line and parallel-type high-frequency transmission line

Country Status (1)

Country Link
JP (1) JP4803838B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60169904U (en) * 1984-04-20 1985-11-11 株式会社 潤工社 stripline cable
JPH1013113A (en) * 1996-06-21 1998-01-16 Oki Electric Ind Co Ltd Connecting method for distributed constant lines and microwave circuit
JP3649183B2 (en) * 2001-12-27 2005-05-18 ソニー株式会社 Filter circuit device and manufacturing method thereof
JP2003318611A (en) * 2002-04-24 2003-11-07 Mitsubishi Electric Corp Strip transmission line board and its manufacturing method
JP2007221713A (en) * 2006-02-20 2007-08-30 Seiji Kagawa High frequency transmission line

Also Published As

Publication number Publication date
JP2009188770A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP4976316B2 (en) Electromagnetic wave absorbing film
KR102323306B1 (en) Copper clad laminate and method for manufacturing copper clad laminate
CN102342187B (en) Coverlay film, method for manufacturing coverlay film, and flexible printed wiring board
JP6855441B2 (en) Metal-clad laminate and its manufacturing method
KR101344952B1 (en) Copper-clad laminate and method for manufacturing same
JP6119433B2 (en) Plating laminate and manufacturing method thereof
JPH0249544B2 (en)
CN110050515B (en) Thermoplastic liquid crystal polymer film with metal vapor deposition layer, metal-clad laminate and method for manufacturing same
KR20140041084A (en) Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
JP2005219259A (en) Metallized polyimide film
JP2007221713A (en) High frequency transmission line
JP2007262493A (en) Material for flexible printed board and method of manufacturing the same
JP5203295B2 (en) Electromagnetic wave absorbing film
US20090038828A1 (en) Flexible printed circuit board substrate and flexible printed circuit board fabricated using the same
JP2014241201A (en) Insulation coated wire and multi-wire wiring board
JP2012169365A (en) Print circuit board
JP4803838B2 (en) Band-shaped high-frequency transmission line and parallel-type high-frequency transmission line
TWI455400B (en) Conductive film, its manufacturing method and high frequency parts
KR101357141B1 (en) Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
JPH0555746A (en) High frequency copper clad laminated board and printed circuit board
JP5186375B2 (en) Gradient junction conductive film for high-frequency transmission line, high-frequency transmission line and high-frequency filter using the same
KR20220003196A (en) Flexible circuit board, preparing method of the same, and electronic device including the same
JP4459360B2 (en) Circuit board and manufacturing method thereof
JP2008028468A (en) High-frequency transmission line and high-frequency filter
CN211481578U (en) Flexible structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R150 Certificate of patent or registration of utility model

Ref document number: 4803838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees