JP5407480B2 - Internal diagnosis method of transformer - Google Patents

Internal diagnosis method of transformer Download PDF

Info

Publication number
JP5407480B2
JP5407480B2 JP2009078241A JP2009078241A JP5407480B2 JP 5407480 B2 JP5407480 B2 JP 5407480B2 JP 2009078241 A JP2009078241 A JP 2009078241A JP 2009078241 A JP2009078241 A JP 2009078241A JP 5407480 B2 JP5407480 B2 JP 5407480B2
Authority
JP
Japan
Prior art keywords
impedance
transformer
frequency
frequency characteristic
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009078241A
Other languages
Japanese (ja)
Other versions
JP2010230479A (en
Inventor
次郎 池田
浩道 大雲
隆幸 小林
茂之 塚尾
淳 衛藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2009078241A priority Critical patent/JP5407480B2/en
Publication of JP2010230479A publication Critical patent/JP2010230479A/en
Application granted granted Critical
Publication of JP5407480B2 publication Critical patent/JP5407480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、変圧器の内部に異常が発生しているかどうかを診断する変圧器の内部診断方法に関する。   The present invention relates to a transformer internal diagnosis method for diagnosing whether an abnormality has occurred inside a transformer.

例えば、油入変圧器の寿命については、絶縁紙の劣化特性や変圧器の温度上昇特性などから評価されており、変圧器診断技術として従来から油中ガス分析や各種電気試験が広く実施されている。油中ガス分析は、変圧器運転状態で採油し、油中のガス成分量により異常レベルを判定し、ガス組成比の組合せによる異常診断図により、過熱・部分放電・アーク放電を診断する。   For example, the life of oil-filled transformers has been evaluated from the deterioration characteristics of insulating paper and the temperature rise characteristics of transformers, and gas analysis in oil and various electrical tests have been widely implemented as transformer diagnostic techniques. Yes. In the oil-in-gas analysis, oil is collected in the state of operation of the transformer, the abnormal level is determined based on the amount of gas components in the oil, and overheating, partial discharge, and arc discharge are diagnosed based on an abnormality diagnosis diagram based on a combination of gas composition ratios.

一方、各種の電気試験としては、絶縁抵抗測定、巻線抵抗測定、インピーダンス試験、励磁電流測定や変圧比試験などにより、変圧器の内部異常の様相や運転継続の可否を判断している。現状ではこれらの診断手法を適宜組み合わせて変圧器の診断を実施しているが、変圧器の巻線の微少変形については、インピーダンス試験でも変化を捉えることが困難となっており、変圧器の内部開放点検による状態確認以外に効果的な診断手法は確立されていないのが現状である。   On the other hand, as various electrical tests, an insulation resistance measurement, a winding resistance measurement, an impedance test, an excitation current measurement, a transformation ratio test, and the like are used to determine the internal abnormality of the transformer and whether or not to continue the operation. At present, these diagnostic methods are combined as appropriate to diagnose transformers. However, it is difficult to detect changes in transformer windings even in impedance tests. At present, no effective diagnostic method has been established other than the status check by open inspection.

変圧器内部の鉄心や巻線の異常様相を同定するものとして、周波数応答解析FRAを利用して、鉄心変形時に変化が現れる第1の測定領域と、巻線異常時に変化が現れる第2の測定領域について、低圧巻線を開放した状態と短絡した状態の高圧巻線の伝達関数を測定すると共に、高圧巻線を開放した状態と短絡した状態の低圧巻線の伝達関数を測定し、変化が現れた測定領域の組み合わせに基づいて変圧器の異常様相を同定するようにしたものがある(例えば、特許文献1参照)。   Using frequency response analysis FRA, the first measurement area where changes occur when the iron core deforms and the second measurement where changes occur when the winding is abnormal are used to identify the abnormal state of the iron core and windings inside the transformer. For the region, measure the transfer function of the high voltage winding with the low voltage winding open and shorted, and measure the transfer function of the low voltage winding with the high voltage winding opened and shorted. There is one in which an abnormal aspect of a transformer is identified based on a combination of measurement regions that appear (see, for example, Patent Document 1).

特開2009−25153号公報JP 2009-25153 A

しかし、特許文献1のものでは、鉄心の変形、巻線の位置ずれ、巻線の変形が発生していることは判定できるが、例えば、巻線の変形であるとしても、一次巻線と二次巻線との偏心なのか二次巻線の座屈変形なのか、さらには、偏心と座屈変形との複合状態なのか、その詳細を判断することができない。   However, in Patent Document 1, it can be determined that the iron core is deformed, the winding is misaligned, or the winding is deformed. For example, even if the winding is deformed, the primary Whether it is eccentric with the secondary winding or buckling deformation of the secondary winding, or further, whether it is a combined state of eccentricity and buckling deformation cannot be determined in detail.

近年の研究成果として、油入変圧器を長期使用すると、プレスボードなどの絶縁物の枯れにより隙間が発生して巻線が変形しやすくなることが判明した。そこで、変圧器の寿命や使用限界を判断するために、このような巻線の微少変形を捉える技術の確立が要請されている。   As a result of recent research, it has been found that when oil-filled transformers are used for a long period of time, gaps are generated due to the death of insulators such as press boards and the windings are easily deformed. Therefore, in order to judge the life and use limit of the transformer, it is required to establish a technique for capturing such a minute deformation of the winding.

従来の油中ガス分析やインピーダンス測定では、巻線の微少変形に対しては精度の良い評価が実施できないため、巻線の微少変形に対する診断手法の確立が必要である。経年30年を超過する油入変圧器が増加傾向にあり、変圧器の期待寿命に近づきつつあることから、今後は信頼度を確保しつつ、既設設備の徹底活用を図っていかなければならない状況にある。   In conventional gas analysis in oil and impedance measurement, it is necessary to establish a diagnostic method for minute deformation of the winding because accurate evaluation cannot be performed for the minute deformation of the winding. The number of oil-filled transformers that have exceeded 30 years of age is on the rise, and since it is approaching the expected life of transformers, it is necessary to ensure thorough use of existing facilities while ensuring reliability. It is in.

本発明の目的は、変圧器の内部開放点検を行うことなく、巻線の微少変形を詳細に判断できる変圧器の内部診断方法を提供することである。   An object of the present invention is to provide an internal diagnosis method for a transformer that can determine in detail a minute deformation of the winding without performing an internal open inspection of the transformer.

請求項1の発明に係わる変圧器の内部診断方法は、変圧器の一次巻線または二次巻線のいずれか一方を短絡接地し、短絡接地した反対側の巻線に可変周波数電圧を印加し、前記巻線に流れる電流を測定し、前記可変周波数電圧を電流で除算してインピーダンスを求め、前記インピーダンス周波数特性に基づいて変圧器の一次巻線と二次巻線との偏心、二次巻線の座屈変形、前記偏心と前記座屈変形との複合状態、一次巻線と二次巻線との軸方向変位、前記座屈変形と前記軸方向変位との複合状態のいずれであるかを診断することを特徴とする。   In the transformer internal diagnosis method according to the first aspect of the present invention, either the primary winding or the secondary winding of the transformer is short-circuited to ground, and a variable frequency voltage is applied to the opposite-side winding that is short-circuited to ground. The current flowing through the winding is measured, the variable frequency voltage is divided by the current to obtain the impedance, the eccentricity of the primary and secondary windings of the transformer based on the impedance frequency characteristics, the secondary winding Whether the buckling deformation of the wire, the combined state of the eccentricity and the buckling deformation, the axial displacement of the primary winding and the secondary winding, or the combined state of the buckling deformation and the axial displacement It is characterized by diagnosing.

請求項2の発明に係わる変圧器の内部診断方法は、請求項1の発明において、前記変圧器の二次巻線を短絡接地し、前記一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性において、インピーダンス周波数特性の第1共振点が正常状態のインピーダンス周波数特性より高周波側にシフトし、第1共振点より高い周波数領域のインピーダンス周波数特性が正常状態のインピーダンス周波数特性より低周波側にシフトしたときは、前記変圧器の一次巻線と二次巻線との偏心であると診断することを特徴とする。   According to a second aspect of the present invention, there is provided a transformer internal diagnosis method according to the first aspect of the present invention, wherein the secondary winding of the transformer is short-circuited to ground and the variable frequency voltage is applied to the primary winding. In the characteristics, the first resonance point of the impedance frequency characteristic shifts to the higher frequency side than the impedance frequency characteristic in the normal state, and the impedance frequency characteristic in the frequency region higher than the first resonance point shifts to the lower frequency side than the impedance frequency characteristic in the normal state. In this case, it is diagnosed that the primary winding and the secondary winding of the transformer are eccentric.

請求項3の発明に係わる変圧器の内部診断方法は、請求項1の発明において、前記変圧器の二次巻線を短絡接地し、前記一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性において、所定の高周波以上の領域でインピーダンス周波数特性が正常状態のインピーダンス周波数特性より低周波側にシフトしたとき、かつ、前記変圧器の一次巻線を短絡接地し、前記二次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性において、所定の高周波以上の領域でインピーダンス周波数特性が正常状態のインピーダンス周波数特性より低周波側にシフトしたときは、前記変圧器の二次巻線の座屈変形であると診断することを特徴とする。 The transformer internal diagnosis method according to the invention of claim 3 is the impedance frequency when the secondary winding of the transformer is short-circuited to ground and a variable frequency voltage is applied to the primary winding. In the characteristics, when the impedance frequency characteristic is shifted to a lower frequency side than the impedance frequency characteristic in a normal state in a region higher than a predetermined high frequency, and the primary winding of the transformer is short-circuited to ground and variable to the secondary winding In the impedance frequency characteristics when a frequency voltage is applied, if the impedance frequency characteristics shift to a lower frequency side than the impedance frequency characteristics in the normal state in a region above a predetermined high frequency, the buckling of the secondary winding of the transformer It is characterized by diagnosing the deformation.

請求項4の発明に係わる変圧器の内部診断方法は、請求項1の発明において、前記変圧器の二次巻線を短絡接地し、前記一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性において、所定の高周波以上の領域でインピーダンス周波数特性が正常状態のインピーダンス周波数特性より低周波側にシフトし、第1共振点と第2共振点との間のインピーダンスの極小値が正常状態のインピーダンス周波数特性の極小値より大きく、前記極小値と第2共振点との間のインピーダンス周波数特性が正常状態のインピーダンス周波数特性より低周波側にシフトし、第2共振点のインピーダンス値が正常状態のインピーダンス周波数特性のインピーダンス値より小さいときは、前記偏心と前記座屈変形との複合状態であると診断することを特徴とする。   According to a fourth aspect of the present invention, there is provided a transformer internal diagnosis method according to the first aspect of the present invention, wherein the secondary winding of the transformer is short-circuited to ground, and the impedance frequency when a variable frequency voltage is applied to the primary winding. In the characteristic, the impedance frequency characteristic shifts to a lower frequency side than the normal impedance frequency characteristic in a region above a predetermined high frequency, and the minimum impedance value between the first resonance point and the second resonance point is the normal state impedance. The impedance frequency characteristic between the minimum value and the second resonance point is larger than the minimum value of the frequency characteristic, and shifts to a lower frequency side than the impedance frequency characteristic of the normal state, and the impedance value of the second resonance point is the impedance of the normal state When the impedance value is smaller than the frequency characteristic impedance value, it is diagnosed that the eccentricity and the buckling deformation are combined. And features.

請求項5の発明に係わる変圧器の内部診断方法は、請求項1の発明において、前記変圧器の二次巻線を短絡接地し、前記一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性において、第1共振点と第2共振点との間のインピーダンスの極小値が正常状態のインピーダンス周波数特性の極小値より大きく、前記極小値と第2共振点との間のインピーダンス周波数特性が正常状態のインピーダンス周波数特性より所定周波数幅以上に低周波側にシフトし、第6共振点のインピーダンスが所定値以上のときは、一次巻線と二次巻線との軸方向変位であると診断することを特徴とする。   The transformer internal diagnosis method according to the invention of claim 5 is the impedance frequency when the secondary winding of the transformer is short-circuited to ground and a variable frequency voltage is applied to the primary winding. In the characteristic, the minimum value of the impedance between the first resonance point and the second resonance point is larger than the minimum value of the impedance frequency characteristic in the normal state, and the impedance frequency characteristic between the minimum value and the second resonance point is normal. If the impedance frequency characteristic shifts to the low frequency side beyond the predetermined frequency width, and the impedance at the sixth resonance point is equal to or higher than the predetermined value, it is diagnosed as an axial displacement between the primary winding and the secondary winding. It is characterized by that.

請求項6の発明に係わる変圧器の内部診断方法は、請求項1の発明において、前記変圧器の二次巻線を短絡接地し、前記一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性において、第1共振点と第2共振点との間のインピーダンスの記極小値と第2共振点との間のインピーダンス周波数特性が正常状態のインピーダンス周波数特性より低周波側にシフトし、第2共振点より高周波域では正常状態のインピーダンス周波数特性より低周波側にシフトし、第6共振点のインピーダンスが所定値以上のときは、前記座屈変形と前記軸方向変位との複合状態であると診断することを特徴とする。   According to a sixth aspect of the present invention, there is provided a transformer internal diagnosis method according to the first aspect of the present invention, wherein the secondary winding of the transformer is short-circuited to ground, and the impedance frequency when a variable frequency voltage is applied to the primary winding. In the characteristic, the impedance frequency characteristic between the minimum value of the impedance between the first resonance point and the second resonance point and the second resonance point is shifted to a lower frequency side than the impedance frequency characteristic in the normal state, and the second When the impedance is shifted to a lower frequency side than the impedance frequency characteristic in the normal state in the high frequency range from the resonance point, and the impedance at the sixth resonance point is a predetermined value or more, the combined state of the buckling deformation and the axial displacement is It is characterized by making a diagnosis.

本発明によれば、変圧器の一次巻線または二次巻線のいずれか一方を短絡接地し、短絡接地した反対側の巻線に可変周波数電圧を印加し、巻線に流れる電流を測定して可変周波数電圧を電流で除算してインピーダンスを求め、そのインピーダンス周波数特性に基づいて、変圧器の一次巻線と二次巻線との偏心、二次巻線の座屈変形、偏心と座屈変形との複合状態、一次巻線と二次巻線との軸方向変位、座屈変形と軸方向変位との複合状態のいずれであるかを診断するので、変圧器の内部開放点検を行うことなく、巻線の微少変形を詳細に判断できる。これにより、変圧器の使用限界の見極めが可能となり、実フィールドにおける油入変圧器の診断精度が向上できるため、油入変圧器の信頼度を維持しつつ既設設備の徹底活用を指向した経年変圧器の保全方策に活用できる。   According to the present invention, either the primary winding or the secondary winding of the transformer is short-circuited to ground, the variable frequency voltage is applied to the opposite-side winding that is short-circuited, and the current flowing through the winding is measured. Dividing the variable frequency voltage by the current to obtain the impedance, and based on the impedance frequency characteristics, the transformer primary and secondary windings eccentricity, secondary winding buckling deformation, eccentricity and buckling Diagnose whether the combined state of deformation, axial displacement of primary and secondary windings, or combined state of buckling deformation and axial displacement, so check the internal opening of the transformer. Therefore, the minute deformation of the winding can be judged in detail. This makes it possible to determine the usage limit of the transformer and improve the accuracy of diagnosis of the oil-filled transformer in the actual field, so that the secular transformation aimed at thorough use of existing facilities while maintaining the reliability of the oil-filled transformer. It can be used for container maintenance measures.

本発明の実施の形態に係わる変圧器の内部診断方法の一例を示すフローチャート。The flowchart which shows an example of the internal diagnostic method of the transformer concerning embodiment of this invention. 本発明で対象とする巻線の微少変形の説明図。Explanatory drawing of the micro deformation | transformation of the coil | winding made into object by this invention. 変圧器の一次巻線と二次巻線とが偏心した場合のインピーダンス周波数特性を示す波形図。The wave form diagram which shows the impedance frequency characteristic when the primary winding and secondary winding of a transformer are eccentric. 変圧器の二次巻線に座屈変形がある場合のインピーダンス周波数特性を示す波形図。The wave form diagram which shows an impedance frequency characteristic in case a secondary winding of a transformer has buckling deformation. 変圧器の二次巻線に偏心と座屈変形とが発生している場合のインピーダンス周波数特性を示す波形図。The wave form diagram which shows the impedance frequency characteristic in case eccentricity and buckling deformation have generate | occur | produced in the secondary winding of a transformer. 変圧器の二次巻線に軸方向変位がある場合のインピーダンス周波数特性を示す波形図。The wave form diagram which shows an impedance frequency characteristic in case there is an axial displacement in the secondary winding of a transformer. 変圧器の二次巻線に座屈変形と軸方向変位とが発生している場合のインピーダンス周波数特性を示す波形図。The wave form diagram which shows the impedance frequency characteristic in case buckling deformation and axial direction displacement have generate | occur | produced in the secondary winding of the transformer.

以下、本発明の実施の形態を説明する。図1は本発明の実施の形態に係わる変圧器の内部診断方法の一例を示すフローチャートである。まず、診断対象の変圧器の一次巻線または二次巻線のいずれか一方を短絡接地し(S1)、短絡接地した反対側の巻線に可変周波数電圧を印加する(S2)。そして、インピーダンスを求め(S3)、求めたインピーダンス周波数特性から、巻線の微少変形を詳細に判断する(S4)。インピーダンスは可変周波数電圧を印加したときの巻線に流れる電流を測定し、可変周波数電圧を電流で除算して求める。また、巻線の微少変形は、インピーダンス周波数特性に基づいて、変圧器の一次巻線と二次巻線との偏心、二次巻線の座屈変形、偏心と座屈変形との複合状態、一次巻線と二次巻線との軸方向変位、座屈変形と軸方向変位との複合状態のいずれであるかを診断することにより行う。   Embodiments of the present invention will be described below. FIG. 1 is a flowchart showing an example of an internal diagnosis method for a transformer according to an embodiment of the present invention. First, either the primary winding or the secondary winding of the transformer to be diagnosed is short-circuited to ground (S1), and a variable frequency voltage is applied to the opposite winding that is short-circuited to ground (S2). Then, the impedance is obtained (S3), and the minute deformation of the winding is judged in detail from the obtained impedance frequency characteristic (S4). The impedance is obtained by measuring the current flowing through the winding when a variable frequency voltage is applied and dividing the variable frequency voltage by the current. Also, the minute deformation of the winding is based on the impedance frequency characteristics, the eccentricity of the primary and secondary windings of the transformer, the buckling deformation of the secondary winding, the combined state of eccentricity and buckling deformation, This is performed by diagnosing whether the primary winding and the secondary winding are in the axial displacement or the combined state of buckling deformation and axial displacement.

すなわち、本発明では、変圧器の巻線に可変周波数電圧を印加して、インピーダンス周波数特性を求め、そのインピーダンス周波数特性に基づいて変圧器の巻線不具合の診断するというFRA(Frequency Response Analysis:周波数応答解析)を用いた診断を行う。つまり、本発明は、変圧器のインピーダンスの周波数応答は、巻線のインダクタンスと静電容量とにより決定され、巻線が変形した場合にはインダクタンスと静電容量とが変化し、変形部位に対応する共振点の周波数や振幅が変化することに着目したものである。以下、実際の変圧器の単相巻線モデルにおいて、巻線の変位や変形によるFRA特性変化を測定し、巻線変形時の物理変化とFRA特性の周波数変化領域を明らかにした点について説明する。   That is, in the present invention, an FRA (Frequency Response Analysis: frequency) in which a variable frequency voltage is applied to a winding of a transformer to obtain an impedance frequency characteristic and a winding fault of the transformer is diagnosed based on the impedance frequency characteristic. Diagnosis using response analysis. That is, according to the present invention, the frequency response of the impedance of the transformer is determined by the inductance and the capacitance of the winding, and when the winding is deformed, the inductance and the capacitance change to correspond to the deformed portion. The focus is on the change in the frequency and amplitude of the resonance point. Hereinafter, in the actual transformer single-phase winding model, the FRA characteristic change due to the displacement and deformation of the winding will be measured, and the physical change at the time of winding deformation and the frequency change region of the FRA characteristic will be explained. .

図2は、本発明で対象とする巻線の微少変形の説明図である。図2(a)は変圧器の一次巻線11と二次巻線12との偏心、図2(b)は二次巻線12の座屈変形、図2(c)は偏心と座屈変形との複合状態、図2(d)は一次巻線11と二次巻線12との軸方向変位を示している。なお、図示は省略するが、座屈変形と軸方向変位との複合状態も本発明では対象とする。   FIG. 2 is an explanatory view of a minute deformation of the winding subject to the present invention. 2A shows the eccentricity between the primary winding 11 and the secondary winding 12 of the transformer, FIG. 2B shows the buckling deformation of the secondary winding 12, and FIG. 2C shows the eccentricity and buckling deformation. FIG. 2D shows the axial displacement of the primary winding 11 and the secondary winding 12. In addition, although illustration is abbreviate | omitted, the compound state of buckling deformation and axial displacement is also made into object in this invention.

図2(a)において、正常状態では一次巻線11と二次巻線12とは同心円筒状に形成されて楔で互いに保持されているが、一次巻線11と二次巻線12との間の楔がずれると、一次巻線11の中心A1と二次巻線12の中心A2とがずれて二次巻線12が偏心する。図2(a)では、二次巻線12が偏心して、一次巻線11の中心A1と二次巻線12の中心A2との間にずれΔxが生じた場合を示している。図2(b)では、内側の二次巻線12が座屈変形した場合を示しており、座屈変形部13が生じた場合を示している。   In FIG. 2A, the primary winding 11 and the secondary winding 12 are formed in a concentric cylindrical shape and held together by a wedge in a normal state, but the primary winding 11 and the secondary winding 12 When the wedge is shifted, the center A1 of the primary winding 11 and the center A2 of the secondary winding 12 are shifted, and the secondary winding 12 is eccentric. FIG. 2A shows a case where the secondary winding 12 is decentered and a shift Δx occurs between the center A1 of the primary winding 11 and the center A2 of the secondary winding 12. FIG. 2B shows a case where the inner secondary winding 12 is buckled and deformed, and a case where the buckling deformed portion 13 is generated.

また、図2(c)では、図2(a)の一次巻線11と二次巻線12との偏心と、図2(b)の二次巻線12の座屈変形が同時に発生した場合を示し、図2(d)は、内側の二次巻線12の軸方向位置B2が一次巻線11の軸方向位置B1よりΔyだけ、軸方向にずれた場合を示している。また、図示は省略するが、本発明では、図2(d)の軸方向ずれに図2(b)に示した二次巻線12の座屈変形が同時に発生した場合も対象とする。   2C, when the eccentricity of the primary winding 11 and the secondary winding 12 in FIG. 2A and the buckling deformation of the secondary winding 12 in FIG. 2B occur simultaneously. FIG. 2D shows a case where the axial position B2 of the inner secondary winding 12 is shifted in the axial direction by Δy from the axial position B1 of the primary winding 11. Although not shown in the drawings, the present invention also deals with the case where the buckling deformation of the secondary winding 12 shown in FIG. 2 (b) occurs simultaneously with the axial deviation of FIG. 2 (d).

図3は一次巻線11と二次巻線12とが偏心した場合のインピーダンス周波数特性を示す波形図であり、図3(a)は変圧器の二次巻線を短絡接地し一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性図、図3(b)は変圧器の一次巻線を短絡接地し二次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性図である。図3(a)、図3(b)において、曲線S1は正常状態のときの波形、曲線S2は相対的に偏心量Δxが小さいときの波形、曲線S3は相対的に偏心量Δxが大きいときの波形である。   FIG. 3 is a waveform diagram showing impedance frequency characteristics when the primary winding 11 and the secondary winding 12 are decentered. FIG. 3A shows a short circuit grounding of the secondary winding of the transformer to form the primary winding. FIG. 3B is an impedance frequency characteristic diagram when a variable frequency voltage is applied, and FIG. 3B is an impedance frequency characteristic diagram when the transformer primary winding is shorted to ground and a variable frequency voltage is applied to the secondary winding. 3A and 3B, curve S1 is a waveform in a normal state, curve S2 is a waveform when the amount of eccentricity Δx is relatively small, and curve S3 is when the amount of eccentricity Δx is relatively large. It is a waveform.

図3(a)から分かるように、一次巻線に可変周波数電圧を印加したときは、曲線S2、S3は、インピーダンス周波数特性の第1共振点Q1が正常状態の曲線S1より高周波側にシフトし、第1共振点Q1と第2共振点との間の最初の極小値より高い周波数領域においては、正常状態の曲線S1より低周波側にシフトしている。一方、図3(b)から分かるように、二次巻線に可変周波数電圧を印加したときは、曲線S1、S2、S3はほぼ同じ特性となり、偏心による周波数特性の変化はほとんどない。従って、変圧器の二次巻線の半径方向の偏心では、一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性が、第一共振点Q1より高い周波数領域で、インピーダンス周波数特性が低周波側に移動したことで診断が可能である。   As can be seen from FIG. 3A, when a variable frequency voltage is applied to the primary winding, the curves S2 and S3 are such that the first resonance point Q1 of the impedance frequency characteristic is shifted to the higher frequency side than the curve S1 in the normal state. In the frequency region higher than the first minimum value between the first resonance point Q1 and the second resonance point, the frequency shifts to the lower frequency side than the curve S1 in the normal state. On the other hand, as can be seen from FIG. 3B, when a variable frequency voltage is applied to the secondary winding, the curves S1, S2, and S3 have substantially the same characteristics, and there is almost no change in the frequency characteristics due to eccentricity. Accordingly, in the radial eccentricity of the secondary winding of the transformer, the impedance frequency characteristic when the variable frequency voltage is applied to the primary winding is higher than the first resonance point Q1, and the impedance frequency characteristic is low frequency. Diagnosis is possible by moving to the side.

変圧器の二次巻線の偏心診断の精度を上げるためには、一次巻線に可変周波数電圧を印加したとき及び二次巻線に可変周波数電圧を印加したときの双方の波形で診断するようにしてもよい。すなわち、一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性が、正常時の特性より、第一共振点Q1より高い周波数領域で低周波側に移動し、かつ、二次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性が、正常時の特性とほぼ同じであるときに、変圧器の二次巻線の偏心であると診断できる。   In order to improve the accuracy of the eccentricity diagnosis of the secondary winding of the transformer, the diagnosis should be made with both waveforms when the variable frequency voltage is applied to the primary winding and when the variable frequency voltage is applied to the secondary winding. It may be. That is, the impedance frequency characteristic when a variable frequency voltage is applied to the primary winding moves to the low frequency side in a frequency region higher than the first resonance point Q1 from the normal characteristic, and is variable to the secondary winding. When the impedance frequency characteristic when the frequency voltage is applied is almost the same as the normal characteristic, it can be diagnosed as the eccentricity of the secondary winding of the transformer.

次に、図4は二次巻線12に座屈変形がある場合のインピーダンス周波数特性を示す波形図であり、図4(a)は変圧器の二次巻線を短絡接地し一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性図、図4(b)は変圧器の一次巻線を短絡接地し二次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性図である。図4(a)、図4(b)において、曲線S4は正常状態のときの波形、曲線S5は相対的に座屈変形が小さいときの波形、曲線S6は相対的に座屈変形が大きいときの波形である。   Next, FIG. 4 is a waveform diagram showing impedance frequency characteristics when the secondary winding 12 is buckled and deformed. FIG. 4A is a diagram illustrating a case where the secondary winding of the transformer is short-circuited to the primary winding. FIG. 4B is an impedance frequency characteristic diagram when a variable frequency voltage is applied, and FIG. 4B is an impedance frequency characteristic diagram when a variable frequency voltage is applied to the secondary winding with the primary winding of the transformer short-circuited to ground. 4A and 4B, the curve S4 is a waveform in a normal state, the curve S5 is a waveform when the buckling deformation is relatively small, and the curve S6 is a relatively large buckling deformation. It is a waveform.

図4(a)から分かるように、一次巻線に可変周波数電圧を印加したときは、曲線S5、S6は、所定の高周波(50kHz)以上の領域で、インピーダンス周波数特性の正常状態の曲線S4より低周波側にシフトした特性となっている。一方、図4(b)から分かるように、二次巻線に可変周波数電圧を印加したときは、曲線S5、S6は、所定の高周波(400kHz)以上の領域で、インピーダンス周波数特性の正常状態の曲線S4より低周波側にシフトした特性となっている。   As can be seen from FIG. 4A, when a variable frequency voltage is applied to the primary winding, the curves S5 and S6 are in a region of a predetermined high frequency (50 kHz) or higher than the curve S4 in a normal state of impedance frequency characteristics. The characteristics are shifted to the low frequency side. On the other hand, as can be seen from FIG. 4 (b), when a variable frequency voltage is applied to the secondary winding, the curves S5 and S6 show the normal state of the impedance frequency characteristic in the region of a predetermined high frequency (400 kHz) or higher. The characteristic is shifted to the lower frequency side than the curve S4.

従って、二次巻線12の座屈変形では、一次巻線や二次巻線に可変周波数電圧を印加したときの所定の高周波領域で、インピーダンス周波数特性が低周波側に移動したことで診断が可能である。特に、二次巻線に可変周波数電圧を印加したときには、所定の高周波(400kHz)以上の領域で、座屈変形の場合の特徴的な波形が得られるので、変圧器の座屈変形を容易に診断できる。   Therefore, in the buckling deformation of the secondary winding 12, the diagnosis is made because the impedance frequency characteristic moves to the low frequency side in a predetermined high frequency region when a variable frequency voltage is applied to the primary winding or the secondary winding. Is possible. In particular, when a variable frequency voltage is applied to the secondary winding, a characteristic waveform in the case of buckling deformation can be obtained in a region of a predetermined high frequency (400 kHz) or more, so that the buckling deformation of the transformer can be easily performed. Can be diagnosed.

変圧器の二次巻線の座屈変形診断の精度を上げるためには、一次巻線に可変周波数電圧を印加したとき及び二次巻線に可変周波数電圧を印加したときの双方の波形で診断するようにしてもよい。すなわち、一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性が、正常時の特性より、所定の高周波(50kHz)以上の領域で低周波側にシフトした特性となっており、かつ、二次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性が、所定の高周波(400kHz)以上の領域で正常状態の特性より低周波側にシフトした特性となっているときには、変圧器の二次巻線の座屈変形であると診断できる。
In order to improve the accuracy of buckling deformation diagnosis of the secondary winding of the transformer, diagnosis is performed with both waveforms when a variable frequency voltage is applied to the primary winding and when a variable frequency voltage is applied to the secondary winding. You may make it do. That is, the impedance frequency characteristic when a variable frequency voltage is applied to the primary winding is a characteristic shifted from the normal characteristic to the low frequency side in a region higher than a predetermined high frequency (50 kHz), and two When the impedance frequency characteristic when a variable frequency voltage is applied to the secondary winding is a characteristic shifted to a lower frequency side than the normal state characteristic in a region of a predetermined high frequency (400 kHz) or more, the secondary of the transformer It can be diagnosed as a buckling deformation of the winding.

次に、図5は二次巻線12に偏心と座屈変形とが発生している場合のインピーダンス周波数特性を示す波形図であり、図5(a)は変圧器の二次巻線を短絡接地し一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性図、図5(b)は変圧器の一次巻線を短絡接地し二次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性図である。図5(a)、図5(b)において、曲線S7は正常状態のときの波形、曲線S8は相対的に座屈変形のみの場合の波形、曲線S9は偏心と座屈変形がある場合の波形である。   Next, FIG. 5 is a waveform diagram showing impedance frequency characteristics when eccentricity and buckling deformation occur in the secondary winding 12, and FIG. 5 (a) is a short circuit of the secondary winding of the transformer. Fig. 5 (b) shows the impedance frequency when the primary winding of the transformer is short-circuited and the variable frequency voltage is applied to the secondary winding when the variable frequency voltage is applied to the primary winding. FIG. 5 (a) and 5 (b), the curve S7 is a waveform in a normal state, the curve S8 is a waveform in the case of relatively buckling deformation only, and the curve S9 is in the case of eccentricity and buckling deformation. It is a waveform.

図5(a)から分かるように、一次巻線に可変周波数電圧を印加したときは、曲線S9は、所定の高周波(50kHz)以上の領域でインピーダンス周波数特性が正常状態の曲線S7や座屈変形のみの場合の曲線S8より低周波側にシフトしている。また、第1共振点Q1と第2共振点Q2との間のインピーダンス値の極小値m1が正常状態のインピーダンス値の極小値m2より大きく、その極小点m1と第2共振点Q2との間のインピーダンス周波数特性が正常状態の曲線S7や座屈変形のみの場合の曲線S8より低周波側にシフトしている。さらには、第2共振点Q2のインピーダンス値M1が正常状態のインピーダンス値M2より小さくなっている。   As can be seen from FIG. 5 (a), when a variable frequency voltage is applied to the primary winding, the curve S9 is a curve S7 having a normal impedance frequency characteristic in a region of a predetermined high frequency (50 kHz) or a buckling deformation. Shift to the lower frequency side than the curve S8. Further, the minimum value m1 of the impedance value between the first resonance point Q1 and the second resonance point Q2 is larger than the minimum value m2 of the impedance value in the normal state, and between the minimum point m1 and the second resonance point Q2. The impedance frequency characteristic is shifted to the lower frequency side than the curve S7 in the normal state and the curve S8 in the case of only buckling deformation. Furthermore, the impedance value M1 of the second resonance point Q2 is smaller than the impedance value M2 in the normal state.

一方、図5(b)から分かるように、二次巻線に可変周波数電圧を印加したときは、曲線S9は、所定の高周波(400kHz)以上の領域で、インピーダンス周波数特性の正常状態の曲線S7より低周波側にシフトした特性となっている。なお、この場合、曲線S9は、座屈変形のみの場合の曲線S8とほぼ同じ特性となっている。   On the other hand, as can be seen from FIG. 5B, when a variable frequency voltage is applied to the secondary winding, the curve S9 is a curve S7 in a normal state of impedance frequency characteristics in a region of a predetermined high frequency (400 kHz) or more. The characteristics are shifted to the lower frequency side. In this case, the curve S9 has substantially the same characteristics as the curve S8 in the case of only buckling deformation.

従って、変圧器の二次巻線の偏心と座屈変形との複合状態では、一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性が、所定の高周波(50kHz)以上の領域でインピーダンス周波数特性が正常状態の曲線S7や座屈変形のみの場合の曲線S8より低周波側にシフトし、第1共振点Q1と第2共振点Q2との間のインピーダンス値の極小値m1が正常状態のインピーダンス値の極小値m2より大きく、その極小点m1と第2共振点Q2との間のインピーダンス周波数特性が正常状態の曲線S7や座屈変形のみの場合の曲線S8より低周波側にシフトしており、さらに、第2共振点Q2のインピーダンス値が正常状態の曲線S7や座屈変形のみの場合の曲線S8より小さくなっているときは、変圧器の偏心と座屈変形との複合状態であると診断する。   Therefore, in the combined state of the eccentricity and buckling deformation of the secondary winding of the transformer, the impedance frequency characteristic when a variable frequency voltage is applied to the primary winding is an impedance frequency in a region of a predetermined high frequency (50 kHz) or more. The characteristic is shifted to the lower frequency side than the curve S7 in the normal state and the curve S8 in the case of only buckling deformation, and the minimum value m1 of the impedance value between the first resonance point Q1 and the second resonance point Q2 is in the normal state. The impedance frequency characteristic is larger than the minimum value m2 of the impedance value, and the impedance frequency characteristic between the minimum point m1 and the second resonance point Q2 is shifted to a lower frequency side than the curve S7 in the normal state or the curve S8 in the case of only buckling deformation. Furthermore, when the impedance value of the second resonance point Q2 is smaller than the curve S7 in the normal state or the curve S8 in the case of only buckling deformation, the eccentricity and buckling deformation of the transformer It is diagnosed with a focus state.

この場合においても、変圧器の二次巻線の偏心と座屈変形との複合状態の診断の精度を上げるためには、一次巻線に可変周波数電圧を印加したとき及び二次巻線に可変周波数電圧を印加したときの双方の波形で診断するようにしてもよい。   Even in this case, in order to improve the accuracy of diagnosis of the combined state of the eccentricity and buckling deformation of the secondary winding of the transformer, it is possible to apply a variable frequency voltage to the primary winding and to change the secondary winding. You may make it diagnose with both waveforms when a frequency voltage is applied.

次に、図6は二次巻線に軸方向変位がある場合のインピーダンス周波数特性を示す波形図であり、図6(a)は変圧器の二次巻線を短絡接地し一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性図、図6(b)は変圧器の一次巻線を短絡接地し二次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性図である。図6(a)、図6(b)において、曲線S10は正常状態のときの波形、曲線S11は相対的に軸方向変位が小さいときの波形、曲線S12は相対的に軸方向変位が大きいときの波形である。   Next, FIG. 6 is a waveform diagram showing impedance frequency characteristics when the secondary winding has an axial displacement, and FIG. 6A is a short circuit grounding the secondary winding of the transformer and changing it to the primary winding. FIG. 6B is an impedance frequency characteristic diagram when a frequency voltage is applied, and FIG. 6B is an impedance frequency characteristic diagram when a variable frequency voltage is applied to the secondary winding by short-circuiting the primary winding of the transformer. 6 (a) and 6 (b), the curve S10 is a waveform in a normal state, the curve S11 is a waveform when the axial displacement is relatively small, and the curve S12 is when the axial displacement is relatively large. It is a waveform.

図6(a)において、一次巻線に可変周波数電圧を印加したときは、軸方向変位があるとき曲線S11、S12は正常状態の曲線10と比較し、第1共振点Q1と第2共振点Q2との間のインピーダンスの極小値m11、m12が正常状態のインピーダンス周波数特性の極小値m2より大きい。また、極小値m11、m12と第2共振点Qとの間のインピーダンス周波数特性が正常状態のインピーダンス周波数特性より所定周波数幅Δf以上に低周波側にシフトしている。さらには、第6共振点のインピーダンスが正常状態のときの波形より大きくなっている。   6A, when a variable frequency voltage is applied to the primary winding, when there is axial displacement, the curves S11 and S12 are compared with the curve 10 in the normal state, and the first resonance point Q1 and the second resonance point are compared. The minimum values m11 and m12 of the impedance between Q2 are larger than the minimum value m2 of the impedance frequency characteristic in the normal state. Further, the impedance frequency characteristic between the minimum values m11 and m12 and the second resonance point Q is shifted to the low frequency side by a predetermined frequency width Δf or more from the impedance frequency characteristic in the normal state. Furthermore, the impedance at the sixth resonance point is larger than the waveform at the normal state.

一方、図6(b)から分かるように、二次巻線に可変周波数電圧を印加したときは、曲線S10、S11、S12はほぼ同じ特性となり、軸方向変位による周波数特性の変化はほとんどない。従って、変圧器の二次巻線の軸方向変位では、一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性の特徴点から一次巻線と二次巻線との軸方向変位であると診断できる。この場合においても、変圧器の二次巻線の偏心と座屈変形の複合状態の診断の精度を上げるためには、一次巻線に可変周波数電圧を印加したとき及び二次巻線に可変周波数電圧を印加したときの双方の波形で診断するようにしてもよい。   On the other hand, as can be seen from FIG. 6B, when a variable frequency voltage is applied to the secondary winding, the curves S10, S11, and S12 have substantially the same characteristics, and there is almost no change in the frequency characteristics due to axial displacement. Therefore, the axial displacement of the secondary winding of the transformer is the axial displacement of the primary winding and the secondary winding from the characteristic point of the impedance frequency characteristic when a variable frequency voltage is applied to the primary winding. Can be diagnosed. Even in this case, in order to improve the accuracy of the diagnosis of the combined state of the eccentricity and buckling deformation of the secondary winding of the transformer, when the variable frequency voltage is applied to the primary winding and the variable frequency is applied to the secondary winding. You may make it diagnose with both waveforms when a voltage is applied.

次に、図7は二次巻線12に座屈変形と軸方向変位とが発生している場合のインピーダンス周波数特性を示す波形図であり、図7(a)は変圧器の二次巻線を短絡接地し一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性図、図7(b)は変圧器の一次巻線を短絡接地し二次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性図である。図7(a)、図7(b)において、曲線S13は正常状態のときの波形、曲線S14は座屈変形と軸方向変位とが発生しており相対的に軸方向変位が小さい場合の波形、曲線S15は座屈変形と軸方向変位とが発生しており相対的に軸方向変位が大きい場合の波形である。   Next, FIG. 7 is a waveform diagram showing impedance frequency characteristics when buckling deformation and axial displacement occur in the secondary winding 12, and FIG. 7 (a) shows the secondary winding of the transformer. Fig. 7 (b) is a diagram of when the transformer primary winding is shorted to ground and the variable frequency voltage is applied to the secondary winding. It is an impedance frequency characteristic figure. 7A and 7B, a curve S13 is a waveform in a normal state, and a curve S14 is a waveform in a case where buckling deformation and axial displacement occur and the axial displacement is relatively small. Curve S15 is a waveform when buckling deformation and axial displacement occur and the axial displacement is relatively large.

図7(a)において、一次巻線に可変周波数電圧を印加したときは、所定の高周波範囲50kHz〜70kHzと、第6共振点〜700kHzとの間でのインピーダンス周波数特性に着目する。すなわち、まず、所定の高周波範囲(50kHz〜70kHz)において、曲線S14、S15の第1共振点Q1と第2共振点Q2との間の極小値(最初の極小値)mと、第2共振点Q2との間のインピーダンス周波数特性に着目する。すなわち、最初の極小値mと第2共振点Q2との間のインピーダンス周波数特性は、曲線S14、S15は正常状態の曲線S13より低周波側にシフトし、第2共振点Q2より高周波域では正常状態の曲線S13より低周波側にシフトしている。また、第6共振点〜700kHzとの間において、第6共振点Q6のインピーダンス値が所定値以上となっている。一方、図7(b)から分かるように、二次巻線に可変周波数電圧を印加したときは、図5(b)に示したように、座屈変形の場合、偏心と座屈変形との複合状態の場合のインピーダンス周波数特性とほぼ同様な特性が得られる。   In FIG. 7A, when a variable frequency voltage is applied to the primary winding, attention is focused on impedance frequency characteristics between a predetermined high frequency range of 50 kHz to 70 kHz and a sixth resonance point to 700 kHz. That is, first, in a predetermined high frequency range (50 kHz to 70 kHz), a minimum value (first minimum value) m between the first resonance point Q1 and the second resonance point Q2 of the curves S14 and S15, and a second resonance point. Pay attention to the impedance frequency characteristics between Q2. That is, the impedance frequency characteristic between the first minimum value m and the second resonance point Q2 is such that the curves S14 and S15 are shifted to the lower frequency side than the curve S13 in the normal state, and normal in the high frequency range from the second resonance point Q2. The state is shifted to the low frequency side from the curve S13. Further, between the sixth resonance point and 700 kHz, the impedance value of the sixth resonance point Q6 is a predetermined value or more. On the other hand, as can be seen from FIG. 7B, when a variable frequency voltage is applied to the secondary winding, as shown in FIG. A characteristic almost similar to the impedance frequency characteristic in the composite state can be obtained.

従って、座屈変形と軸方向変位との複合状態では、一次巻線に可変周波数電圧を印加したときの最初の極小値mと第2共振点との間のインピーダンス周波数特性が軸方向変位状態のインピーダンス周波数特性より高周波側にシフトし、第6共振点のインピーダンスが所定値以上のときは、座屈変形と軸方向変位との複合状態であると診断できる。   Therefore, in the combined state of buckling deformation and axial displacement, the impedance frequency characteristic between the first minimum value m when the variable frequency voltage is applied to the primary winding and the second resonance point is in the axially displaced state. When the impedance frequency characteristic shifts to a higher frequency side and the impedance at the sixth resonance point is equal to or greater than a predetermined value, it can be diagnosed that the state is a combination of buckling deformation and axial displacement.

この場合においても、変圧器の二次巻線の座屈変形と軸方向変位の複合状態の診断の精度を上げるためには、一次巻線に可変周波数電圧を印加したとき及び二次巻線に可変周波数電圧を印加したときの双方の波形で診断するようにしてもよい。   Even in this case, in order to improve the accuracy of the diagnosis of the combined state of buckling deformation and axial displacement of the secondary winding of the transformer, the variable frequency voltage is applied to the primary winding and to the secondary winding. You may make it diagnose with both waveforms when a variable frequency voltage is applied.

本発明の実施の形態によれば、変圧器の一次巻線または二次巻線のいずれか一方を短絡接地し、短絡接地した反対側の巻線に可変周波数電圧を印加し、巻線に流れる電流を測定して可変周波数電圧を電流で除算してインピーダンスを求め、そのインピーダンス周波数特性の波形の特徴を調べる。そして、その波形の特徴から、変圧器の一次巻線と二次巻線との偏心、二次巻線の座屈変形、偏心と座屈変形との複合状態、一次巻線と二次巻線との軸方向変位、座屈変形と軸方向変位との複合状態のいずれであるかを診断するので、変圧器の内部開放点検を行うことなく、巻線の微少変形を詳細に判断できる。   According to the embodiment of the present invention, either the primary winding or the secondary winding of the transformer is short-circuited to ground, the variable frequency voltage is applied to the opposite-side winding that is short-circuited, and flows to the winding. The current is measured, the variable frequency voltage is divided by the current to obtain the impedance, and the waveform characteristic of the impedance frequency characteristic is examined. And from the characteristics of the waveform, the eccentricity of the primary and secondary windings of the transformer, the buckling deformation of the secondary winding, the combined state of the eccentricity and buckling deformation, the primary and secondary windings Therefore, it is possible to determine in detail the minute deformation of the winding without checking the internal opening of the transformer.

11…一次巻線、12…二次巻線、13…座屈変形部 11 ... Primary winding, 12 ... Secondary winding, 13 ... Buckling deformation part

Claims (6)

変圧器の一次巻線または二次巻線のいずれか一方を短絡接地し、短絡接地した反対側の巻線に可変周波数電圧を印加し、前記巻線に流れる電流を測定し、前記可変周波数電圧を電流で除算してインピーダンスを求め、前記インピーダンス周波数特性に基づいて変圧器の一次巻線と二次巻線との偏心、二次巻線の座屈変形、前記偏心と前記座屈変形との複合状態、一次巻線と二次巻線との軸方向変位、前記座屈変形と前記軸方向変位との複合状態のいずれであるかを診断することを特徴とする変圧器の内部診断方法。 Either one of the primary winding or secondary winding of the transformer is short-circuited to ground, a variable frequency voltage is applied to the opposite winding short-circuited to ground, the current flowing through the winding is measured, and the variable frequency voltage is measured. The current is divided by the current to obtain the impedance, and based on the impedance frequency characteristics, the eccentricity of the primary and secondary windings of the transformer, the buckling deformation of the secondary winding, the eccentricity and the buckling deformation An internal diagnosis method for a transformer characterized by diagnosing a composite state, an axial displacement of a primary winding and a secondary winding, or a composite state of the buckling deformation and the axial displacement. 前記変圧器の二次巻線を短絡接地し、前記一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性において、インピーダンス周波数特性の第1共振点が正常状態のインピーダンス周波数特性より高周波側にシフトし、第1共振点より高い周波数領域のインピーダンス周波数特性が正常状態のインピーダンス周波数特性より低周波側にシフトしたときは、前記変圧器の一次巻線と二次巻線との偏心であると診断することを特徴とする請求項1に記載の変圧器の内部診断方法。 In the impedance frequency characteristic when the secondary winding of the transformer is short-circuited and a variable frequency voltage is applied to the primary winding, the first resonance point of the impedance frequency characteristic is on the higher frequency side than the impedance frequency characteristic in a normal state. When the impedance frequency characteristic of the frequency region higher than the first resonance point is shifted to a lower frequency side than the impedance frequency characteristic in the normal state, the primary winding and the secondary winding of the transformer are eccentric. The internal diagnosis method for a transformer according to claim 1, wherein diagnosis is performed. 前記変圧器の二次巻線を短絡接地し、前記一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性において、所定の高周波以上の領域でインピーダンス周波数特性が正常状態のインピーダンス周波数特性より低周波側にシフトしたとき、かつ、前記変圧器の一次巻線を短絡接地し、前記二次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性において、所定の高周波以上の領域でインピーダンス周波数特性が正常状態のインピーダンス周波数特性より低周波側にシフトしたときは、前記変圧器の二次巻線の座屈変形であると診断することを特徴とする請求項1に記載の変圧器の内部診断方法。 In the impedance frequency characteristic when the secondary winding of the transformer is short-circuited to ground and a variable frequency voltage is applied to the primary winding, the impedance frequency characteristic is lower than the impedance frequency characteristic in a normal state in a region above a predetermined high frequency. In the impedance frequency characteristic when shifted to the frequency side, and when the primary winding of the transformer is short-circuited to ground and the variable frequency voltage is applied to the secondary winding, the impedance frequency characteristic in a region above a predetermined high frequency 2. The internal diagnosis of a transformer according to claim 1, wherein when the voltage is shifted to a lower frequency side than the impedance frequency characteristic in a normal state, it is diagnosed as buckling deformation of the secondary winding of the transformer. Method. 前記変圧器の二次巻線を短絡接地し、前記一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性において、所定の高周波以上の領域でインピーダンス周波数特性が正常状態のインピーダンス周波数特性より低周波側にシフトし、第1共振点と第2共振点との間のインピーダンスの極小値が正常状態のインピーダンス周波数特性の極小値より大きく、前記極小値と第2共振点との間のインピーダンス周波数特性が正常状態のインピーダンス周波数特性より低周波側にシフトし、第2共振点のインピーダンス値が正常状態のインピーダンス周波数特性のインピーダンス値より小さいときは、前記偏心と前記座屈変形との複合状態であると診断することを特徴とする請求項1に記載の変圧器の内部診断方法。 In the impedance frequency characteristic when the secondary winding of the transformer is short-circuited to ground and a variable frequency voltage is applied to the primary winding, the impedance frequency characteristic is lower than the impedance frequency characteristic in a normal state in a region above a predetermined high frequency. The minimum value of impedance between the first resonance point and the second resonance point is larger than the minimum value of the impedance frequency characteristic in the normal state, and the impedance frequency between the minimum value and the second resonance point is shifted to the frequency side. When the characteristic shifts to a lower frequency side than the impedance frequency characteristic in the normal state and the impedance value of the second resonance point is smaller than the impedance value of the impedance frequency characteristic in the normal state, the combined state of the eccentricity and the buckling deformation The internal diagnosis method for a transformer according to claim 1, wherein diagnosis is performed. 前記変圧器の二次巻線を短絡接地し、前記一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性において、第1共振点と第2共振点との間のインピーダンスの極小値が正常状態のインピーダンス周波数特性の極小値より大きく、前記極小値と第2共振点との間のインピーダンス周波数特性が正常状態のインピーダンス周波数特性より所定周波数幅以上に低周波側にシフトし、第6共振点のインピーダンスが所定値以上のときは、一次巻線と二次巻線との軸方向変位であると診断することを特徴とする請求項1に記載の変圧器内部診断方法。 The impedance minimum value between the first resonance point and the second resonance point is normal in the impedance frequency characteristics when the secondary winding of the transformer is shorted to ground and a variable frequency voltage is applied to the primary winding. The impedance frequency characteristic is larger than the minimum value of the impedance frequency characteristic in the state, and the impedance frequency characteristic between the minimum value and the second resonance point is shifted to the lower frequency side by a predetermined frequency width or more than the impedance frequency characteristic in the normal state. 2. The transformer internal diagnosis method according to claim 1, wherein when the impedance of the transformer is greater than or equal to a predetermined value, the axial displacement between the primary winding and the secondary winding is diagnosed. 前記変圧器の二次巻線を短絡接地し、前記一次巻線に可変周波数電圧を印加したときのインピーダンス周波数特性において、第1共振点と第2共振点との間のインピーダンスの記極小値と第2共振点との間のインピーダンス周波数特性が正常状態のインピーダンス周波数特性より低周波側にシフトし、第2共振点より高周波域では正常状態のインピーダンス周波数特性より低周波側にシフトし、第6共振点のインピーダンスが所定値以上のときは、前記座屈変形と前記軸方向変位との複合状態であると診断することを特徴とする請求項1に記載の変圧器内部診断方法。 In the impedance frequency characteristic when the secondary winding of the transformer is short-circuited to ground and a variable frequency voltage is applied to the primary winding, a minimum value of the impedance between the first resonance point and the second resonance point; The impedance frequency characteristic between the second resonance point shifts to a lower frequency side than the impedance frequency characteristic in a normal state, shifts to a lower frequency side than the impedance frequency characteristic in a normal state in a high frequency region from the second resonance point, 2. The transformer internal diagnosis method according to claim 1, wherein when the impedance at the resonance point is equal to or greater than a predetermined value, diagnosis is made as a composite state of the buckling deformation and the axial displacement.
JP2009078241A 2009-03-27 2009-03-27 Internal diagnosis method of transformer Active JP5407480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009078241A JP5407480B2 (en) 2009-03-27 2009-03-27 Internal diagnosis method of transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009078241A JP5407480B2 (en) 2009-03-27 2009-03-27 Internal diagnosis method of transformer

Publications (2)

Publication Number Publication Date
JP2010230479A JP2010230479A (en) 2010-10-14
JP5407480B2 true JP5407480B2 (en) 2014-02-05

Family

ID=43046458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009078241A Active JP5407480B2 (en) 2009-03-27 2009-03-27 Internal diagnosis method of transformer

Country Status (1)

Country Link
JP (1) JP5407480B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108459229A (en) * 2018-01-15 2018-08-28 云南电网有限责任公司电力科学研究院 A kind of oscillation wave detection transformer angle scheme winding deformation circuit and method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361238B (en) * 2011-08-17 2015-02-18 岭澳核电有限公司 Cover opening overhaul method for 500KV transformer in 1000MW nuclear power station
CN102662113B (en) * 2012-04-17 2014-06-11 国网电力科学研究院 Comprehensive diagnosis method of oil-immersed transformer based on fault tree
US10203364B2 (en) * 2017-02-17 2019-02-12 Doble Engineering Company System and method for performing transformer diagnostics
CN107015077A (en) * 2017-02-23 2017-08-04 广西电网有限责任公司电力科学研究院 A kind of deformation of transformer winding analogue means
JP7191526B2 (en) * 2018-03-08 2022-12-19 東日本旅客鉄道株式会社 Accelerated Aging Test Apparatus and Test Method for Transformer
JP7156939B2 (en) * 2018-12-28 2022-10-19 一般財団法人電力中央研究所 TRANSFORMER EVALUATION DEVICE AND TRANSFORMER EVALUATION METHOD
CN111208374A (en) * 2020-02-28 2020-05-29 中国电力科学研究院有限公司 Device and method for injecting sinusoidal excitation signal into transformer winding
CN112684273B (en) * 2021-01-06 2023-08-29 国核电力规划设计研究院重庆有限公司 Grounding current diversion method for grounding short-circuit fault of 110kV full-cable outlet transformer substation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004251763A (en) * 2003-02-20 2004-09-09 Japan Ae Power Systems Corp Interior diagnostic device for transformer
JP2009025153A (en) * 2007-07-19 2009-02-05 Central Res Inst Of Electric Power Ind Method for identifying abnormal condition of transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108459229A (en) * 2018-01-15 2018-08-28 云南电网有限责任公司电力科学研究院 A kind of oscillation wave detection transformer angle scheme winding deformation circuit and method

Also Published As

Publication number Publication date
JP2010230479A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5407480B2 (en) Internal diagnosis method of transformer
US20120130663A1 (en) On-line diagnostic method for health monitoring of a transformer
Bagheri et al. Advanced transformer winding deformation diagnosis: moving from off-line to on-line
Samimi et al. Improving the numerical indices proposed for the FRA interpretation by including the phase response
JP2009025153A (en) Method for identifying abnormal condition of transformer
Liu et al. Diagnosis of transformer winding faults based on FEM simulation and on-site experiments
Gutten et al. Maintenance diagnostics of transformers considering the influence of short-circuit currents during operation
CN102016613A (en) Determining degraded insulating ability in an inductively operating element
JP5456582B2 (en) Transformer soundness diagnosis method, soundness diagnosis device, and soundness diagnosis program
JP2011253885A (en) Transformer health diagnosis method, health diagnosis device and health diagnosis program
Firoozi et al. Transformer fault diagnosis using frequency response analysis-practical studies
Miyazaki et al. Diagnosis criterion of abnormality of transformer winding by frequency response analysis (FRA)
Shaban et al. Modeling, simulation and classification of power transformer faults based on FRA test
Abu-Siada High frequency transformer modelling using state space representation for FRA studies
Sharma et al. Development of reference SFRA plot of transformer at design stage using high frequency modelling
Pollak The use of DC current to testing condition of the insulation of electrical machines
JP6164022B2 (en) Interlayer insulation diagnosis method for winding equipment
RU2495445C2 (en) Determination of deteriorated insulating property in insulation between two members of inductive operating component
CN100447575C (en) Method for identifying abnormal condition in power transformer
Samimi et al. Using the complex values of the frequency response to improve power transformer diagnostics
RÄDLER et al. Performing reliable and reproducible frequency response measurements on power transformers
Tahir et al. Novel calculation method for power transformer winding fault detection using Frequency Response Analysis
Sano et al. Experimental investigation on FRA diagnosis of transformer faults
Miyazaki et al. Sensitivity of connection schemes for detection of axial displacement of transformer winding by frequency response analysis
Masoum et al. Finite element performance evaluation of online transformer internal fault detection based on instantaneous voltage and current measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5407480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350