JP5403598B2 - Hygroscopic heat insulation fabric - Google Patents
Hygroscopic heat insulation fabric Download PDFInfo
- Publication number
- JP5403598B2 JP5403598B2 JP2009114136A JP2009114136A JP5403598B2 JP 5403598 B2 JP5403598 B2 JP 5403598B2 JP 2009114136 A JP2009114136 A JP 2009114136A JP 2009114136 A JP2009114136 A JP 2009114136A JP 5403598 B2 JP5403598 B2 JP 5403598B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- knitted fabric
- yarn
- weight
- acrylic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Knitting Of Fabric (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Description
本発明は、保温性及び吸湿性に優れた衣料用編地に関するものである。 The present invention relates to a knitted fabric for clothing excellent in heat retention and moisture absorption.
従来、インナー用途の商品は、嵩張らず、アウターに目立ちにくいものという観点から薄くて軽い商品が求められている。一方で、一般的に保温性の高いものは肉厚で、生地の薄いものは保温性が良くないとされてきた。従来、生地が薄くて軽いのに保温性が高いという相反する性質を持った商品は無かった。 Conventionally, products for inner use have been demanded to be thin and light from the viewpoint that they are not bulky and are not easily noticeable on the outer. On the other hand, it is generally considered that a material having high heat retention is thick and a material having a thin dough has poor heat retention. In the past, there were no products with conflicting properties such as high heat retention even though the fabric was thin and light.
これまで秋冬に着用する衣料用生地において保温性を高める検討は数多くされている。代表的な手段としては、吸湿発熱性繊維を用いたもの、アクリル繊維を用いたもの、染色加工後の糸収縮を応用したもの等がある。 So far, many studies have been made to increase the heat retention in clothing fabrics worn in autumn and winter. Representative means include those using hygroscopic exothermic fibers, those using acrylic fibers, and those applying yarn shrinkage after dyeing.
また、着用時の衣服内の蒸れ感を軽減するために生地に吸湿性を持たせる検討も数多くされている。代表的な手段としては吸湿発熱性繊維、セルロース繊維を混紡するもの等がある。例えば、単糸繊度が細い疎水性合成繊維と吸湿発熱性繊維を混紡した紡績糸が提案されている(特許文献1参照)。この紡績糸は、吸湿発熱性繊維を用いることで生地が吸湿性を持つものの、保温性に関しては満足すべきものではない。即ち、疎水性繊維に熱伝導の低いポリエステル等を使用し、単糸繊度を細くして繊維間の空隙の大きさを小さくしているが、糸内の空隙量はむしろ低下すると考えられ、熱を逃がしにくい効果は得られても保温性は向上していない。 In addition, many studies have been made to make the fabric hygroscopic in order to reduce the feeling of stuffiness in clothes when worn. Typical means includes a hygroscopic exothermic fiber and a fiber blended with cellulose fiber. For example, a spun yarn obtained by blending a hydrophobic synthetic fiber having a fine single yarn fineness and a hygroscopic exothermic fiber has been proposed (see Patent Document 1). This spun yarn is not satisfactory in terms of heat retention, although the fabric is hygroscopic by using hygroscopic exothermic fibers. In other words, polyester with low thermal conductivity is used for hydrophobic fibers, and the single yarn fineness is reduced to reduce the size of the gap between the fibers. Even if the effect that it is difficult to escape is obtained, the heat retention is not improved.
また、アクリル繊維と再生セルロース繊維を混紡したアクリル系紡績糸が提案されている(特許文献2参照)。この紡績糸は、保温性の高いアクリル繊維を用いているものの、従来のアクリル/セルロース繊維と比較して保温性に大差ない。 Further, an acrylic spun yarn in which acrylic fiber and regenerated cellulose fiber are mixed is proposed (see Patent Document 2). Although this spun yarn uses acrylic fibers with high heat retention, there is no great difference in heat retention compared to conventional acrylic / cellulose fibers.
また、極細アクリル系短繊維と高収縮性アクリル系短繊維とポリエステル短繊維を混紡した紡績糸が提案されている(特許文献3参照)。この紡績糸は、高収縮糸を用いて高密度にすることで保温性を得ているが、編地が重くなる問題があり、薄さ・軽さが得られにくい。 In addition, a spun yarn obtained by blending ultrafine acrylic short fibers, highly shrinkable acrylic short fibers, and polyester short fibers has been proposed (see Patent Document 3). This spun yarn has high heat retention by making it high density using high shrinkage yarn, but there is a problem that the knitted fabric becomes heavy, and it is difficult to obtain thinness and lightness.
一方では近年の秋冬向けの衣料に必要とされる保温性の基本機能に加え、風合や着心地と言った快適性能が求められてきている。特にインナー用素材では暖かいけど嵩張らず、アウターに目立ちにくいものが求められている。また、調査した結果、真冬において野外の寒いところから厚着をしたまま暖房の効いた暖かい部屋に入ると体が火照って蒸れ感を感じて不快になることが多いこともわかった。そこで本発明は、かかる環境変化でも快適な着用感を維持するために、前述の軽くて薄くて暖かい性能を実現しながら、その性能を損なわずに蒸れ感も軽減した衣料用編地、特にインナー向けに最適な編地を提供することを目的とする。 On the other hand, in addition to the basic functions of heat retention required for recent autumn and winter clothing, comfort performance such as texture and comfort has been demanded. In particular, there is a need for inner materials that are warm but not bulky, and that do not stand out on the outerwear. In addition, as a result of the investigation, it was found that in mid-winter, when you enter a warm room with thick clothes from the cold outdoors, your body often feels hot and uncomfortable. Accordingly, the present invention provides a knitted fabric for clothing, in particular an inner knitted fabric, which realizes the aforementioned light, thin and warm performance in order to maintain a comfortable wearing feeling even under such environmental changes, while reducing the feeling of stuffiness without impairing the performance. The purpose is to provide the most suitable knitted fabric for the customer.
本発明者らは、上記目的を達成するために鋭意検討した結果、まず、単糸繊度差のあるアクリル繊維を含む紡績糸を用いることによって、繊維に収縮差を持たせたものや強い捲縮を持ったものを用いなくとも、冬用衣料として要求の高い、軽くて薄くて暖かい性能を実現できることを見出した。さらに、この紡績糸に特定の吸湿性繊維を混用して軽くて薄くて暖かい編地を実現するだけでなく、前述の環境変化による蒸れ感等に関しても、気相の汗を吸収させることによって改善できることを見出し、本発明の完成に至った。 As a result of diligent studies to achieve the above object, the present inventors first used a spun yarn containing acrylic fiber having a single yarn fineness difference, thereby giving the fiber a difference in shrinkage or strong crimping. It was found that light, thin and warm performance, which is highly demanded for winter clothing, can be achieved without using a product with a high profile. In addition, this spun yarn can be mixed with specific hygroscopic fibers to achieve a light, thin and warm knitted fabric, as well as to improve the above-mentioned stuffiness caused by environmental changes by absorbing gas-phase sweat. As a result, the present invention has been completed.
即ち、本発明は、20℃×65%RHで7%以上13%未満の水分率を有する吸湿性繊維A、0.3〜0.7dtexの単糸繊度のアクリル繊維B、及び0.8〜2.0dtexの単糸繊度のアクリル繊維Cをそれぞれ10〜60重量%、20〜75重量%、及び10〜40重量%含む混紡糸であって、前記繊維Bと前記繊維A及びCの合計との重量比率が2:8〜8:2であり、前記繊維Bと前記繊維Cの単糸繊度差が0.3〜1.7dtexであり、かつ55〜100番手を有する混紡糸を40重量%以上用いたこと、厚みが0.5〜1.2mmであり、目付けが120〜160g/m2であること、及び編地の水分率が3〜25%であり、比容積が3〜10cc/gであり、保温率が15〜35%であることを特徴とする編地である。 That is, the present invention is a hygroscopic fiber A having a moisture content of 7% or more and less than 13% at 20 ° C. × 65% RH, acrylic fiber B having a single yarn fineness of 0.3 to 0.7 dtex, and 0.8 to A blended yarn containing 10 to 60% by weight, 20 to 75% by weight, and 10 to 40% by weight of acrylic fibers C having a single yarn fineness of 2.0 dtex, respectively, and the total of the fibers B and the fibers A and C; Is a weight ratio of 2: 8 to 8: 2, the single yarn fineness difference between the fiber B and the fiber C is 0.3 to 1.7 dtex, and the blended yarn having 55 to 100 counts is 40% by weight. for the use above a thickness is 0.5 to 1.2 mm, it basis weight is 120~160g / m 2, and the knitted fabric of the moisture content is 3 to 25% specific volume 3~10cc / G and a knitted fabric characterized by a heat retention rate of 15 to 35% .
本発明の編地の好ましい態様は以下の通りである。
(i)混紡糸中の吸湿性繊維Aのうち13%以上30%以下の水分率を有する高吸湿性繊維を混紡糸に対して5〜30重量%含む。
(ii)混紡糸の横断面における繊維間空隙率が30〜60%である。
(iii)混紡糸中のアクリル繊維Cのうち18〜40%のバルキー性を有するアクリル繊維を混紡糸に対して10〜40重量%含む。
(iv)摩擦耐電圧が0〜3000Vであり、半減期が0〜30秒である。
Preferred embodiments of the knitted fabric of the present invention are as follows.
(I) Highly hygroscopic fibers having a moisture content of 13% to 30% of the hygroscopic fibers A in the blended yarn are contained in an amount of 5 to 30% by weight with respect to the blended yarn.
(Ii) The inter-fiber porosity in the cross section of the blended yarn is 30 to 60%.
(Iii) The acrylic fiber having 18 to 40% bulky property among the acrylic fibers C in the blended yarn is contained in an amount of 10 to 40% by weight based on the blended yarn.
(Iv) friction Kosu耐voltage is 0~3000V, a half-life of 0-30 seconds.
本発明の編地は、軽くて薄くても着用したときに暖かくて、着用感(風合)が良い。また、嵩張らないことでアウター衣料の外からインナー生地が目立たなくでき、加えて真冬の野外から暖かい室内に移動した後に起りやすい蒸れ感が軽減される。従って、秋冬衣料素材、特にインナー用途に求められる性能を有する編地を好適に提供することができる。 Even if the knitted fabric of the present invention is light and thin, it is warm when worn and feels good (feel). Moreover, the inner fabric can be made inconspicuous from the outside of the outer garment by not being bulky, and in addition, the stuffiness that tends to occur after moving from the outdoors in the winter to a warm room is reduced. Therefore, the knitted fabric which has the performance calculated | required for the fall / winter clothing material, especially inner use can be provided suitably.
本発明の編地に使用する混紡糸は、20℃×65%RH(相対湿度)で7%以上13%未満の水分率を有する吸湿性繊維A、0.3〜0.7dtexの単糸繊度のアクリル繊維B、及び0.8〜2.0dtexの単糸繊度のアクリル繊維Cをそれぞれ10〜60重量%、20〜75重量%、及び10〜40重量%含み、前記繊維Bと前記繊維A及びCの合計との重量比率が2:8〜8:2であることを特徴とする。 The blended yarn used in the knitted fabric of the present invention is a hygroscopic fiber A having a moisture content of 7% or more and less than 13% at 20 ° C. × 65% RH (relative humidity), single yarn fineness of 0.3 to 0.7 dtex. 10 to 60% by weight, 20 to 75% by weight, and 10 to 40% by weight of an acrylic fiber B having a single yarn fineness of 0.8 to 2.0 dtex, respectively. And the weight ratio with the sum total of C is 2: 8-8: 2.
本発明の混紡糸に用いる吸湿性繊維Aは、20℃×65%RHの水分率が7%以上13%未満の繊維であればいかなるものも用いることができる。例えば、天然繊維の綿、絹、麻、再生セルロース繊維のレーヨン、キュプラ、テンセル、リヨセル等が挙げられるが、細繊度繊維の生産性、衣料品に必要な染色性、風合の点からレーヨンが好適である。また、吸湿性繊維Aの中には20℃×65%RHの水分率が13%以上30%以下である高吸湿性繊維を混用しても良い。高吸湿性繊維としては、アクリル酸やメタクリル酸等の親水性モノマーを繊維にグラフト加工したり、アクリル繊維のアクリロニトリルを親水性官能基に置換する等の手法を用いて汎用繊維に親水性官能基を導入し、20℃×65%RHの水分率を13%以上30%以下にした高吸湿性繊維が挙げられる。また、高吸湿性繊維は、天然繊維であってもよく、例えば、羊毛、改質レーヨン、改質綿、アクリレート等が挙げられる。 As the hygroscopic fiber A used for the blended yarn of the present invention, any fiber can be used as long as the moisture content at 20 ° C. × 65% RH is 7% or more and less than 13%. For example, natural fiber cotton, silk, hemp, regenerated cellulose fiber rayon, cupra, tencel, lyocell, etc., but rayon is used from the viewpoint of fine fiber production, dyeability necessary for clothing, and texture. Is preferred. Further, in the hygroscopic fiber A, a highly hygroscopic fiber having a moisture content of 20 ° C. and 65% RH of 13% to 30% may be mixed. As a highly hygroscopic fiber, a hydrophilic functional group can be added to a general purpose fiber using a technique such as grafting a hydrophilic monomer such as acrylic acid or methacrylic acid to the fiber, or replacing acrylonitrile of the acrylic fiber with a hydrophilic functional group. And a highly hygroscopic fiber having a moisture content of 20 ° C. and 65% RH of 13% to 30%. The highly hygroscopic fiber may be a natural fiber, and examples thereof include wool, modified rayon, modified cotton, and acrylate.
本発明の混紡糸中の吸湿性繊維Aの混率は10〜60重量%であり、好適には30〜50重量%である。混率が上記範囲未満になると、編地の水分率が低く吸湿性能が低下するため、着用時の蒸れ感が軽減されない。また、上記範囲を越えると、衣料品にしたときにピリング等の消費性能が低下する。また、吸湿性繊維Aの一部に高吸湿性繊維を混用した場合の高吸湿性繊維の混率は、混紡糸に対して5〜30重量%であり、好適には10〜25重量%である。高吸湿性繊維の混率が上記範囲を越えると、アクリル繊維Bの混率が下がり、微細な繊維間の空隙が減少するので保温性は向上しない。 The mixing ratio of the hygroscopic fiber A in the blended yarn of the present invention is 10 to 60% by weight, and preferably 30 to 50% by weight. When the mixing ratio is less than the above range, the moisture content of the knitted fabric is low and the moisture absorption performance is lowered, so that the feeling of stuffiness during wearing is not reduced. On the other hand, if the above range is exceeded, the consumption performance such as pilling is reduced when the garment is made. Further, when the highly hygroscopic fiber is mixed with a part of the hygroscopic fiber A, the mixing ratio of the highly hygroscopic fiber is 5 to 30% by weight, preferably 10 to 25% by weight with respect to the blended yarn. . If the mixing ratio of the highly hygroscopic fibers exceeds the above range, the mixing ratio of the acrylic fibers B is lowered and the gaps between the fine fibers are reduced, so that the heat retention is not improved.
本発明の混紡糸に用いるアクリル繊維Bの単糸繊度は0.3〜0.7dtexであり、好ましくは0.4〜0.6dtexである。アクリル繊維Bの単糸繊度が上記範囲未満であると、染色したときの色濃度が極端に低下して、混紡糸の均一な染色性が得られにくくなる。また、上記範囲を越えると、アクリル繊維Cとの繊度差が少なくなり、繊維間空隙が低下して保温性が上がらないとともに、均一な細番手の紡績糸を紡出するのが難しくなる。本発明の混紡糸に用いるアクリル繊維Cの単糸繊度は0.8〜2.0dtexであり、好ましくは0.8〜1.3dtexである。アクリル繊維Cの単糸繊度が上記範囲未満であると、アクリル繊維Bとの繊度差が少なくなり保温性が低下する。上記範囲を越えると、細番手糸を紡出するのが難しくなるとともに風合いが硬くなる傾向がある。アクリル繊維Bとアクリル繊維Cの単糸繊度差は0.3〜1.7dtexが好適であり、0.5〜1.6dtexがより好適である。単糸繊度差が上記範囲未満であると、繊維間の細かな空隙が減少し保温性が低下し、また、上記範囲を越えると、細番手糸を紡出することが難しくなり、細くて暖かい紡績糸ができなくなる。 The single yarn fineness of the acrylic fiber B used for the blended yarn of the present invention is 0.3 to 0.7 dtex, preferably 0.4 to 0.6 dtex. When the single yarn fineness of the acrylic fiber B is less than the above range, the color density when dyeing is extremely reduced, and it becomes difficult to obtain uniform dyeability of the blended yarn. On the other hand, if the above range is exceeded, the difference in fineness with the acrylic fiber C is reduced, the inter-fiber gap is lowered and the heat retaining property is not increased, and it becomes difficult to spin a spun yarn with uniform fine count. The single yarn fineness of the acrylic fiber C used for the blended yarn of the present invention is 0.8 to 2.0 dtex, preferably 0.8 to 1.3 dtex. When the single yarn fineness of the acrylic fiber C is less than the above range, the difference in fineness from the acrylic fiber B is reduced, and the heat retention is lowered. When the above range is exceeded, it is difficult to spin fine yarn and the texture tends to be hard. The single yarn fineness difference between the acrylic fiber B and the acrylic fiber C is preferably 0.3 to 1.7 dtex, and more preferably 0.5 to 1.6 dtex. If the single yarn fineness difference is less than the above range, fine voids between fibers decrease and heat retention decreases, and if it exceeds the above range, it becomes difficult to spin fine yarn, and it is thin and warm. Spinning yarn cannot be made.
アクリル繊維B,Cは、アクリロニトリルを50重量%以上含有するアクリロニトリル系ポリマーからなることが好ましい。アクリロニトリル系ポリマーは、アクリロニトリルを50重量%以上含有する場合、アクリロニトリル単独ポリマーであってもよいが、経済性の点でアクリロニトリルとアクリロニトリルに共重合可能な不飽和モノマーとのコポリマーで、アクリロニトリルを50〜95重量%含有するコポリマーであることが好ましい。アクリロニトリルを含有するコポリマーのアクリロニトリルの含有量が50重量%未満では、染色鮮明性、発色性等のアクリル繊維としての特徴が発揮されず、また熱特性をはじめとする他の物性も低下する傾向となる。 The acrylic fibers B and C are preferably made of an acrylonitrile-based polymer containing 50% by weight or more of acrylonitrile. The acrylonitrile-based polymer may be an acrylonitrile homopolymer when it contains 50% by weight or more of acrylonitrile, but it is a copolymer of acrylonitrile and an unsaturated monomer copolymerizable with acrylonitrile in terms of economy. A copolymer containing 95% by weight is preferred. If the acrylonitrile content of the copolymer containing acrylonitrile is less than 50% by weight, the characteristics of acrylic fibers such as dyeing clarity and color developability will not be exhibited, and other physical properties such as thermal properties will tend to be reduced. Become.
アクリロニトリルに共重合可能な不飽和モノマーとしては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸n−ブチル、アクリル酸2ーエチルヘキシル、アクリル酸2ーヒドロキシエチル、アクリル酸ヒドロキシプロピル等のアクリル酸エステル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸n−ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ラウリル、メタクリル酸2ーヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸ジエチルアミノエチル等のメタクリル酸エステル、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、アクリルアミド、N−メチロールアクリルアミド、ジアセトンアクリルアミド、スチレン、ビニルトルエン、酢酸ビニル、塩化ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデン、フッ化ビニル、フッ化ビニリデン等の不飽和モノマー等が挙げられる。 Examples of unsaturated monomers copolymerizable with acrylonitrile include methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, and hydroxypropyl acrylate. Acrylic acid ester, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, lauryl methacrylate, 2-hydroxyethyl methacrylate, methacryl Methacrylic acid ester such as hydroxypropyl acid, diethylaminoethyl methacrylate, acrylic acid, methacrylic acid, maleic acid, itaconic acid, acrylamide, N-methylolacrylamido , Diacetone acrylamide, styrene, vinyl toluene, vinyl acetate, vinyl chloride, vinylidene chloride, vinyl bromide, vinylidene bromide, vinyl fluoride, include unsaturated monomers such as vinylidene fluoride.
さらに、染色性等改良の目的で共重合されるモノマーとしては、p−スルホフェニルメタリルエーテル、メタリルスルホン酸、アリルスルホン酸、スチレンスルホン酸、2ーアクリルアミドー2ーメチルプロパンスルホン酸、及びこれらのアルカリ金属塩等が挙げられる。 Furthermore, monomers copolymerized for the purpose of improving dyeability and the like include p-sulfophenyl methallyl ether, methallyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, 2-acrylamide-2-methylpropane sulfonic acid, and these Alkali metal salts and the like.
アクリロニトリル系ポリマーの分子量は、アクリル系繊維の製造に通常用いられる範囲のものであれば特に限定されないが、分子量が低すぎると、紡糸性が低下すると同時に原糸の糸質も悪化する傾向にあり、分子量が高すぎると、紡糸原液に最適粘度を与えるポリマー濃度が低くなり、生産性が低下する傾向にあるので、紡糸条件に従って適宜選択される。 The molecular weight of the acrylonitrile-based polymer is not particularly limited as long as it is within the range normally used for the production of acrylic fibers, but if the molecular weight is too low, the spinnability tends to deteriorate and the yarn quality of the raw yarn tends to deteriorate. If the molecular weight is too high, the polymer concentration that gives the optimum viscosity to the spinning dope tends to be low, and the productivity tends to decrease. Therefore, it is appropriately selected according to the spinning conditions.
アクリル繊維B,Cの製造方法は特に限定されないが、例えばアクリロニトリルを85重量%以上含有するアクリロニトリル系ポリマーを、溶剤に溶解して紡糸原液とし、紡糸するという湿式紡糸法により製造することができる。紡糸の際に用いられる溶剤としては、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、エチレンカーボネート、プロピレンカーボネート、γーブチロラクトン、アセトン等の有機溶剤、硝酸、ロダン酸ソーダ、塩化亜鉛等の無機溶剤が挙げられる。 The method for producing the acrylic fibers B and C is not particularly limited. For example, the acrylic fibers B and C can be produced by a wet spinning method in which an acrylonitrile-based polymer containing acrylonitrile in an amount of 85% by weight or more is dissolved in a solvent to form a spinning dope and spin. Examples of the solvent used for spinning include dimethylacetamide, dimethylformamide, dimethylsulfoxide, organic solvents such as ethylene carbonate, propylene carbonate, γ-butyrolactone, and acetone, and inorganic solvents such as nitric acid, sodium rhodanate, and zinc chloride. .
アクリル繊維Cの一部にはバルキータイプのアクリル繊維を用いてもよい。本発明の編地では、バルキータイプを用いなくとも十分な保温性を持つが、アクリル繊維C中のバルキータイプの混率が混紡糸に対して40重量%以内であれば本発明の薄くて軽い編地の特性を大きく損わずに、保温性ではむしろ向上する傾向があり好ましい。なお、バルキータイプとは、湿熱及び感熱処理下で糸の長手方向に収縮し、径方向に広がる繊維をいう。 A part of the acrylic fiber C may be a bulky type acrylic fiber. The knitted fabric of the present invention has sufficient heat retention without using the bulky type, but the thin and light knitted fabric of the present invention as long as the blend ratio of the bulky type in the acrylic fiber C is within 40% by weight with respect to the blended yarn. It is preferable that the heat retention is rather improved without greatly deteriorating the characteristics of the ground. The bulky type refers to a fiber that shrinks in the longitudinal direction of the yarn under wet heat and heat-sensitive heat treatment and spreads in the radial direction.
バルキータイプのアクリル繊維におけるバルキー性の好ましい範囲は18〜40%であり、より好適には18〜25%である。ここでバルキー性は、繊維を一定長さ採取した後に湿熱処理し、処理前後での糸の収縮率を算出したものである。バルキー性が40%を越える繊維を用いると、生地の厚みが厚くなり、薄くて軽い生地を得ることができない。また、アクリル繊維Cに含まれるバルキー繊維の混率は混紡糸に対して10〜40重量%であり、より好適には10〜30重量%である。混率が40重量%を越えると、編地が厚く、目付けが重くなり薄くて軽い生地ができ難い。 The preferable range of the bulkiness of the bulky acrylic fiber is 18 to 40%, and more preferably 18 to 25%. Here, the bulkiness is obtained by calculating the shrinkage rate of the yarn before and after the treatment by wet-heat treatment after collecting a certain length of fiber. If fibers having a bulkiness of more than 40% are used, the thickness of the fabric increases and a thin and light fabric cannot be obtained. Moreover, the blending ratio of the bulky fiber contained in the acrylic fiber C is 10 to 40% by weight, more preferably 10 to 30% by weight with respect to the blended yarn. When the mixing ratio exceeds 40% by weight, the knitted fabric is thick, the fabric weight is heavy, and it is difficult to make a thin and light fabric.
本発明の混紡糸中のアクリル繊維Bの混率は20〜75重量%であり、好適には30〜60重量%である。混率が上記範囲未満になると、アクリル繊維Cとの繊維間空隙が低くなり保温性が低下する。また、上記範囲を越えると、繊維間空隙が低くなり保温性が低下するとともに、染色性も悪くなる。また、混紡糸中のアクリル繊維Cの混率は10〜40重量%であり、好適には15〜30重量%である。混率が上記範囲未満になると、アクリル繊維Bとの繊維間空隙が低くなり保温性が低下する。また、上記範囲を越えると、繊維間空隙が低くなり保温性が低下するとともに、風合が硬くなる。 The mixing ratio of the acrylic fiber B in the blended yarn of the present invention is 20 to 75% by weight, and preferably 30 to 60% by weight. When the mixing ratio is less than the above range, the inter-fiber gap with the acrylic fiber C is lowered, and the heat retention is lowered. On the other hand, if the above range is exceeded, the inter-fiber gap is lowered, the heat retaining property is lowered, and the dyeability is also deteriorated. Further, the mixing ratio of the acrylic fibers C in the blended yarn is 10 to 40% by weight, and preferably 15 to 30% by weight. When the mixing ratio is less than the above range, the inter-fiber gap with the acrylic fiber B is lowered, and the heat retention is lowered. On the other hand, if the above range is exceeded, the inter-fiber gap is lowered, the heat retaining property is lowered, and the texture becomes hard.
本発明の混紡糸中のアクリル繊維Bと吸湿性繊維A及びアクリル繊維Cの合計との重量比率は2:8〜8:2であり、好適には3:7〜8:2である。アクリル繊維Bの重量比率が20%未満でも80%より高くても繊維間空隙が低くなり保温性があがらない。また、アクリル繊維Bの重量比率が20%未満では細番手糸の生産が難しくなる。 The weight ratio of the acrylic fiber B to the total of the hygroscopic fiber A and the acrylic fiber C in the blended yarn of the present invention is 2: 8 to 8: 2, preferably 3: 7 to 8: 2. Even if the weight ratio of the acrylic fiber B is less than 20% or higher than 80%, the inter-fiber void is lowered and the heat retaining property is not improved. Further, when the weight ratio of the acrylic fiber B is less than 20%, it is difficult to produce fine count yarns.
本発明の混紡糸の太さは55〜100番手であり、好ましくは70番手以上、さらに好ましくは80番手以上である。上記範囲の番手より太い場合、薄くて、軽くて、暖かい編地を得ることが難しくなる。また、上記範囲の番手より細い場合、編地が薄くなりすぎて保温性が低下する。本発明の混紡糸の撚係数(K)は好ましくは2.8〜4.5であり、より好ましくは3.0〜4.1である。撚係数が上記範囲未満の場合、繊維間空隙率が高くなるが糸強度が低下し、紡績性、製編性が悪くなり生産が困難になる。撚係数が上記範囲を越えると、紡績性、製編性が良くなるが、繊維間空隙率が低く目標とする保温性が得られ難い。 The thickness of the blended yarn of the present invention is 55 to 100, preferably 70 or more, and more preferably 80 or more. If it is thicker than the above range, it is difficult to obtain a thin, light and warm knitted fabric. Moreover, when it is thinner than the count of the said range, a knitted fabric will become thin too much and heat retention will fall. The twist coefficient (K) of the blended yarn of the present invention is preferably 2.8 to 4.5, more preferably 3.0 to 4.1. When the twisting coefficient is less than the above range, the inter-fiber void ratio is increased, but the yarn strength is lowered, and the spinning property and the knitting property are deteriorated, making the production difficult. When the twisting coefficient exceeds the above range, the spinning property and the knitting property are improved, but the inter-fiber void ratio is low, and it is difficult to obtain the target heat retention.
本発明の混紡糸は、横断面で見たとき、繊維間の空隙率が30〜60%であり、より好ましいものは30〜40%となっている。空隙率とは、糸断面を構成する繊維と空間の比率のことである。空隙率が上記範囲未満であると、目標とする保温率が得られず、上記範囲60%を越えると、保温性が得られるものの、糸強力の低下や衣料品にしたときにピリング等の消費性能が低下する。 When viewed in cross section, the blended yarn of the present invention has a porosity between fibers of 30 to 60%, more preferably 30 to 40%. The porosity is a ratio of fibers and spaces constituting the yarn cross section. If the porosity is less than the above range, the target heat retention rate cannot be obtained, and if it exceeds the above range of 60%, heat retention can be obtained, but the yarn strength is reduced or consumption such as pilling when the garment is made. Performance decreases.
本発明の編地における混紡糸の混率は40〜100重量%であり、好適には50〜100重量%であり、更に好適には75〜100重量%である。編地中の混紡糸の混率は高ければ高いほど良い。逆に、混率が40重量%未満になると、編地に薄くて軽くて暖かい性能をもたすことが難しくなる。 The blend ratio of the blended yarn in the knitted fabric of the present invention is 40 to 100% by weight, preferably 50 to 100% by weight, and more preferably 75 to 100% by weight. The higher the blend ratio of the blended yarn in the knitted fabric, the better. On the other hand, when the mixing ratio is less than 40% by weight, it becomes difficult to provide a thin, light and warm performance to the knitted fabric.
本発明の編地の水分率は3〜25%であり、好適には3〜15%である。従って、本発明の編地を用いると、寒い野外から室内に移動したときに蒸れずに快適性を維持することができる。水分率が上記範囲より小さいと、編地に吸湿性能がなく、着用時の蒸れ感が軽減されない。また、上記範囲より高くするためには、吸湿性繊維の混率を本発明の範囲以上にする必要があり、繊維間の空隙率が低下して、軽くて薄くて暖かい編地になりにくい。 The moisture content of the knitted fabric of the present invention is 3 to 25%, preferably 3 to 15%. Therefore, when the knitted fabric of the present invention is used, comfort can be maintained without stuffiness when moving from the cold outdoors to the room. When the moisture content is smaller than the above range, the knitted fabric has no moisture absorption performance, and the feeling of stuffiness during wearing is not reduced. Moreover, in order to make it higher than the said range, it is necessary to make the mixing rate of a hygroscopic fiber more than the range of this invention, the porosity between fibers falls, and it is hard to become a light, thin and warm knitted fabric.
本発明の編地は、薄さ、軽さを追求しながら高い保温性と吸湿性を持つことが特徴である。従って、本発明の編地の厚みは0.5〜1.2mm、好適には0.5〜1.1mmであり、目付けは120〜160g/m2であることが好ましい。厚さ、目付けが上記範囲未満では温かさが得られにくく、上記範囲を越えると、本発明が意図する薄くて軽い範疇を越えてしまう。 The knitted fabric of the present invention is characterized by high heat retention and moisture absorption while pursuing thinness and lightness. Therefore, the thickness of the knitted fabric of the present invention is 0.5 to 1.2 mm, preferably 0.5 to 1.1 mm, and the basis weight is preferably 120 to 160 g / m 2 . If the thickness and basis weight are less than the above ranges, it is difficult to obtain warmth, and if it exceeds the above ranges, it will exceed the thin and light category intended by the present invention.
本発明の編地は、編組織を特に限定しないが、厚みが薄くなるように考慮すべきである。例えば本発明の編地としては、丸編のシングルニット、ダブルニット又は経編でも良い。編地の厚みが大きくなり難い組織で好適なものとしては、フライス、片袋、天竺、ミラノリブ、リバーシブル、ベア天竺、ベアフライス等がある。薄くて軽い素材とするにはこれらの編組織を適正な密度に設定することが好ましい。適正密度は編み組織により変動するが、ウエール数20〜50/inch、コース数30〜100/inchの範囲で適宜設定すればよい。このようにして作られた本発明の編地の比容積は3〜10cc/gとなり、より好適な編地の比容積は3.5〜6.5cc/gになる。この比容積の数値は保温性を有する編地としてはさほど高くない値である。この理由は薄くて軽い編地にしたことに原因があると推定するが、微細な空隙がある暖かい混紡糸の効果により見かけの比容積に比べて高い保温性を実現しているものと考えられる。本発明の編地の保温率は高くなっているが、実際には15〜35%である。保温率が15%より低下すると、着用したときの暖かみが感じ難くなり、35%より高くなると、薄地・軽量化が難しくなってくる。 The knitted fabric of the present invention is not particularly limited in the knitted structure, but should be considered so that the thickness is reduced. For example, the knitted fabric of the present invention may be a circular knit single knit, double knit, or warp knitting. As a structure suitable for a structure in which the thickness of the knitted fabric is not easily increased, there are a milling cutter, a single bag, a tengu, a Milan rib, a reversible, a bear tengu, a bear milling, and the like. In order to obtain a thin and light material, it is preferable to set these knitting structures to an appropriate density. The appropriate density varies depending on the knitting structure, but may be set as appropriate within the range of 20 to 50 / inch wales and 30 to 100 / courses. The specific volume of the knitted fabric of the present invention thus produced is 3 to 10 cc / g, and the more preferable specific volume of the knitted fabric is 3.5 to 6.5 cc / g. The numerical value of this specific volume is not so high as a knitted fabric having heat retention. The reason for this is presumed to be due to the fact that the knitted fabric is thin and light, but it is thought that the warm blended yarn with fine voids achieves higher heat retention than the apparent specific volume. . Although the heat retention rate of the knitted fabric of the present invention is high, it is actually 15 to 35%. When the heat retention rate is lower than 15%, it becomes difficult to feel the warmth when worn, and when it is higher than 35%, it is difficult to reduce the thickness and weight.
本発明の編地は摩擦耐電圧が0〜3000V、半減期が0〜30秒であり、より好適には摩擦耐電圧が0〜2800V、半減期が0〜25秒である。摩擦耐電圧、半減期が上記範囲以上となった場合、着用時に静電気が発生し着用快適性が得られない。 The knitted fabric of the present invention has a friction withstand voltage of 0 to 3000 V and a half-life of 0 to 30 seconds, and more preferably has a friction withstand voltage of 0 to 2800 V and a half-life of 0 to 25 seconds. When the friction withstand voltage and the half-life are above the above ranges, static electricity is generated at the time of wearing, and wearing comfort cannot be obtained.
本発明の編地は、上記混紡糸の混率が40重量%を下回らない範囲で、他の糸を交編することができる。しかし、この場合、薄くて軽い特性を維持するために用いる糸は60番手以上の細い糸条であることが好ましい。60番手以上の細い糸であれば特に限定しないが、例えば50dtex以下のフィラメントや、混紡糸または複合糸が好適に用いられる。交編される他の糸としては、具体的にはナイロンやポリエステルのフィラメントまたはその仮撚加工糸であったり、短繊維や長繊維と弾性繊維を複合した被覆弾性糸がある。被覆弾性糸としては、フィラメントと弾性糸を合撚したFTY(フィラメント ツイスティッド ヤーン)、シングル(ダブル)カバーリング糸、エアーカバード糸、仮撚加工と同時混繊する仮撚複合糸等が用いられる。短繊維と弾性糸との複合糸として、コアスパンヤーン、プライヤーン等が用いられる。弾性糸はポリウレタン系スパンデックス、ポリオレフィン系弾性糸、ポリエステル系弾性糸、ポリエステル系潜在捲縮糸等を用いることができる。弾性糸の繊度は22dtex以下のものを用いることが好適である。繊度が22dtexを越えると混繊糸繊度が大きくなってしまったり、混繊する非弾性糸とのバランスが悪くなる。混繊時の弾性糸ドラフト率は1.5〜2.5倍の低倍率にする方が良い。更に好適には1.8〜2.2程度である。弾性糸ドラフト率が2.5倍を越えると、伸縮のパワーが強すぎて編地の収縮が大きくなり、薄く軽い編地を得難くなる。 In the knitted fabric of the present invention, other yarns can be knitted in a range where the blend ratio of the blended yarn does not fall below 40% by weight. However, in this case, it is preferable that the yarn used for maintaining the thin and light characteristics is a thin yarn of 60 or more. Although it will not specifically limit if it is 60th or more fine thread | yarn, For example, a filament of 50 dtex or less, a blended yarn, or a composite yarn is used suitably. As other yarns to be knitted, there are specifically nylon or polyester filaments or false twisted yarns, and short elastic fibers or covered elastic yarns composed of long fibers and elastic fibers. As the coated elastic yarn, FTY (filament twisted yarn) in which a filament and an elastic yarn are twisted, a single (double) covering yarn, an air covered yarn, a false twist composite yarn that is mixed simultaneously with false twist processing, and the like are used. . Core composite yarns, pliers, etc. are used as composite yarns of short fibers and elastic yarns. As the elastic yarn, polyurethane-based spandex, polyolefin-based elastic yarn, polyester-based elastic yarn, polyester-based latent crimped yarn, or the like can be used. The fineness of the elastic yarn is preferably 22 dtex or less. When the fineness exceeds 22 dtex, the fineness of the mixed yarn becomes large, or the balance with the inelastic yarn to be mixed becomes worse. The elastic yarn draft rate at the time of blending is preferably set to a low magnification of 1.5 to 2.5 times. More preferably, it is about 1.8 to 2.2. When the elastic yarn draft ratio exceeds 2.5 times, the expansion / contraction power is too strong, the shrinkage of the knitted fabric increases, and it becomes difficult to obtain a thin and light knitted fabric.
本発明の編地の染色加工は、通常のアクリル繊維や、他の繊維との混用編地の加工方法を採用すれば良いが、本発明の混紡糸の繊維間空隙構造を潰さないように注意して加工することが必要である。例えば乾燥や熱処理時に必要以上に編地にテンションや厚み方向の圧縮等をかけて加工しないこと等が求められる。また、精練や染色等の後に液温を下げるときに、急速に行うとアクリル繊維がへたるため、降温はゆっくり行うようにする。 For the dyeing process of the knitted fabric of the present invention, a normal acryl fiber or a mixed knitted fabric processing method with other fibers may be adopted, but care should be taken not to crush the inter-fiber void structure of the blended yarn of the present invention. It is necessary to process it. For example, it is required not to process the knitted fabric with tension or compression in the thickness direction more than necessary during drying or heat treatment. In addition, when the liquid temperature is lowered after scouring or dyeing, the acrylic fiber will dull if it is done rapidly, so the temperature should be lowered slowly.
本発明の編地には柔軟剤や帯電防止剤のような一般的な仕上加工剤を付与することが好ましく、その他の各種機能加工が単独または併用して施されていても良い。機能加工の例としては、親水加工などの防汚加工、UVカット加工、制電加工、スキンケア加工などがあるが、これに限定されるものではない。 It is preferable to apply a general finishing agent such as a softening agent or an antistatic agent to the knitted fabric of the present invention, and other various functional processings may be applied alone or in combination. Examples of functional processing include, but are not limited to, antifouling processing such as hydrophilic processing, UV cut processing, antistatic processing, and skin care processing.
次に実施例、比較例を用いて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。これらの実施例における発明の趣旨を逸脱しない範囲での変更実施は全て本発明の技術的範囲に含まれる。なお、本発明で用いた測定法は以下の通りである。 Next, the present invention will be specifically described using examples and comparative examples, but the present invention is not limited to these examples. All modifications in the embodiments without departing from the spirit of the invention are included in the technical scope of the present invention. The measurement method used in the present invention is as follows.
<繊維間空隙率>
混紡糸を編地より静かに取出し、SEMの試料台に粘着テープで固定した。液体窒素で試料台ごと糸条を凍らした状態でカミソリで繊維軸方向に垂直にカットして横断面を切出して、日立株式会社製走査型電子顕微鏡(SEM)S3500Nにより繊維横断面の写真を撮った。この横断面写真から混紡糸が占める全体面積より、実際に単糸が占める面積を除いた空間の面積との比率を測定した。
混紡糸の糸空隙率(%)=
(混紡糸が占める全体面積−実際に単糸が占める面積)
/(混紡糸が占める全体面積)*100
実際に単糸が占める面積は、断面写真における、単糸それぞれの断面積を合計した値とした。
<Porosity between fibers>
The blended yarn was gently taken out from the knitted fabric and fixed to the SEM sample stage with adhesive tape. With the sample stand frozen with liquid nitrogen, cut the cross section perpendicularly to the fiber axis direction with a razor to cut the cross section, and take a photo of the cross section of the fiber with a scanning electron microscope (SEM) S3500N manufactured by Hitachi, Ltd. It was. From this cross-sectional photograph, the ratio of the total area occupied by the blended yarn to the area of the space excluding the area actually occupied by the single yarn was measured.
Yarn porosity of blended yarn (%) =
(Total area occupied by blended yarn-Actual area occupied by single yarn)
/ (Total area occupied by blended yarn) * 100
The area actually occupied by the single yarn was the sum of the cross-sectional areas of the single yarns in the cross-sectional photograph.
コンピュータソフトを使って、画像解析からこれらの面積を導く方法を以下に記す。
画像データとして断面写真を取り込み、画像処理ソフトである、Adobe PhotoShop ver.6.0を用いて、混紡糸が占める全体面積の範囲、および単糸それぞれの横断面積をそれぞれ範囲指定して、さらに2値化処理を行い、解析用の画像とした。このとき、混紡糸が占める全体面積は、最外層に位置する繊維の横断面輪郭の外側を全て結んだ範囲とした。これらの作業により作られた解析用の画像をさらに、画像解析ソフトである、Lia32 ver.0.376β1を用いて、混紡糸が占める全体面積および、単糸それぞれの断面積の総計の面積を算出し、これらの値を用いて、混紡糸の空隙率を求めた。これらの算出手段として、上記以外の画像処理ソフト、画像解析ソフトを使っても良い。また、実際の写真より、測定が必要な範囲を切り抜き、重量比から算出しても良い。
A method for deriving these areas from image analysis using computer software is described below.
A cross-sectional photograph is taken in as image data, and Adobe PhotoShop ver. Using 6.0, the range of the total area occupied by the blended yarn and the cross-sectional area of each single yarn were specified, and binarization processing was further performed to obtain an image for analysis. At this time, the total area occupied by the blended yarn was set to a range in which all the outer sides of the cross-sectional contours of the fibers located in the outermost layer were connected. An image for analysis created by these operations is further converted into image analysis software, Lia32 ver. Using 0.376β1, the total area occupied by the blended yarn and the total area of the cross-sectional areas of each single yarn were calculated, and the porosity of the blended yarn was obtained using these values. As these calculation means, image processing software and image analysis software other than those described above may be used. Further, a range that requires measurement may be cut out from an actual photograph and calculated from the weight ratio.
<バルキー性測定>
JIS−L1095−9.24.1 B法(定荷重法)に準じて測定した。枠周1mの繰返機を用いて巻回数200回とした。また、測定値はn=4の平均値とした。
<Measurement of bulkiness>
It measured according to JIS-L1095-9.24.1 B method (constant load method). The number of windings was 200 using a repeater with a frame circumference of 1 m. The measured value was an average value of n = 4.
<繊維及び編地の水分率>
繊維又は編地を乾燥ボックスにて105℃,3時間処理して絶乾状態にし、秤量瓶を使って重量W0を測定する。その後、繊維及び編地を20℃、65%RHの雰囲気下に24時間放置し、放置後の重量W1を測定する。得られた値を以下の式に代入し、水分率を求めた。測定値はn=3の平均値とした。
水分率(%)={(W1−W0)/W0}×100
<Moisture content of fiber and knitted fabric>
The fiber or knitted fabric is treated in a drying box at 105 ° C. for 3 hours to make it completely dry, and the weight W 0 is measured using a weighing bottle. Thereafter, the fiber and the knitted fabric are allowed to stand in an atmosphere of 20 ° C. and 65% RH for 24 hours, and the weight W 1 after the standing is measured. The obtained value was substituted into the following equation to determine the moisture content. The measured value was an average value of n = 3.
Moisture content (%) = {(W 1 −W 0 ) / W 0 } × 100
<保温率>
カトーテック社製のサーモラボIIを用い、20℃、65%RHの環境下で、BT−BOXのBT板(熱板)を人の皮膚温度を想定して35℃に設定し、その上に試料を置き、熱移動量が平衡になったときの消費電力量Wを測定する。また、試料を置かない条件での消費電力量W0を計測する。以下の式で保温率を計算する。
保温率(%)={(W0−W)/W0}×100
BT板は、サイズ10cm×10cmであるが、試料は20cm×20cmとする。通常は試料を熱板に接触させて測定するが、本発明の保温率は熱板の上に断熱性のある発砲スチロール等のスペーサーを設置して試料との空隙を5mm設けて計測を行う。
なお、「あたたかさ」の指標として、この保温率の測定結果において15%未満を×、15%以上を○として判定した。
<Heat retention rate>
Using a thermolab II manufactured by Kato Tech, set the BT-BOX BT plate (hot plate) to 35 ° C, assuming a human skin temperature, in an environment of 20 ° C and 65% RH. And measure the power consumption W when the amount of heat transfer is balanced. Further, the power consumption amount W0 under the condition where no sample is placed is measured. The heat retention rate is calculated by the following formula.
Thermal insulation rate (%) = {(W0−W) / W0} × 100
The BT plate is 10 cm × 10 cm in size, but the sample is 20 cm × 20 cm. Usually, the sample is contacted with a hot plate, and the heat retention rate of the present invention is measured by providing a spacer such as a fired polystyrene having a heat insulating property on the hot plate and providing a gap of 5 mm from the sample.
In addition, as an index of “warmth”, in the measurement result of the heat retention rate, less than 15% was determined as x, and 15% or more was determined as ◯.
<編地の厚み>
JIS−L−1018 6.5メリヤス生地試験方法の(5)厚さにより測定した。
なお、「薄さ」の指標として、この編地の厚みの測定結果において0以上0.5mm未満を△、0.5以上1.2mm以下を○、1.2mm超過を×として判定した。
<Thickness of knitted fabric>
It measured by (5) thickness of JIS-L-1018 6.5 knitted fabric test method.
Note that, as an index of “thinness”, in the measurement result of the thickness of the knitted fabric, 0 or less and less than 0.5 mm was evaluated as Δ, 0.5 or more and 1.2 mm or less was evaluated as ○, and 1.2 mm or more was determined as ×.
<編地の目付け>
JIS−L−1018 6.4.2メリヤス生地の試験方法の備考目付けにより測定した。
なお、「軽さ」の指標として、この目付けの測定結果において0以上120g/m2未満を△、120以上160g/m2以下を○、160g/m2超過を×として判定した。
<Weaving the knitted fabric>
JIS-L-1018 6.4.2 Measured according to remarks on test method of knitted fabric.
In addition, as an indicator of “lightness”, in the measurement result of the basis weight, 0 or less and less than 120 g / m 2 was determined as Δ, 120 or more and 160 g / m 2 or less as ◯, and 160 g / m 2 exceeding as ×.
<編地の比容積>
編地の厚みと目付けの測定値を用いて以下の式により比容積を算出した。
比容積(cc/g)={編地の厚み(mm)/編地の目付け(g/m2)}×1000
<Specific volume of knitted fabric>
The specific volume was calculated by the following formula using the measured values of the thickness of the knitted fabric and the basis weight.
Specific volume (cc / g) = {knitted fabric thickness (mm) / knitted fabric basis weight (g / m 2 )} × 1000
<混率測定>
混紡糸における吸湿性繊維A及び高吸湿性繊維の混率は、JIS−L1030−1(2005)及びJIS−L1030−2繊維製品の混用率試験方法に準じて測定した。アクリル繊維Bとアクリル繊維Cの混率は、残ったアクリル繊維を黒色ビロード板に載せて、光学顕微鏡にて拡大して撮影し、その断面写真より糸の太さから極細繊度のアクリル繊維Bと通常繊度のアクリル繊維Cを選別し、各繊維の本数を測定する。各繊維の構成本数と単糸繊度を掛け合わせて総繊度を求めて、各繊維の総繊度の比率から混率を求めた。測定値はn=20の平均値とした。なお、アクリル等の各種繊維の繊度は、メタルセクション法により糸の横断面の直径を測定して、繊維直径から各繊維の繊度を求めた。
<Mixing ratio measurement>
The mixing rate of the hygroscopic fiber A and the highly hygroscopic fiber in the blended yarn was measured according to the mixed rate test method of JIS-L1030-1 (2005) and JIS-L1030-2 fiber products. The mixing ratio of the acrylic fiber B and the acrylic fiber C is measured by placing the remaining acrylic fiber on a black velvet plate and enlarging it with an optical microscope. Acrylic fiber C is selected and the number of each fiber is measured. The total fineness was obtained by multiplying the number of constituents of each fiber and the single yarn fineness, and the mixing ratio was obtained from the ratio of the total fineness of each fiber. The measured value was an average value of n = 20. In addition, the fineness of various fibers, such as acrylic, measured the diameter of the cross section of the thread | yarn by the metal section method, and calculated | required the fineness of each fiber from the fiber diameter.
<摩擦耐電圧>
JIS−L1094摩擦耐電圧に準じて測定した。測定環境は20℃40%RHとし、摩擦布は綿布とし、測定はウエール・コース方向各5枚に対して行った各方向の5枚の平均値のうち高い方向の値を採用した。
<Friction withstand voltage>
It measured according to JIS-L1094 friction withstand voltage. The measurement environment was 20 ° C. and 40% RH, the friction cloth was a cotton cloth, and the measurement was carried out using the value in the higher direction among the average values of the five sheets in each direction for the five wale / course directions.
<半減期>
JIS−L1094半減期に準じて測定した。測定環境は20℃40%RHとし、測定値はn=5の平均値とした。
<Half life>
It measured according to JIS-L1094 half life. The measurement environment was 20 ° C. and 40% RH, and the measurement value was an average value of n = 5.
<蒸れ感着用試験>
編地で丸首の長袖インナーシャツ(M寸)を作成し、被験者成人男性20〜50歳までの男性5人に着用試験を行った。被験者にはインナーシャツの上にワイシャツ、作業服及び防寒着を着てもらった。まず、冬の野外環境を想定して環境試験室を5℃30%RHに設定して、その中でウェルビー電動ウォーカーWB−209に乗ってもらい、3.5km/時のゆっくりした速度で15分間歩いてもらった。その後、防寒着だけを脱いで直ちに、20℃65%の恒温室で型式が同じ電動ウォーカーに更に5分間ゆっくりオフィス内を歩くことを想定して2.5km/時のスピードで歩いてもらい、その直後の着用蒸れ感をアンケート調査した。5人とも蒸れ感がないと答えたら◎、3〜4人蒸れ感がないと答えたら○、蒸れ感がないのが2名以下なら△とする。1名以下なら×とする。
<Moisture sensation test>
A long-sleeved inner shirt (M size) with a round neck was created from the knitted fabric, and a wearing test was conducted on five male adult males aged 20 to 50 years. The subjects had their shirts, work clothes and winter clothes on top of the inner shirts. First, assuming an outdoor environment in winter, the environmental test room is set to 5 ° C. and 30% RH, and the rider gets on a Welby Electric Walker WB-209 for 15 minutes at a slow speed of 3.5 km / hour. I had you walk. After that, just take off the warm clothes and immediately have the same type of electric walker in a constant temperature room at 20 ° C 65% walk for another 5 minutes and walk at a speed of 2.5 km / hour. A questionnaire survey was conducted on the feeling of stuffiness immediately after wearing. If all 5 people answered that there was no stuffiness, ◎, if 3-4 people answered that there was no stuffiness, ○, if there were 2 or less people who did not feel stuffiness, △. If it is 1 or less, it will be marked as x.
<総合評価>
「あたたかさ」、「軽さ」、「薄さ」の指標の判定結果では、○を5点、△を3点、×を0点、また、「蒸れ感着用試験」の判定結果では◎を5点、○を3点、△を1点、×を0点として点数を決めた。更に、総合評価では各項目の点数を合計し、0点〜10点を×、11点〜15点を△、16点〜20点を◎とした。
<Comprehensive evaluation>
In the judgment results of the indicators of “warmth”, “lightness” and “thinness”, ○ is 5 points, △ is 3 points, × is 0 points, and the judgment result of the “steaming wearing test” is ◎. The score was determined with 5 points, 3 points, 3 points, 1 point, and 0 points. Furthermore, in comprehensive evaluation, the score of each item was totaled, and 0 points to 10 points were evaluated as x, 11 points to 15 points as Δ, and 16 points to 20 points as 点.
<実施例1>
吸湿性繊維Aとしてのレーヨンステープル(ダイワボウレーヨン製「コロナ」BH,0.9dtex、繊維長38mm、測定環境20℃、65%RH環境下で水分率12%)30重量%、アクリル繊維Bとしてのカチオン可染アクリル短繊維(日本エクスラン工業製UFタイプ、0.5dtex,繊維長32mm)50重量%、アクリル繊維Cとしての制電・抗ピルタイプのカチオン可染性アクリル繊維(日本エクスラン工業製、822タイプ、1.0dtex、繊維長38mm)20重量%を、OHARA製混綿機を用いて混綿混紡した後に石川製作所製カード機を用いてカードスライバーとし、原織機製練条機に2回通してスライバーとした。更に、このスライバーを、豊田自動織機製粗紡機に通して粗糸を作成した。最後に該スライバーを、豊田自動織機製リング精紡機を用いて紡出して英式番手60′sの混紡糸を得た。この混紡糸を用いてフライス編地を18′′−18Gのダブルニット編機(福原精機製)により編成した。編成時の条件は、編成糸長で混紡糸60′sを440mm/100ウエールとして図1に示す編組織にて編成した。
<Example 1>
30% by weight of rayon staple as hygroscopic fiber A (“Corona” manufactured by Daiwabo Rayon, BH, 0.9 dtex, fiber length 38 mm, measurement environment 20 ° C., moisture content 12% under 65% RH environment) 30% by weight, acrylic fiber B Cationic dyeable acrylic short fibers (UF type manufactured by Nippon Exlan Industries, 0.5 dtex, fiber length 32 mm) 50% by weight, antistatic / anti-pill type cationic dyeable acrylic fibers (acrylic fiber C manufactured by Nippon Exlan Industries, 822) (Type, 1.0 dtex, fiber length 38 mm) 20% by weight was blended using an OHARA blender and then turned into a card sliver using a card machine manufactured by Ishikawa Seisakusho. It was. Further, the sliver was passed through a Toyoda Automatic Loom Co., Ltd. to produce a roving yarn. Finally, the sliver was spun using a ring spinning machine manufactured by Toyota Industries Corporation to obtain a blended yarn of English count 60's. Using this blended yarn, a milled knitted fabric was knitted by an 18 ″ -18G double knit knitting machine (manufactured by Fukuhara Seiki). The knitting conditions were knitting with the knitting structure shown in FIG. 1 with the knitting yarn length and the blended yarn 60's as 440 mm / 100 wale.
得られた生機を以下の条件で精練した。
日阪製作所製液流染色機NSタイプを用いて、編地を開反せず後述の処理条件及び精練処方で精練した。湯洗3回・水洗行った後染色機から編地を取り出して遠心脱水した後、ヒラノテクシード製シュリンクサーファードライヤーを用いて乾燥(120℃×3分)を行った。
処理条件:浴比1:15、95℃×30分
精練処方:精練剤(第一工業製薬(株)製ノイゲンHC)1g/l、金属イオン封鎖剤(日華化学(株)製ネオクリスタルGC1000)1g/l、ソーダ灰0.5g/l
乾燥時に経方向に編地が伸びないようにテンションに注意した。
The obtained raw machine was refined under the following conditions.
Using a liquid dyeing machine NS type manufactured by Nisaka Seisakusho, the knitted fabric was not opened but scoured under the processing conditions and scouring recipe described below. After washing with hot water three times and with water, the knitted fabric was taken out from the dyeing machine and subjected to centrifugal dehydration, followed by drying (120 ° C. × 3 minutes) using a shrink surfer dryer manufactured by Hirano Techseed.
Treatment conditions: bath ratio 1:15, 95 ° C. × 30 minutes Scouring prescription: Scouring agent (Neugen HC manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 1 g / l, sequestering agent (Neocrystal GC1000 manufactured by Nikka Chemical Co., Ltd.) ) 1g / l, soda ash 0.5g / l
Attention was paid to the tension so that the knitted fabric would not stretch in the warp direction during drying.
次に、日阪製作所製液流染色機NSタイプを用いて染色、柔軟処理を行った。染色条件及び処方を下記に示す。
染色条件:
浴比1:15、カチオン染色(一段目)95℃×45分⇒反応染色(二段目)60℃×60分⇒ソーピング2回・湯洗・中和・水洗して取り出した。
一段目染色処方:pH調整剤(酢酸0.2g/l pH=4)、均染剤(明成化学工業(株)製ディスパーTL)1g/l、分散型カチオン染料(日本化薬(株)製Kayacryl light Blue 4GSL−ED)1.0%owf
二段目染色処方:反応染料(住友化学工業(株)製Sumifix supra Blue BRF150)0.5%owf、無水芒硝30g/l、アルカリ剤(一方社油脂工業(株)エスポロンA171)4g/l
ソーピング処方:ソーピング剤(一方社油脂工業(株)製ビスノールSLK)2g/l
中和処方:酢酸(68%)1g/l
柔軟処理:クラリアント社製サンドパームMEJ―50リキッド 1.0%owf
Next, dyeing and softening treatment were performed using a liquid dyeing machine NS type manufactured by Hisaka Seisakusho. The dyeing conditions and prescription are shown below.
Dyeing conditions:
Bath ratio 1:15, cationic dyeing (first stage) 95 ° C. × 45 minutes → reactive dyeing (second stage) 60 ° C. × 60 minutes → soaping twice, washing with hot water, neutralizing and washing with water.
First stage dyeing prescription: pH adjusting agent (acetic acid 0.2 g / l pH = 4), leveling agent (disper TL manufactured by Meisei Chemical Industry Co., Ltd.) 1 g / l, dispersed cationic dye (manufactured by Nippon Kayaku Co., Ltd.) Kayacryl light Blue 4GSL-ED) 1.0% owf
Second stage dyeing prescription: reactive dye (Sumitix supra Blue BRF150 manufactured by Sumitomo Chemical Co., Ltd.) 0.5% owf, anhydrous sodium sulfate 30 g / l, alkaline agent (one company Oil & Fat Co., Ltd. Espolon A171) 4 g / l
Soaping formulation: Soaping agent (Bisnol SLK, manufactured by Yushi Co., Ltd.) 2g / l
Neutralization formula: Acetic acid (68%) 1g / l
Flexible treatment: Clariant Sand Palm MEJ-50 Liquid 1.0% owf
染色して遠心脱水後、巾出し乾燥を行って性量調整し、最終的に目付け150g/m2の編地を得た。密度の粗い面を表としたときの表面の編地密度はコース32/inch、ウエール43/inchであった。編地の構成の詳細と評価結果を表1に示す。実施例1の総合評価は◎であった。また、編地に用いた混紡糸の断面写真を図3に示す。 After dyeing and centrifugal dehydration, the amount of dryness was adjusted by adjusting the weight, and finally a knitted fabric with a basis weight of 150 g / m 2 was obtained. The density of the knitted fabric on the surface with the rough surface as a table was course 32 / inch and wale 43 / inch. The details of the composition of the knitted fabric and the evaluation results are shown in Table 1. The overall evaluation of Example 1 was “◎”. Moreover, the cross-sectional photograph of the blended yarn used for the knitted fabric is shown in FIG.
<実施例2>
レーヨンステープル(ダイワボウレーヨン製「コロナ」BH,0.9dtex、繊維長38mm、測定環境20℃、65%RH環境下で水分率12%)に日本蚕毛のファインW加工のわた加工行ない高吸湿性繊維を得た。この高吸湿性繊維は20℃65%RHのときの水分率が18%であった。吸湿性繊維Aとしてのレーヨンステープル(ダイワボウレーヨン製「コロナ」BH,0.9dtex、繊維長38mm)15重量%、前記わた加工によって得た高吸湿性繊維20重量%、アクリル繊維Bとしてのカチオン可染アクリル短繊維(日本エクスラン工業製UFタイプ、0.5dtex、繊維長32mm)35重量%、アクリル繊維Cとしてのバルキータイプのカチオン可染性アクリルバルキー繊維(日本エクスラン工業製、824タイプ、0.9dtex、繊維長38mm)30重量%を実施例1と同様の工程にて紡績を行ない英式番手80′sの混紡糸を得た。交編糸としてポリウレタン22dtex(東洋紡製エスパ(登録商標))を用い、この交編糸と前記混紡糸をプレーティングしたベアフライス編地を18′′−18Gのダブルニット編機(福原精機製)により編成した。編成時の条件は、編成糸長で混紡糸80′sを510mm/100ウエールとし、ポリウレタンをドラフト1.5倍として図1に示す編組織にて編成した。得られた生機は、実施例1と同様の工程で精練、染色、柔軟処理を行ない、最終的に目付け135g/m2の編地を得た。密度の粗い面を表としたときの表面の編地密度はコース38/inch、ウエール48/inchであった。編地の構成の詳細と評価結果を表1に示す。実施例2の総合評価は◎であった。また、編地に用いた混紡糸の断面写真を図4に示す。
<Example 2>
High hygroscopicity of Japanese Washi's fine W processing on rayon staples (Daiwabow Rayon “Corona” BH, 0.9 dtex, fiber length 38 mm, measurement environment 20 ° C., water content 12% under 65% RH environment) Fiber was obtained. This highly hygroscopic fiber had a moisture content of 18% at 20 ° C. and 65% RH. 15% by weight of rayon staples (“Corona” manufactured by Daiwabo Rayon, 0.9 dtex, fiber length: 38 mm) as the hygroscopic fiber A, 20% by weight of the high hygroscopic fiber obtained by the above-mentioned cotton processing, and cation acceptable as the acrylic fiber B 35% by weight of dyed acrylic short fibers (UF type manufactured by Nippon Exlan Industry, 0.5 dtex, fiber length 32 mm), and a bulky type cationic dyeable acrylic bulky fiber (acrylic fiber C, 824 type, 0. 9 dtex, fiber length 38 mm) 30% by weight was spun in the same process as in Example 1 to obtain a blend yarn of English style 80's. Polyurethane 22dtex (Espa (registered trademark) manufactured by Toyobo Co., Ltd.) is used as the knitting yarn, and a 18 "-18G double knit knitting machine (manufactured by Fukuhara Seiki) Organized by. The knitting conditions were knitting with a knitting structure shown in FIG. 1 with a knitting yarn length, blended yarn 80's of 510 mm / 100 wale, polyurethane 1.5 times draft. The obtained green machine was subjected to scouring, dyeing and softening processes in the same steps as in Example 1, and finally a knitted fabric having a basis weight of 135 g / m 2 was obtained. The density of the knitted fabric on the surface having the rough surface as a table was course 38 / inch and wale 48 / inch. The details of the composition of the knitted fabric and the evaluation results are shown in Table 1. The overall evaluation of Example 2 was “◎”. Moreover, the cross-sectional photograph of the blended yarn used for the knitted fabric is shown in FIG.
<実施例3>
吸湿性繊維Aとしてのレーヨンステープル(ダイワボウレーヨン製「コロナ」BH,0.9dtex、繊維長38mm、測定環境20℃、65%RH環境下で水分率12%)30重量%、実施例2と同様のわた加工によって得た高吸湿性繊維20重量%、アクリル繊維Bとしてのカチオン可染アクリル短繊維(日本エクスラン工業製UFタイプ、0.5dtex、繊維長32mm)35重量%、アクリル繊維Cとしての制電・抗ピルタイプのカチオン可染性アクリル繊維(日本エクスラン工業製、822タイプ、1.0dtex、繊維長38mm)5重量%、及びバルキータイプのカチオン可染性アクリルバルキー繊維(日本エクスラン工業製、824タイプ、0.9dtex、繊維長38mm)10重量%を実施例1と同様の工程にて紡績を行ない英式番手80′sの混紡糸を得た。この混紡糸を用いてフライス編地を18′′−18Gのダブルニット編機(福原精機製)により編成した。編成時の条件は編成糸長でこの混紡糸80′sを400mm/100ウエールとして編成した。得られた生機は、実施例1と同様の工程で精練、染色、柔軟処理を行ない、最終的に目付け130g/m2の編地を得た。密度の粗い面を表としたときの表面の編地密度はコース34/inch、ウエール44/inchであった。編地の構成の詳細と評価結果を表1に示す。実施例3の総合評価は◎であった。
<Example 3>
Rayon staple as hygroscopic fiber A (Daiwabow Rayon “Corona” BH, 0.9 dtex, fiber length 38 mm, measurement environment 20 ° C., moisture content 12% under 65% RH) 30% by weight, same as Example 2 20% by weight of highly hygroscopic fiber obtained by cotton processing, 35% by weight of cation-dyeable acrylic short fiber (Nippon Exlan Kogyo UF type, 0.5 dtex, fiber length 32 mm) as acrylic fiber B, as acrylic fiber C Antistatic / anti-pill type cationic dyeable acrylic fiber (Nippon Exlan Industrial, 822 type, 1.0 dtex, fiber length 38 mm) 5% by weight, and bulky type cationic dyeable acrylic bulky fiber (Nippon Exlan Industrial, 824 type, 0.9 dtex, fiber length 38 mm) 10% by weight was spun in the same process as in Example 1. To obtain a blended yarn of line no English expression count 80's. Using this blended yarn, a milled knitted fabric was knitted by an 18 ″ -18G double knit knitting machine (manufactured by Fukuhara Seiki). The knitting condition was the knitting yarn length, and this blended yarn 80's was knitted as 400 mm / 100 wale. The obtained green machine was subjected to scouring, dyeing and softening processes in the same steps as in Example 1, and finally a knitted fabric having a basis weight of 130 g / m 2 was obtained. The knitted fabric density of the surface when the surface with a rough density was set as a table was course 34 / inch and wale 44 / inch. The details of the composition of the knitted fabric and the evaluation results are shown in Table 1. The overall evaluation of Example 3 was “◎”.
<実施例4>
吸湿性繊維Aとしてのレーヨンステープル(ダイワボウレーヨン製「コロナ」BH,0.9dtex、繊維長38mm、測定環境20℃、65%RH環境下で水分率12%)30重量%、アクリル繊維Bとしてのカチオン可染アクリル短繊維(日本エクスラン工業製UFタイプ、0.5dtex、繊維長32mm)40重量%、アクリル繊維Cとしてのバルキータイプのカチオン可染性アクリルバルキー繊維(日本エクスラン工業製、824タイプ、0.9dtex、繊維長38mm)30重量%を実施例1と同様の工程にて紡績を行ない英式番手70′sの混紡糸を得た。この混紡糸を用いフライス編地を18′′−18Gのダブルニット編機(福原精機製)により編成した。編成時の条件は編成糸長で混紡糸70′sを420mm/100ウエールとして編成した。得られた生機は、実施例1と同様の工程で精練、染色、柔軟処理を行ない、最終的に目付け150g/m2の編地を得た。密度の粗い面を表としたときの表面の編地密度はコース34/inch、ウエール44/inchであった。編地の構成の詳細と評価結果を表1に示す。実施例4の総合評価は◎であった。
<Example 4>
30% by weight of rayon staple as hygroscopic fiber A (“Corona” manufactured by Daiwabo Rayon, BH, 0.9 dtex, fiber length 38 mm, measurement environment 20 ° C., moisture content 12% under 65% RH environment) 30% by weight, acrylic fiber B Cationic dyeable acrylic short fiber (Nippon Exlan Kogyo UF type, 0.5 dtex, fiber length 32 mm) 40% by weight, acrylic fiber C as a bulky type cationic dyeable acrylic bulky fiber (Nippon Exlan Kogyo, 824 type, 30 wt% (0.9 dtex, fiber length 38 mm) was spun in the same process as in Example 1 to obtain a blend yarn of English number 70's. Using this blended yarn, a milled knitted fabric was knitted by an 18 ″ -18G double knit knitting machine (manufactured by Fukuhara Seiki). The knitting conditions were knitting yarn length, and the blended yarn 70's was knitted as 420 mm / 100 wale. The obtained green machine was subjected to scouring, dyeing and softening processes in the same steps as in Example 1, and finally a knitted fabric having a basis weight of 150 g / m 2 was obtained. The knitted fabric density of the surface when the surface with a rough density was set as a table was course 34 / inch and wale 44 / inch. The details of the composition of the knitted fabric and the evaluation results are shown in Table 1. The overall evaluation of Example 4 was “◎”.
<実施例5>
吸湿性繊維Aとしてのレーヨンステープル(ダイワボウレーヨン製「コロナ」BH,0.9dtex、繊維長38mm、測定環境20℃、65%RH環境下で水分率12%)30重量%、アクリル繊維Bとしてのカチオン可染アクリル短繊維(日本エクスラン工業製UFタイプ、0.5dtex、繊維長32mm)50重量%、アクリル繊維Cとしての制電・抗ピルタイプのカチオン可染性アクリル繊維(日本エクスラン工業製、822タイプ、1.0dtex、繊維長38mm)20重量%を実施例1と同様の工程にて紡績を行ない英式番手80′sの混紡糸を得た。交編糸として綿60′s単糸(東洋紡製スーピマ)を用い、この交編糸と前記混紡糸を一本交互に交編したフライス編地を18′′−18Gのダブルニット編機(福原精機製)により編成した。編成時の条件は編成糸長で混紡糸80′sを400mm/100ウエールとし、綿60′s単糸を440mm/100ウエールとして編成した。得られた生機を実施例1の精練の代わりに、アクリル/綿混紡編地の常法の精練・漂白条件とし、それ以外は実施例1と同様に染色、柔軟処理を行い、最終的に目付け125g/m2の編地を得た。密度の粗い面を表としたときの表面の編地密度はコース32/inch、ウエール43/inchであった。編地の構成の詳細と評価結果を表1に示す。実施例5の総合評価は◎であった
<Example 5>
30% by weight of rayon staple as hygroscopic fiber A (“Corona” manufactured by Daiwabo Rayon, BH, 0.9 dtex, fiber length 38 mm, measurement environment 20 ° C., moisture content 12% under 65% RH environment) 30% by weight, acrylic fiber B Cationic Dyeable Acrylic Short Fiber (Nippon Exlan Industrial UF Type, 0.5 dtex, Fiber Length 32 mm) 50% by Weight, Antistatic / Pill Type Cationic Dyeable Acrylic Fiber as Acrylic Fiber C (Nippon Exlan Industrial, 822 20 wt% (type, 1.0 dtex, fiber length: 38 mm) was spun in the same process as in Example 1 to obtain a blend yarn of English number 80's. A cotton 60's single yarn (Toyobo Supima) is used as the knitting yarn, and a milling knitted fabric obtained by alternately knitting the knitting yarn and the blended yarn is alternately used as a 18 "-18G double knit knitting machine (Fukuhara). Knitted by Seiki). The knitting conditions were knitting yarn length, blended yarn 80's being 400 mm / 100 wale and cotton 60's single yarn being 440 mm / 100 wale. Instead of the scouring of Example 1, the obtained raw machine was subjected to conventional scouring and bleaching conditions for an acrylic / cotton blended knitted fabric, and dyeing and softening treatments were performed in the same manner as in Example 1 except that the final weight was obtained. A knitted fabric of 125 g / m 2 was obtained. The density of the knitted fabric on the surface with the rough surface as a table was course 32 / inch and wale 43 / inch. The details of the composition of the knitted fabric and the evaluation results are shown in Table 1. The overall evaluation of Example 5 was ◎.
<実施例6>
吸湿性繊維Aとしてのレーヨンステープル(ダイワボウレーヨン製「コロナ」BH,0.9dtex、繊維長38mm、測定環境20℃、65%RH環境下で水分率12%)30重量%、アクリル繊維Bとしてのカチオン可染アクリル短繊維(日本エクスラン工業製UFタイプ、0.5dtex、繊維長32mm)50重量%、アクリル繊維Cとしてのバルキータイプのカチオン可染性アクリルバルキー繊維(日本エクスラン工業製、824タイプ、0.9dtex、繊維長38mm)20重量%を実施例1と同様の工程にて紡績を行ない英式番手60′sの混紡糸を得た。交編糸としてポリウレタン22dtex(東洋紡製エスパ(登録商標)T71)を用い、この交編糸と前記混紡糸をプレーティングしたベアフライス編地を18′′−18Gのダブルニット編機(福原精機製)により編成した。編成時の条件は編成糸長で混紡糸60′sを530mm/100ウエールとし、ポリウレタンをドラフト1.5倍として編成した。得られた生機は、実施例1と同様の工程で精練、染色、柔軟処理を行ない、最終的に目付け155g/m2の編地を得た。編地密度はコース34/inch、ウエール44/inchであった。編地の構成の詳細と評価結果を表1に示す。実施例6の総合評価は◎であった。
<Example 6>
30% by weight of rayon staple as hygroscopic fiber A (“Corona” manufactured by Daiwabo Rayon, BH, 0.9 dtex, fiber length 38 mm, measurement environment 20 ° C., moisture content 12% under 65% RH environment) 30% by weight, acrylic fiber B Cationic dyeable acrylic short fiber (Japan Exlan Industrial UF type, 0.5 dtex, fiber length 32 mm) 50% by weight, acrylic fiber C as a bulky type cationic dyeable acrylic bulky fiber (Japan Exlan Industrial, 824 type, Spinning was performed in the same process as in Example 1 to obtain a blend yarn of English count 60's (0.9 dtex, fiber length 38 mm). Polyurethane 22dtex (Espa (registered trademark) T71 manufactured by Toyobo Co., Ltd.) is used as the knitting yarn, and a 18 "-18G double knit knitting machine (manufactured by Fukuhara Seiki Co., Ltd.) ). The knitting conditions were knitting yarn length, blended yarn 60's was 530 mm / 100 wale, and polyurethane was drafted 1.5 times. The obtained green machine was subjected to scouring, dyeing and softening processes in the same steps as in Example 1, and finally a knitted fabric with a basis weight of 155 g / m 2 was obtained. The knitted fabric density was course 34 / inch and wale 44 / inch. The details of the composition of the knitted fabric and the evaluation results are shown in Table 1. The overall evaluation of Example 6 was “◎”.
<実施例7>
吸湿性繊維Aとしてのレーヨンステープル(ダイワボウレーヨン製「コロナ」BH,0.9dtex、繊維長38mm、測定環境20℃、65%RH環境下で水分率12%)15重量%、アクリル繊維Bとしてのカチオン可染アクリル短繊維(日本エクスラン工業製UFタイプ、0.5dtex、繊維長32mm)70重量%、アクリル繊維Cとしてのバルキータイプのカチオン可染性アクリルバルキー繊維(日本エクスラン工業製、824タイプ、0.9dtex、繊維長38mm)15重量%を実施例1と同様の工程にて紡績を行ない英式番手60′sの混紡糸を得た。この混紡糸を用いフライス編地を18′′−18Gのダブルニット編機(福原精機製)により編成した。編成時の条件は編成糸長で混紡糸60′sを440mm/100ウエールとして編成した。得られた生機は、実施例1と同様の工程で精練、染色、柔軟処理を行ない、最終的に目付け160g/m2の編地を得た。密度の粗い面を表としたときの表面の編地密度はコース31/inch、ウエール42/inchであった。編地の構成の詳細と評価結果を表1に示す。実施例7の総合評価は◎であった。
<Example 7>
Rayon staple as hygroscopic fiber A (“Corona” BH, 0.9 dtex, manufactured by Daiwabo Rayon, fiber length 38 mm, measurement environment 20 ° C., moisture content 12% under 65% RH environment) 15% by weight, acrylic fiber B Cationic dyeable acrylic short fiber (UF type manufactured by Nippon Exlan Industry, 0.5 dtex, fiber length 32 mm), 70% by weight, acrylic dye C as a bulky type cationic dyeable acrylic bulky fiber (made by Nippon Exlan Industry, 824 type, Spinning was performed in the same process as in Example 1 to obtain a blend yarn of English number 60's (0.9 dtex, fiber length 38 mm). Using this blended yarn, a milled knitted fabric was knitted by an 18 ″ -18G double knit knitting machine (manufactured by Fukuhara Seiki). The knitting conditions were knitting yarn length, and blended yarn 60's was knitted as 440 mm / 100 wale. The obtained green machine was subjected to scouring, dyeing and softening processes in the same steps as in Example 1, and finally a knitted fabric having a basis weight of 160 g / m 2 was obtained. The knitted fabric density of the surface when the surface with a rough density was made into the table | surface was course 31 / inch and wale 42 / inch. The details of the composition of the knitted fabric and the evaluation results are shown in Table 1. The overall evaluation of Example 7 was “◎”.
<比較例1>
吸湿性繊維Aとしてのレーヨンステープル(ダイワボウレーヨン製「コロナ」BH,0.9dtex、繊維長38mm、測定環境20℃、65%RH環境下で水分率12%)30重量%、アクリル繊維Bとしてのカチオン可染アクリル短繊維(日本エクスラン工業製UFタイプ、0.5dtex、繊維長32mm)10重量%、アクリル繊維Cとしての制電・抗ピルタイプのカチオン可染性アクリル繊維(日本エクスラン工業製、822タイプ、1.0dtex、繊維長38mm)60重量%を実施例1と同様の工程にて紡績を行ない英式番手60′sの混紡糸を得た。この混紡糸を用いてフライス編地を18′′−18Gのダブルニット編機(福原精機製)により編成した。編成時の条件は編成糸長で混紡糸60′sを440mm/100ウエールとして編成した。得られた生機は、実施例1と同様の工程で精練、染色、柔軟処理を行ない、最終的に目付け150g/m2の編地を得た。表面の編地密度はコース32/inch、ウエール43/inchであった。編地の構成の詳細と評価結果を表1に示す。比較例1の総合評価は×であった。
<Comparative Example 1>
30% by weight of rayon staple as hygroscopic fiber A (“Corona” manufactured by Daiwabo Rayon, BH, 0.9 dtex, fiber length 38 mm, measurement environment 20 ° C., moisture content 12% under 65% RH environment) 30% by weight, acrylic fiber B 10% by weight of cation dyeable acrylic short fiber (UF type, 0.5 dtex, fiber length 32 mm, manufactured by Nippon Exlan Industry), antistatic / anti-pill type cationic dyeable acrylic fiber (manufactured by Japan Exlan Industry, 822) as acrylic fiber C Spinning was carried out in the same process as in Example 1 to obtain a blend yarn of English number 60's (type, 1.0 dtex, fiber length 38 mm). Using this blended yarn, a milled knitted fabric was knitted by an 18 ″ -18G double knit knitting machine (manufactured by Fukuhara Seiki). The knitting conditions were knitting yarn length, and blended yarn 60's was knitted as 440 mm / 100 wale. The obtained green machine was subjected to scouring, dyeing and softening processes in the same steps as in Example 1, and finally a knitted fabric having a basis weight of 150 g / m 2 was obtained. The surface knitted fabric density was 32 / inch course and 43 / inch wale. The details of the composition of the knitted fabric and the evaluation results are shown in Table 1. The overall evaluation of Comparative Example 1 was x.
<比較例2>
吸湿性繊維Aとしてのレーヨンステープル(ダイワボウレーヨン製「コロナ」BH,0.9dtex、繊維長38mm、測定環境20℃、65%RH環境下で水分率12%)5重量%、アクリル繊維Bとしてのカチオン可染アクリル短繊維(日本エクスラン工業製UFタイプ、0.5dtex、繊維長32mm)40重量%、アクリル繊維Cとしての制電・抗ピルタイプのカチオン可染性アクリル繊維(日本エクスラン工業製、822タイプ、1.0dtex、繊維長38mm)55重量%を実施例1と同様の工程にて紡績を行ない英式番手60′sの混紡糸を得た。この混紡糸を用いてフライス編地を18′′−18Gのダブルニット編機(福原精機製)により編成した。編成時の条件は編成糸長で混紡糸60′sを440mm/100ウエールとして編成した。得られた生機は、実施例1と同様の工程で精練、染色、柔軟処理を行ない、最終的にて目付け160g/m2の編地を得た。密度の粗い面を表としたときの表面の編地密度はコース32/inch、ウエール43/inchであった。編地の構成の詳細と評価結果を表1に示す。比較例2の総合評価は×であった。
<Comparative example 2>
5% by weight of rayon staple as hygroscopic fiber A ("Corona" manufactured by Daiwabo Rayon BH, 0.9dtex, fiber length 38mm, moisture content 12% in a measurement environment of 20 ° C and 65% RH), 5% by weight of acrylic fiber B Cationic dyeable acrylic short fiber (Nippon Exlan Kogyo UF type, 0.5 dtex, fiber length 32 mm) 40 wt%, antistatic / anti-pill type cationic dyeable acrylic fiber (Nippon Exlan Kogyo, 822) (Type, 1.0 dtex, fiber length: 38 mm) 55 wt% was spun in the same process as in Example 1 to obtain a blend yarn of English count 60's. Using this blended yarn, a milled knitted fabric was knitted by an 18 ″ -18G double knit knitting machine (manufactured by Fukuhara Seiki). The knitting conditions were knitting yarn length, and blended yarn 60's was knitted as 440 mm / 100 wale. The obtained green machine was subjected to scouring, dyeing and softening processes in the same steps as in Example 1, and finally a knitted fabric having a basis weight of 160 g / m 2 was obtained. The density of the knitted fabric on the surface with the rough surface as a table was course 32 / inch and wale 43 / inch. The details of the composition of the knitted fabric and the evaluation results are shown in Table 1. The overall evaluation of Comparative Example 2 was x.
<比較例3>
吸湿性繊維Aとしてのレーヨンステープル(ダイワボウレーヨン製「コロナ」BH,0.9dtex、繊維長38mm、測定環境20℃、65%RH環境下で水分率12%)70重量%、アクリル繊維Bとしてのカチオン可染アクリル短繊維(日本エクスラン工業製UFタイプ、0.5dtex。繊維長32mm)10重量%、アクリル繊維Cとしての制電・抗ピルタイプのカチオン可染性アクリル繊維(日本エクスラン工業製、822タイプ、1.0dtex、繊維長38mm)20重量%を実施例1と同様の工程にて紡績を行ない英式番手60′sの混紡糸を得た。この混紡糸を用いてフライス編地を18′′−18Gのダブルニット編機(福原精機製)により編成した。編成時の条件は編成糸長で混紡糸60′sを440mm/100ウエールとして編成した。得られた生機は、実施例1と同様の工程で精練、染色、柔軟処理を行ない、最終的に目付け120g/m2の編地を得た。密度の粗い面を表としたときの表面の編地密度はコース33/inch、ウエール44/inchであった。編地の構成の詳細と評価結果を表1に示す。比較例3の総合評価は△であった。
<Comparative Example 3>
Rayon staples as hygroscopic fibers A (“Corona” BH, 0.9 dtex, manufactured by Daiwabo Rayon, fiber length 38 mm, measurement environment 20 ° C., moisture content 12% under 65% RH environment) 70% by weight, acrylic fibers B 10% by weight of cationic dyeable acrylic short fiber (Nippon Exlan Industrial UF type, 0.5 dtex, fiber length 32 mm), antistatic / anti-pill type cationic dyeable acrylic fiber as acrylic fiber C (Nippon Exlan Industrial, 822) 20 wt% (type, 1.0 dtex, fiber length 38 mm) was spun in the same process as in Example 1 to obtain a blend yarn of English number 60's. Using this blended yarn, a milled knitted fabric was knitted by an 18 ″ -18G double knit knitting machine (manufactured by Fukuhara Seiki). The knitting conditions were knitting yarn length, and blended yarn 60's was knitted as 440 mm / 100 wale. The obtained green machine was subjected to scouring, dyeing and softening processes in the same steps as in Example 1, and finally a knitted fabric having a basis weight of 120 g / m 2 was obtained. The knitted fabric density of the surface when the surface with a rough density was set as a table was course 33 / inch and wale 44 / inch. The details of the composition of the knitted fabric and the evaluation results are shown in Table 1. The overall evaluation of Comparative Example 3 was Δ.
<比較例4>
吸湿性繊維Aとしてのレーヨンステープル(ダイワボウレーヨン製「コロナ」BH,0.9dtex、繊維長38mm、測定環境20℃、65%RH環境下で水分率12%)30重量%、アクリル繊維Bとしてのカチオン可染アクリル短繊維(日本エクスラン工業製UFタイプ、0.5dtex、繊維長32mm)50重量%、アクリル繊維Cとしての制電・抗ピルタイプのカチオン可染性アクリル繊維(日本エクスラン工業製、822タイプ、1.0dtex、繊維長38mm)20重量%を実施例1と同様の工程にて紡績を行ない英式番手40′sの混紡糸を得た。この混紡糸を用いフライス編地を18′′−18Gのダブルニット編機(福原精機製)により編成した。編成時の条件は編成糸長で混紡糸40′sを480mm/100ウエールとして編成した。得られた生機は、実施例1と同様の工程で精練、染色、柔軟処理を行ない、最終的に目付け225g/m2の編地を得た。密度の粗い面を表としたときの表面の編地密度はコース30/inch、ウエール40/inchであった。編地の構成の詳細と評価結果を表1に示す。比較例4の総合評価は×であった。
<Comparative Example 4>
30% by weight of rayon staple as hygroscopic fiber A (“Corona” manufactured by Daiwabo Rayon, BH, 0.9 dtex, fiber length 38 mm, measurement environment 20 ° C., moisture content 12% under 65% RH environment) 30% by weight, acrylic fiber B Cationic Dyeable Acrylic Short Fiber (Nippon Exlan Industrial UF Type, 0.5 dtex, Fiber Length 32 mm) 50% by Weight, Antistatic / Pill Type Cationic Dyeable Acrylic Fiber as Acrylic Fiber C (Nippon Exlan Industrial, 822 20 wt% (type, 1.0 dtex, fiber length 38 mm) was spun in the same process as in Example 1 to obtain a blend yarn of English number 40's. Using this blended yarn, a milled knitted fabric was knitted by an 18 ″ -18G double knit knitting machine (manufactured by Fukuhara Seiki). The knitting conditions were knitting yarn length, and the blended yarn 40's was knitted as 480 mm / 100 wale. The obtained green machine was subjected to scouring, dyeing and softening processes in the same steps as in Example 1, and finally a knitted fabric having a basis weight of 225 g / m 2 was obtained. The density of the knitted fabric on the surface with the rough surface as a table was 30 / inch course and 40 / inch wale. The details of the composition of the knitted fabric and the evaluation results are shown in Table 1. The overall evaluation of Comparative Example 4 was x.
<比較例5>
吸湿性繊維Aとしてのレーヨンステープル(ダイワボウレーヨン製「コロナ」BH,0.9dtex、繊維長38mm、測定環境20℃、65%RH環境下で水分率12%)45重量%、綿わた(東洋紡スーピマわた)10重量%、アクリル繊維Bとしてのカチオン可染アクリル短繊維(日本エクスラン工業製UFタイプ、0.5dtex、繊維長32mm)35重量%、アクリル繊維Cとしての制電・抗ピルタイプのカチオン可染性アクリル繊維(日本エクスラン工業製、822タイプ、1.0dtex、繊維長38mm)10重量%を実施例1と同様の工程にて紡績を行ない英式番手60′sの混紡糸を得た。この混紡糸を用いてフライス編地を18′′−18Gのダブルニット編機(福原精機製)により編成した。編成時の条件は編成糸長で混紡糸60′sを440mm/100ウエールとして編成した。得られた生機は、実施例5と同様の工程で精練、染色、柔軟処理を行ない、最終的に目付け120g/m2の編地を得た。表面の編地密度はコース33/inch、ウエール44/inchであった。編地の構成の詳細と評価結果を表1に示す。比較例5の総合評価は△であった。
<Comparative Example 5>
Rayon staple as hygroscopic fiber A ("Corona" manufactured by Daiwabo Rayon BH, 0.9dtex, fiber length 38mm, measurement environment 20 ° C, moisture content 12% under 65% RH) 45% by weight, cotton cotton (Toyobo Supima Cotton) 10% by weight, cationic dyeable acrylic short fiber (acrylic fiber B, UF type, 0.5 dtex, fiber length 32 mm) manufactured by Nippon Exlan Industries, 35% by weight, antistatic / anti-pill type cation possible as acrylic fiber C Spinning 10% by weight of dyeable acrylic fiber (Nippon Exlan Kogyo Co., Ltd., 822 type, 1.0 dtex, fiber length: 38 mm) was carried out in the same manner as in Example 1 to obtain a blend yarn of English number 60's. Using this blended yarn, a milled knitted fabric was knitted by an 18 ″ -18G double knit knitting machine (manufactured by Fukuhara Seiki). The knitting conditions were knitting yarn length, and blended yarn 60's was knitted as 440 mm / 100 wale. The obtained green machine was subjected to scouring, dyeing and softening processes in the same steps as in Example 5, and finally a knitted fabric having a basis weight of 120 g / m 2 was obtained. The density of the knitted fabric on the surface was course 33 / inch and wale 44 / inch. The details of the composition of the knitted fabric and the evaluation results are shown in Table 1. The overall evaluation of Comparative Example 5 was Δ.
<比較例6>
吸湿性繊維Aとしてのレーヨンステープル(ダイワボウレーヨン製「コロナ」BH,0.9dtex、繊維長38mm、測定環境20℃、65%RH環境下で水分率12%)30重量%、アクリル繊維Bとしてのカチオン可染アクリル短繊維(日本エクスラン工業製UFタイプ、0.5dtex、繊維長32mm)50重量%、アクリル繊維Cとしての制電・抗ピルタイプのカチオン可染性アクリル繊維(日本エクスラン工業製、822タイプ、1.0dtex、繊維長38mm)20重量%を実施例1と同様の工程にて紡績を行ない英式番手60′sの混紡糸を得た。交編糸として綿40’s単糸(東洋紡製スーピマ)を用い、この交編糸と前記混紡糸を一本交互に後編したスムース編地を18′′−18Gのダブルニット編機(福原精機製)により編成した。編成時の条件は編成糸長で混紡糸60′sを300mm/100ウエールとし、綿40′s単糸を350mm/100ウエールして編成した。得られた生機は、実施例5と同様の工程で精練、染色、柔軟処理を行ない、最終的に目付け220/m2の編地を得た。表面の編地密度はコース30/inch、ウエール40/inchであった。編地の構成の詳細と評価結果を表1に示す。比較例6の総合評価は×であった。
<Comparative Example 6>
30% by weight of rayon staple as hygroscopic fiber A (“Corona” manufactured by Daiwabo Rayon, BH, 0.9 dtex, fiber length 38 mm, measurement environment 20 ° C., moisture content 12% under 65% RH environment) 30% by weight, acrylic fiber B Cationic Dyeable Acrylic Short Fiber (Nippon Exlan Industrial UF Type, 0.5 dtex, Fiber Length 32 mm) 50% by Weight, Antistatic / Pill Type Cationic Dyeable Acrylic Fiber as Acrylic Fiber C (Nippon Exlan Industrial, 822 20 wt% (type, 1.0 dtex, fiber length 38 mm) was spun in the same process as in Example 1 to obtain a blend yarn of English number 60's. A cotton 40's single yarn (Toyobo Supima) is used as the knitting yarn, and a smooth knitted fabric obtained by alternately knitting the knitting yarn and the blended yarn one after another is used as an 18 ″ -18G double knit knitting machine (Fukuhara Seiki). Knitted). The knitting conditions were knitting yarn length, blended yarn 60's was 300mm / 100 wale, and cotton 40's single yarn was knitted 350mm / 100 wale. The obtained green machine was subjected to scouring, dyeing and softening processes in the same steps as in Example 5, and finally a knitted fabric having a basis weight of 220 / m 2 was obtained. The surface knitted fabric density was 30 / inch course and 40 / inch wale. The details of the composition of the knitted fabric and the evaluation results are shown in Table 1. The overall evaluation of Comparative Example 6 was x.
<比較例7>
アクリル繊維Cとしての制電・抗ピルタイプのカチオン可染性アクリル繊維(日本エクスラン工業製、822タイプ、1.0dtex、繊維長38mm)100重量%を実施例1と同様の工程にて紡績を行ない英式番手60′sの紡績糸を得た。この紡績糸を用いてフライス編地を18′′−18Gのダブルニット編機(福原精機製)により編成した。編成時の条件は編成糸長で該紡績糸60′sを440mm/100ウエールとして編成した。得られた生機は、実施例1と同様の工程で精練し、染色は実施例1のカチオン染色のみを行ない、その後実施例1と同様の柔軟処理を行ない、最終的に目付け120g/m2の編地を得た。表面の編地密度はコース33/inch、ウエール44/inchであった。編地の構成の詳細と評価結果を表1に示す。比較例7の総合評価は△であった。また、編地に用いた紡績糸の断面写真を図5に示す。
<Comparative Example 7>
Spinning 100% by weight of antistatic / anti-pill type cationic dyeable acrylic fiber (Nippon Exlan Kogyo Co., Ltd., 822 type, 1.0 dtex, fiber length: 38 mm) as acrylic fiber C was carried out in the same process as in Example 1. A spun yarn with an English count of 60's was obtained. Using this spun yarn, a milled knitted fabric was knitted by an 18 ″ -18G double knit knitting machine (manufactured by Fukuhara Seiki). The knitting conditions were knitting yarn length, and the spun yarn 60's was knitted as 440 mm / 100 wale. The obtained raw machine is scoured in the same process as in Example 1, dyeing is performed only with the cationic dyeing of Example 1, and then the same softening treatment as in Example 1 is performed, and finally the basis weight is 120 g / m 2 . I got a knitted fabric. The density of the knitted fabric on the surface was course 33 / inch and wale 44 / inch. The details of the composition of the knitted fabric and the evaluation results are shown in Table 1. The overall evaluation of Comparative Example 7 was Δ. Moreover, the cross-sectional photograph of the spun yarn used for the knitted fabric is shown in FIG.
本発明は、軽くて薄くて暖かい性能を実現しながら、その性能を損なわずに蒸れ感も軽減した衣料用編地、特にインナー向けに最適な編地を提供することができ、近年の秋冬向けの衣料に求められるニーズに適切に対応することができる。 INDUSTRIAL APPLICABILITY The present invention can provide a knitted fabric for clothing that is light, thin and warm while reducing the feeling of stuffiness without impairing the performance, and particularly suitable for innerwear. It can respond appropriately to the needs required of clothing.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009114136A JP5403598B2 (en) | 2009-05-11 | 2009-05-11 | Hygroscopic heat insulation fabric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009114136A JP5403598B2 (en) | 2009-05-11 | 2009-05-11 | Hygroscopic heat insulation fabric |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010261128A JP2010261128A (en) | 2010-11-18 |
JP5403598B2 true JP5403598B2 (en) | 2014-01-29 |
Family
ID=43359447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009114136A Active JP5403598B2 (en) | 2009-05-11 | 2009-05-11 | Hygroscopic heat insulation fabric |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5403598B2 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5329468B2 (en) * | 2010-04-07 | 2013-10-30 | 東洋紡スペシャルティズトレーディング株式会社 | Long and short composite yarn suitable for lightweight heat-insulated knitted fabric |
ITBO20120615A1 (en) * | 2012-11-08 | 2014-05-09 | Gorgaini Graziano | INTERLACED COMPOSITE YARN |
EP2844789A1 (en) * | 2012-05-03 | 2015-03-11 | Nytex S.r.l. | Interlaced composite yarn |
CN102899764A (en) * | 2012-09-24 | 2013-01-30 | 江苏通海线业有限公司 | Acrylic fiber, ramie fiber and soybean protein fiber blended yarn |
JP2014101601A (en) * | 2012-11-20 | 2014-06-05 | Mitsubishi Rayon Co Ltd | Light-weight heat-retaining knitted fabric |
JP6241133B2 (en) * | 2013-08-22 | 2017-12-06 | 三菱ケミカル株式会社 | Spun yarn and knitted fabric including the spun yarn |
JP2015101808A (en) * | 2013-11-25 | 2015-06-04 | 旭化成せんい株式会社 | Knitted fabric |
CN104903499B (en) * | 2013-12-10 | 2017-06-06 | 欧帕帝玛执行纤维有限责任公司 | Fiber blend thing with improved water management property |
CN103952826B (en) * | 2014-05-21 | 2016-05-04 | 苏州万图明电子软件有限公司 | The practical warming yarn of dual blending woven |
CN103952829B (en) * | 2014-05-21 | 2016-05-11 | 苏州万图明电子软件有限公司 | The comfortable durable yarn of dual blending woven |
CN104499136A (en) * | 2014-12-12 | 2015-04-08 | 张家港市中孚达纺织科技有限公司 | Cashmere moisture-absorbing yarn |
JP6276748B2 (en) * | 2015-12-28 | 2018-02-07 | 則雄 関 | Peripheral glasses frame |
CN111065770B (en) * | 2017-09-11 | 2022-10-21 | 三菱化学株式会社 | Textile yarn and method for producing textile yarn |
JP2018059260A (en) * | 2017-11-29 | 2018-04-12 | 三菱ケミカル株式会社 | Light-weight heat-retaining knitted fabric |
JP6917912B2 (en) * | 2018-01-16 | 2021-08-11 | 東洋紡株式会社 | clothing |
JP2019214820A (en) * | 2019-09-27 | 2019-12-19 | 三菱ケミカル株式会社 | Light-weight heat-retaining knitted fabric |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06158464A (en) * | 1992-11-20 | 1994-06-07 | Asahi Chem Ind Co Ltd | Mix-spun yarn |
JP3680532B2 (en) * | 1997-12-16 | 2005-08-10 | 東洋紡績株式会社 | Polyester composite yarn with little cold feeling |
JP2000027044A (en) * | 1998-07-10 | 2000-01-25 | Asahi Chem Ind Co Ltd | Bulky spun yarn |
JP4122582B2 (en) * | 1998-07-21 | 2008-07-23 | 東レ株式会社 | Spun yarn and fabric using the same |
JP2000265344A (en) * | 1999-03-12 | 2000-09-26 | Unitika Ltd | Woven and knitted fabric having excellent antistatic property and water absorbing property |
JP3880320B2 (en) * | 2001-02-08 | 2007-02-14 | 帝人ファイバー株式会社 | Underwear made from lightweight heat-insulated knitted fabric |
JP2003227043A (en) * | 2002-01-31 | 2003-08-15 | Asahi Kasei Corp | Spun yarn |
JP4102127B2 (en) * | 2002-07-11 | 2008-06-18 | 旭化成せんい株式会社 | Acrylic spun yarn and fabric using the same |
-
2009
- 2009-05-11 JP JP2009114136A patent/JP5403598B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010261128A (en) | 2010-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5403598B2 (en) | Hygroscopic heat insulation fabric | |
WO2004015182A1 (en) | Woven or knit fabric and process for producing the same | |
JP6346768B2 (en) | Knitted fabric, textile product, and method of manufacturing knitted fabric | |
JP2012211405A (en) | Cool-feeling knitted fabric | |
JP5887235B2 (en) | Knitted fabric with excellent cooling feeling | |
JP6155623B2 (en) | Denim | |
JP5345417B2 (en) | Lightweight and warm knitted fabric | |
JP4461365B2 (en) | Air-entangled spun yarn and fabric including the same | |
JP2010013760A (en) | Spun yarn and woven or knitted fabric | |
JP5949185B2 (en) | Manufacturing method of lightweight spun yarn | |
JP2012188792A (en) | Spun yarn that is soft and excellent in anti-pilling property | |
JP5403624B2 (en) | Knitted fabric for clothing with excellent comfort, heat retention and moisture absorption | |
JP6035233B2 (en) | Composite spun yarn and heat insulating woven or knitted fabric using the same | |
JP5832923B2 (en) | Cotton knitted fabric with excellent heat retention | |
EP1655394B1 (en) | Spun yarn | |
JP2001020159A (en) | Refreshing knit fabric | |
JP5329468B2 (en) | Long and short composite yarn suitable for lightweight heat-insulated knitted fabric | |
JP5620325B2 (en) | Anti-pilling knitted fabric using extra fine acrylic spun yarn | |
JP2010001589A (en) | Differential shrinkage fiber yarn | |
JP4143904B2 (en) | Polyester fiber-containing fabric and method for producing the same | |
WO2020196901A1 (en) | Composite yarn, knitted fabric containing composite yarn, and method for manufacturing composite yarn | |
JP5667548B2 (en) | Knitted fabric with excellent breathability | |
JP4669546B2 (en) | Grain-tone polyester woven / knitted fabric | |
JP4196261B2 (en) | Stretch bulky short fiber knitted fabric and method for producing the same | |
JP5457978B2 (en) | Napped products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121019 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130805 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131001 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131023 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5403598 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |