JP7261024B2 - Evaluating Comparison Function for Transformer Windings - Google Patents
Evaluating Comparison Function for Transformer Windings Download PDFInfo
- Publication number
- JP7261024B2 JP7261024B2 JP2019017029A JP2019017029A JP7261024B2 JP 7261024 B2 JP7261024 B2 JP 7261024B2 JP 2019017029 A JP2019017029 A JP 2019017029A JP 2019017029 A JP2019017029 A JP 2019017029A JP 7261024 B2 JP7261024 B2 JP 7261024B2
- Authority
- JP
- Japan
- Prior art keywords
- transfer function
- interpolated
- interpolation
- diagnostic
- transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
Description
特許法第30条第2項適用 平成30年9月10日に2018 アイトリプルイー インターナショナル カンファレンス オン ハイ ボルテージ エンジニアリング アンド アプリケーション(2018 IEEE International Conference on High Voltage Engineering and Application(ICHVE2018))〔刊行物〕で公開 Article 30,
特許法第30条第2項適用 平成30年9月12日にギリシャ共和国アテネ市で開催された2018 アイトリプルイー インターナショナル カンファレンス オン ハイ ボルテージ エンジニアリング アンド アプリケーション(2018 IEEE International Conference on High Voltage Engineering and Application(ICHVE2018))で発表Application of Article 30,
本発明は、変圧器巻線の比較関数の評価方法に関する。 The present invention relates to a method for evaluating comparison functions of transformer windings.
電力用変圧器(変圧器)の巻線異常を外部から検出する手法として、周波数応答解析(FRA:Frequency Response Analysis)が知られている。周波数応答解析(FRA)を用いて変圧器の内部の異常を検出する技術として、巻線に高周波信号を入力し、入力信号の応答状況を外部の計測手段で計測する測定システムを用いる技術が知られている(例えば、特許文献1)。 Frequency response analysis (FRA) is known as a technique for externally detecting abnormalities in the windings of power transformers (transformers). As a technology for detecting abnormalities inside a transformer using frequency response analysis (FRA), there is a known technology that uses a measurement system that inputs a high-frequency signal to the windings and measures the response of the input signal using external measurement means. (For example, Patent Document 1).
周波数応答解析(FRA)は、巻線異常がない時に予め測定しておいた伝達関数(参照伝達関数)と、異常の診断を行う際に測定した伝達関数(診断伝達関数)を比較し、その一致の度合いにより巻線異常を診断している。このため、伝達関数の再現性が重要になっている。即ち、巻線に異常が無ければ複数回測定した伝達関数が一致することが重要になっている。 Frequency response analysis (FRA) compares a transfer function (reference transfer function) measured in advance when there is no winding abnormality and a transfer function (diagnostic transfer function) measured when diagnosing an abnormality. A winding abnormality is diagnosed based on the degree of matching. Therefore, reproducibility of the transfer function is important. In other words, it is important that the transfer functions measured a plurality of times match if there is no abnormality in the winding.
変圧器の寿命に比べて測定システムの寿命は短いことから、長期に亘り使用した変圧器、例えば、使用開始から数十年経過した変圧器の巻線の異常を検出する場合、異なる測定システムを用いることになり、伝達関数の再現性に影響を与える虞があるのが現状である。例えば、測定システム(計測手段)の違いにより、同一周波数で参照伝達関数と診断伝達関数を計測することが不可能になり、参照伝達関数と診断伝達関数を的確に比較できない虞があるのが実情であった。 Since the life of the measurement system is shorter than the life of the transformer, a different measurement system should be used when detecting abnormalities in the windings of a transformer that has been used for a long time, for example, a transformer that has been in service for several decades. At present, there is a risk that the reproducibility of the transfer function will be affected by the use of this method. For example, due to differences in measurement systems (measuring means), it becomes impossible to measure the reference transfer function and the diagnostic transfer function at the same frequency. Met.
本発明は上記状況に鑑みてなされたもので、測定システムが異なっていても、予め測定しておいた変圧器巻線の伝達関数(参照伝達関数)と、異常の診断を行う際に測定した変圧器巻線の伝達関数(診断伝達関数)を的確に比較することができる変圧器巻線の伝達関数の比較方法を提供することを目的とする。 The present invention has been made in view of the above situation. It is an object of the present invention to provide a method for comparing transfer functions of transformer windings, which can accurately compare transfer functions (diagnostic transfer functions) of transformer windings.
上記目的を達成するための請求項1に係る本発明の変圧器巻線の伝達関数の比較方法は変圧器の巻線の伝達関数を測定した診断伝達関数と、予め測定された伝達関数である参照伝達関数とを比較して前記巻線の異常を診断するに際し、所定の周波数範囲における診断伝達関数を複数の補間手法により補間し、複数の補間伝達関数を求め、所定の周波数範囲における参照伝達関数と、複数の補間伝達関数とをそれぞれ比較して、一致する度合いを求め、複数の補間伝達関数のうち一致する度合いが高い補間伝達関数を、診断伝達関数としての比較伝達関数とし、前記比較伝達関数に応じて前記巻線の異常を診断する方法であり、所定の周波数範囲における診断伝達関数を補間する複数の補間手法として、第1補間手法により補間して第1補間伝達関数を求めると共に、所定の周波数範囲における診断伝達関数を第2補間手法により補間して第2補間伝達関数を求め、所定の周波数範囲における参照伝達関数と、第1補間伝達関数、及び、第2補間伝達関数と比較して一致する度合いを求め、参照伝達関数と一致する度合いが高い方の第1補間伝達関数、もしくは、第2補間伝達関数を、所定の周波数範囲における診断伝達関数の比較伝達関数とし、所定の周波数範囲をずらしながら診断伝達関数の比較伝達関数を順次求め、順次求めた診断伝達関数の比較伝達関数に応じて前記巻線の異常を診断することを特徴とする。
To achieve the above object, the method for comparing transfer functions of transformer windings according to
請求項1に係る本発明では、所定の周波数範囲で得られた比較伝達関数を標準の伝達関数(参照伝達関数)と比較することで、測定の周波数刻みが異なっていても、同じ周波数で一致の度合いが高い状態で推定された伝達関数を比較伝達関数(診断伝達関数)として参照伝達関数の状態を比較することができる。具体的には、同じ測定周波数での比較伝達関数(診断伝達関数)の伝達関数の値と、参照伝達関数の伝達関数の値を比較して、変圧器の巻線の異常を診断することができる。
また、第1補間手法により補間した第1補間伝達関数、第2補間手法により補間して第2補間伝達関数を参照伝達関数と比較し、参照伝達関数に近い方(一致する度合いが高い方)の第1補間伝達関数、もしくは、第2補間伝達関数を診断伝達関数の比較伝達関数としているので、測定の周波数刻みが異なっていても、一致度合いが高い状態で推定された伝達関数(比較伝達関数)を、同じ周波数での参照伝達関数の状態と比較することができる。
In the present invention according to
Also, the first interpolated transfer function interpolated by the first interpolation method and the second interpolated transfer function interpolated by the second interpolation method are compared with the reference transfer function, and the one closer to the reference transfer function (the one with the higher degree of matching) Since the first interpolated transfer function or the second interpolated transfer function of is used as the comparative transfer function of the diagnostic transfer function, even if the measurement frequency steps are different, the estimated transfer function (comparative transfer function) can be compared with the state of the reference transfer function at the same frequency.
このため、測定システムが異なっていても、予め測定しておいた変圧器巻線の伝達関数(参照伝達関数)と、異常の診断を行う際に測定した変圧器巻線の伝達関数(診断伝達関数)を的確に比較することが可能になる。 Therefore, even if the measurement systems are different, the transfer function of the transformer winding measured in advance (reference transfer function) and the transfer function of the transformer winding measured when diagnosing an abnormality (diagnostic transfer function) functions) can be accurately compared.
尚、請求項1に係る本発明の変圧器巻線の伝達関数の比較方法では「所定の周波数範囲における」は、具体的には、「基準周波数窓を1測定周波数(評価する一つの周波数帯)ずらしたもの」、及び、「所定範囲、次の所定範囲、その次の所定範囲を順次ずらしたもの」を含み、「一つの所定の周波数範囲」で「複数の補間を行う」ことも含む。
In the method for comparing transfer functions of transformer windings of the present invention according to
また、請求項2に係る本発明の変圧器巻線の伝達関数の比較方法は、請求項1に記載の変圧器巻線の伝達関数の比較方法において、所定の周波数範囲は、所定の範囲の基準周波数窓であり、基準周波数窓を1測定周波数ステップずつずらしながら診断伝達関数の比較伝達関数を順次求めることを特徴とする。
Further, the method for comparing transfer functions of transformer windings according to
請求項2に係る本発明では、診断伝達関数の基準周波数窓毎の補間で得られた比較伝達関数を標準の伝達関数(参照伝達関数)と比較することができる。
In the present invention according to
また、請求項3に係る本発明の変圧器巻線の伝達関数の比較方法は、請求項1もしくは請求項2に記載の変圧器巻線の伝達関数の比較方法において、第1補間伝達関数を求める第1補間手法は、3次スプライン補間であり、第2補間伝達関数を求める第2補間手法は、区分線形補間であることを特徴とする。
Further, a method for comparing transfer functions of transformer windings according to claim 3 of the present invention is the method for comparing transfer functions of transformer windings according to
請求項3に係る本発明では、3次スプライン補間で得た補間伝達関数を第1補間伝達関数とし、区分線形補間で得た補間伝達関数を第2補間伝達関数とする。
In the third aspect of the present invention , the interpolated transfer function obtained by the cubic spline interpolation is used as the first interpolated transfer function, and the interpolated transfer function obtained by the piecewise linear interpolation is used as the second interpolated transfer function.
周波数に応じて伝達関数が緩やかに変化している場合、第1補間手法である3次スプライン補間を用いることで、数値的に安定して精度良く第1補間伝達関数を求めることができる。これにより、区分線形補間の第2補間伝達関数伝達関数よりも、3次スプライン補間の第1補間伝達関数の方が、参照伝達関数との一致度合いが高い状態の比較伝達関数(診断伝達関数)になる。 When the transfer function changes gently according to the frequency, the use of the cubic spline interpolation as the first interpolation method makes it possible to obtain the first interpolated transfer function numerically stably and accurately. As a result, the comparison transfer function (diagnostic transfer function) in which the first interpolation transfer function of the cubic spline interpolation has a higher degree of matching with the reference transfer function than the transfer function of the second interpolation transfer function of the piecewise linear interpolation become.
また、周波数に応じて伝達関数に急峻な共振があった場合、第1補間手法である3次スプライン補間では、数値的な振動が発生する可能性があり、第1補間伝達関数の誤差が大きくなり、区分線形補間の第2補間伝達関数の方が参照伝達関数との一致の度合いが高い状態の比較伝達関数(診断伝達関数)になる。 In addition, when there is a sharp resonance in the transfer function according to the frequency, numerical oscillation may occur in the cubic spline interpolation, which is the first interpolation method, and the error in the first interpolation transfer function is large. Thus, the second interpolated transfer function of piecewise linear interpolation becomes a comparison transfer function (diagnostic transfer function) with a higher degree of matching with the reference transfer function.
このため、所定の周波数範囲毎(例えば、基準周波数窓毎)に、一致度が高い補間伝達関数(第1補間伝達関数もしくは第2補間伝達関数)を参照伝達関数と比較する比較伝達関数(診断伝達関数)とすることで、周波数に応じて伝達関数に急峻な共振があっても、少ない誤差の状態の比較伝達関数(診断伝達関数)を得ることができ、的確に、参照伝達関数と比較することができる。 Therefore, for each predetermined frequency range (for example, each reference frequency window), a comparative transfer function (diagnostic Even if the transfer function has a steep resonance depending on the frequency, it is possible to obtain a comparative transfer function (diagnostic transfer function) with little error, and accurately compare it with the reference transfer function. can do.
本発明の変圧器巻線の伝達関数の比較方法は、測定システムが異なっていても、予め測定しておいた変圧器巻線の伝達関数(参照伝達関数)と、異常の診断を行う際に測定した変圧器巻線の伝達関数(診断伝達関数)を的確に比較することが可能になる。 The method of comparing the transfer functions of the transformer windings of the present invention, even if the measurement system is different, compares the transfer function (reference transfer function) of the transformer windings that has been measured in advance, when diagnosing an abnormality. It is possible to accurately compare the transfer functions (diagnostic transfer functions) of the measured transformer windings.
図1には本発明の一実施例に係る変圧器巻線の伝達関数の比較方法を実施する機器構成の概略状況、図2、図3には本発明の一実施例に係る変圧器巻線の伝達関数の比較方法の処理の行程を示してある。 FIG. 1 shows a schematic diagram of the equipment configuration for carrying out the method for comparing transfer functions of transformer windings according to an embodiment of the present invention, and FIGS. 2 and 3 show transformer windings according to an embodiment of the present invention. 2 shows the process of the comparison method of the transfer functions of .
電力用変圧器(変圧器)の巻線異常を検出する手法として、周波数応答解析(FRA)が知られている。周波数応答解析(FRA)を用いて変圧器の内部の異常を検出する技術として、図1に示すように、変圧器1の巻線に高周波信号を入力し、入力信号の応答状況を計測手段2で計測する測定システム3が用いられる。 Frequency response analysis (FRA) is known as a technique for detecting winding abnormalities in power transformers (transformers). As a technique for detecting an abnormality inside a transformer using frequency response analysis (FRA), as shown in FIG. A measuring system 3 is used which measures at .
周波数応答解析(FRA)は、巻線異常がない時に予め測定しておいた伝達関数(参照伝達関数)と、異常の診断を行う際に測定した伝達関数(診断伝達関数)を比較し、その一致の度合いにより巻線異常を診断する。変圧器1の寿命に比べて測定システム3の寿命は短いことから、長期に亘り使用した変圧器1、例えば、使用開始から数十年経過した変圧器1の巻線の異常を検出する場合、異なる測定システムを用いることになり、伝達関数の再現性に影響を与える虞があった。
Frequency response analysis (FRA) compares a transfer function (reference transfer function) measured in advance when there is no winding abnormality and a transfer function (diagnostic transfer function) measured when diagnosing an abnormality. A winding abnormality is diagnosed based on the degree of matching. Since the life of the measurement system 3 is shorter than the life of the
本実施例では、図2、図3に示した処理により、異なる測定システムにより測定の周波数刻みが異なっていても、一致度が高くなっている状態で(伝達関数の再現性が高い状態で)、同じ周波数での伝達関数の状態を比較するようにしている。これにより、予め測定しておいた変圧器巻線の伝達関数(参照伝達関数)と、診断を行う際に測定した変圧器巻線の伝達関数(診断伝達関数)が的確に比較できるようになる。 2 and 3, even if the measurement frequency increments are different due to different measurement systems, the degree of agreement is high (in a state where the reproducibility of the transfer function is high). , to compare the state of the transfer function at the same frequency. This makes it possible to accurately compare the transfer function of the transformer winding measured in advance (reference transfer function) and the transfer function of the transformer winding measured during diagnosis (diagnostic transfer function). .
図2に示すように、例えば、使用開始時の変圧器の伝達関数が予め測定されて参照伝達関数とされている。そして、比較対象となる(長期間使用した後の)変圧器の伝達関数が測定されて診断伝達関数とされる。診断伝達関数に対して再現性を悪化させないようにされた比較伝達関数を求める。 As shown in FIG. 2, for example, the transfer function of the transformer at the start of use is measured in advance and used as a reference transfer function. Then, the transfer function of the transformer to be compared (after long-term use) is measured and used as the diagnostic transfer function. A comparative transfer function is determined that does not degrade reproducibility with respect to the diagnostic transfer function.
参照伝達関数と比較伝達関数を比較することで、伝達関数に急峻な共振があった場合等でも再現性を悪化させないように、比較伝達関数(診断伝達関数)と参照伝達関数の状態が、同じ周波数で比較され、巻線の診断が実施される(巻線診断)。 By comparing the reference transfer function and the comparison transfer function, the state of the comparison transfer function (diagnostic transfer function) and the reference transfer function are the same so as not to deteriorate the reproducibility even if there is a sharp resonance in the transfer function. A frequency comparison is made and a winding diagnosis is performed (winding diagnosis).
具体的には、図3に示すように、比較対象となる(長期間使用した後の)変圧器の伝達関数(診断伝達関数)が測定され、所定の周波数範囲である基準周波数窓毎(1測定周波数毎:評価する一つの周波数帯毎)に3次スプライン補間(第1補間手法)と、区分線形補間(第2補間手法)が行われて、第1補間伝達関数と第2補間伝達関数が求められる。 Specifically, as shown in FIG. 3, the transfer function (diagnostic transfer function) of a transformer to be compared (after long-term use) is measured, and each reference frequency window (1 cubic spline interpolation (first interpolation method) and piecewise linear interpolation (second interpolation method) are performed for each measurement frequency: each frequency band to be evaluated, and a first interpolation transfer function and a second interpolation transfer function are obtained. is required.
即ち、測定点における1次及び2次の微分値が連続となるように測定点間の補間係数を決定する3次スプライン補間と、測定点同士を直線で結ぶ区分線形補間が行われて、第1補間伝達関数と第2補間伝達関数が求められる。 That is, cubic spline interpolation for determining interpolation coefficients between measurement points so that primary and secondary differential values at measurement points are continuous, and piecewise linear interpolation for connecting measurement points with straight lines are performed. A first interpolated transfer function and a second interpolated transfer function are determined.
尚、比較対象となる変圧器の伝達関数(診断伝達関数)の補間は、2つの補間手法によるものに限定されず、3つ以上の補間手法を用いることも可能である。また、2つの補間手法として、3次スプライン補間(第1補間手法)と、区分線形補間(第2補間手法)に限定されない。例えば、エルミート補間等を用いることが可能である。 The interpolation of the transfer function (diagnostic transfer function) of the transformer to be compared is not limited to two interpolation methods, and three or more interpolation methods can be used. Further, the two interpolation methods are not limited to cubic spline interpolation (first interpolation method) and piecewise linear interpolation (second interpolation method). For example, Hermite interpolation or the like can be used.
予め測定された使用開始時の変圧器の伝達関数(参照伝達関数)と、第1補間伝達関数、及び、第2補間伝達関数が比較され、一致の度合いが高い方の第1補間伝達関数、もしくは、第2補間伝達関数が、基準周波数窓毎(1測定周波数毎:評価する一つの周波数帯毎)における比較伝達関数とされる。即ち、所定の周波数で、補間により推定された伝達関数の値が参照伝達関数の値に近い方の第1補間伝達関数、もしくは、第2補間伝達関数が、基準周波数窓毎(1測定周波数毎:評価する一つの周波数帯毎)における比較伝達関数とされる。 The transfer function (reference transfer function) of the transformer measured in advance at the start of use, the first interpolated transfer function, and the second interpolated transfer function are compared, and the first interpolated transfer function with a higher degree of agreement, Alternatively, the second interpolation transfer function is used as a comparison transfer function for each reference frequency window (each measurement frequency: each frequency band to be evaluated). That is, at a predetermined frequency, the first interpolated transfer function or the second interpolated transfer function whose value of the transfer function estimated by interpolation is closer to the value of the reference transfer function is selected for each reference frequency window (for each measurement frequency). : for each frequency band to be evaluated).
そして、基準周波数窓を1測定周波数ステップずつずらしながら比較伝達関数(参照伝達関数との一致の度合いが高い方の第1補間伝達関数、もしくは、第2補間伝達関数)が順次求められる。 Then, while shifting the reference frequency window by one measurement frequency step, the comparative transfer functions (the first interpolated transfer function or the second interpolated transfer function having a higher degree of matching with the reference transfer function) are sequentially obtained.
図2に示すように、このようにして求められた比較伝達関数(診断伝達関数)が、参照伝達関数と同じ周波数の刻みで比較され、比較の結果(伝達関数の違い)に基づいて、長年使用した変圧器の巻線の状態(異常)を検出する(巻線診断)。 As shown in FIG. 2, the comparative transfer function (diagnostic transfer function) obtained in this way is compared with the reference transfer function at the same frequency steps, and based on the comparison results (differences in the transfer functions), the long-term Detect the condition (abnormality) of the windings of the used transformer (winding diagnosis).
従って、診断伝達関数の基準周波数窓毎の補間で得られた比較伝達関数(参照伝達関数との一致の度合いが高い方の第1補間伝達関数、もしくは、第2補間伝達関数)を標準の伝達関数(参照伝達関数)と比較することで、測定の周波数刻みが異なっていても、一致度が高くなっている状態で、同じ周波数での比較伝達関数(診断伝達関数)と参照伝達関数の状態を比較することができる。 Therefore, the comparison transfer function obtained by interpolation for each reference frequency window of the diagnostic transfer function (the first interpolation transfer function or the second interpolation transfer function having a higher degree of matching with the reference transfer function) is used as the standard transfer function. The state of the comparison transfer function (diagnostic transfer function) and the reference transfer function at the same frequency with a high degree of agreement even though the frequency step of the measurement is different by comparing with the function (reference transfer function) can be compared.
このため、測定システムが異なっていても、予め測定しておいた変圧器巻線の伝達関数(参照伝達関数)と、異常の診断を行う際に測定した変圧器巻線の伝達関数(診断伝達関数)を的確に比較することが可能になる。 Therefore, even if the measurement systems are different, the transfer function of the transformer winding measured in advance (reference transfer function) and the transfer function of the transformer winding measured when diagnosing an abnormality (diagnostic transfer function) functions) can be accurately compared.
図4から図8に基づいて、比較伝達関数(診断伝達関数)の導出の状況と、同じ周波数での比較伝達関数(診断伝達関数)と参照伝達関数との比較の状況を、更に、具体的に説明する。 Based on FIGS. 4 to 8, the situation of derivation of the comparative transfer function (diagnostic transfer function) and the situation of comparison between the comparative transfer function (diagnostic transfer function) and the reference transfer function at the same frequency, more specifically to explain.
図4には周波数と、参照伝達関数、及び、診断伝達関数との関係を概念的に表したグラフ、図5には参照伝達関数、及び、診断伝達関数を比較するためのグラフであり、図5(a)は周波数と参照伝達関数の関係を表し、図5(b)は周波数と診断伝達関数の関係で、1周波数ステップずつずらして数値指標を演算する手法の概念(基準周波数窓手法の概念)を表してある。 FIG. 4 is a graph conceptually showing the relationship between the frequency, the reference transfer function, and the diagnostic transfer function, and FIG. 5 is a graph for comparing the reference transfer function and the diagnostic transfer function. 5(a) shows the relationship between the frequency and the reference transfer function, and FIG. 5(b) shows the relationship between the frequency and the diagnostic transfer function. concept).
また、図6(a)には、診断伝達関数に対し3次スプライン補間を行った第1補間伝達関数の概念を表したグラフ、図6(b)には診断伝達関数に対し区分線形補間を行った第2補間伝達関数の概念を表したグラフ、図7には参照伝達関数、及び、第1補間伝達関数、第2補間伝達関数の状況に基づいて一致度合いを決定するためのグラフを示してある。 Also, FIG. 6(a) is a graph showing the concept of the first interpolated transfer function obtained by subjecting the diagnostic transfer function to cubic spline interpolation, and FIG. A graph showing the concept of the second interpolation transfer function performed, FIG. 7 shows a graph for determining the degree of matching based on the situation of the reference transfer function, the first interpolation transfer function, and the second interpolation transfer function. There is.
そして、図8には参照伝達関数と比較伝達関数(参照伝達関数との一致の度合いが高い方の第1補間伝達関数、もしくは、第2補間伝達関数)との関係を示してあり、図8(a)は周波数と参照伝達関数の関係(図5(a)と同じグラフ)、図8(b)は周波数と比較伝達関数との関係である。 FIG. 8 shows the relationship between the reference transfer function and the comparative transfer function (the first interpolated transfer function or the second interpolated transfer function which has a higher degree of matching with the reference transfer function). (a) is the relationship between the frequency and the reference transfer function (same graph as FIG. 5(a)), and FIG. 8(b) is the relationship between the frequency and the comparison transfer function.
図4に示すように、例えば、使用開始時の変圧器の伝達関数が予め測定され、参照伝達関数(○印:実測)とされる。そして、比較対象となる(長期間使用した後の)変圧器の伝達関数が測定され、診断伝達関数(■印:実測)とされる。 As shown in FIG. 4, for example, the transfer function of the transformer at the start of use is measured in advance and used as a reference transfer function (o: actual measurement). Then, the transfer function of the transformer to be compared (after being used for a long period of time) is measured and used as the diagnostic transfer function (■ mark: actual measurement).
測定システムの違いにより、参照伝達関数が測定された周波数(○印)と、診断伝達関数が測定された周波数(■印)の刻みが異なっていることがある。即ち、参照伝達関数(○印)の周波数刻みが、A0、A1、A2、A3、A4・・となり、診断伝達関数(■印)の周波数刻みが、S0、Sa、Sb、Sc、Sd・・となっていることがある。 Due to differences in measurement systems, the increments of the frequencies at which the reference transfer function is measured (marked with circles) and the frequencies at which the diagnostic transfer function is measured (marked with ▪) may differ. That is, the frequency increments of the reference transfer functions (marked with circles) are A0, A1, A2, A3, A4, . Sometimes it is
使用開始時の変圧器の伝達関数と、長期間使用した後の変圧器の伝達関数とを比較して巻線の診断を行う場合、参照伝達関数の周波数(○印)に対して、同じ周波数刻みに対応する周波数A(A1、A2、A3、A4・・・)における診断伝達関数(□印)を推定して、長期間使用した後の変圧器の伝達関数を評価する必要がある。 When diagnosing the winding by comparing the transfer function of the transformer at the beginning of use with the transfer function of the transformer after long-term use, the frequency of the reference transfer function It is necessary to estimate the diagnostic transfer function (marked with squares) at frequencies A (A1, A2, A3, A4...) corresponding to the steps to evaluate the transfer function of the transformer after long term use.
診断伝達関数(□印)を的確に推定することで、計測システムが異なって測定の周波数刻みが異なっていても、参照伝達関数(○印)に対して同じ周波数刻みに対応する周波数Aで診断伝達関数(□印)を的確に評価することができる。 By accurately estimating the diagnostic transfer function (marked with a square), even if the measurement system is different and the frequency step of measurement is different, the diagnosis can be made at the frequency A corresponding to the same frequency step with respect to the reference transfer function (marked with a circle). The transfer function (marked with □) can be accurately evaluated.
診断伝達関数(□印)を的確に推定するための具体例、即ち、図3に示した、比較伝達関数を導出する状況を具体的に説明する。 A specific example for accurately estimating the diagnostic transfer function (marked with □), that is, the situation of deriving the comparative transfer function shown in FIG. 3 will be specifically described.
図5(a)に○印で示すように、変圧器の使用開始時には、例えば、周波数A・・A1、A2、A3、A4で伝達関数が計測される(参照伝達関数)。そして、図5(b)に■印で示すように、使用開始から、例えば、数十年経過した変圧器の伝達関数が計測される(診断伝達関数)。そして、基準周波数窓(1測定周波数:評価する一つの周波数帯毎)S毎に、診断伝達関数に対して、3次スプライン補間(第1補間手法)と、区分線形補間(第2補間手法)が実施される。これにより、第1補間伝達関数と第2補間伝達関数が求められる。 As indicated by circles in FIG. 5(a), when the transformer starts to be used, transfer functions are measured at frequencies A..A1, A2, A3, and A4 (reference transfer functions), for example. Then, as indicated by the ▪ mark in FIG. 5B, the transfer function of the transformer that has been used for several decades, for example, is measured (diagnostic transfer function). Then, for each reference frequency window (one measurement frequency: one frequency band to be evaluated) S, cubic spline interpolation (first interpolation method) and piecewise linear interpolation (second interpolation method) for the diagnostic transfer function is carried out. As a result, the first interpolated transfer function and the second interpolated transfer function are obtained.
つまり、図6(a)に示すように、図5(b)に示した診断伝達関数に対して、3次スプライン補間で求められた第1補間伝達関数が得られる(■印:S)。また、図6(b)のように、図5(b)に示した診断伝達関数に対して、区分線形補間で求められた第2補間伝達関数が得られる(■印:S)。 That is, as shown in FIG. 6(a), the first interpolated transfer function obtained by the cubic spline interpolation is obtained for the diagnostic transfer function shown in FIG. 5(b) (■ mark: S). Also, as shown in FIG. 6(b), a second interpolated transfer function obtained by piecewise linear interpolation is obtained for the diagnostic transfer function shown in FIG. 5(b) (marked with ▪: S).
そして、図7に示すように、図5(a)に示した参照伝達関数(○印、太実線:A、A1、A2、A3、A4、A5・・)と、図6(a)に示した第1補間伝達関数(■印、実線:S、Sa、Sb、Sc、Sd・・)と、図6(b)に示した第2補間伝達関数(■印、点線:S、Sa、Sb、Sc、Sd・・)とを重ね合わせる。重ね合わせて、参照伝達関数(○印、太実線)に対して、第1補間伝達関数(■印、実線)、もしくは、第2補間伝達関数(■印、点線)のどちらの方が一致している度合いが高いか評価する。 Then, as shown in FIG. 7, the reference transfer function shown in FIG. The first interpolated transfer function (marked ▪, solid lines: S, Sa, Sb, Sc, Sd . . . ) and the second interpolated transfer function (marked ▪, dotted lines: S, Sa, Sb , Sc, Sd . . . ) are superimposed. By superimposing, which of the first interpolation transfer function (■ mark, solid line) or the second interpolation transfer function (■ mark, dotted line) matches the reference transfer function (○ mark, thick solid line). Evaluate whether the degree of
尚、図7には、説明の便宜上、図6(a)に示した第1補間伝達関数(■印、実線)と、図6(b)示した第2補間伝達関数(■印、点線)とを、基準周波数窓(1測定周波数:評価する一つの周波数帯毎)S毎にそれぞれ重ね合わせた状態を、一括で重ね合わせた状態の概念のグラフとして示してある。 For convenience of explanation, FIG. 7 shows the first interpolated transfer function (solid line) shown in FIG. 6A and the second interpolated transfer function (dotted line) shown in FIG. are superimposed for each reference frequency window (one measurement frequency: one frequency band to be evaluated) S, and are collectively superimposed as a conceptual graph.
例えば、周波数がA1までは、参照伝達関数(○印、太実線)、及び、診断伝達関数は略一定の状態で変化しているため、区分線形補間を行った第2補間伝達関数(■印、点線)よりも、3次スプライン補間を行った第1補間伝達関数(■印、実線)の方が、参照伝達関数(○印、太実線)に近似し、一致度合いが高くなっている。 For example, up to frequency A1, the reference transfer function (marked with circles, thick solid line) and the diagnostic transfer function change in a substantially constant state. , dotted line), the first interpolated transfer function (marked with ▪, solid line) is closer to the reference transfer function (marked with ◯, thick solid line), and the degree of matching is higher.
例えば、診断伝達関数が周波数Sbで急激に低下した状態の場合、周波数A2では、参照伝達関数(○印、太実線)は、第2補間伝達関数(■印、点線)との距離hに対し、第1補間伝達関数(■印、実線)との距離Hが大きくなる。即ち、周波数A2では、参照伝達関数(○印、太実線)に対する一致度合いが、第1補間伝達関数(■印、実線)よりも第2補間伝達関数(■印、点線)の方が高くなっている。 For example, when the diagnostic transfer function drops sharply at frequency Sb, at frequency A2, the reference transfer function (circle mark, thick solid line) is , the distance H from the first interpolated transfer function (marked ▪, solid line) increases. That is, at the frequency A2, the degree of matching with the reference transfer function (marked with ◯, thick solid line) is higher for the second interpolated transfer function (marked by ▪, dotted line) than for the first interpolated transfer function (marked by ▪, solid line). ing.
そして、周波数A3、A4でも、参照伝達関数(○印、太実線)は、第2補間伝達関数(■印、点線)との距離hに対し、第1補間伝達関数(■印、実線)との距離Hが大きくなる。即ち、周波数A3、A4でも、参照伝達関数(○印、太実線)に対する一致度合いが、第1補間伝達関数(■印、実線)よりも第2補間伝達関数(■印、点線)の方が高くなっている。 Also at frequencies A3 and A4, the reference transfer function (○ mark, thick solid line) is the first interpolation transfer function (■ mark, solid line) with respect to the distance h from the second interpolation transfer function (■ mark, dotted line). becomes larger. That is, even at frequencies A3 and A4, the degree of matching with the reference transfer function (○ mark, thick solid line) is higher for the second interpolation transfer function (■ mark, dotted line) than for the first interpolation transfer function (■ mark, solid line). getting higher.
周波数がA5よりも高い領域では、参照伝達関数(○印、太実線)、及び、診断伝達関数は略一定の状態で変化しているため、区分線形補間を行った第2補間伝達関数(■印、点線)よりも、3次スプライン補間を行った第1補間伝達関数(■印、実線)の方が、参照伝達関数(○印、太実線)に近似し、一致度合いが高くなっている。 In the region where the frequency is higher than A5, the reference transfer function (○ mark, thick solid line) and the diagnostic transfer function change in a substantially constant state, so the second interpolated transfer function (■ The first interpolated transfer function obtained by cubic spline interpolation (■, solid line) is closer to the reference transfer function (○, thick solid line) than the reference transfer function (○, thick solid line), and the degree of matching is higher than that of the reference transfer function (mark, dotted line). .
このため、例えば、周波数がA1よりも低い領域、及び、A5よりも高い領域は、参照伝達関数(○印、太実線)に対する一致度合いが高い第1補間伝達関数(■印、実線)を選択し、周波数がA1からA5の間では、参照伝達関数(○印、太実線)に対する一致度合いが高い第2補間伝達関数(■印、点線)を選択して比較伝達関数としている。 For this reason, for example, for the area where the frequency is lower than A1 and the area where the frequency is higher than A5, the first interpolated transfer function (marked with ▪, solid line) with a high degree of agreement with the reference transfer function (marked with circles, thick solid line) is selected. However, for frequencies between A1 and A5, the second interpolated transfer function (marked with ▪, dotted line) having a high degree of agreement with the reference transfer function (marked with ◯, thick solid line) is selected as a comparative transfer function.
上記実施例では、図6(a)に示した第1補間伝達関数(■印、実線)と、図6(b)示した第2補間伝達関数(■印、点線)とを重ね合わせた状態のグラフを、一括して一つの図として図7を用いて示したが、例えば、基準周波数窓(1測定周波数:評価する一つの周波数帯毎)S毎に、第1補間伝達関数(■印、実線)と第2補間伝達関数(■印、点線)とを一括で重ね合わせ、基準周波数窓(1測定周波数:評価する一つの周波数帯毎)S毎に、一致度合いが高い第1補間伝達関数もしくは第2補間伝達関数を比較伝達関数として、基準周波数窓(1測定周波数:評価する一つの周波数帯毎)S毎に、図7に示した状態のグラフとして、それぞれ示して評価することができる。 In the above embodiment, the first interpolated transfer function (solid line) shown in FIG. 6A and the second interpolated transfer function (dotted line) shown in FIG. 6B are superimposed. The graphs are collectively shown using FIG. 7 as one figure. , solid line) and the second interpolated transfer function (■ mark, dotted line) are superimposed at once, and the first interpolated transfer function with a high degree of agreement is obtained for each reference frequency window (one measurement frequency: one frequency band to be evaluated) S The function or the second interpolated transfer function is used as a comparative transfer function, and each reference frequency window (one measurement frequency: one frequency band to be evaluated) S can be shown as a graph of the state shown in FIG. 7 and evaluated. can.
参照伝達関数(○印)と比較伝達関数(■印)との関係を図8に示してある。図8(a)は、図5(a)に示した参照伝達関数(○印)であり、図8(b)は、図7で求めた比較伝達関数(■印)である。 FIG. 8 shows the relationship between the reference transfer function (marked with ◯) and the comparative transfer function (marked with ▪). FIG. 8(a) is the reference transfer function (marked with ◯) shown in FIG. 5(a), and FIG. 8(b) is the comparative transfer function (marked with ▪) obtained in FIG.
数十年経過した変圧器の伝達関数と、使用開始時の変圧器の伝達関数とを適切に比較する場合、同じ周波数の刻みで伝達関数を比較することが好適である。このため、例えば、周波数がA、・・・、A1、A2、A3、A4、A5での比較伝達関数の読み込み値(□印:図7参照)を、使用開始から数十年経過した変圧器の伝達関数と類推する。 In order to appropriately compare the transfer function of a transformer that has been used for several decades and the transfer function of a transformer that has just started to be used, it is preferable to compare the transfer functions at the same frequency increments. For this reason, for example, the read values of the comparative transfer functions at frequencies A, . By analogy with the transfer function of
そして、周波数がA、・・・、A1、A2、A3、A4、A5における参照伝達関数(○印)の値と、周波数がA、・・・、A1、A2、A3、A4、A5で推定した比較伝達関数(□印:図7参照)の読み込み値とを比較する。これにより、同じ周波数の刻みでの比較伝達関数が比較される。このため、測定の周波数刻みが異なっていても、参照伝達関数(○印)に対して同じ周波数刻みに対応する周波数A、・・・、A1、A2、A3、A4、A5で適切に類推された伝達関数(比較伝達関数:□印:図7参照)を比較することができる。 Then, the values of the reference transfer functions (marked with circles) at frequencies A, . and the read value of the comparison transfer function (marked with □: see FIG. 7). Thereby, comparison transfer functions at the same frequency step are compared. Therefore, even if the frequency increments of measurement are different, the frequencies A, . It is possible to compare the transfer functions (comparative transfer function: □ mark: see FIG. 7).
従って、上述した変圧器巻線の伝達関数の比較方法では、測定システムが異なっていても、予め測定しておいた変圧器巻線の伝達関数(参照伝達関数:○印)と、異常の診断を行う際に測定した変圧器巻線の伝達関数(診断伝達関数:比較伝達関数:□印:図7参照)を同じ周波数の刻みで的確に比較することが可能になる。この結果、使用開始時の変圧器に対して、使用開始から数十年経過した変圧器の伝達関数を的確に比較して、巻線に異常が有るか無いかを適切に評価することができる。 Therefore, in the method of comparing the transfer functions of the transformer windings described above, even if the measurement system is different, the transfer functions of the transformer windings that have been measured in advance (reference transfer functions: ○) and the abnormality diagnosis It becomes possible to accurately compare the transfer functions of the transformer windings (diagnostic transfer function: comparison transfer function: □ mark: see FIG. 7) measured at the same frequency step. As a result, it is possible to accurately compare the transfer function of a transformer that has been in service for several decades with that of a transformer at the time of service, and appropriately evaluate whether or not there is an abnormality in the windings. .
尚、参照伝達関数に対する第1補間伝達関数、第2補間伝達関数の一致の度合いを評価する数値指標として、相互相関係数を用いることができる。また、所定の周波数範囲は、測定周波数毎の基準周波数窓に限定されず、決められた周波数の幅(例えば、10Hz以上100Hz未満、100Hz以上500Hz未満、500Hz以上1000Hz未満・・・等)に設定することも可能である。 A cross-correlation coefficient can be used as a numerical index for evaluating the degree of matching between the first interpolated transfer function and the second interpolated transfer function with respect to the reference transfer function. In addition, the predetermined frequency range is not limited to the reference frequency window for each measurement frequency, and is set to a predetermined frequency width (for example, 10 Hz or more and less than 100 Hz, 100 Hz or more and less than 500 Hz, 500 Hz or more and less than 1000 Hz, etc.). It is also possible to
1 変圧器
2 計測手段
3 測定システム
1
Claims (3)
所定の周波数範囲における診断伝達関数を複数の補間手法により補間し、複数の補間伝達関数を求め、
所定の周波数範囲における参照伝達関数と、複数の補間伝達関数とをそれぞれ比較して、一致する度合いを求め、
複数の補間伝達関数のうち一致する度合いが高い補間伝達関数を、診断伝達関数としての比較伝達関数とし、
前記比較伝達関数に応じて前記巻線の異常を診断する方法であり、
所定の周波数範囲における診断伝達関数を補間する複数の補間手法として、
第1補間手法により補間して第1補間伝達関数を求めると共に、所定の周波数範囲における診断伝達関数を第2補間手法により補間して第2補間伝達関数を求め、
所定の周波数範囲における参照伝達関数と、第1補間伝達関数、及び、第2補間伝達関数と比較して一致する度合いを求め、
参照伝達関数と一致する度合いが高い方の第1補間伝達関数、もしくは、第2補間伝達関数を、所定の周波数範囲における診断伝達関数の比較伝達関数とし、
所定の周波数範囲をずらしながら診断伝達関数の比較伝達関数を順次求め、
順次求めた診断伝達関数の比較伝達関数に応じて前記巻線の異常を診断する
ことを特徴とする変圧器巻線の伝達関数の比較方法。 When diagnosing an abnormality in the winding by comparing a diagnostic transfer function obtained by measuring the transfer function of the transformer winding with a reference transfer function that is a previously measured transfer function,
interpolating a diagnostic transfer function in a predetermined frequency range using a plurality of interpolation techniques to obtain a plurality of interpolated transfer functions;
Comparing a reference transfer function in a predetermined frequency range with a plurality of interpolated transfer functions to obtain a degree of matching;
An interpolation transfer function with a high degree of matching among the plurality of interpolation transfer functions is set as a comparison transfer function as a diagnostic transfer function ,
A method for diagnosing an abnormality in the winding according to the comparative transfer function,
A plurality of interpolation techniques for interpolating the diagnostic transfer function in a given frequency range,
Obtaining a first interpolated transfer function by interpolating with a first interpolation method and obtaining a second interpolated transfer function by interpolating a diagnostic transfer function in a predetermined frequency range with a second interpolation method;
Comparing the reference transfer function in a predetermined frequency range with the first interpolated transfer function and the second interpolated transfer function to determine the degree of matching,
The first interpolated transfer function or the second interpolated transfer function, which has a higher degree of matching with the reference transfer function, is set as a comparative transfer function of the diagnostic transfer function in a predetermined frequency range,
Sequentially obtaining a comparison transfer function of the diagnostic transfer function while shifting a predetermined frequency range,
Diagnosing an abnormality in the winding according to the comparison transfer function of the sequentially obtained diagnostic transfer functions
A method for comparing transfer functions of transformer windings, characterized by:
所定の周波数範囲は、所定の範囲の基準周波数窓であり、
基準周波数窓を1測定周波数ステップずつずらしながら診断伝達関数の比較伝達関数を順次求める
ことを特徴とする変圧器巻線の伝達関数の比較方法。 The method for comparing transfer functions of transformer windings according to claim 1 ,
the predetermined frequency range is a reference frequency window of the predetermined range;
A method for comparing transfer functions of transformer windings, characterized by sequentially obtaining comparison transfer functions of diagnostic transfer functions while shifting a reference frequency window by one measurement frequency step.
第1補間伝達関数を求める第1補間手法は、3次スプライン補間であり、
第2補間伝達関数を求める第2補間手法は、区分線形補間である
ことを特徴とする変圧器巻線の伝達関数の比較方法。 In the method for comparing transfer functions of transformer windings according to claim 1 or 2 ,
The first interpolation method for obtaining the first interpolated transfer function is cubic spline interpolation,
A method for comparing transfer functions of transformer windings, wherein the second interpolation method for obtaining the second interpolated transfer function is piecewise linear interpolation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019017029A JP7261024B2 (en) | 2019-02-01 | 2019-02-01 | Evaluating Comparison Function for Transformer Windings |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019017029A JP7261024B2 (en) | 2019-02-01 | 2019-02-01 | Evaluating Comparison Function for Transformer Windings |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020125917A JP2020125917A (en) | 2020-08-20 |
JP7261024B2 true JP7261024B2 (en) | 2023-04-19 |
Family
ID=72083829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019017029A Active JP7261024B2 (en) | 2019-02-01 | 2019-02-01 | Evaluating Comparison Function for Transformer Windings |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7261024B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004251763A (en) | 2003-02-20 | 2004-09-09 | Japan Ae Power Systems Corp | Interior diagnostic device for transformer |
JP4168371B2 (en) | 2002-06-28 | 2008-10-22 | 戸田工業株式会社 | Metal colloidal organosol and method for producing the same |
JP2011253885A (en) | 2010-06-01 | 2011-12-15 | Central Res Inst Of Electric Power Ind | Transformer health diagnosis method, health diagnosis device and health diagnosis program |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01263567A (en) * | 1988-04-15 | 1989-10-20 | Victor Co Of Japan Ltd | Measuring apparatus for analogue/digital converter |
JP2608938B2 (en) * | 1988-10-18 | 1997-05-14 | 松下電器産業株式会社 | Waveform interpolation device |
JP3045759B2 (en) * | 1990-10-31 | 2000-05-29 | アジレント・テクノロジー株式会社 | Settling characteristics measurement method |
JP3695807B2 (en) * | 1995-11-07 | 2005-09-14 | 株式会社東芝 | 2D Doppler ultrasound system |
-
2019
- 2019-02-01 JP JP2019017029A patent/JP7261024B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4168371B2 (en) | 2002-06-28 | 2008-10-22 | 戸田工業株式会社 | Metal colloidal organosol and method for producing the same |
JP2004251763A (en) | 2003-02-20 | 2004-09-09 | Japan Ae Power Systems Corp | Interior diagnostic device for transformer |
JP2011253885A (en) | 2010-06-01 | 2011-12-15 | Central Res Inst Of Electric Power Ind | Transformer health diagnosis method, health diagnosis device and health diagnosis program |
Non-Patent Citations (4)
Title |
---|
MIYAZAKI, S. ; MIZUTANI, Y. ; TAGUCHI, A. ; MURAKAMI, J. ; TSUJI, N. ; TAKASHIMA, M. ; KATO, O.,"Proposal of Objective Criterion in Diagnosis of Abnormalities of Power-Transformer Winding by Frequency Response Analysis",2016 International Conference on Condition Monitoring and Diagnosis (CMD),2016年09月25日,pp. 74-77,DOI: 10.1109/CMD.2016.7757766 |
MIYAZAKI, S. ; MIZUTANI, Y. ; TAHIR, M. ; TENBOHLEN, S.,"Comparison of FRA Data measured by Different Instruments with Different Frequency Resolution",2018 IEEE International Conference on High Voltage Engineering and Application (ICHVE),2018年09月10日,DOI: 10.1109/ICHVE.2018.8642033 |
MIYAZAKI, Satoru; MIZUTANI, Yoshinobu; TAHIR, Mehran; TENBOHLEN, Stefan,"Influence of Employing Different Measuring Systems on Measurement Repeatability in Frequency Response Analyses of Power Transformers",IEEE Electrical Insulation Magazine,2019年02月10日,Vol. 35, No. 2,pp. 27-33,DOI: 10.1109/MEI.2019.8636103 |
宮嵜悟;水谷嘉伸;田口彰;村上純一;辻直一;高島雅弘;加藤理,「周波数応答解析(FRA)による変圧器巻線異常判定基準の提案」,電力中央研究所報告,2015年05月,pp. i-iii, 39-40 |
Also Published As
Publication number | Publication date |
---|---|
JP2020125917A (en) | 2020-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3028275B2 (en) | How to calibrate the sensor | |
US7254520B2 (en) | Testing of wire systems and end devices installed in industrial processes | |
US10345366B2 (en) | Method for monitoring transformer bushings and a system therefor | |
CN109917255B (en) | Partial discharge positioning method under temperature rise of transformer insulating oil | |
US8278939B2 (en) | Diagnostic method for determining deformations in a transformer winding | |
JP6531984B2 (en) | Displacement response calculation method using acceleration recording | |
KR20180047135A (en) | Apparatus for processing reflected wave | |
JP7261024B2 (en) | Evaluating Comparison Function for Transformer Windings | |
KR102277276B1 (en) | Measuring system and method of metal material property | |
RU2696909C1 (en) | Method and device for hot measurement, during rolling, size of metal profiles | |
JP5891138B2 (en) | Impulse tube clogging diagnosis device and clogging diagnosis method | |
CN117168337B (en) | OFDR strain edge optimization method and measurement method | |
JP2867477B2 (en) | Life prediction method for online equipment | |
JPH033164B2 (en) | ||
JP6215992B2 (en) | Power cable insulation degradation position estimation method and estimation system | |
JP7275589B2 (en) | Frequency response waveform generation device, abnormality diagnosis device, frequency response waveform generation method, abnormality diagnosis method | |
CN111024753A (en) | Method, device and equipment for detecting internal defects of composite insulator and storage medium | |
JPH05288706A (en) | Monitoring system of defect of metal member | |
JP5559638B2 (en) | Degradation judgment method for power cables | |
JP7343356B2 (en) | Ultrasonic flow meter and flow measurement method | |
JP4699797B2 (en) | Measuring method and apparatus | |
CN113267116B (en) | System and method for measuring length of coiled cable | |
KR102205153B1 (en) | Apparatus and method for monitoring mixing ratio of two-component type adhesive | |
CN113702893B (en) | Transient waveform transmission consistency evaluation method and device for direct current transformer | |
JP2010266215A (en) | Eddy current flaw detection signal evaluation device, and eddy current flaw detection testing device and method of evaluating eddy current flaw detection signal including the eddy current flaw detection signal evaluation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20190207 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230120 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230407 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7261024 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |