JP2009025153A - Method for identifying abnormal condition of transformer - Google Patents

Method for identifying abnormal condition of transformer Download PDF

Info

Publication number
JP2009025153A
JP2009025153A JP2007188482A JP2007188482A JP2009025153A JP 2009025153 A JP2009025153 A JP 2009025153A JP 2007188482 A JP2007188482 A JP 2007188482A JP 2007188482 A JP2007188482 A JP 2007188482A JP 2009025153 A JP2009025153 A JP 2009025153A
Authority
JP
Japan
Prior art keywords
measurement
winding
transfer function
voltage winding
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007188482A
Other languages
Japanese (ja)
Inventor
Satoru Miyazaki
悟 宮嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2007188482A priority Critical patent/JP2009025153A/en
Publication of JP2009025153A publication Critical patent/JP2009025153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To readily identify abnormal conditions of a core and a winding of a transformer. <P>SOLUTION: Transfer functions of a high voltage winding in conditions that a low voltage winding is opened and closed are measured, and transfer functions of the low voltage winding in conditions that the high voltage winding is opened and closed are measured with respect to at least a first measurement region 5 where change is presented in the deformation of the core and a second measurement region 6 where change is presented in the abnormal condition of the winding. The abnormal condition of the transformer is identified on the basis of the combination of the measurement regions each having the change presented therein. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、変圧器の異常様相同定方法に関する。さらに詳述すると、本発明は、変圧器巻線の伝達関数に基づいて変圧器の鉄心や巻線の異常様相を同定する変圧器の異常様相同定方法に関するものである。   The present invention relates to a method for identifying an abnormal aspect of a transformer. More specifically, the present invention relates to a method for identifying an abnormal aspect of a transformer that identifies an abnormal aspect of a transformer core and winding based on a transfer function of the transformer winding.

変圧器の内部の異変を非破壊で察知する方法として、周波数応答解析(FRA:Frequency Response Analysis)を利用するものがあり、このFRAを利用するものとして、例えば特開2004−251763号公報に開示された変圧器内部診断装置がある。この変圧器内部診断装置を図14に示す。この変圧器内部診断装置は、変圧器巻線に高周波信号または系統内のサージを入力し、その信号またはサージの応答状況を外部に設けた観測手段で観測して、予め設定した応答状況レベルに達したかを判断し、その判断結果から変圧器内部の良否状況を診断するものである。観察手段は、高周波信号またはサージによる変圧器内部からの応答信号を分析する周波数分析器101と、この分析による分析結果から変圧器内部の良否を判断する判定装置102と、この判定装置102からの判定結果を報知する警報装置103とからなっている。   As a method of non-destructively detecting an abnormality in a transformer, there is a method using frequency response analysis (FRA), and the method using this FRA is disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-251663. There is a transformer internal diagnostic device. This transformer internal diagnostic device is shown in FIG. This transformer internal diagnostic device inputs a high-frequency signal or a surge in the system to the transformer winding, observes the response status of the signal or surge with an external observation means, and sets the response status level to a preset level. It is judged whether it has been reached, and the condition inside the transformer is diagnosed from the judgment result. The observation means includes a frequency analyzer 101 that analyzes a response signal from the inside of the transformer due to a high-frequency signal or a surge, a determination device 102 that determines the quality inside the transformer from the analysis result of this analysis, It consists of an alarm device 103 that notifies the judgment result.

変圧器本体104にはブッシングポケット105を介してブッシング106が設置され、ブッシングポケット105内には発振器接続用変成器107と電流測定用の変成器108が設けられている。変成器107には周波数可変発振器109から高周波信号が入力される。この信号は変成器108から電流測定値として取り出される。取り出された電流値とラインリード110の電圧値が周波数分析器101に入力され、電圧/電流からインピーダンスが得られる。周波数分析器101では、さらに周波数特性も分析されるために、変圧器巻線のインピーダンス−周波数特性が得られる。このインピーダンス−周波数特性が予め設定された正常時のレベルと比較され、そのレベル以上に達したなら判定装置102から警報装置103を介して警報が発せられる。   A bushing 106 is installed in the transformer main body 104 via a bushing pocket 105, and an oscillator connection transformer 107 and a current measurement transformer 108 are provided in the bushing pocket 105. A high frequency signal is input from the variable frequency oscillator 109 to the transformer 107. This signal is taken from the transformer 108 as a current measurement. The extracted current value and the voltage value of the line lead 110 are input to the frequency analyzer 101, and the impedance is obtained from the voltage / current. Since the frequency analyzer 101 further analyzes the frequency characteristic, the impedance-frequency characteristic of the transformer winding can be obtained. This impedance-frequency characteristic is compared with a normal level set in advance, and if the level is exceeded, a warning is issued from the determination device 102 via the alarm device 103.

特開2004−251763号JP 2004-251763 A

しかしながら、上述の変圧器内部診断装置では、周波数分析器101によって得られたインピーダンス−周波数特性を予め設定された正常時のレベルと比較し、そのレベル以上に達したか否かによって異常を検出している。そのため、何らかの異常があることを検出することは可能であるが、その異常の様相を同定することまではできない。   However, in the above-mentioned transformer internal diagnostic device, the impedance-frequency characteristic obtained by the frequency analyzer 101 is compared with a preset normal level, and an abnormality is detected depending on whether or not the level has been exceeded. ing. Therefore, it is possible to detect that there is some abnormality, but it is not possible to identify the aspect of the abnormality.

本発明は、異常様相の同定が可能であり、しかも簡易に同定することが可能な変圧器の異常様相同定方法を提供することを目的とする。   It is an object of the present invention to provide a method for identifying an abnormal aspect of a transformer that can identify an abnormal aspect and that can be easily identified.

本発明者らは、変圧器の異常について、単にその異常を検出するだけではなく、異常の様相を簡易に同定できる方法について鋭意研究を行った結果、変圧器に異常が発生した場合に低圧巻線及び高圧巻線の伝達関数が変化する領域と、その異常様相との間には一定の関係があることを知見し、本発明をするに至ったものである。   The present inventors have not only detected the abnormality of the transformer, but have conducted extensive research on a method for easily identifying the aspect of the abnormality. As a result, when the abnormality occurs in the transformer, the low voltage winding is performed. It has been found that there is a certain relationship between the region in which the transfer function of the wire and the high-voltage winding changes and its abnormal aspect, and has led to the present invention.

請求項1記載の変圧器の異常様相同定方法は、少なくとも鉄心変形時に伝達関数の変化が現れ得る周波数の第1の測定領域と巻線異常時に伝達関数の変化が現れ得る周波数の第2の測定領域について、低圧巻線を開放した状態と短絡した状態の高圧巻線の伝達関数をそれぞれ測定すると共に、高圧巻線を開放した状態と短絡した状態の低圧巻線の伝達関数をそれぞれ測定し、低圧巻線を開放した状態で測定した高圧巻線の伝達関数の測定値を第1の測定値とし、低圧巻線を短絡した状態で測定した高圧巻線の伝達関数の測定値を第2の測定値とし、高圧巻線を開放した状態で測定した低圧巻線の伝達関数の測定値を第3の測定値とし、高圧巻線を短絡した状態で測定した低圧巻線の伝達関数の測定値を第4の測定値とし、第1及び第3の測定値の第1の測定領域に変化が現れ、第2及び第4の測定値の第1の測定領域と4つの測定値の第2の測定領域には変化が現れない場合に鉄心に異常があると判断し、4つの測定値の第2の測定領域に変化が現れ、4つの測定値の第1の測定領域には変化が現れない場合に低圧巻線又は高圧巻線に位置ずれ異常があると判断し、第1及び第2の測定値の第2の測定領域に変化が現れ、第3及び第4の測定値の第2の測定領域と4つの測定値の第1の測定領域には変化が現れない場合に高圧巻線に変形異常があると判断し、第3及び第4の測定値の第2の測定領域に変化が現れ、第1及び第2の測定値の第2の測定領域と4つの測定値の第1の測定領域には変化が現れない場合に低圧巻線に変形異常があると判断するものである。   The method for identifying an abnormal aspect of a transformer according to claim 1 includes a first measurement region of a frequency at which a change in the transfer function can appear at least when the iron core is deformed and a second measurement at a frequency at which the change of the transfer function can appear when the winding is abnormal. For the region, measure the transfer function of the high voltage winding in the open state and the shorted state of the low voltage winding, respectively, and measure the transfer function of the low voltage winding in the opened state and the shorted state of the high voltage winding, The measured value of the transfer function of the high voltage winding measured with the low voltage winding opened is the first measured value, and the measured value of the transfer function of the high voltage coil measured with the low voltage winding shorted is the second measured value. The measured value of the transfer function of the low-voltage winding measured with the high-voltage winding opened is the third measured value, and the measured value of the transfer function of the low-voltage winding measured with the high-voltage winding short-circuited. Is the fourth measured value, and the first and third measurements If there is a change in the first measurement area, and there is no change in the first measurement area of the second and fourth measurement values and the second measurement area of the four measurement values, the iron core is abnormal. Judging, if there is a change in the second measurement area of the four measurement values and no change in the first measurement area of the four measurement values, there is a misalignment abnormality in the low voltage winding or the high voltage winding. A change appears in the second measurement area of the first and second measurement values, and changes in the second measurement area of the third and fourth measurement values and the first measurement area of the four measurement values Is not present, it is determined that there is a deformation abnormality in the high-voltage winding, a change appears in the second measurement region of the third and fourth measurement values, and the second measurement region of the first and second measurement values. When no change appears in the first measurement region of the four measurement values, it is determined that there is a deformation abnormality in the low-voltage winding.

変圧器の異常様相ごとに4つの伝達関数に変化が現れる領域の組み合わせが異なるので、4つの伝達関数を測定し、それらの測定値の変化領域を調べることで、変化領域の組み合わせに基づいて変圧器の異常様相を同定することができる。   Since the combinations of the areas where changes appear in the four transfer functions are different for each abnormal aspect of the transformer, the four transfer functions are measured, and the change areas of these measured values are examined. The abnormal aspect of the vessel can be identified.

例えば、変圧器の鉄心に異常が発生すると、第1及び第3の測定値の第1の測定領域に変化が認められ、第2及び第4の測定値の第1の測定領域と4つの測定値の第2の測定領域には変化が認められない。したがって、これらの条件に4つの測定値の変化の組み合わせが一致した場合に変圧器の鉄心に異常があると判断できる。また、変圧器の低圧巻線又は高圧巻線に位置ずれ異常が発生すると、4つの測定値の第2の測定領域に変化が認められ、4つの測定値の第1の測定領域には変化が認められない。したがって、これらの条件に4つの測定値の変化の組み合わせが一致した場合に変圧器の低圧巻線又は高圧巻線に位置ずれ異常があると判断できる。また、変圧器の低圧巻線又は高圧巻線に変形異常が発生すると、変形した方の巻線についての測定値の第2の測定領域に変化が認められ、変形していない方の巻線についての測定値の第2の測定領域と4つの測定値の第1の測定領域には変化が認められない。したがって、これらの条件に4つの測定値の変化の組み合わせが一致した場合に変圧器の低圧巻線又は高圧巻線に変形異常があると判断できる。   For example, when an abnormality occurs in the iron core of the transformer, a change is recognized in the first measurement region of the first and third measurement values, and the first measurement region and the four measurement values of the second and fourth measurement values. No change is observed in the second measurement region of values. Therefore, it can be determined that there is an abnormality in the iron core of the transformer when the combination of changes in the four measured values matches these conditions. In addition, when a displacement error occurs in the low-voltage winding or high-voltage winding of the transformer, a change is recognized in the second measurement region of the four measurement values, and a change is detected in the first measurement region of the four measurement values. unacceptable. Therefore, it can be determined that there is a misalignment in the low-voltage winding or the high-voltage winding of the transformer when the combination of changes in the four measured values matches these conditions. In addition, when a deformation abnormality occurs in the low-voltage winding or high-voltage winding of the transformer, a change is recognized in the second measurement region of the measured value of the deformed winding, and the untransformed winding No change is observed in the second measurement area of the measurement values and the first measurement area of the four measurement values. Therefore, it can be determined that there is a deformation abnormality in the low-voltage winding or high-voltage winding of the transformer when the combination of changes in the four measured values matches these conditions.

伝達関数の測定は、第1の測定領域と第2の測定領域を含むより広い周波数領域について行なっても良いが、鉄心変形に対応する変化と巻線異常に対応する変化とを検出できれば異常様相の同定は可能であるので、少なくとも第1の測定領域と第2の測定領域について測定を行えば足りる。また、第1の測定領域として鉄心変形時に変化が現れる領域の全てを測定しても良いが、変化が現れる領域を部分的に測定しても良い。同様に、第2の測定領域として巻線異常時に変化が現れる領域の全てを測定しても良いが、変化が現れる領域を部分的に測定しても良い。なお、鉄心の異常が現れる周波数領域は巻線の異常が現れる周波数領域よりも低い周波数領域である。   The transfer function may be measured in a wider frequency range including the first measurement region and the second measurement region. However, if the change corresponding to the iron core deformation and the change corresponding to the winding abnormality can be detected, the abnormal aspect is detected. Therefore, it is sufficient to measure at least the first measurement region and the second measurement region. Moreover, although all the areas where the change appears when the iron core is deformed may be measured as the first measurement area, the area where the change appears may be partially measured. Similarly, as the second measurement region, the entire region where a change appears when the winding is abnormal may be measured, or the region where the change appears may be partially measured. Note that the frequency region where the iron core abnormality appears is a lower frequency region than the frequency region where the winding abnormality appears.

また、請求項2記載の変圧器の異常様相同定方法は、使用前に予め測定しておいた伝達関数との比較によって測定値の変化を検出するものである。即ち、使用前の異常が発生していない状態で測定した伝達関数を基準値とし、この基準値と対応する測定値との比較によって伝達関数の変化を検出することができる。この場合、変圧器は単相変圧器でも3相変圧器でも良い。   In addition, the method for identifying an abnormal aspect of a transformer according to claim 2 detects a change in a measured value by comparison with a transfer function measured in advance before use. That is, it is possible to detect a change in the transfer function by comparing a transfer function measured in a state where no abnormality occurs before use as a reference value and comparing the reference value with a corresponding measured value. In this case, the transformer may be a single-phase transformer or a three-phase transformer.

また、請求項3記載の変圧器の異常様相同定方法は、3相交流の巻線について測定を行い、他の相の対応する測定値との比較によって測定値の変化を検出するものである。3相変圧器の場合、測定値の変化が3相交流の巻線の全てに等しく現れることは殆ど考えられない。したがって、他の相の巻線の測定値を基準値とし、この基準値との対比によって対象とする相の伝達関数の変化を検出することができる。   According to a third aspect of the present invention, there is provided a method for identifying an abnormal aspect of a transformer, in which a three-phase AC winding is measured and a change in the measured value is detected by comparison with a corresponding measured value of another phase. In the case of a three-phase transformer, it is unlikely that the change in measured value will appear equally in all three-phase AC windings. Therefore, it is possible to detect a change in the transfer function of the target phase by using the measured value of the winding of the other phase as a reference value and comparing with the reference value.

請求項1記載の変圧器の異常様相同定方法では、上述のようにして変圧器の異常様相を同定するので、変圧器の異常様相を簡易、迅速、正確に同定することができる。   In the method for identifying an abnormal aspect of the transformer according to the first aspect, since the abnormal aspect of the transformer is identified as described above, the abnormal aspect of the transformer can be easily, quickly and accurately identified.

また、請求項2記載の変圧器の異常様相同定方法では、使用前に予め測定しておいた伝達関数との比較によって測定値の変化を検出するので、予め測定して記憶しておいた基準値との比較によって変圧器の異常様相を簡易、迅速、正確に同定することができる。   In addition, in the method for identifying an abnormal aspect of a transformer according to claim 2, since a change in a measured value is detected by comparison with a transfer function measured in advance before use, a standard that has been measured and stored in advance. By comparing with the value, the abnormal aspect of the transformer can be identified easily, quickly and accurately.

また、請求項3記載の変圧器の異常様相同定方法では、3相交流の巻線について測定を行い、他の相の対応する測定値との比較によって測定値の変化の出現を検出するので、予め基準値を測定し記憶しておく必要が無くなる。   Further, in the method for identifying an abnormal aspect of the transformer according to claim 3, since the measurement is performed on the winding of the three-phase alternating current, and the appearance of the change in the measured value is detected by comparison with the corresponding measured value of the other phase, There is no need to measure and store the reference value in advance.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

本発明の変圧器の異常様相同定方法は、図1に示すように、少なくとも鉄心変形時に伝達関数の変化Aが現れ得る周波数の第1の測定領域5と、巻線異常時に伝達関数の変化Aが現れ得る周波数の第2の測定領域6について変圧器巻線の伝達関数を測定し、伝達関数の変化Aが現れた測定領域5,6の組み合わせに基づいて変圧器の異常様相を同定するものである。伝達関数の測定値としては、低圧巻線を開放した状態で測定する高圧巻線の伝達関数(以下、第1の測定値という)、低圧巻線を短絡した状態で測定する高圧巻線の伝達関数(以下、第2の測定値という)、高圧巻線を開放した状態で測定する低圧巻線の伝達関数(以下、第3の測定値という)、高圧巻線を短絡した状態で測定する低圧巻線の伝達関数(以下、第4の測定値という)の4種類である。   As shown in FIG. 1, the method for identifying an abnormal aspect of a transformer according to the present invention includes a first measurement region 5 at which a transfer function change A can appear at least when the iron core is deformed, and a transfer function change A when the winding is abnormal. To measure the transfer function of the transformer winding in the second measurement region 6 of the frequency at which can appear, and to identify the abnormal aspect of the transformer based on the combination of the measurement regions 5 and 6 in which the change A of the transfer function appears It is. The measurement value of the transfer function includes the transfer function of the high voltage winding measured with the low voltage winding open (hereinafter referred to as the first measured value), and the transmission of the high voltage winding measured with the low voltage winding shorted. Function (hereinafter referred to as the second measured value), transfer function of the low voltage winding measured with the high voltage winding open (hereinafter referred to as the third measured value), low measured with the high voltage winding shorted There are four types of transfer functions (hereinafter referred to as fourth measured values) of the pressure winding.

伝達関数としては、変圧器巻線に何らかの電気的信号を入力し、それに対する何らかの電気的出力信号を測定したものであれば良く、例えば電圧についての伝達関数の使用が可能である。ただし、電圧についての伝達関数に限定されるものではなく、例えば巻線インピーダンスについての伝達関数、巻線アドミタンスについての伝達関数等の使用も可能である。検出感度に違いがあるとは考えられるが、原理的にはどのような伝達関数も選択可能である。各種異常(巻線の変形や位置ずれ)によって巻線間容量やターン間容量等の電気的パラメータ(回路定数)は変化するが、商用周波数(50Hz)ではこれらのパラメータは巻線抵抗や巻線インダクタンスに比べて非常に小さく、変化を検出することは困難である。しかし、高周波(数10kHz)では巻線間容量やターン間容積が支配的になり、これらの変化を検出することができる。したがって、このような電気的パラメータを測定している伝達関数(例えば電圧、巻線インピーダンス、巻線アドミタンス等)を選択することで、変圧器の異常を同定することができる。本実施形態では、最も感度が良いと考えられる電圧に関する伝達関数を測定する。   As the transfer function, any electrical signal may be input to the transformer winding, and any electrical output signal may be measured. For example, a transfer function for voltage can be used. However, the transfer function is not limited to voltage, and for example, a transfer function for winding impedance, a transfer function for winding admittance, or the like can be used. Although it is considered that there is a difference in detection sensitivity, in principle, any transfer function can be selected. Electrical parameters (circuit constants) such as interwinding capacitance and turn-to-turn capacitance change due to various abnormalities (deformation and misalignment of the winding), but at commercial frequency (50 Hz), these parameters vary with winding resistance and winding. It is very small compared to the inductance, and it is difficult to detect the change. However, at high frequencies (several tens of kHz), the interwinding capacity and the interturn volume are dominant, and these changes can be detected. Therefore, by selecting a transfer function (for example, voltage, winding impedance, winding admittance, etc.) that measures such an electrical parameter, the abnormality of the transformer can be identified. In the present embodiment, a transfer function relating to a voltage considered to have the best sensitivity is measured.

伝達関数の測定法として、本実施形態では例えば周波数挿引法を使用する。   In this embodiment, for example, a frequency subtraction method is used as a transfer function measurement method.

伝達関数の測定は、鉄心変形時に伝達関数の変化が現れ得る周波数領域即ち第1の測定領域5と、巻線異常時に伝達関数の変化が現れ得る周波数領域即ち第2の測定領域6を含むより広い周波数領域について測定を行っても良い。例えば第1の測定領域5と第2の測定領域6を含む連続した1つの広い周波数領域について測定を行っても良い。ただし、鉄心変形に対応する伝達関数の変化と巻線異常に対応する伝達関数の変化とを検出することができれば良いので、少なくとも第1の測定領域5と第2の測定領域6について行えば足りる。また、第1の測定領域5として鉄心変形時に変化が現れる領域の全てを測定しても良いが、変化が現れる領域を部分的に測定しても良い。同様に、第2の測定領域6として巻線異常時に変化が現れる領域の全てを測定しても良いが、変化が現れる領域を部分的に測定しても良い。   The measurement of the transfer function includes a frequency region where the change of the transfer function can appear when the iron core is deformed, that is, the first measurement region 5, and a frequency region where the change of the transfer function can appear when the winding is abnormal, that is, the second measurement region 6. You may measure about a wide frequency range. For example, the measurement may be performed for one continuous wide frequency region including the first measurement region 5 and the second measurement region 6. However, it is sufficient to detect the change of the transfer function corresponding to the iron core deformation and the change of the transfer function corresponding to the winding abnormality, so that it is sufficient to perform at least the first measurement region 5 and the second measurement region 6. . Further, as the first measurement region 5, all of the regions where the change appears when the iron core is deformed may be measured, but the region where the change appears may be partially measured. Similarly, as the second measurement region 6, all the regions where changes occur when the winding is abnormal may be measured, but the regions where changes occur may be partially measured.

ここで、鉄心変形時に変化が現れる周波数領域と巻線異常時に変化が現れる周波数領域は、対象となる変圧器に応じて若干変化するので、第1の測定領域5と第2の測定領域6を一律に決定することは困難である。ただし、異常時に変化が現れる周波数領域は各変圧器で大体共通しているので、各変圧器に対応できるように測定領域を決定しておけば各変圧器毎にいちいち測定領域を決定する必要がなくなり、より簡易でより便利である。また、より多くの変圧器に対応できるように測定領域を決定しておけば、汎用性を高めることができる。なお、少しぐらい測定領域を狭くしても測定に要する時間は殆ど変わらないので、あまり狭くするメリットはなく、実際には測定領域を広めにしておくことが同定の精度向上、汎用性向上等の観点から好ましい。   Here, since the frequency region where the change appears when the iron core is deformed and the frequency region where the change appears when the winding is abnormal change slightly depending on the target transformer, the first measurement region 5 and the second measurement region 6 are It is difficult to decide uniformly. However, since the frequency range in which changes appear at the time of abnormality is roughly common to each transformer, it is necessary to determine the measurement region for each transformer once the measurement region is determined so that it can correspond to each transformer. It is simpler and more convenient. Moreover, if the measurement area is determined so as to be compatible with more transformers, versatility can be improved. Note that even if the measurement area is narrowed a little, the time required for measurement is almost the same, so there is no merit of making it so narrow. It is preferable from the viewpoint.

このように測定領域の数値を一律に決めることは困難であり、また、その必要もないが、本発明者らの実験では20Hz〜10MHzの周波数について伝達関数の測定を行なった結果、鉄心異常の場合の伝達関数の変化は概ね10kHz以下の領域で現れ、巻線異常の場合の伝達関数の変化は概ね50kHz以上の領域で現れた。このため、例えば20Hz〜10kHzの領域と50kHz〜10MHzの領域を含むより広い連続した20Hz〜10MHzの領域を測定しても良いが、第1の測定領域5として20Hz〜10kHzの領域を、第2の測定領域6として50kHz〜10MHzの領域をそれぞれ測定するようにしても良い。   In this way, it is difficult to uniformly determine the numerical value of the measurement region, and it is not necessary, but in our experiments, as a result of measuring the transfer function at a frequency of 20 Hz to 10 MHz, The change in the transfer function in the case appeared in the region of approximately 10 kHz or less, and the change in the transfer function in the case of the winding abnormality appeared in the region of approximately 50 kHz or more. For this reason, for example, a wider continuous 20 Hz to 10 MHz region including a 20 Hz to 10 kHz region and a 50 kHz to 10 MHz region may be measured. As the measurement area 6, an area of 50 kHz to 10 MHz may be measured.

なお、本発明は周波数応答解析(FRA:FrequencyResponse Analysis)の一種であり、一般的に知られているFRA(例えば、佐野,宮城「周波数応答分析による電力溶変圧器診断の適用性検証」,電気学会静止器研究会資料,SA−06−108,2006)では、一般的に数十Hz〜数MHzの周波数領域について測定を行うので、本発明でも同様に数十Hz〜数MHzの周波数領域について測定を行うことが考えられる。   The present invention is a kind of frequency response analysis (FRA), and generally known FRA (for example, Sano, Miyagi “Verification of applicability of power melting transformer diagnosis by frequency response analysis”, electric In the Society of Static Research Institute Material, SA-06-108, 2006), measurement is generally performed in the frequency range of several tens of Hz to several MHz, and therefore in the present invention, the frequency range of several tens of Hz to several MHz is similarly used. It is conceivable to make a measurement.

図2に、伝達関数の測定の概念を示す。変圧器1の高圧巻線2の伝達関数を測定する場合には、高圧巻線2を測定器(周波数特性解析装置)4に接続し、低圧巻線3を開放した状態と短絡させた状態とで測定を行う(図2(a))。また、変圧器1の低圧巻線3の伝達関数を測定する場合には、低圧巻線3を測定器4に接続し、高圧巻線2を開放した状態と短絡させた状態とで測定を行う(図2(b))。   FIG. 2 shows the concept of transfer function measurement. When measuring the transfer function of the high-voltage winding 2 of the transformer 1, the high-voltage winding 2 is connected to a measuring device (frequency characteristic analyzer) 4 and the low-voltage winding 3 is opened and short-circuited. Measurement is performed with (FIG. 2 (a)). Further, when measuring the transfer function of the low-voltage winding 3 of the transformer 1, the low-voltage winding 3 is connected to the measuring device 4, and the measurement is performed with the high-voltage winding 2 opened and short-circuited. (FIG. 2 (b)).

伝達関数の変化の検出は、第1、第2、第3、第4の測定値を異常が発生していない状態の値とそれぞれ比較することで行われる。異常が発生していない状態の値(基準値)としては、例えば変圧器の使用前に予め測定しておいた伝達関数の使用が可能である。即ち、異常が発生していないことが明らかな状態で第1、第2、第3、第4の測定値を測定しておき、これらをそれぞれ基準値として記憶しておく。そして、異常様相同定のために今回測定した第1の測定値をこれに対応する基準値と比較し、変化を検出する。第2、第3、第4の測定値についても同様である。この方法の場合は、単相変圧器と3相変圧器の両方に対応可能である。ただし、基準値としては上述のものに限るものではない。   The change in the transfer function is detected by comparing the first, second, third, and fourth measured values with values in a state where no abnormality has occurred. As a value (reference value) in a state where no abnormality has occurred, for example, a transfer function measured in advance before using the transformer can be used. That is, the first, second, third and fourth measurement values are measured in a state where it is clear that no abnormality has occurred, and these are stored as reference values. Then, the first measurement value measured this time for the abnormal aspect identification is compared with the corresponding reference value, and a change is detected. The same applies to the second, third, and fourth measured values. In the case of this method, both a single-phase transformer and a three-phase transformer can be supported. However, the reference value is not limited to the above.

図1に、伝達関数の測定値の変化領域と変圧器1の異常様相との関係を示す。ここでは、20Hz〜2MHzの周波数について伝達関数を示している。個々のグラフでは基準値を実線で、実際の測定値を破線でそれぞれ示している。実線に対して破線がずれている領域が、伝達関数の測定値の変化領域である。なお、伝達関数の測定法として周波数挿引法を用い、巻線の一端に入力した電圧と他端で出力電圧を測定し、その比として伝達関数を定義している(図2)。また、巻線の位置ずれと変形については低圧巻線3についてのものである。ただし、後述する図10を用いた検討のように、高圧巻線2と低圧巻線3によって伝達関数変化様相に違いはないと考えられる。   In FIG. 1, the relationship between the change area | region of the measured value of a transfer function and the abnormal aspect of the transformer 1 is shown. Here, the transfer function is shown for frequencies of 20 Hz to 2 MHz. In each graph, the reference value is indicated by a solid line, and the actual measurement value is indicated by a broken line. A region where the broken line is deviated from the solid line is a region where the measured value of the transfer function changes. Note that the frequency insertion method is used as a method for measuring the transfer function, the voltage input to one end of the winding and the output voltage are measured at the other end, and the transfer function is defined as the ratio (FIG. 2). Further, the positional deviation and deformation of the winding are those of the low-voltage winding 3. However, it is considered that there is no difference in the transfer function change aspect between the high voltage winding 2 and the low voltage winding 3 as in the examination using FIG.

変化が認められた領域に符号Aを付して示す。この結果からも明らかなように、鉄心が変形した場合には、片方の巻線を開放した状態でもう片方の巻線の伝達関数を測定すると(第1、第3の測定値)、その第1の測定領域5(第一共振周波数付近)で伝達関数が変化する。また、巻線の位置ずれではずれた巻線だけでなく他方のずれていない巻線の第2の測定領域6の伝達関数も変化する。これに対し、巻線の変形では変形した巻線の第2の測定領域6の伝達関数のみが変化し、変形していない巻線の伝達関数は変化しない。   An area where a change is recognized is indicated by reference symbol A. As is clear from this result, when the iron core is deformed, when the transfer function of the other winding is measured with the one winding opened (first and third measured values), the first The transfer function changes in one measurement region 5 (near the first resonance frequency). In addition, the transfer function of the second measurement region 6 of not only the shifted winding but also the other non-shifted winding changes due to the positional deviation of the winding. On the other hand, in the deformation of the winding, only the transfer function of the second measurement region 6 of the deformed winding changes, and the transfer function of the undeformed winding does not change.

即ち、鉄心が変形した場合には、第1及び第3の測定値の第1の測定領域5に変化が認められ、第2及び第4の測定値の第1の測定領域5と4つの測定値の第2の測定領域6には変化が認められない。したがって、変化が現れた測定領域がこのような組み合わせの場合には、鉄心に変形異常あると判断できる。   That is, when the iron core is deformed, a change is recognized in the first measurement region 5 of the first and third measurement values, and the first measurement region 5 and the four measurement values of the second and fourth measurement values. No change is observed in the second measurement region 6 of the value. Therefore, when the measurement region where the change appears is such a combination, it can be determined that there is a deformation abnormality in the iron core.

巻線の位置ずれが生じた場合には、4つの測定値の第2の測定領域6に変化が認められ、4つの測定値の第1の測定領域5には変化が認められない。したがって、変化が現れた測定領域がこのような組み合わせの場合には、低圧巻線3又は高圧巻線2に位置ずれが生じていると判断できる。   When the winding position shift occurs, a change is recognized in the second measurement region 6 of the four measurement values, and no change is recognized in the first measurement region 5 of the four measurement values. Therefore, when the measurement region where the change appears is such a combination, it can be determined that the low-voltage winding 3 or the high-voltage winding 2 is misaligned.

低圧巻線3又は高圧巻線2に変形異常が生じた場合には、変形した方の巻線についての測定値の第2の測定領域6に変化が認められ、変形していない方の巻線についての測定値の第2の測定領域6と4つの測定値の第1の測定領域5には変化が認められない。したがって、変化が現れた測定領域がこのような組み合わせの場合には、低圧巻線3又は高圧巻線2に変形が生じていると判断できる。   When a deformation abnormality occurs in the low voltage winding 3 or the high voltage winding 2, a change is recognized in the second measurement region 6 of the measured value of the deformed winding, and the untransformed winding No change is observed in the second measurement area 6 of the measurement values and the first measurement area 5 of the four measurement values. Therefore, when the measurement region where the change appears is such a combination, it can be determined that the low voltage winding 3 or the high voltage winding 2 is deformed.

このように本発明では、4つの伝達関数を測定し、それら測定値の変化領域を検出することで、変化領域の組み合わせに基づいて変圧器1の異常様相を簡易、迅速、正確に同定することができる。   As described above, in the present invention, by measuring the four transfer functions and detecting the change areas of the measured values, the abnormal aspect of the transformer 1 can be easily, quickly and accurately identified based on the combination of the change areas. Can do.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、上述の説明では、変圧器1の使用前に予め測定しておいた伝達関数(基準値)との比較によって4つの測定値の変化を検出していたが、3相変圧器の場合には、3相のそれぞれについて第1〜第4の測定値を求め、他の相の対応する測定値との比較によって測定値の変化を検出するようにしても良い。この場合、測定値の変化が全ての相で等しく出現することは殆ど考えられないので、他の相の対応する測定値を基準値とし、この基準値と対象としている相の測定値を比較することで対象としている相の伝達関数の変化を検出することができる。この場合には、単相変圧器には適用できないという不便はあるが、予め基準値を測定し記憶しておく必要がないというメリットがある。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, in the above description, changes in four measured values are detected by comparison with a transfer function (reference value) measured in advance before using the transformer 1, but in the case of a three-phase transformer, May obtain the first to fourth measurement values for each of the three phases and detect changes in the measurement values by comparison with the corresponding measurement values of the other phases. In this case, it is almost unlikely that the change in the measured value appears equally in all phases. Therefore, the corresponding measured value in the other phase is used as a reference value, and the measured value of the target phase is compared with this reference value. Thus, a change in the transfer function of the target phase can be detected. In this case, there is an inconvenience that it cannot be applied to the single-phase transformer, but there is an advantage that it is not necessary to measure and store the reference value in advance.

また、上述の説明では、伝達関数の測定法として例えば周波数挿引法を使用していたが、これに限るものではなく、その他の方法、例えばインパルス法を使用しても良い。インパルス法では、低電圧のインパルスを入力信号とし、出力信号(例えば電流)を測定する。入力信号および出力信号をフーリエ変換し、その商として伝達関数を求める。一方周波数挿引法では、正弦波の入力信号(例えば電圧)を入力し、出力信号(例えば電流)の振幅と位相を測定する。この測定を、周波数を変化させながら繰り返すことにより伝達関数を求める。インパルス法は、周波数挿引法に比べ測定時間が短いという利点がある。一方、周波数挿引法には、信号対ノイズ比が良いこと、周波数領域全域で測定精度が同等であること、広い周波数領域の測定が可能なこと、インパルス法に比べ測定装置が小型であることなどの利点がある。   In the above description, the frequency interpolation method is used as the transfer function measurement method, for example. However, the method is not limited to this, and other methods such as an impulse method may be used. In the impulse method, a low voltage impulse is used as an input signal, and an output signal (for example, current) is measured. The input signal and the output signal are Fourier transformed, and a transfer function is obtained as a quotient thereof. On the other hand, in the frequency interpolation method, a sine wave input signal (for example, voltage) is input, and the amplitude and phase of the output signal (for example, current) are measured. A transfer function is obtained by repeating this measurement while changing the frequency. The impulse method has an advantage that the measurement time is shorter than the frequency insertion method. On the other hand, the frequency subtraction method has a good signal-to-noise ratio, equal measurement accuracy over the entire frequency range, can measure over a wide frequency range, and has a smaller measuring device than the impulse method. There are advantages such as.

変圧器1の異常を巻線2,3の伝達関数の変化パターンに基づいて同定できることを確認する実験とその検討を行った。   An experiment was conducted to confirm that the abnormality of the transformer 1 can be identified based on the change pattern of the transfer function of the windings 2 and 3 and the examination.

(伝達関数の測定)
伝達関数を測定した。本実験の測定では、測定器4として、特に断りが無い限りDoble社の周波数特性解析装置M5300を用いた。M5300は伝達関数の測定法として周波数挿引法を採用している。
(Transfer function measurement)
The transfer function was measured. In the measurement of this experiment, a frequency characteristic analyzer M5300 manufactured by Doble was used as the measuring device 4 unless otherwise specified. The M5300 employs the frequency subtraction method as a transfer function measurement method.

本発明における入力信号、出力信号は任意に選ぶことができる。本実験の測定では、特に断りがない限り、図2に示すように巻線端子の一端に入力した電圧を入力信号Vinput、他端で測定される電圧を出力信号Voutputとし、伝達関数H(jω)を数式1で定義した。なお、巻線2,3と測定器4の端子との接続には、例えば50Ω同軸ケーブル7を使用した。 The input signal and output signal in the present invention can be arbitrarily selected. In the measurement of this experiment, unless otherwise specified, as shown in FIG. 2, the voltage input to one end of the winding terminal is the input signal V input , the voltage measured at the other end is the output signal V output , and the transfer function H (jω) was defined by Equation 1. For example, a 50Ω coaxial cable 7 was used for connection between the windings 2 and 3 and the terminal of the measuring instrument 4.


ここで、jは虚数単位、ωは角周波数である。伝達関数と端子間のインピーダンスZ(jω)との関係は数式2で書ける。

Here, j is an imaginary unit, and ω is an angular frequency. The relationship between the transfer function and the impedance Z (jω) between the terminals can be expressed by Equation 2.

伝達関数は、低圧巻線3、高圧巻線2それぞれに、他方の巻線を開放した場合、短絡した場合の2種、合計4種を測定した(第1〜第4の測定値)。 Regarding the transfer function, when the other winding was opened for each of the low-voltage winding 3 and the high-voltage winding 2, two types in the case of short-circuiting, a total of four types, were measured (first to fourth measurement values).

(モデル変圧器による検討)
本発明による変圧器異常様相同定の可否を検討する目的で、モデル変圧器を用いて変圧器1の異常を模擬し、その伝達関数の変化を検討した。測定対象にした3種のモデル変圧器A,B,Cを図3および表1に示す。
(Study with model transformer)
For the purpose of examining whether or not the transformer abnormality aspect can be identified according to the present invention, the abnormality of the transformer 1 was simulated using a model transformer, and the change of the transfer function was examined. Three types of model transformers A, B, and C to be measured are shown in FIG.

なお本実験では、絶縁油(変圧器絶縁油の比誘電率は一般に2.2程度)を使用せず気中で測定しているので、巻線間容量やターン間容量などが実変圧器よりも小さく、検出の感度は実変圧器に適用した場合に比べて低いと考えられる。そのため、比較的大きく変形あるいは位置ずれさせて伝達関数を測定した。   In this experiment, since the insulation oil (the relative dielectric constant of the transformer insulation oil is generally about 2.2) is measured in the air, the capacity between windings and the capacity between turns are more than the actual transformer. The detection sensitivity is considered to be lower than when applied to an actual transformer. Therefore, the transfer function was measured with relatively large deformation or displacement.

(鉄心の変形)
本実験で用いた鉄心は、上下に2分されており、金属ベルトを用いて固定する構造になっている。その断面は1辺60mmの正方形の角を階段状に切り取った形状をしている。上側鉄心と下側鉄心が丁度重なる位置を正規位置とし、ここから上側鉄心のみを短辺方向に4mm水平移動させてモデル変圧器Cの伝達関数を測定した。その伝達関数を図4に示す。図4(a)は第1の測定値、(b)は第2の測定値、(c)は第3の測定値、(d)は第4の測定値についてのものである。他方の巻線を開放した場合(同図(a),(c))、概ね10kHz以下の領域(第1の測定領域5)で伝達関数が変化した。他方の巻線を短絡した場合(同図(b),(d))は、上側鉄心を短辺方向に4mm移動させても伝達関数は変化しなかった。
(Deformation of iron core)
The iron core used in this experiment is divided into two parts up and down, and is structured to be fixed using a metal belt. The cross section has a shape in which square corners with sides of 60 mm are cut out in a staircase pattern. The position where the upper iron core and the lower iron core just overlap each other was set as the normal position, and only the upper iron core was horizontally moved 4 mm in the short side direction from here to measure the transfer function of the model transformer C. The transfer function is shown in FIG. 4A shows the first measurement value, FIG. 4B shows the second measurement value, FIG. 4C shows the third measurement value, and FIG. 4D shows the fourth measurement value. When the other winding was opened (FIGS. (A) and (c)), the transfer function changed in a region of approximately 10 kHz or less (first measurement region 5). When the other winding was short-circuited ((b) and (d) in the figure), the transfer function did not change even when the upper iron core was moved 4 mm in the short side direction.

(巻線の軸方向位置ずれ)
モデル変圧器A、B、Cを用い、内側低圧巻線3を固定した状態で外側高圧巻線2のみを上向きにずらし、外側高圧巻線2をずらす前後に測定した伝達関数を図5〜図7に示す。図中実線でずらす前の状態(初期状態)を、破線でずらした後(10mm移動)をそれぞれ示す。なお、図5はモデル変圧器Aの測定結果、図6はモデル変圧器Bの測定結果、図7はモデル変圧器Cの測定結果である。また、各図の(a)は第1の測定値、(b)は第2の測定値、(c)は第3の測定値、(d)は第4の測定値についてのものである。
(Axial positional deviation of winding)
FIG. 5 to FIG. 5 show transfer functions measured before and after the outer high-voltage winding 2 is shifted while the outer high-voltage winding 2 is shifted upward while using the model transformers A, B and C with the inner low-voltage winding 3 fixed. 7 shows. In the drawing, the state before shifting with a solid line (initial state) is shown after shifting with a broken line (moving 10 mm). 5 shows the measurement result of the model transformer A, FIG. 6 shows the measurement result of the model transformer B, and FIG. 7 shows the measurement result of the model transformer C. In each figure, (a) is for the first measurement value, (b) is for the second measurement value, (c) is for the third measurement value, and (d) is for the fourth measurement value.

図5に示すように、モデル変圧器Aでは、概ね数百kHz以上で伝達関数が変化した。ただし、他端を短絡した場合(同図(b),(d))には、数百kHzにピークがある共振の低周波数側でもバイアスが重畳したように変化した。一方、図6に示すように、モデル変圧器Bでは、伝達関数がほとんど変化しなかった。また、図7に示すように、モデル変圧器Cでは、概ね100kHz以上の領域で伝達関数が変化した。なお、図7(b)に示す低圧巻線3を短絡して高圧巻線2を測定した場合では、10kHz以下の領域でも伝達関数が変化しているが、これは共振周波数90kHz付近の共振が変化したものであり、高周波領域での伝達関数の変化である。即ち、90kHzは高周波領域といえる周波数であり、90kHz付近をピークにもつ共振の連続した変化は全体としては高周波領域での伝達関数の変化と解釈するのが妥当である。したがって、図7(b)の低周波領域での伝達関数の変化は鉄心の影響が現れているとはいえない。   As shown in FIG. 5, in the model transformer A, the transfer function changed at about several hundred kHz or more. However, when the other end was short-circuited ((b) and (d) in the figure), the bias changed so as to be superimposed even on the low frequency side of the resonance having a peak at several hundred kHz. On the other hand, as shown in FIG. 6, in the model transformer B, the transfer function hardly changed. Moreover, as shown in FIG. 7, in the model transformer C, the transfer function changed in the region of approximately 100 kHz or more. When the high-voltage winding 2 is measured by short-circuiting the low-voltage winding 3 shown in FIG. 7B, the transfer function changes even in the region of 10 kHz or less. This is because the resonance near the resonance frequency of 90 kHz is observed. This is a change in the transfer function in the high frequency region. That is, 90 kHz is a frequency that can be said to be a high frequency region, and it is reasonable to interpret a continuous change in resonance having a peak in the vicinity of 90 kHz as a change in transfer function in the high frequency region as a whole. Therefore, it cannot be said that the change of the transfer function in the low frequency region of FIG.

高周波領域の共振の変化が低周波領域まで連続しているのは、以下の理由による。モデル変圧器Cの高圧巻線2は実験用に自作したものであり、一般使用の変圧器用に巻かれた高圧巻線に比べて低周波領域でインピーダンスが大きくなっている。一般使用の変圧器用に巻かれた巻線(モデル変圧器Aの低圧巻線と高圧巻線およびモデル変圧器B,Cの低圧巻線)は低周波領域で伝達関数=0dBであるが、モデル変圧器Cの自作の高圧巻線2はインピーダンスが0となっていない。等価回路(図10(b))で考えると、巻線のインピーダンスが十分小さい場合、電流は巻線→他端を短絡した導線にのみ流れ、巻線の位置ずれが影響するターン間容量は関係しないことになる。一方、巻線のインピーダンスが大きい場合は、他端を短絡した導線に電流が流れる間にターン間容量などに流入する電流も無視できなくなるため、低周波領域でも伝達関数が変化したと考えられる。実際の変圧器では、巻線インピーダンスは十分小さくなるように設計されており、図7(b)の10kHz以下の領域における伝達関数の変化は現れることはない。なお、インピーダンスをZとすると、今回測定している伝達関数は50/(50+Z)であり、電流の流れやすさを表わす指標といえる。伝達関数が負で大きいほどインピーダンスが大きく、伝達関数=0でZ=0Ωを意味する。   The reason why the change of resonance in the high frequency region continues to the low frequency region is as follows. The high-voltage winding 2 of the model transformer C is self-made for experiment, and the impedance is higher in the low frequency region than the high-voltage winding wound for a general-use transformer. Windings wound for transformers for general use (low voltage and high voltage windings of model transformer A and low voltage windings of model transformers B and C) have a transfer function of 0 dB in the low frequency range. The impedance of the self-made high voltage winding 2 of the transformer C is not zero. Considering the equivalent circuit (FIG. 10 (b)), when the impedance of the winding is sufficiently small, the current flows only through the wire which is short-circuited between the winding and the other end, and the inter-turn capacitance which is affected by the displacement of the winding is related. Will not. On the other hand, when the impedance of the winding is large, the current flowing into the lead wire with the other end short-circuited and the current flowing into the inter-turn capacitance cannot be ignored, so the transfer function is considered to have changed even in the low frequency region. In an actual transformer, the winding impedance is designed to be sufficiently small, and no change in the transfer function appears in the region of 10 kHz or less in FIG. If the impedance is Z, the transfer function measured this time is 50 / (50 + Z), which can be said to be an index representing the ease of current flow. The larger the transfer function is negative, the greater the impedance, and the transfer function = 0 means Z = 0Ω.

モデル変圧器Bで外側高圧巻線2を軸方向に位置ずれさせても伝達関数が変化しなかったのは、高圧巻線2と低圧巻線3との電気的結合が小さいためと考えられる。モデル変圧器Bとモデル変圧器Cを比較すると、伝達関数が変化しなかったモデル変圧器Bの方が、高圧巻線2と低圧巻線3間の間隔が広く、電気的結合が弱い(巻線間容量が小さい)と判断できる。このことから、巻線が位置ずれすると、巻線間容量が変化して伝達関数が変化するといえる。巻線間容量が小さいモデル変圧器Bでは、巻線の位置ずれによってその値が変化しても、伝達関数への影響は小さい。なお、モデル変圧器Bのように電気的結合が弱いものは実際に使用される変圧器にはない。   The reason why the transfer function did not change even when the outer high-voltage winding 2 was displaced in the axial direction in the model transformer B is considered that the electrical coupling between the high-voltage winding 2 and the low-voltage winding 3 is small. Comparing model transformer B and model transformer C, model transformer B, whose transfer function has not changed, has a wider interval between high-voltage winding 2 and low-voltage winding 3 and weaker electrical coupling (winding) It can be determined that the capacitance between the lines is small. From this, it can be said that when the winding is displaced, the interwinding capacitance changes and the transfer function changes. In the model transformer B having a small inter-winding capacitance, even if the value changes due to the positional deviation of the winding, the influence on the transfer function is small. Note that a transformer with weak electrical coupling, such as the model transformer B, does not exist in an actually used transformer.

モデル変圧器A,Cでは、位置ずれさせた高圧巻線2だけでなく固定した低圧巻線3の伝達関数も変化した(図5(b)(d)、図7(b)(d))。   In the model transformers A and C, the transfer function of the fixed low-voltage winding 3 as well as the displaced high-voltage winding 2 is changed (FIGS. 5B and 5D and FIGS. 7B and 7D). .

(巻線の変形)
モデル変圧器Cの低圧巻線3を、長辺方向に圧縮変形させた。このときの低圧巻線3の形状を図8に、寸法を表2に示す。図8(a)では変形していな形状(初期形状)を示し、図8(b)に変形後の形状を示す。また、変形前後で測定した伝達関数を図9に示す。なお、図9(a)は第1の測定値、(b)は第2の測定値、(c)は第3の測定値、(d)は第4の測定値についてのものである。
(Deformation of winding)
The low voltage winding 3 of the model transformer C was compressed and deformed in the long side direction. The shape of the low-voltage winding 3 at this time is shown in FIG. FIG. 8A shows an undeformed shape (initial shape), and FIG. 8B shows a deformed shape. In addition, FIG. 9 shows the transfer function measured before and after the deformation. 9A shows the first measured value, FIG. 9B shows the second measured value, FIG. 9C shows the third measured value, and FIG. 9D shows the fourth measured value.

変形させた低圧巻線3の伝達関数(図9(c),(d))は、100kHz以上で大きく変化した。また、高圧巻線2を開放した低圧巻線3の測定(同図(c))、低圧巻線3を開放した高圧巻線2の測定(同図(a))では、第1の測定領域5でも若干変化した。これは、低圧巻線3の内径が変化し、鉄心との磁気的結合が変化したためと解釈できる。変形させていない高圧巻線2の伝達関数(同図(a),(b))は、数100kHz以上の領域で若干変化した。この変化は、高圧巻線2を軸方向に位置ずれさせたときの変化と似ており、巻線の間隔が変化したためと解釈できる。これら同図(a)(c)の第1の測定領域5での伝達関数変化や、同図(a)(b)の変形させていない高圧巻線2の第2の測定領域6での伝達関数変化は、感度が低い巻線2,3を用いて検討する目的で極端に巻線3を変形させたことによって発生したと考えられる。このように鉄心と巻線との磁気的結合が変化するような大きな巻線変形が実際に使用される変圧器に発生することはない。即ち、実変圧器1で本来検出対象とするようなわずかな変形では、変形した巻線3の第2の測定領域6のみで伝達関数が変化するので、本発明によって巻線異常の同定は可能である。   The transfer function (FIGS. 9C and 9D) of the deformed low-voltage winding 3 changed greatly at 100 kHz or more. In the measurement of the low-voltage winding 3 with the high-voltage winding 2 opened (FIG. (C)) and the measurement of the high-voltage winding 2 with the low-voltage winding 3 opened (FIG. (A)), the first measurement region 5 changed slightly. This can be interpreted as a change in the inner diameter of the low-voltage winding 3 and a change in magnetic coupling with the iron core. The transfer function of the high-voltage winding 2 not deformed ((a) and (b) in the figure) slightly changed in the region of several hundred kHz or more. This change is similar to the change when the high voltage winding 2 is displaced in the axial direction, and can be interpreted as a change in the winding interval. Changes in the transfer function in the first measurement region 5 in FIGS. 6A and 6C, and transmission in the second measurement region 6 of the unmodified high-voltage winding 2 in FIGS. It is considered that the function change is caused by extremely deforming the winding 3 for the purpose of studying using the windings 2 and 3 having low sensitivity. Thus, a large winding deformation that changes the magnetic coupling between the iron core and the winding does not occur in the transformer that is actually used. That is, in a slight deformation that is originally detected in the actual transformer 1, the transfer function changes only in the second measurement region 6 of the deformed winding 3, so that the winding abnormality can be identified by the present invention. It is.

(変圧器異常様相の同定に関する考察)
以上の検討では、伝達関数は、鉄心の変形により第1の測定領域5で変化し、巻線の変形および位置ずれではそれより高周波側の第2の測定領域6で変化した。
(Consideration on identification of abnormal aspect of transformer)
In the above examination, the transfer function changed in the first measurement region 5 due to the deformation of the iron core, and changed in the second measurement region 6 on the higher frequency side due to the deformation and displacement of the winding.

図4〜図7、図9で高圧巻線2を開放または短絡して低圧巻線3を測定した(c)と(d)を比較すると、高圧巻線2を短絡することで第1の測定領域5の第一共振がなくなっている。これより第2の測定領域6の伝達関数は、高圧巻線2を開放した場合と短絡した場合で似ている。このことから、第1の測定領域5に鉄心の特性が現れ、第2の測定領域6に巻線の特性が現れるといえる。   When the high voltage winding 2 is opened or shorted in FIGS. 4 to 7 and 9 and the low voltage winding 3 is measured (c) and (d), the first measurement is performed by shorting the high voltage winding 2. The first resonance in region 5 is gone. Accordingly, the transfer function of the second measurement region 6 is similar between when the high-voltage winding 2 is opened and when it is short-circuited. From this, it can be said that the iron core characteristic appears in the first measurement region 5 and the winding characteristic appears in the second measurement region 6.

図10に、検討した3種の変圧器異常によって変化する電気的パラメータを示す。図10(a)は鉄心の変形を、(b)は巻線の位置ずれを、(c)は巻線の変形をそれぞれ示している。ここで、RWH,RWL:巻線抵抗、LWH,LWL:漏れインダクタンス、L:励磁サセプタンス、R:励磁コンダクタンス、CTH,CTL:ターン間容量/セクション間容量、CIW:巻線間容量、C:励磁容量、CGH,CGL:対地容量である。なお、添え字のHまたはLはそれぞれ高圧巻線2、低圧巻線3を意味している。 FIG. 10 shows electrical parameters that change due to the three types of transformer abnormalities studied. 10A shows the deformation of the iron core, FIG. 10B shows the displacement of the winding, and FIG. 10C shows the deformation of the winding. Wherein, R WH, R WL: winding resistance, L WH, L WL: leakage inductance, L E: the excitation susceptance, R E: excitation conductance, C TH, C TL: turn capacitance / section capacitance, C IW : Interwinding capacity, C E : Excitation capacity, C GH , C GL : Ground capacity. Note that the subscript H or L means the high-voltage winding 2 and the low-voltage winding 3, respectively.

巻線が位置ずれを起こすと主に巻線間容量が変化するので、低圧巻線3、高圧巻線2共に伝達関数が変化すると解釈できる。一方、巻線が変形すると主にターン間容量あるいはセクション間容量が変化するので、変形した巻線の伝達関数のみ変化する。第2の測定領域6では、励磁アドミタンスが十分大きいと考えられるので、巻線の変形によるターン間容量あるいはセクション間容量の変化は、他方の巻線で測定した伝達関数には影響しない。   When the windings are displaced, the interwinding capacitance mainly changes, so that it can be interpreted that the transfer functions of both the low voltage winding 3 and the high voltage winding 2 change. On the other hand, when the winding is deformed, the inter-turn capacitance or the inter-section capacitance mainly changes, so only the transfer function of the deformed winding changes. In the second measurement region 6, since the excitation admittance is considered to be sufficiently large, a change in the inter-turn capacitance or the inter-section capacitance due to the deformation of the winding does not affect the transfer function measured in the other winding.

以上により、伝達関数の変化様相から同定される変圧器1の異常様相は、図1にまとめられる。   Thus, the abnormal appearance of the transformer 1 identified from the change aspect of the transfer function is summarized in FIG.

(実変圧器1を用いた検討)
(伝達関数測定結果)
変圧器短絡試験の前後で参考として伝達関数を測定し、図1に基づいて同定した異常様相と解体調査結果を照合した。
(Examination using actual transformer 1)
(Transfer function measurement result)
The transfer function was measured as a reference before and after the transformer short-circuit test, and the abnormal aspect identified based on FIG.

図11に、短絡試験前後に測定した伝達関数を示す。図11で他方の巻線を短絡した測定しか示していないのは、鉄心の影響を無視し、巻線の変形や位置ずれのみの検出を目的としたためである。他方の巻線を開放した測定では、鉄心の特性を表す第1の測定領域5で伝達関数が変化していたが、これは残留磁束の影響と考えられる。   FIG. 11 shows transfer functions measured before and after the short circuit test. The reason why only the measurement in which the other winding is short-circuited is shown in FIG. 11 is to ignore the influence of the iron core and to detect only the deformation or misalignment of the winding. In the measurement with the other winding opened, the transfer function changed in the first measurement region 5 representing the characteristics of the iron core, which is considered to be the effect of residual magnetic flux.

低圧巻線3の伝達関数は第2の測定領域6(100kHz以上)で変化しているが(図11(c)(d))、高圧巻線2の伝達関数は変化していない(同図(a)(b))。この結果を、図1に照らし合わせると、低圧巻線3が変形していると同定される。   Although the transfer function of the low-voltage winding 3 changes in the second measurement region 6 (100 kHz or more) (FIGS. 11C and 11D), the transfer function of the high-voltage winding 2 does not change (the same figure). (A) (b)). When this result is compared with FIG. 1, it is identified that the low-voltage winding 3 is deformed.

(解体調査結果)
短絡試験終了後に実施された解体調査では、本発明で巻線が変形していると同定された低圧巻線3に変形が発見された。この結果は、本発明による同定結果と一致している。
(Dismantling survey results)
In the dismantling investigation conducted after the completion of the short-circuit test, deformation was found in the low-voltage winding 3 that was identified as being deformed in the present invention. This result is consistent with the identification result according to the present invention.

(実変圧器短絡試験時の巻線変形をモデル変圧器で模擬したときの伝達関数変化)
短絡試験による変圧器巻線の変形をモデル変圧器Cで模擬し、その伝達関数の変化様相が、短絡試験で測定したそれと同様であること確認する。モデル変圧器Cの初期形状と変形した形状を、図12(a)(b)に示す。測定した伝達関数を図13に示す。なお、図13の伝達関数は、Agilent Technologies 社のインピーダンスアナライザ4294Aを用いて4端子法により測定したアドミタンスから、数式2を用いて求めた。
(Change in transfer function when simulating winding deformation during actual transformer short-circuit test with model transformer)
The deformation of the transformer winding due to the short circuit test is simulated by the model transformer C, and it is confirmed that the change aspect of the transfer function is the same as that measured in the short circuit test. The initial shape and the deformed shape of the model transformer C are shown in FIGS. The measured transfer function is shown in FIG. The transfer function shown in FIG. 13 was obtained using Equation 2 from the admittance measured by the four-terminal method using an impedance analyzer 4294A manufactured by Agilent Technologies.

変形させた低圧巻線3の伝達関数は500kHz程度以上の第2の測定領域6で変化している(図13(c)(d))。一方の変形していない高圧巻線2の伝達関数は変化していない(同図(a)(b))。この変化様相は、短絡試験で測定した伝達関数の変化様相と一致する。   The transfer function of the deformed low-voltage winding 3 changes in the second measurement region 6 of about 500 kHz or more (FIGS. 13C and 13D). On the other hand, the transfer function of the undeformed high voltage winding 2 is not changed (FIGS. 4A and 4B). This change aspect coincides with the change aspect of the transfer function measured in the short-circuit test.

(検討結果)
本実験では変圧器1の異常を鉄心の変形、巻線2,3の位置ずれ、巻線2,3の変形の3種に大まかに分類し、モデル変圧器を用いた検討によって、伝達関数の変化様相に着目して同定できることを確認した。
(Study results)
In this experiment, abnormalities of the transformer 1 are roughly classified into three types: deformation of the iron core, displacement of the windings 2 and 3, and deformation of the windings 2 and 3, and the transfer function It was confirmed that identification was possible by focusing on the change aspect.

変圧器短絡試験の前後で参考として行った実験では、巻線2,3のわずかな変形を検出することができた。このときの変圧器異常様相を、上記の検討に基づいて同定した結果は、後日行われた解体調査の結果と一致した。また、短絡試験による変圧器1の異常を、モデル変圧器で模擬し、その伝達関数の変化様相が短絡試験で測定したそれと同様であること確認した。   In experiments conducted as a reference before and after the transformer short-circuit test, slight deformation of the windings 2 and 3 could be detected. The result of identifying the abnormal condition of the transformer at this time based on the above examination was consistent with the result of the dismantling investigation conducted at a later date. Moreover, the abnormality of the transformer 1 by the short circuit test was simulated by the model transformer, and it was confirmed that the change aspect of the transfer function was the same as that measured by the short circuit test.

以上のように本実験では変圧器1の異常様相を同定できることを確認できた。   As described above, in this experiment, it was confirmed that an abnormal aspect of the transformer 1 could be identified.

本発明の変圧器の異常様相同定方法の実施形態の一例を示す図である。It is a figure which shows an example of embodiment of the abnormal aspect identification method of the transformer of this invention. 伝達関数の測定を示し、(a)は高圧巻線の測定を示す概念図、(b)は低圧巻線の測定を示す概念図である。The measurement of a transfer function is shown, (a) is a conceptual diagram which shows the measurement of a high voltage | pressure winding, (b) is a conceptual diagram which shows the measurement of a low voltage | pressure winding. 実験で使用したモデル変圧器を示し、(a)はモデル変圧器Aの外観を示す図、(b)はモデル変圧器Bの外観を示す図、(c)はモデル変圧器Cの外観を示す図である。The model transformer used by experiment is shown, (a) is a figure which shows the external appearance of model transformer A, (b) is a figure which shows the external appearance of model transformer B, (c) shows the external appearance of model transformer C. FIG. モデル変圧器Cを用いて上部の鉄心を水平方向に移動したときの伝達関数の測定結果を示し、(a)は第1の測定値、(b)は第2の測定値、(c)は第3の測定値、(d)は第4の測定値である。The measurement result of the transfer function when moving the upper iron core in the horizontal direction using the model transformer C is shown, (a) is the first measurement value, (b) is the second measurement value, (c) is The third measurement value, (d), is the fourth measurement value. モデル変圧器Aについて高圧巻線を軸方向に位置ずれさせたときの伝達関数の測定結果を示し、(a)は第1の測定値、(b)は第2の測定値、(c)は第3の測定値、(d)は第4の測定値である。The measurement result of the transfer function when the high-voltage winding is displaced in the axial direction for the model transformer A is shown, (a) is the first measurement value, (b) is the second measurement value, (c) is The third measurement value, (d), is the fourth measurement value. モデル変圧器Bについて高圧巻線を軸方向に位置ずれさせたときの伝達関数の測定結果を示し、(a)は第1の測定値、(b)は第2の測定値、(c)は第3の測定値、(d)は第4の測定値である。The model transformer B shows the measurement result of the transfer function when the high-voltage winding is displaced in the axial direction, (a) is the first measurement value, (b) is the second measurement value, and (c) is The third measurement value, (d), is the fourth measurement value. モデル変圧器Cについて高圧巻線を軸方向に位置ずれさせたときの伝達関数の測定結果を示し、(a)は第1の測定値、(b)は第2の測定値、(c)は第3の測定値、(d)は第4の測定値である。The measurement result of the transfer function when the high-voltage winding is displaced in the axial direction for the model transformer C is shown, (a) is the first measurement value, (b) is the second measurement value, and (c) is The third measurement value, (d), is the fourth measurement value. モデル変圧器Cの低圧巻線を変形させた様子を示し、(a)は初期状態の外観形状を示す図、(b)は変形後の外観形状を示す図である。A mode that the low voltage | pressure winding of the model transformer C was deform | transformed is shown, (a) is a figure which shows the external appearance shape of an initial state, (b) is a figure which shows the external appearance shape after a deformation | transformation. モデル変圧器Cについて低圧巻線が変形したときの伝達関数の測定結果を示し、(a)は第1の測定値、(b)は第2の測定値、(c)は第3の測定値、(d)は第4の測定値である。The measurement result of the transfer function when the low-voltage winding is deformed for the model transformer C is shown, (a) is the first measurement value, (b) is the second measurement value, and (c) is the third measurement value. , (D) is the fourth measurement value. 変圧器の各種異常に伴い変化する電気パラメータを示し、(a)は鉄心の変形を、(b)は巻線の位置ずれを、(c)は巻線の変形をそれぞれ示す。The electric parameters which change with various abnormality of a transformer are shown, (a) shows deformation of an iron core, (b) shows position shift of a coil, and (c) shows modification of a coil, respectively. 短絡試験前後で測定した伝達関数(他方の巻線を短絡して測定)の測定結果を示し、(a)は高圧巻線(20Hz〜1MHz)の測定値、(b)は高圧巻線(100kHz〜1MHz)の測定値、(c)は低圧巻線(20Hz〜1MHz)の測定値、(d)は低圧巻線(100kHz〜1MHz)の測定値である。The measurement result of the transfer function (measured by short-circuiting the other winding) measured before and after the short-circuit test is shown, (a) is the measured value of the high-voltage winding (20 Hz to 1 MHz), and (b) is the high-voltage winding (100 kHz). (C) is a measurement value of a low voltage winding (20 Hz to 1 MHz), and (d) is a measurement value of a low voltage winding (100 kHz to 1 MHz). 実変圧器の短絡試験時の変形を模擬した低圧巻線を示し、(a)は初期形状を示す図、(b)は変形後の形状を示す図である。The low voltage | pressure coil | winding which simulated the deformation | transformation at the time of the short circuit test of an actual transformer is shown, (a) is a figure which shows an initial shape, (b) is a figure which shows the shape after a deformation | transformation. モデル巻線の低圧巻線で実変圧器短絡試験時の変形を模擬したときの伝達関数(他方の巻線を短絡して測定)の測定結果を示し、(a)は高圧巻線(20Hz〜1MHz)の測定値、(b)は高圧巻線(100kHz〜1MHz)の測定値、(c)は低圧巻線(20Hz〜1MHz)の測定値、(d)は低圧巻線(100kHz〜1MHz)の測定値である。The measurement result of the transfer function (measured by short-circuiting the other winding) when simulating the deformation at the time of the actual transformer short-circuit test with the low-voltage winding of the model winding is shown, (a) shows the high-voltage winding (20 Hz to (B) is a measurement value of a high voltage winding (100 kHz to 1 MHz), (c) is a measurement value of a low voltage winding (20 Hz to 1 MHz), and (d) is a low voltage winding (100 kHz to 1 MHz). Is the measured value. 従来の変圧器内部診断装置の概略構成図である。It is a schematic block diagram of the conventional transformer internal diagnostic apparatus.

符号の説明Explanation of symbols

1 変圧器
2 高圧巻線
3 低圧巻線
5 第1の測定領域
6 第2の測定領域
1 Transformer 2 High Voltage Winding 3 Low Voltage Winding 5 First Measurement Area 6 Second Measurement Area

Claims (3)

少なくとも鉄心変形時に伝達関数の変化が現れ得る周波数の第1の測定領域と巻線異常時に前記伝達関数の変化が現れ得る周波数の第2の測定領域について、低圧巻線を開放した状態と短絡した状態の高圧巻線の前記伝達関数をそれぞれ測定すると共に、前記高圧巻線を開放した状態と短絡した状態の前記低圧巻線の伝達関数をそれぞれ測定し、前記低圧巻線を開放した状態で測定した前記高圧巻線の伝達関数の測定値を第1の測定値とし、前記低圧巻線を短絡した状態で測定した前記高圧巻線の伝達関数の測定値を第2の測定値とし、前記高圧巻線を開放した状態で測定した前記低圧巻線の伝達関数の測定値を第3の測定値とし、前記高圧巻線を短絡した状態で測定した前記低圧巻線の伝達関数の測定値を第4の測定値とし、前記第1及び前記第3の測定値の第1の測定領域に変化が現れ、前記第2及び第4の測定値の第1の測定領域と前記4つの測定値の第2の測定領域には変化が現れない場合に鉄心に異常があると判断し、前記4つの測定値の第2の測定領域に変化が現れ、前記4つの測定値の第1の測定領域には変化が現れない場合に前記低圧巻線又は前記高圧巻線に位置ずれ異常があると判断し、前記第1及び前記第2の測定値の第2の測定領域に変化が現れ、前記第3及び前記第4の測定値の第2の測定領域と前記4つの測定値の第1の測定領域には変化が現れない場合に前記高圧巻線に変形異常があると判断し、前記第3及び前記第4の測定値の第2の測定領域に変化が現れ、前記第1及び前記第2の測定値の第2の測定領域と前記4つの測定値の第1の測定領域には変化が現れない場合に前記低圧巻線に変形異常があると判断することを特徴とする変圧器の異常様相同定方法。   At least a first measurement region of a frequency at which a change in the transfer function can appear when the iron core is deformed and a second measurement region at a frequency at which the change of the transfer function can appear when the winding is abnormal are short-circuited with the open state of the low-voltage winding Measure the transfer function of the high voltage winding in the state, measure the transfer function of the low voltage winding in the open state and the short circuit state of the high voltage winding, and measure with the low voltage winding open. The measured value of the transfer function of the high-voltage winding is taken as the first measured value, the measured value of the transfer function of the high-voltage winding measured with the low-voltage winding shorted is taken as the second measured value, The measured value of the transfer function of the low voltage winding measured with the pressure winding opened is the third measured value, and the measured value of the transfer function of the low voltage winding measured with the high voltage winding shorted is 4 and the first and A change appears in the first measurement region of the third measurement value, and no change appears in the first measurement region of the second and fourth measurement values and the second measurement region of the four measurement values. If there is an abnormality in the iron core, a change appears in the second measurement region of the four measurement values, and a change does not appear in the first measurement region of the four measurement values. Alternatively, it is determined that there is a positional deviation abnormality in the high-voltage winding, and a change appears in a second measurement region of the first and second measurement values, and a second of the third and fourth measurement values When no change appears in the measurement region and the first measurement region of the four measurement values, it is determined that there is a deformation abnormality in the high-voltage winding, and the second measurement of the third and fourth measurement values is performed. A change appears in the area, in the second measurement area of the first and second measurement values and in the first measurement area of the four measurement values. Transformer abnormal aspect identification method, characterized in that changing said it is determined that there is deformed abnormally in the low voltage winding when not appear. 使用前に予め測定しておいた伝達関数との比較によって測定値の変化を検出することを特徴とする請求項1記載の変圧器の異常様相同定方法。   2. The method for identifying an abnormal aspect of a transformer according to claim 1, wherein a change in the measured value is detected by comparison with a transfer function measured in advance before use. 3相交流の巻線について前記測定を行い、他の相の対応する測定値との比較によって測定値の変化を検出することを特徴とする請求項1記載の変圧器の異常様相同定方法。   2. The method of identifying an abnormal aspect of a transformer according to claim 1, wherein the measurement is performed on a three-phase AC winding, and a change in the measured value is detected by comparison with a corresponding measured value of another phase.
JP2007188482A 2007-07-19 2007-07-19 Method for identifying abnormal condition of transformer Pending JP2009025153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007188482A JP2009025153A (en) 2007-07-19 2007-07-19 Method for identifying abnormal condition of transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188482A JP2009025153A (en) 2007-07-19 2007-07-19 Method for identifying abnormal condition of transformer

Publications (1)

Publication Number Publication Date
JP2009025153A true JP2009025153A (en) 2009-02-05

Family

ID=40397096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188482A Pending JP2009025153A (en) 2007-07-19 2007-07-19 Method for identifying abnormal condition of transformer

Country Status (1)

Country Link
JP (1) JP2009025153A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230479A (en) * 2009-03-27 2010-10-14 Tokyo Electric Power Co Inc:The Internal diagnostic method of transformer
ITMI20100576A1 (en) * 2010-04-06 2011-10-07 Ansaldo Energia Spa DIAGNOSTIC APPARATUS AND METHOD FOR THE IDENTIFICATION OF SHORT-CIRCUITS IN ELECTRIC MACHINES
JP2011214963A (en) * 2010-03-31 2011-10-27 Takaoka Electric Mfg Co Ltd Failure determiner for transformer
JP2011253885A (en) * 2010-06-01 2011-12-15 Central Res Inst Of Electric Power Ind Transformer health diagnosis method, health diagnosis device and health diagnosis program
JP2011252752A (en) * 2010-06-01 2011-12-15 Central Res Inst Of Electric Power Ind Transformer soundness diagnosis method, soundness diagnosis device, and soundness diagnosis program
JP2013061310A (en) * 2011-09-15 2013-04-04 Central Research Institute Of Electric Power Industry Method and device for diagnosing soundness in transformer
CN110462434A (en) * 2017-03-09 2019-11-15 法雷奥开关和传感器有限责任公司 Method, ultrasonic sensor apparatus and the motor vehicles of the functional status of ultrasonic sensor are determined using the transfer function of ultrasonic sensor
JP2020107777A (en) * 2018-12-28 2020-07-09 一般財団法人電力中央研究所 Transformer evaluation device and transformer evaluation method
JP2020113675A (en) * 2019-01-15 2020-07-27 中国電力株式会社 Frequency response waveform generation device, abnormality diagnosis device, frequency response waveform generation method, and abnormality diagnosis method
CN112630702A (en) * 2020-12-02 2021-04-09 华北电力大学 Transfer function construction method for transformer winding deformation online monitoring
CN117574782A (en) * 2024-01-16 2024-02-20 国网湖北省电力有限公司电力科学研究院 Method, device, system and medium for judging winding materials based on transformer parameters
JP7505846B2 (en) 2020-05-01 2024-06-25 一般財団法人電力中央研究所 Transformer evaluation device and transformer evaluation method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010230479A (en) * 2009-03-27 2010-10-14 Tokyo Electric Power Co Inc:The Internal diagnostic method of transformer
JP2011214963A (en) * 2010-03-31 2011-10-27 Takaoka Electric Mfg Co Ltd Failure determiner for transformer
ITMI20100576A1 (en) * 2010-04-06 2011-10-07 Ansaldo Energia Spa DIAGNOSTIC APPARATUS AND METHOD FOR THE IDENTIFICATION OF SHORT-CIRCUITS IN ELECTRIC MACHINES
JP2011253885A (en) * 2010-06-01 2011-12-15 Central Res Inst Of Electric Power Ind Transformer health diagnosis method, health diagnosis device and health diagnosis program
JP2011252752A (en) * 2010-06-01 2011-12-15 Central Res Inst Of Electric Power Ind Transformer soundness diagnosis method, soundness diagnosis device, and soundness diagnosis program
JP2013061310A (en) * 2011-09-15 2013-04-04 Central Research Institute Of Electric Power Industry Method and device for diagnosing soundness in transformer
CN110462434A (en) * 2017-03-09 2019-11-15 法雷奥开关和传感器有限责任公司 Method, ultrasonic sensor apparatus and the motor vehicles of the functional status of ultrasonic sensor are determined using the transfer function of ultrasonic sensor
JP2020107777A (en) * 2018-12-28 2020-07-09 一般財団法人電力中央研究所 Transformer evaluation device and transformer evaluation method
JP2020113675A (en) * 2019-01-15 2020-07-27 中国電力株式会社 Frequency response waveform generation device, abnormality diagnosis device, frequency response waveform generation method, and abnormality diagnosis method
JP7275589B2 (en) 2019-01-15 2023-05-18 中国電力株式会社 Frequency response waveform generation device, abnormality diagnosis device, frequency response waveform generation method, abnormality diagnosis method
JP7505846B2 (en) 2020-05-01 2024-06-25 一般財団法人電力中央研究所 Transformer evaluation device and transformer evaluation method
CN112630702A (en) * 2020-12-02 2021-04-09 华北电力大学 Transfer function construction method for transformer winding deformation online monitoring
CN117574782A (en) * 2024-01-16 2024-02-20 国网湖北省电力有限公司电力科学研究院 Method, device, system and medium for judging winding materials based on transformer parameters
CN117574782B (en) * 2024-01-16 2024-04-02 国网湖北省电力有限公司电力科学研究院 Method, device, system and medium for judging winding materials based on transformer parameters

Similar Documents

Publication Publication Date Title
JP2009025153A (en) Method for identifying abnormal condition of transformer
JP5728343B2 (en) Transformer soundness diagnosis method and soundness diagnosis device
US8219335B2 (en) Electric winding displacement detection method and apparatus
US20120130663A1 (en) On-line diagnostic method for health monitoring of a transformer
Foo et al. A step-by-step guide to extracting winding resistance from an impedance measurement
Picher et al. Current state of transformer FRA interpretation: On behalf of CIGRE WG A2. 53
CN107656174B (en) Method and system for online diagnosis of transformer winding deformation
JP5407480B2 (en) Internal diagnosis method of transformer
JP5456582B2 (en) Transformer soundness diagnosis method, soundness diagnosis device, and soundness diagnosis program
Liu et al. Diagnosis of transformer winding faults based on FEM simulation and on-site experiments
JP2011253885A (en) Transformer health diagnosis method, health diagnosis device and health diagnosis program
US20110022338A1 (en) Determining degraded insulating ability in an inductively operating element
CN106054034A (en) Broadband scanning type cable partial discharge measurement device and detection method
Florkowski et al. Transformer winding defects identification based on a high frequency method
Nirgude et al. Frequency response analysis approach for condition monitoring of transformer
CN112595941B (en) Method and system for monitoring interlayer insulation of converter transformer winding
Brandt et al. Analysis of winding fault in electric machines by frequency method
Miyazaki et al. Diagnosis criterion of abnormality of transformer winding by frequency response analysis (FRA)
Samimi et al. Effect of terminating and shunt resistors on the FRA method sensitivity
Picher et al. Experience with frequency response analysis (FRA) for the mechanical condition assessment of transformer windings
Zheng et al. A novel method of monitoring and locating stator winding insulation ageing for inverter-fed machine based on switching harmonics
JP2004251763A (en) Interior diagnostic device for transformer
RU2495445C2 (en) Determination of deteriorated insulating property in insulation between two members of inductive operating component
RÄDLER et al. Performing reliable and reproducible frequency response measurements on power transformers
CN112485728A (en) Method and equipment for evaluating short circuit bearing capacity test result of transformer