JP2004251763A - Interior diagnostic device for transformer - Google Patents

Interior diagnostic device for transformer Download PDF

Info

Publication number
JP2004251763A
JP2004251763A JP2003042542A JP2003042542A JP2004251763A JP 2004251763 A JP2004251763 A JP 2004251763A JP 2003042542 A JP2003042542 A JP 2003042542A JP 2003042542 A JP2003042542 A JP 2003042542A JP 2004251763 A JP2004251763 A JP 2004251763A
Authority
JP
Japan
Prior art keywords
transformer
frequency
signal
determination
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003042542A
Other languages
Japanese (ja)
Inventor
Sei Wakimoto
聖 脇本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan AE Power Systems Corp
Original Assignee
Japan AE Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan AE Power Systems Corp filed Critical Japan AE Power Systems Corp
Priority to JP2003042542A priority Critical patent/JP2004251763A/en
Publication of JP2004251763A publication Critical patent/JP2004251763A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To monitor the diagnostic state (alteration, disconnection, short circuit etc.,) in a transformer from outside. <P>SOLUTION: The transformer body 11 is provided with a bushing 13 via a bushing pocket 12, and in the bushing pocket 12 a transformer 15 for connecting an oscillator and a transformer 16 for current measurement are disposed. A transformer 14 is inputted with a high frequency signal from a frequency variable oscillator 19, the signal of which is outputted from the transformer 16 as a value of the current measurement. The outputted current value and the voltage of a line lead 21 are inputted to a frequency analyzer 20. By the frequency analyzer 20, the state in the transformer (abnormal level such as alteration, deformation, disconnection, short circuit) is compared with the difference between the predetermined state (normal level), determined and recorded by a determination/record device 23, thereafter if the state reaches the abnormal level, a warning device 24 is informed of it so as to give an alarm informing the abnormality state in the transformer. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、変圧器内部異常診断技術(油入変圧器の油中ガス分析等)と併用して、より多くの変圧器内部の情報(例えば、巻線のインピーダンス−周波数特性の変化等)を外部から検知可能にした変圧器内部診断装置に関するものである。
【0002】
【従来の技術】
高度成長期に大量生産され、設置された大容量変圧器が、20年を越え始め、これらの変圧器を更に長期間安全に使用していくことが求められるようになってきている。このような状況下において、稼動中の変圧器を高度かつ確実に診断し、変圧器の劣化診断と耐久性の判定を実施することが要望されている。この実施のために、現在、油入変圧器の油中ガス分析やガス絶縁変圧器のガス分析が行なわれている。この分析においては、変圧器の内部点検・解体調査を行なうことなく、変圧器の不具合箇所をある程度特定あるいは限定できる。
【0003】
上記診断方法は、油入変圧器の場合には油中ガス分析により、また、ガス絶縁変圧器の場合にはガス分析に基づいて、変圧器内部異常判定の診断が行なわれている。
【0004】
上記方法として、ガス分析によって検出される分析対象成分から不具合様相を診断(ガスパターン、組成比、特定ガスによる診断)して、不具合箇所を推定し、必要に応じて変圧器の運転停止を行なうようにしている。
【0005】
運転停止後、変圧器の電気的試験(絶縁抵抗測定、変圧比試験、低圧励磁電流測定、巻線抵抗測定、インピーダンス試験等)を実施して最終的に変圧器内部異常判定を診断し、運転継続の可否および内部点検の必要性や方法を決定する手段を採用している(例えば、非特許文献1、非特許文献2参照)。
【0006】
【非特許文献1】
電気協同研究 第54巻 第5号(その1)油入変圧器の保守管理
【0007】
【非特許文献2】
電気協同研究 第54巻 第5号(その2)ガス絶縁変圧器の保守管理
【0008】
【発明が解決しようとする課題】
上記ガス分析技術は簡便、安価な面からは非常に優れた変圧器内部異常診断方法であり、解離・酸化・加水分解等による絶縁物の変質およびその進行状況を変圧器タンク内全体として評価することができる。
【0009】
しかし、その反面、変圧器の不具合部位および現象(例えば、主回路を構成する巻線の変形や絶縁物の損傷、シールドの接地線断線による電位の浮遊、あるいは、構造物の絶縁が損なわれ主磁束と鎖交する閉回路を形成等)については、ガス発生状況との間に因果関係はあるものの、当該部位の状態を直接調べているわけではない(あくまでもタンク内平均としてのガス分析に基づいて評価する)ために不明な点も多く例外もある。
【0010】
従って、上述したガス分析によって変圧器内部の不具合部位が、全て判明するのであれば、それで充分であるが、上述のように不明な部位があると、変圧器内部の不具合部位を変圧器の外部からは明確に特定できない欠点がある。このため、近年、変圧器内部の異常診断が外部から容易に判明できる情報の収集が要望されている。
【0011】
本発明は、上記の事情に鑑みてなされたもので、運転中の変圧器巻線に高周波信号を入力し、その応答を観測することで外部から変圧器内部の診断状況を監視できるようにした変圧器内部診断装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、上記の目的を達成するために、第1発明は、変圧器巻線に高周波信号または系統内のサージを入力し、その信号またはサージの応答状況を外部に設けた観測手段で観測して、予め設定した応答状況レベルに達したかを判断し、その判断の結果から変圧器内部の良否状況を診断することを特徴とするものである。
【0013】
第2発明は、前記観測手段が、高周波信号またはサージによる変圧器内部からの応答信号を分析する周波数分析器と、この分析器による分析結果から変圧器内部の良否を判定する判定装置と、この判定装置からの判定結果を報知する手段とからなることを特徴とするものである。
【0014】
第3発明は、前記高周波信号が、周波数可変発振器から発振して変圧器のラインリードに入力することを特徴とするものである。
【0015】
第4発明は、前記変圧器内部の良否状況の診断が、変圧器巻線のインピーダンス−周波数特性の分析から判定することを特徴とするものである。
【0016】
【発明の実施の形態】
以下本発明の実施の形態を図面に基づいて説明する。図1は本発明の実施の第1形態を示す概略構成図で、変圧器本体11にはブッシングポケット12を介してブッシング13が設置されている。ブッシングポケット12内の例えばコンデンサコア14には、貫通型の発振器接続用変成器15と電流測定用の変成器16を設ける。
【0017】
両変成器15,16に接続する接続線路17,18はブッシングポケット12内部から外部に引き出されて周波数可変発振器19と周波数分析器20に接続される。周波数分析器20には、上記変成器16から電流測定値が入力されるとともに、ブッシング13を介して電力系統に接続されるラインリード21の電圧測定値が入力される。なお、ラインリード21に測定用の高周波信号が漏れて電力の質を低下させないように、低域通過フィルタ22が介挿されている。また、上記高周波信号は、変圧器のラインリード21から入力しても良い。
【0018】
上記周波数分析器20による分析結果は、判定・記録装置23に入力され、ここで、変圧器内部の状況(変質、変形、断線、短絡等の異常レベル)が予め設定された状況(正常レベル)との差が比較されて判定され、記録される。
【0019】
判定・記録装置23による判定の結果、異常レベルに達していたなら警報装置24に報知して変圧器内部状況が異常である警報を出す。
【0020】
上記測定において、絶縁変圧器、分圧器、分流器や保護装置等を必要に応じて設けても良い。また、低域通過フィルタ22の定数の値は、変圧器巻線、ブッシングやサージアブソーバ等との関係を考慮して決定する。さらに、電流測定用の変成器16は、高周波電流を精度良く測定するために、高周波領域の制度が良く広帯域のものを使用する。なお、変成器16は、測定状況に応じて、通常(50Hzなどの従来型)の変流器とは、別に高周波用の変流器を用いるか共通にするかを決定する。上記の構成は変圧器巻線の各相に設置する。例えば、変圧器巻線の1次側にも上記構成を設ける。
【0021】
次に実施の形態の作用を述べるに当たり、変圧器は複雑なR,L,C,Mの回路網として考えられているから、これら個々の回路定数の値および分布は、変圧器を構成する材料と幾何学的形状により決定される。このため、変圧器内部の変質、変形、断線、短絡(接触)等の異常が発生し、回路定数が変化した場合には、その影響を受ける巻線のインピーダンスの周波数特性(波形)が変化することになる。そこで、この波形変化量が設定した限界値以上のレベルであれば、変圧器内部に異変があったとして察知することができる。
【0022】
上記のことを鑑み図1のように構成した装置により、運転中の変圧器の各相各巻線のインピーダンス−周波数特性を監視すれば、変圧器の異変を察知できることになる。
【0023】
まず、運転中の変圧器巻線に対して、周波数可変型の発振器19から高周波信号を変成器15に入力(周波数掃引)する。図2は商用周波数aに測定用の高周波信号bを重畳したときの様子を示す波形図である。
【0024】
高周波信号は変成器16で電流信号として検出されて周波数分析器20に入力される。周波数分析器20には、系統側から電圧信号が入力され、周波数分析器20で電圧/電流からインピーダンスが得られる。周波数分析器20では、さらに周波数特性も分析されるために、変圧器巻線のインピーダンス−周波数特性が得られる。
【0025】
このインピーダンス−周波数特性が予め設定された正常時のレベルと比較され、そのレベル以上に達したなら判定・記録装置23から警報装置24を介して警報を発する。これにより、変圧器内部の状況を監視することができる。
【0026】
上記の構成による変圧器内部の状況は、変圧器が設置されてある現地で行なわれて記録されるが、LAN、インターネット等の通信設備を負荷して現地測定監視だけでなく、遠隔測定監視も可能である。
【0027】
また、負荷時タップ切換装置(LTC)と連動させることにより、タップ位置に合せた測定や切換動作中を避ける測定(例えば、毎日1回、最高タップ切換後に測定するような、単純な時間依存ではないスケジュール設定)が可能となる。
【0028】
さらに、変圧器単体ではなく系統と連動させることにより、負荷の状態に応じた測定、当該変圧器が接続されている系統で発生した事故・災害による影響調査のための測定、異常が検出された場合の遮断器・開閉器の動作等が瞬時に行なうことができ、系統としての予防保全に効果的である。
【0029】
上記の他に、図1に示した測定信号の入出力には、ブッシングポケット12内に入出力コイルとして変成器15,16を用いたものであるが、この信号の入出力にブッシング13のコンデンサ分圧により実現するように構成した実施の形態を用いても良い。
【0030】
さらにこの他に、ブッシングポケット12内に測定信号の入出力としてコイルを設ける場合や、ブッシングのコンデンサ分圧端子を用いて信号の入出力を行なう場合には、測定点がブッシングの数に限定されてしまう。しかし、変圧器のタップ切換器(LTC)には、もともとブッシングの数よりも多くの端子が付いている。従って、その端子を用いて測定点を増加させることにより、より詳細な診断のためのデータを取得することができる。
【0031】
例えば、タップの付いた巻線のタップのない部分(主巻線)のみ、粗タップ巻線のみ、密タップ巻線のみ、あるいは、密タップ巻線の中でも特定のタップのない間といったように、測定の対象とする部分を限定・細分化することが可能となる。
【0032】
図3は本発明の実施の第2形態を示す概略構成図で、この第2形態は、系統内例えば変電所30で発生するサージにより第1形態で用いた発振器からの高周波信号の代用とするものである。例えば、変電所30内でサージが発生したとき、トリガをかけ、サージを変圧器31に入力してその応答を測定する。
【0033】
この測定には、周波数分析器20にFFT処理回路を備えた処理部を付加し、変圧器巻線の周波数伝達関数を求めて、これを各相各巻線について健全状態と比較することにより、異常の判定を行なうようにしたものである。
【0034】
なお、32は開閉器、33は負荷時タップ切換器、34は監視制御室であり、監視制御室34と判定・記録装置23は、LANやインターネット等で接続される。その他の構成、作用は第1形態と同様である。
【0035】
【発明の効果】
以上述べたように、本発明によれば、運転中の変圧器巻線に高周波信号あるいはサージを入力し、その応答を観測することで外部から変圧器内部の診断状況を監視できる利点がある。
【図面の簡単な説明】
【図1】本発明の実施の第1形態を示す概略構成図。
【図2】作用を述べるための波形図。
【図3】本発明の実施の第2形態を示す概略構成図。
【符号の説明】
11…変圧器本体
12…ブッシングポケット
13…ブッシング
15…発振器接続用変成器
16…高周波用変成器
19…周波数可変型発振器
20…周波数分析器
22…低域通過フィルタ
23…判定・記録装置
24…警報装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention uses more transformer internal information (for example, changes in impedance-frequency characteristics of windings, etc.) in combination with transformer internal abnormality diagnosis technology (oil-in-oil transformer gas analysis, etc.). The present invention relates to a transformer internal diagnosis device that can be detected from outside.
[0002]
[Prior art]
Large-capacity transformers that are mass-produced and installed during the high growth period have begun to exceed 20 years, and it has been required to use these transformers safely for a longer period of time. Under such circumstances, there is a demand for an advanced and reliable diagnosis of an operating transformer, and for performing a deterioration diagnosis and a determination of durability of the transformer. For this purpose, gas analysis of oil-immersed transformers and gas analysis of gas-insulated transformers are currently being performed. In this analysis, a defective portion of the transformer can be specified or limited to some extent without performing an internal inspection and dismantling inspection of the transformer.
[0003]
In the above-described diagnosis method, the diagnosis of the internal abnormality of the transformer is diagnosed based on the gas-in-oil analysis in the case of the oil-immersed transformer and the gas analysis in the case of the gas-insulated transformer.
[0004]
As the above method, a failure aspect is diagnosed (diagnosis based on a gas pattern, a composition ratio, and a specific gas) from an analysis target component detected by gas analysis, a failure location is estimated, and operation of the transformer is stopped as necessary. Like that.
[0005]
After the operation is stopped, electrical tests of the transformer (insulation resistance measurement, transformation ratio test, low-voltage excitation current measurement, winding resistance measurement, impedance test, etc.) are performed, and finally, the internal abnormality judgment of the transformer is diagnosed and operated. Means for determining whether or not to continue and the necessity and method of internal inspection are adopted (for example, see Non-Patent Documents 1 and 2).
[0006]
[Non-patent document 1]
Electric Cooperative Research Vol. 54 No. 5 (Part 1) Maintenance of Oil-filled Transformer
[Non-patent document 2]
Electric Cooperative Research Vol. 54 No. 5 (Part 2) Maintenance Management of Gas Insulated Transformer
[Problems to be solved by the invention]
The above gas analysis technology is a simple and inexpensive method for diagnosing abnormalities inside a transformer, which is extremely excellent, and evaluates the deterioration of insulators due to dissociation, oxidation, hydrolysis, etc. and its progress as a whole in the transformer tank. be able to.
[0009]
However, on the other hand, defective parts and phenomena of the transformer (for example, deformation of windings constituting the main circuit, damage to insulators, floating of potential due to disconnection of the ground wire of the shield, or loss of insulation of the structure, Although there is a causal relationship with the gas generation status for the formation of a closed circuit that links with magnetic flux, the state of the relevant part is not directly investigated (only based on gas analysis as an average in the tank). There are many exceptions and exceptions.
[0010]
Therefore, it is sufficient if all the faulty parts inside the transformer are identified by the above-mentioned gas analysis. However, if there is an unclear part as described above, the faulty part inside the transformer is determined outside the transformer. Has a disadvantage that cannot be clearly identified. For this reason, in recent years, there has been a demand for the collection of information that allows the abnormality diagnosis inside the transformer to be easily found from outside.
[0011]
The present invention has been made in view of the above circumstances, and has been made capable of externally monitoring a diagnostic state inside a transformer by inputting a high-frequency signal to a transformer winding during operation and observing the response. An object of the present invention is to provide a transformer internal diagnosis device.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, a first aspect of the present invention is to input a high-frequency signal or a surge in the system to a transformer winding and observe the response state of the signal or the surge by an externally provided observation means. Then, it is determined whether or not a predetermined response status level has been reached, and the quality of the inside of the transformer is diagnosed based on the result of the determination.
[0013]
A second invention is a frequency analyzer for analyzing the response signal from the inside of the transformer due to a high-frequency signal or a surge, the observation means, a determination device for judging pass / fail inside the transformer from an analysis result by the analyzer, And means for notifying the determination result from the determination device.
[0014]
A third invention is characterized in that the high frequency signal oscillates from a variable frequency oscillator and is input to a line lead of a transformer.
[0015]
According to a fourth aspect of the present invention, the diagnosis of the quality of the inside of the transformer is made by analyzing the impedance-frequency characteristic of the transformer winding.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention. A bushing 13 is installed on a transformer body 11 via a bushing pocket 12. In the capacitor core 14 in the bushing pocket 12, for example, a through-type oscillator connecting transformer 15 and a current measuring transformer 16 are provided.
[0017]
The connection lines 17 and 18 connected to the transformers 15 and 16 are drawn out of the bushing pocket 12 to the outside, and are connected to the variable frequency oscillator 19 and the frequency analyzer 20. The frequency analyzer 20 receives the current measurement value from the transformer 16 and the voltage measurement value of the line lead 21 connected to the power system via the bushing 13. Note that a low-pass filter 22 is interposed so that a high-frequency signal for measurement does not leak to the line lead 21 and deteriorate the quality of power. Further, the high frequency signal may be input from the line lead 21 of the transformer.
[0018]
The analysis result by the frequency analyzer 20 is input to the determination / recording device 23, where the situation inside the transformer (abnormal level such as deterioration, deformation, disconnection, short circuit, etc.) is set in advance (normal level). Are compared and determined and recorded.
[0019]
As a result of the determination by the determination / recording device 23, if the abnormal level has been reached, the alarm device 24 is notified and an alarm is issued that the internal condition of the transformer is abnormal.
[0020]
In the above measurement, an insulation transformer, a voltage divider, a current divider, a protection device, and the like may be provided as necessary. The value of the constant of the low-pass filter 22 is determined in consideration of the relationship with the transformer winding, the bushing, the surge absorber, and the like. Further, in order to accurately measure the high-frequency current, the transformer 16 for current measurement uses a transformer having a high frequency range and a wide band. The transformer 16 determines whether to use a high-frequency current transformer or a common current transformer in addition to a normal (conventional type such as 50 Hz) current transformer according to the measurement situation. The above configuration is installed in each phase of the transformer winding. For example, the above configuration is also provided on the primary side of the transformer winding.
[0021]
Next, in describing the operation of the embodiment, since the transformer is considered as a complex network of R, L, C, and M, the values and distributions of these individual circuit constants are determined by the materials constituting the transformer. And the geometric shape. Therefore, when abnormalities such as alteration, deformation, disconnection, and short circuit (contact) occur inside the transformer and the circuit constant changes, the frequency characteristics (waveform) of the impedance of the winding affected by the change change. Will be. If the waveform change level is equal to or higher than the set limit value, it can be detected that there is an abnormal change inside the transformer.
[0022]
In view of the above, by monitoring the impedance-frequency characteristics of each winding of each phase of the transformer during operation by the apparatus configured as shown in FIG. 1, it is possible to detect an abnormal change in the transformer.
[0023]
First, a high-frequency signal is input (frequency sweep) to the transformer 15 from the variable frequency oscillator 19 to the transformer winding in operation. FIG. 2 is a waveform diagram showing a state when a high-frequency signal b for measurement is superimposed on a commercial frequency a.
[0024]
The high frequency signal is detected as a current signal by the transformer 16 and input to the frequency analyzer 20. A voltage signal is input to the frequency analyzer 20 from the system side, and the frequency analyzer 20 obtains impedance from voltage / current. In the frequency analyzer 20, the frequency characteristic is further analyzed, so that the impedance-frequency characteristic of the transformer winding is obtained.
[0025]
This impedance-frequency characteristic is compared with a preset normal level, and when the level exceeds the level, an alarm is issued from the determination / recording device 23 via the alarm device 24. Thereby, the condition inside the transformer can be monitored.
[0026]
The situation inside the transformer according to the above configuration is performed and recorded at the site where the transformer is installed. However, not only on-site measurement monitoring but also remote measurement monitoring is performed by loading communication equipment such as LAN and Internet. It is possible.
[0027]
In addition, by linking with a tap change device under load (LTC), measurement in accordance with the tap position or measurement to avoid the switching operation (for example, simple time dependence such as measurement once a day after the highest tap change). Schedule setting).
[0028]
Furthermore, by linking with the grid instead of the transformer alone, measurement according to the load status, measurement for investigating the impact of an accident or disaster that occurred on the grid to which the transformer was connected, and abnormalities were detected. The operation of the circuit breaker / switch in the case can be performed instantaneously, which is effective for preventive maintenance as a system.
[0029]
In addition to the above, transformers 15 and 16 are used as input and output coils in the bushing pocket 12 for input and output of the measurement signal shown in FIG. An embodiment configured to be realized by partial pressure may be used.
[0030]
In addition, when a coil is provided as an input / output of a measurement signal in the bushing pocket 12 or a signal is input / output using a capacitor voltage dividing terminal of the bushing, the number of measurement points is limited to the number of bushings. Would. However, the transformer tap changer (LTC) originally has more terminals than bushings. Therefore, by increasing the number of measurement points using the terminal, more detailed data for diagnosis can be obtained.
[0031]
For example, only the non-tap portion of the tapped winding (main winding), only the coarse tap winding, only the fine tap winding, or even a specific tap winding without a specific tap. The portion to be measured can be limited and subdivided.
[0032]
FIG. 3 is a schematic configuration diagram showing a second embodiment of the present invention. This second embodiment is used as a substitute for a high-frequency signal from the oscillator used in the first embodiment due to a surge generated in, for example, a substation 30 in a system. Things. For example, when a surge occurs in the substation 30, a trigger is activated, the surge is input to the transformer 31, and the response is measured.
[0033]
For this measurement, a processing unit having an FFT processing circuit is added to the frequency analyzer 20 to determine the frequency transfer function of the transformer winding, and to compare this with the sound state of each winding of each phase, Is determined.
[0034]
In addition, 32 is a switch, 33 is a load tap changer, 34 is a monitoring control room, and the monitoring control room 34 and the determination / recording device 23 are connected by LAN, the Internet, or the like. Other configurations and operations are the same as those of the first embodiment.
[0035]
【The invention's effect】
As described above, according to the present invention, there is an advantage that a diagnostic state inside the transformer can be monitored from the outside by inputting a high-frequency signal or surge to the transformer winding during operation and observing the response.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention.
FIG. 2 is a waveform chart for describing the operation.
FIG. 3 is a schematic configuration diagram showing a second embodiment of the present invention.
[Explanation of symbols]
11 transformer main body 12 bushing pocket 13 bushing 15 oscillator connecting transformer 16 high frequency transformer 19 frequency variable oscillator 20 frequency analyzer 22 low pass filter 23 judgment / recording device 24 Alarm device

Claims (4)

変圧器巻線に高周波信号または系統内のサージを入力し、その信号またはサージの応答状況を外部に設けた観測手段で観測して、予め設定した応答状況レベルに達したかを判断し、その判断の結果から変圧器内部の良否状況を診断することを特徴とする変圧器内部診断装置。A high-frequency signal or a surge in the system is input to the transformer winding, and the response status of the signal or the surge is observed by an externally provided observation means to determine whether a predetermined response status level has been reached. A transformer internal diagnosis device for diagnosing the quality of the inside of a transformer based on a result of the determination. 前記観測手段は、高周波信号またはサージによる変圧器内部からの応答信号を分析する周波数分析器と、この分析器による分析結果から変圧器内部の良否を判定する判定装置と、この判定装置からの判定結果を報知する手段とからなることを特徴とする請求項1に記載の変圧器内部診断装置。The observation means includes a frequency analyzer that analyzes a response signal from the inside of the transformer due to a high-frequency signal or a surge, a determination device that determines whether the inside of the transformer is good or not based on an analysis result by the analyzer, and a determination from the determination device. 2. The transformer internal diagnosis device according to claim 1, further comprising means for notifying a result. 前記高周波信号は、周波数可変発振器から発振して変圧器のラインリードに入力することを特徴とする請求項1または2に記載の変圧器内部診断装置。The diagnostic apparatus according to claim 1, wherein the high frequency signal oscillates from a variable frequency oscillator and is input to a line lead of the transformer. 前記変圧器内部の良否状況の診断は、変圧器巻線のインピーダンス−周波数特性の分析から判定することを特徴とする請求項1に記載の変圧器内部診断装置。The diagnostic apparatus according to claim 1, wherein the diagnosis of the quality of the inside of the transformer is made based on an analysis of impedance-frequency characteristics of a transformer winding.
JP2003042542A 2003-02-20 2003-02-20 Interior diagnostic device for transformer Pending JP2004251763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003042542A JP2004251763A (en) 2003-02-20 2003-02-20 Interior diagnostic device for transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003042542A JP2004251763A (en) 2003-02-20 2003-02-20 Interior diagnostic device for transformer

Publications (1)

Publication Number Publication Date
JP2004251763A true JP2004251763A (en) 2004-09-09

Family

ID=33025796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042542A Pending JP2004251763A (en) 2003-02-20 2003-02-20 Interior diagnostic device for transformer

Country Status (1)

Country Link
JP (1) JP2004251763A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014528A (en) * 2007-07-05 2009-01-22 Tokyo Electric Power Co Inc:The Short circuit determination device, and short circuit determination method
JP2010230479A (en) * 2009-03-27 2010-10-14 Tokyo Electric Power Co Inc:The Internal diagnostic method of transformer
WO2011000134A1 (en) * 2009-06-30 2011-01-06 上海市电力公司 Method for detecting transformer winding state utilizing vibration waveform
CN102495311A (en) * 2011-11-30 2012-06-13 常州爱特科技有限公司 End screen lead-out protection system
CN103149476A (en) * 2013-02-06 2013-06-12 浙江大学 Electric-vibration model-based power transformer failure diagnosis method
TWI416129B (en) * 2011-09-16 2013-11-21 Tatung Co Quality testing method for transformer bushings
RU2525165C1 (en) * 2013-02-26 2014-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ "МЭИ") Method to diagnose technical condition of high-voltage potential transformer in network of power plant generator voltage
CN107478949A (en) * 2017-08-07 2017-12-15 中国电力科学研究院 A kind of deformation of transformer winding inline diagnosis method and system
CN109444656A (en) * 2018-12-21 2019-03-08 浙江大学 A kind of inline diagnosis method of deformation of transformer winding position
JP2020125917A (en) * 2019-02-01 2020-08-20 一般財団法人電力中央研究所 Evaluation method of comparison function of transformer winding

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014528A (en) * 2007-07-05 2009-01-22 Tokyo Electric Power Co Inc:The Short circuit determination device, and short circuit determination method
JP2010230479A (en) * 2009-03-27 2010-10-14 Tokyo Electric Power Co Inc:The Internal diagnostic method of transformer
WO2011000134A1 (en) * 2009-06-30 2011-01-06 上海市电力公司 Method for detecting transformer winding state utilizing vibration waveform
TWI416129B (en) * 2011-09-16 2013-11-21 Tatung Co Quality testing method for transformer bushings
CN102495311A (en) * 2011-11-30 2012-06-13 常州爱特科技有限公司 End screen lead-out protection system
CN103149476A (en) * 2013-02-06 2013-06-12 浙江大学 Electric-vibration model-based power transformer failure diagnosis method
CN103149476B (en) * 2013-02-06 2015-08-26 国家电网公司 A kind of method for diagnosing fault of power transformer based on electricity-model of vibration
RU2525165C1 (en) * 2013-02-26 2014-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МЭИ" (ФГБОУ ВПО "НИУ "МЭИ") Method to diagnose technical condition of high-voltage potential transformer in network of power plant generator voltage
CN107478949A (en) * 2017-08-07 2017-12-15 中国电力科学研究院 A kind of deformation of transformer winding inline diagnosis method and system
CN109444656A (en) * 2018-12-21 2019-03-08 浙江大学 A kind of inline diagnosis method of deformation of transformer winding position
JP2020125917A (en) * 2019-02-01 2020-08-20 一般財団法人電力中央研究所 Evaluation method of comparison function of transformer winding
JP7261024B2 (en) 2019-02-01 2023-04-19 一般財団法人電力中央研究所 Evaluating Comparison Function for Transformer Windings

Similar Documents

Publication Publication Date Title
Zhang et al. Asset-management of transformers based on condition monitoring and standard diagnosis
US8219335B2 (en) Electric winding displacement detection method and apparatus
Behjat et al. Diagnosing shorted turns on the windings of power transformers based upon online FRA using capacitive and inductive couplings
Stone A perspective on online partial discharge monitoring for assessment of the condition of rotating machine stator winding insulation
Tenbohlen et al. Enhanced diagnosis of power transformers using on-and off-line methods: Results, examples and future trends
US20110022338A1 (en) Determining degraded insulating ability in an inductively operating element
JP5456582B2 (en) Transformer soundness diagnosis method, soundness diagnosis device, and soundness diagnosis program
Rahimpour et al. The application of sweep frequency response analysis for the online monitoring of power transformers
JP2004251763A (en) Interior diagnostic device for transformer
Braunlich et al. Assessment of insulation condition of large power transformers by on-site electrical diagnostic methods
KR102231150B1 (en) Bushing diagnostic system
Bagheri et al. Case study on FRA capability in detection of mechanical defects within a 400MVA transformer
Yousof et al. Locating inter-disc faults in transformer winding using frequency response analysis
Ab Ghani et al. Evaluation of transformer core and winding conditions from SFRA measurement results using statistical techniques for distribution transformers
KR101958296B1 (en) Apparatus for diagnosing a transformer and method for the same
EP1430317B1 (en) Tap switch for frequency response and partial discharge measurement
Wang Winding movement and condition monitoring of power transformers in service
Zhang et al. Study on diagnosis of power transformer winding deformation through vibration signal
Kachler On-site diagnosis of power and special transformers
RU2330297C1 (en) Method of non-destructive diagnostics of pre-emergency condition of electric equipment with high voltage windings
Sano et al. Experimental investigation on FRA diagnosis of transformer faults
Kornhuber et al. Partial discharge (PD) detection on medium voltage switchgears using non-invasive sensing methods
Tozzi et al. Global monitoring approach in a large autotransformer through PD, DDF and DGA analysis: PD source location and maintenance action planning
Cichon et al. Characteristic of acoustic emission signals generated by electric arc in on load tap changer
Ayar et al. Electrical Power Transformer Modeling and Simulation for the Implementation of a Predictive Maintenance Approach