JP5402292B2 - Active energy ray-curable resin composition for molding, molded body having a molding layer provided on the surface, molded article having a fine uneven shape on the surface, and optical component - Google Patents

Active energy ray-curable resin composition for molding, molded body having a molding layer provided on the surface, molded article having a fine uneven shape on the surface, and optical component Download PDF

Info

Publication number
JP5402292B2
JP5402292B2 JP2009146723A JP2009146723A JP5402292B2 JP 5402292 B2 JP5402292 B2 JP 5402292B2 JP 2009146723 A JP2009146723 A JP 2009146723A JP 2009146723 A JP2009146723 A JP 2009146723A JP 5402292 B2 JP5402292 B2 JP 5402292B2
Authority
JP
Japan
Prior art keywords
parts
resin composition
active energy
energy ray
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009146723A
Other languages
Japanese (ja)
Other versions
JP2010024447A (en
Inventor
朋英 福崎
浩 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP2009146723A priority Critical patent/JP5402292B2/en
Publication of JP2010024447A publication Critical patent/JP2010024447A/en
Application granted granted Critical
Publication of JP5402292B2 publication Critical patent/JP5402292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Holo Graphy (AREA)

Description

本発明は、活性エネルギー線硬化型賦型用樹脂組成物、賦型層が表面に設けられた成形体、表面に微細凹凸形状が設けられた成形体および光学部品に関する。 The present invention relates to an active energy ray-curable molding resin composition, a molded body having a molding layer provided on the surface, a molded body having a fine uneven shape on the surface, and an optical component.

近年、光の屈折率を調節して、液晶ディスプレイの太陽光などの映り込みを低減し画像を見やすくするアンチグレアフィルムや画像が浮き出て見えるホログラムシート、輝度向上のためのプリズムシート、輝度均一性を向上させる拡散シートのような光学材料が広く用いられるようになってきている。   In recent years, by adjusting the refractive index of light to reduce the reflection of sunlight etc. on the liquid crystal display and make it easy to see the image, hologram sheet that makes the image stand out, prism sheet for improving brightness, brightness uniformity Optical materials such as diffusion sheets that improve are becoming widely used.

これら光学材料は、フィルム等の支持体上にシリカ、アクリルビーズや金属の粒子等を分散させたコーティング剤を塗布することによっても得られるが、容易に調製できるという理由から、支持体上に室温で高粘度の硬化性樹脂を塗布して、硬化樹脂層(本発明においては賦型層という)を形成し、その上に微細な凹凸を形成しうる金型(スタンパー等)を圧接して押圧成形し、引き剥がした後に硬化させる方法が提案されていた(たとえば、特許文献1参照)。   These optical materials can also be obtained by applying a coating agent in which silica, acrylic beads, metal particles, and the like are dispersed on a support such as a film. Apply a high-viscosity curable resin to form a cured resin layer (referred to as a shaping layer in the present invention), and press and press a mold (such as a stamper) that can form fine irregularities on it. There has been proposed a method of molding and peeling after peeling (see, for example, Patent Document 1).

しかし、当該方法では、スタンパーのキャビティー内に硬化性樹脂が残存する場合があり、また、粘度が高いために正確な賦型ができないといった問題があった。 However, this method has a problem that the curable resin may remain in the cavity of the stamper, and accurate molding cannot be performed due to high viscosity.

そこで、このような問題を解決するために特定の無機超微粒子および光重合性官能基を有するバインダー樹脂を用いる方法が提案されていた(特許文献2参照)。当該方法によれば、賦型性、形状保持性が良好な組成物を用いるために微細な凹凸パターンを正確に複製することができるものの、当該方法による組成物を硬化させた硬化体の耐薬品性、耐傷つき性が、不十分であるうえ表面硬度が十分でないという問題があった。   In order to solve such problems, a method using a specific inorganic ultrafine particle and a binder resin having a photopolymerizable functional group has been proposed (see Patent Document 2). According to the method, since a fine uneven pattern can be accurately duplicated because a composition with good formability and shape retention is used, the chemical resistance of a cured product obtained by curing the composition by the method There is a problem that the property and scratch resistance are insufficient and the surface hardness is not sufficient.

特公平6−85103号公報Japanese Examined Patent Publication No. 6-85103 特開2003−082043号公報Japanese Patent Laid-Open No. 2003-082043

本発明は、耐薬品性、耐傷つき性に加え表面硬度にも優れた微細な凹凸形状が設けられた成形体を提供することおよび当該成形体を得るために用いられる賦型性、形状保持性が良好な賦型層が表面に設けられた成形体、さらにはナノインプリントに適した賦型層を形成し得る活性エネルギー線硬化型賦型用樹脂組成物を提供することを目的とする。   The present invention provides a molded article provided with a fine concavo-convex shape excellent in surface hardness in addition to chemical resistance and scratch resistance, and moldability and shape retention used to obtain the molded article An object of the present invention is to provide an active energy ray-curable resin composition for molding that can form a molded body having a good molding layer on the surface, and further a molding layer suitable for nanoimprinting.

本発明者らは、前記課題を解決すべく、鋭意検討した結果、特定のラジカル重合性反応物を用いることにより、前記課題を解決することができることを見出した。   As a result of intensive studies aimed at solving the above problems, the present inventors have found that the above problems can be solved by using a specific radical polymerizable reactant.

すなわち、本発明は、エエポキシ基を有するラジカル重合性ビニル単量体(a1)を含有するラジカル重合成分(a)の重合体(A)カルボキシル基を有するラジカル重合性ビニル単量体(b)を反応させて得られる反応物(B)と、ビニル基含有シリカ粒子(C)とを含有する活性エネルギー線硬化型賦型用樹脂組成物;当該活性エネルギー線硬化型賦型用樹脂組成物が塗布して得られる賦型層が表面に設けられた成形体;当該成形体の表面に押圧成形後、硬化させて得られる表面に微細凹凸形状が設けられた成形体または光学部品に関する。 That is, the present invention relates to a radical polymerizable vinyl monomer (b) having a carboxyl group in the polymer (A) of the radical polymerization component (a) containing the radical polymerizable vinyl monomer (a1) having an epoxy group. An active energy ray-curable resin composition for molding , which contains a reaction product (B) obtained by reacting with the vinyl group-containing silica particles (C) ; The molded object provided with the shaping layer obtained by apply | coating on the surface; It is related with the molded object or optical component in which the fine uneven | corrugated shape was provided in the surface obtained by making it harden | cure after press-molding on the surface of the said molded object.

本発明によれば、微細な凹凸形状が設けられた耐薬品性、耐傷つき性に加え表面硬度にも優れた成形体を提供することができる。また、本発明によれば、当該成形体を得るために用いられる賦型性、形状保持性が良好な賦型層が表面に設けられた成形体を提供することができる。本発明の微細な凹凸形状が設けられた成形体は、微細な凹凸パターンを正確に形成することができるため、アンチグレアフィルム、ホログラムシート、プリズムシート、拡散シートなどに利用することができる。 According to the present invention, it is possible to provide a molded article excellent in surface hardness in addition to chemical resistance and scratch resistance provided with a fine uneven shape. Moreover, according to this invention, the molded object provided with the shaping | molding layer with favorable moldability and shape retainability used in order to obtain the said molded object can be provided. Since the molded object provided with the fine unevenness | corrugation shape of this invention can form a fine uneven | corrugated pattern correctly, it can utilize for an anti-glare film, a hologram sheet, a prism sheet, a diffusion sheet, etc.

本発明の活性エネルギー線硬化型賦型用樹脂組成物は、エポキシ基を有するラジカル重合性ビニル単量体(a1)(以下、(a1)成分という)を含有するラジカル重合成分(a)(以下、(a)成分という)の重合体(A)(以下、(A)成分という)に、カルボキシル基を有するラジカル重合性ビニル単量体(b)を反応させて得られる反応物(B)(以下、(B)成分という)と、ビニル基含有シリカ粒子(C)(以下、(C)成分という)とを含有することを特徴とする。 The active energy ray-curable resin composition for curing according to the present invention comprises a radical polymerization component (a) (hereinafter referred to as component (a1)) containing a radical polymerizable vinyl monomer (a1) having epoxy group (hereinafter referred to as component (a1)). ) (Referred to as component (a)) (A) (hereinafter referred to as component (A)) and a reaction product (B) obtained by reacting a carboxyl group-containing radical polymerizable vinyl monomer (b) ( (Hereinafter referred to as “component (B)”) and vinyl group-containing silica particles (C) (hereinafter referred to as “component (C)”) .

本発明に用いられる(a1)成分は、ラジカル重合性ビニル単量体であってエポキシ基およびビニル基をそれぞれ1つ有するものであれば特に限定されず、公知のものを用いることができる。(a1)成分としては、例えば、グリシジル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、脂環式エポキシ樹脂のアクリレートの(メタ)アクリル酸エステルなどが挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。(a1)成分としては、グリシジル(メタ)アクリレートが得られる硬化物の耐傷つき性の点から好ましい。 The component (a1) used in the present invention is not particularly limited as long as it is a radical polymerizable vinyl monomer and has one epoxy group and one vinyl group, and known ones can be used. Examples of the component (a1) include glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and (meth) acrylic acid esters of acrylates of alicyclic epoxy resins. These may be used alone or in combination of two or more. The component (a1) is preferable from the viewpoint of scratch resistance of a cured product from which glycidyl (meth) acrylate is obtained.

なお、(a)成分には、(a1)成分と共重合することができる(a1)成分以外のラジカル重合性単量体(a2)(以下、(a2)成分という)を用いてもよい。 (a2)成分としては、(a1)成分と共重合することができる(a1)成分以外のラジカル重合性単量体であれば特に限定されず公知のものを用いることができる。具体的には、例えば、メタクリル酸メチル、メタクリル酸エチルなどの鎖状アルキル基を有する(メタ)アクリル酸エステル類、(メタ)アクリル酸イソボルニル、ジシクロペンタニル(メタ)アクリレート、アダマンチル(メタ)アクリレートなどの脂環式(メタ)アクリル酸エステル類、アクリロイルモルフォリンなどのヘテロ原子を含む(メタ)アクリル酸エステル類、スチレン、α−メチルスチレン、ビニルトルエン等の芳香族系ビニル化合物、酢酸ビニル、プロピオン酸ビニル、(メタ)アクリロニトリル、(メタ)アクリルアミド、α−オレフィン類などが挙げられる。これらのなかでは、単独重合した際の重合体のガラス転移温度が100℃以上であるラジカル重合性モノマーの脂環式(メタ)アクリル酸エステル類を用いることが好ましく、形状保持性と表面硬度の点からアダマンチルメタクリレートを用いることがより好ましい。なお、(a2)成分を用いる場合には、(a)成分中5〜50重量%程度とすることが好ましく、形状保持性と表面硬度の点から30〜40重量部とすることがより好ましい。   As the component (a), a radical polymerizable monomer (a2) (hereinafter referred to as the component (a2)) other than the component (a1) that can be copolymerized with the component (a1) may be used. The component (a2) is not particularly limited as long as it is a radical polymerizable monomer other than the component (a1) that can be copolymerized with the component (a1), and a known one can be used. Specifically, for example, (meth) acrylic acid esters having a chain alkyl group such as methyl methacrylate and ethyl methacrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, adamantyl (meth) Alicyclic (meth) acrylates such as acrylate, (meth) acrylates containing heteroatoms such as acryloylmorpholine, aromatic vinyl compounds such as styrene, α-methylstyrene, vinyltoluene, vinyl acetate , Vinyl propionate, (meth) acrylonitrile, (meth) acrylamide, α-olefins and the like. Among these, it is preferable to use alicyclic (meth) acrylic acid esters of radical polymerizable monomers having a glass transition temperature of 100 ° C. or higher when homopolymerized, and have shape retention and surface hardness. From the viewpoint, it is more preferable to use adamantyl methacrylate. In addition, when using (a2) component, it is preferable to set it as about 5-50 weight% in (a) component, and it is more preferable to set it as 30-40 weight part from the point of shape retainability and surface hardness.

本発明に用いられる(A)成分は、前記(a)成分を、例えば、ラジカル重合させることにより得られる。ラジカル重合は、公知の方法で行なうことができる。例えば、(a)成分をラジカル重合開始剤、溶媒の存在下、加熱することにより得られる。ラジカル重合開始剤としては、特に限定されず、公知のものを使用することができる。具体的には、例えば、過酸化水素、過硫酸アンモニウム、過硫酸カリウム等の無機過酸化物、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ラウリルパーオキサイド等の有機過酸化物、2,2’−アゾビスイソブチロニトリル、ジメチル−2,2’−アゾビスイソブチレート等のアゾ系化合物等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。なお、ラジカル重合開始剤の使用量は、(a)成分100重量部に対し、0.01〜8重量部程度とすることが好ましい。なお、必要に応じ、連鎖移動剤などを用いてもよい。連鎖移動剤としては、例えば、ラウリルメルカプタン、ドデシルメルカプタン、2−メルカプトベンゾチアゾール、ブロムトリクロルメタン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。連鎖移動剤の使用量は、(a)成分100重量部に対し、0.01〜5重量部程度とすることが好ましい。   The component (A) used in the present invention can be obtained by, for example, radical polymerization of the component (a). The radical polymerization can be performed by a known method. For example, it can be obtained by heating the component (a) in the presence of a radical polymerization initiator and a solvent. It does not specifically limit as a radical polymerization initiator, A well-known thing can be used. Specifically, for example, inorganic peroxides such as hydrogen peroxide, ammonium persulfate and potassium persulfate, organic peroxides such as benzoyl peroxide, dicumyl peroxide and lauryl peroxide, 2,2′-azobis And azo compounds such as isobutyronitrile and dimethyl-2,2′-azobisisobutyrate. These may be used alone or in combination of two or more. In addition, it is preferable that the usage-amount of a radical polymerization initiator shall be about 0.01-8 weight part with respect to 100 weight part of (a) component. In addition, you may use a chain transfer agent etc. as needed. Examples of the chain transfer agent include lauryl mercaptan, dodecyl mercaptan, 2-mercaptobenzothiazole, bromotrichloromethane, and the like. These may be used alone or in combination of two or more. The amount of chain transfer agent used is preferably about 0.01 to 5 parts by weight per 100 parts by weight of component (a).

このようにして得られた(A)成分は、重量平均分子量(ゲルパーメーションクロマトグラフィーによるポリスチレン換算値)を5,000〜100,000程度、エポキシ当量を100〜1000g/eq程度とすることが好ましい。 The component (A) thus obtained may have a weight average molecular weight (polystyrene conversion value by gel permeation chromatography) of about 5,000 to 100,000 and an epoxy equivalent of about 100 to 1000 g / eq. preferable.

本発明の(B)成分は、(A)成分に(b)成分を反応させることにより得られる。(b)成分としては、分子中にカルボキシル基を有するラジカル重合性ビニル単量体であれば特に限定されず公知のものを用いることができる。例えば、(メタ)アクリル酸、(メタ)アクリル酸ダイマー、クロトン酸、などが挙げられる。これらのなかでは、アクリル酸を用いることが反応物の光硬化性の点から好ましい。(b)成分の使用量は、特に限定されないが、通常、(A)成分に含まれるエポキシ基に対し、等モル程度であり、エポキシ基1モルに対して(b)成分中に含まれるカルボキシル基を0.9〜1.1モル程度とすることが好ましい。とすることが反応後にアクリル酸が残存しなくなるため得られる硬化物の耐溶剤性、耐傷つき性が向上するため好ましい。 The component (B) of the present invention can be obtained by reacting the component (A) with the component (b). The component (b) is not particularly limited as long as it is a radical polymerizable vinyl monomer having a carboxyl group in the molecule, and a known one can be used. For example, (meth) acrylic acid, (meth) acrylic acid dimer, crotonic acid, etc. are mentioned. Among these, acrylic acid is preferably used from the viewpoint of photocurability of the reaction product. Although the usage-amount of (b) component is not specifically limited, Usually, it is about equimolar with respect to the epoxy group contained in (A) component, and the carboxyl contained in (b) component with respect to 1 mol of epoxy groups. The group is preferably about 0.9 to 1.1 mol. It is preferable that acrylic acid does not remain after the reaction because the solvent resistance and scratch resistance of the cured product obtained are improved.

(A)成分と(b)成分の反応は、エポキシ開環反応であり、公知の反応条件を採用することができる。例えば、触媒の存在下、加熱することにより行うことができる。触媒としては、例えば、トリフェニルホスフィン、トリシクロヘキシルホスフィン等のホスフィン類;テトラメチルアンモニウムクロライド、トリメチルベンジルアンモニウムクロライド、テトラメチルアンモニウムブロマイド等の4級アンモニウム塩、トリメチルアミン、トリエチルアミン、ベンジルメチルアミン、トリブチルアミン等のアミン類;2−メチルイミダゾール等のイミダゾール類;ジブチル錫ラウレート等のラウリン酸エステル類などが挙げられる。触媒の使用量は、特に限定されないが、(A)成分と(b)成分の合計重量100重量部に対して、通常、0.01〜5重量部程度とすることが好ましい。なお、必要に応じ、有機溶媒や重合禁止剤を用いてもよい。有機溶媒としては、(A)成分、(b)成分と反応しないものであれば、特に限定されず公知のものを用いることができる。具体的には、例えば、エチルアルコール、プロパノール等のアルコール類;アセトン、メチルエチルケトン等の低級ケトン類;トルエン、ベンゼン等の芳香族炭化水素類;酢酸ブチル、酢酸エチル、クロロホルム、ジメチルホルムアミド等が挙げられる、これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。重合禁止剤としては、メトキノン、ハイドロキノン、トリメチルハイドロキノン、N−ニトロソフェニルヒドロキシルアミン等が挙げられる。なお、重合禁止剤の使用量は特に限定されないが、得られるコーティング剤の重合性が悪化する場合があるため、(A)成分と(b)成分の合計重量100重量部に対して、通常、1重量部程度以下とすることが好ましい。また、重合を防止するために、反応系中に空気を吹き込む等してもよい。 The reaction between the component (A) and the component (b) is an epoxy ring-opening reaction, and known reaction conditions can be employed. For example, it can be performed by heating in the presence of a catalyst. Examples of the catalyst include phosphines such as triphenylphosphine and tricyclohexylphosphine; quaternary ammonium salts such as tetramethylammonium chloride, trimethylbenzylammonium chloride and tetramethylammonium bromide, trimethylamine, triethylamine, benzylmethylamine, tributylamine and the like. Amines; imidazoles such as 2-methylimidazole; and lauric acid esters such as dibutyltin laurate. Although the usage-amount of a catalyst is not specifically limited, Usually, it is preferable to set it as about 0.01-5 weight part with respect to 100 weight part of total weight of (A) component and (b) component. In addition, you may use an organic solvent and a polymerization inhibitor as needed. As an organic solvent, if it does not react with (A) component and (b) component, it will not specifically limit and a well-known thing can be used. Specific examples include alcohols such as ethyl alcohol and propanol; lower ketones such as acetone and methyl ethyl ketone; aromatic hydrocarbons such as toluene and benzene; butyl acetate, ethyl acetate, chloroform, dimethylformamide and the like. These may be used individually by 1 type, and may mix and use 2 or more types. Examples of the polymerization inhibitor include methoquinone, hydroquinone, trimethylhydroquinone, N-nitrosophenylhydroxylamine and the like. In addition, although the usage-amount of a polymerization inhibitor is not specifically limited, Since the polymerizability of the coating agent obtained may deteriorate, normally with respect to 100 weight part of total weight of (A) component and (b) component, The amount is preferably about 1 part by weight or less. In order to prevent polymerization, air may be blown into the reaction system.

このようにして得られた(B)成分は、重量平均分子量(ゲルパーメーションクロマトグラフィーによるポリスチレン換算値)を7,000〜140,000程度、アクリル当量を200〜1200g/eq程度、酸価を5mgKOH/g程度以下とすることが、得られる硬化膜の耐溶剤性、耐傷つき性が向上するため好ましい。また、(B)成分は、乾燥塗膜とした時にガラス転移温度(DSC測定による)が、−10〜30℃程度となるようにすることが、賦形性と形状保持性の点から好ましい。なお、ここでいう乾燥塗膜とは、(B)成分のみを溶剤乾燥させることにより得られる膜のことをいう。 The component (B) thus obtained has a weight average molecular weight (polystyrene conversion value by gel permeation chromatography) of about 7,000 to 140,000, an acrylic equivalent of about 200 to 1200 g / eq, and an acid value. About 5 mgKOH / g or less is preferable because solvent resistance and scratch resistance of the resulting cured film are improved. In addition, the component (B) preferably has a glass transition temperature (as measured by DSC measurement) of about −10 to 30 ° C. when formed into a dry coating film from the viewpoint of formability and shape retention. In addition, a dry coating film here means the film | membrane obtained by solvent-drying only (B) component.

本発明の活性エネルギー線硬化型賦型用樹脂組成物には、必要に応じて、ビニル基含有シリカ粒子(C)(以下、(C)成分という)を10〜50重量部含有させてもよい。(C)成分の含有量が10重量部以上とすることにより表面硬度の向上が著しくなり、含有量を50重量部以下とすることにより耐擦傷性が著しく向上するため、20〜40重量部とすることがより好ましい。(C)成分は、ビニル基(本発明では、(メタ)アクリル基もビニル基に含まれるものとする。)が導入されたシリカ粒子であれば特に限定されず、公知のものを使用することができる。(C)成分としては、たとえば、シリカ粒子(c1)(以下、(c1)成分という)に対し、ビニル基を有するシランカップリング剤(c2)(以下、(c2)成分という)を反応させた表面被覆シリカ粒子を用いることができる。 The active energy ray-curable resin composition for shaping according to the present invention may contain 10 to 50 parts by weight of vinyl group-containing silica particles (C) (hereinafter referred to as “component (C)”) as necessary. . When the content of the component (C) is 10 parts by weight or more, the surface hardness is remarkably improved, and when the content is 50 parts by weight or less, the scratch resistance is remarkably improved. More preferably. The component (C) is not particularly limited as long as it is a silica particle into which a vinyl group (in the present invention, (meth) acrylic group is also included in the vinyl group), and a known one is used. Can do. As the component (C), for example, a silica particle (c1) (hereinafter referred to as the (c1) component) was reacted with a silane coupling agent having a vinyl group (c2) (hereinafter referred to as the (c2) component). Surface coated silica particles can be used.

(c1)成分としては、特に限定されず公知のものを使用できる。具体的には、たとえば、ケイ酸ナトリウムを重縮合することにより合成したもの、またはアルコキシシラン類をアルコール水溶液中で加水分解して合成したもの等を用いることができる。なお、(c1)成分としては、市販のものを用いてもよい。市販品(商品名)としては、例えば、水溶性有機溶媒にシリカ粒子を分散した分散液として、メタノールシリカゾル、IPA−ST、IPA−ST−S、MEK−ST、MIBK−ST、XBA−ST、DMAC−ST、ST−20、ST−40、ST−C、ST−N、ST−O、ST−50、ST−OL(以上、日産化学工業(株)製)、オルガノゾルPL−2L−MA、PL−2L−IPA、PL−2PGME(以上、扶桑化学工業(株)製)等を、シリカ粒子として、アエロジル130、アエロジル300、アエロジル380、アエロジルTT600、アエロジルOX50(以上、日本アエロジル(株)製)、シルデックスH31、シルデックスH32、シルデックスH51、シルデックスH52、シルデックスH121、シルデックスH122(以上、旭硝子(株)製)、E220A、E220(以上、日本シリカ工業(株)製)、SYLYSIA470(富士シリシア(株)製)、SGフレーク(日本板硝子(株)製)等を、それぞれ挙げることができる。 (C1) It does not specifically limit as a component, A well-known thing can be used. Specifically, for example, those synthesized by polycondensation of sodium silicate or those synthesized by hydrolyzing alkoxysilanes in an aqueous alcohol solution can be used. In addition, as (c1) component, you may use a commercially available thing. Examples of commercially available products (trade names) include methanol silica sol, IPA-ST, IPA-ST-S, MEK-ST, MIBK-ST, XBA-ST, as a dispersion in which silica particles are dispersed in a water-soluble organic solvent. DMAC-ST, ST-20, ST-40, ST-C, ST-N, ST-O, ST-50, ST-OL (manufactured by Nissan Chemical Industries, Ltd.), Organosol PL-2L-MA, As a silica particle, PL-2L-IPA, PL-2PGME (above, manufactured by Fuso Chemical Industry Co., Ltd.), etc. are used as Aerosil 130, Aerosil 300, Aerosil 380, Aerosil TT600, Aerosil OX50 (above, Nippon Aerosil Co., Ltd.). ), Sildex H31, Sildex H32, Sildex H51, Sildex H52, Sildex H121, Sildex H122 (above, manufactured by Asahi Glass Co., Ltd.), E220A, E220 (above, manufactured by Nippon Silica Kogyo Co., Ltd.), SYLYSIA470 (manufactured by Fuji Silysia Co., Ltd.), SG flake (manufactured by Nippon Sheet Glass Co., Ltd.), etc. Can be mentioned.

(c2)成分としては、たとえば、一般式(1):Z4−m−nSiX(式中、Zはビニル基を有する炭化水素基、Rは炭化水素基、Xは、加水分解性基、mは1、nは1〜3の整数を示す。)で表わされる化合物を用いることができる。 As the component (c2), for example, the general formula (1): Z m R 4-mn SiX n (wherein Z is a hydrocarbon group having a vinyl group, R is a hydrocarbon group, and X is a hydrolysis) A compound represented by the following formula: m represents 1 and n represents an integer of 1 to 3.

Zで表わされるビニル基を有する炭化水素基としては、たとえば、一般式(2):CH=CHRCOOA−(式中、Rは水素原子またはメチル基、Aは炭素数2〜4のアルキレン基を表す。)で表わされる基、一般式(3):CH=CHA−で表わされる基(式中、Aは炭素数2〜4のアルキレン基を表す。)などが挙げられる。Rで示される炭化水素基としては、たとえば、メチル基、エチル基、プロピル基、ブチル基、へキシル基、フェニル基等を挙げることができる。また、Xで表わされる加水分解性基としては、たとえば、アルコキシ基、ハロゲン基、アセトキシ基等を挙げることができる。一般式(1)で表わされる(c2)成分としては、具体的には、たとえば、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシランなどがあげられる。これらの中では、特に(メタ)アクリロイル基およびトリアルコキシシリル基を有するシランカップリング剤を用いることが、活性エネルギー線硬化性の点で好ましい。 Examples of the hydrocarbon group having a vinyl group represented by Z include, for example, general formula (2): CH 2 ═CHR 1 COOA 1 — (wherein R 1 is a hydrogen atom or a methyl group, and A 1 has 2 to 2 carbon atoms. A group represented by formula (3): a group represented by CH 2 ═CHA 2 — (wherein A 2 represents an alkylene group having 2 to 4 carbon atoms), and the like. Can be mentioned. Examples of the hydrocarbon group represented by R include a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and a phenyl group. In addition, examples of the hydrolyzable group represented by X include an alkoxy group, a halogen group, and an acetoxy group. Specific examples of the component (c2) represented by the general formula (1) include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, Examples include 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, and vinyltriacetoxysilane. Among these, it is particularly preferable to use a silane coupling agent having a (meth) acryloyl group and a trialkoxysilyl group from the viewpoint of active energy ray curability.

(c1)成分と(c2)成分の使用量は特に限定されないが、(c1)成分100重量部に対し、(c2)成分を5〜15重量部程度とすることが好ましい。5重量部以上とすることにより、耐擦傷性の向上が著しくなるため好ましく、15重量部以下とすることにより硬度の向上が著しくなる。なお、(c1)成分と(c2)成分の反応は、特に限定されず、公知の方法を採用すれば良い。具体的には、たとえば、(c1)成分に、(c2)成分を水溶性有機溶媒または水溶性有機溶媒と水との混合物を反応溶媒として、必要に応じて加熱下に反応させる方法等を採用することができる。なお、反応温度は、特に限定されないが、通常10〜150℃程度、反応時間は、特に限定されないが、1〜15時間程度である。なお、反応の際に用いることができる水溶性有機溶媒としては、たとえば、メタノール、エタノール、i−プロパノール、n−ブタノール、n−オクタノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ−n−ブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、等のアルコール類、アセトン、メチルエチルケトン等のケトン類が好ましい。使用する当該(C)成分の粒子径は、特に限定されないが、通常、5〜50 nm程度、特に2〜10nmとすることが、耐傷つき性、表面硬度及び透明性の点で好ましい。なお粒子径はレーザー回折・散乱法により測定した50%粒子径によるものである。 Although the usage-amount of (c1) component and (c2) component is not specifically limited, It is preferable that (c2) component shall be about 5-15 weight part with respect to 100 weight part of (c1) component. When the amount is 5 parts by weight or more, the scratch resistance is remarkably improved, and when the amount is 15 parts by weight or less, the hardness is remarkably improved. In addition, reaction of (c1) component and (c2) component is not specifically limited, What is necessary is just to employ | adopt a well-known method. Specifically, for example, a method of reacting component (c1) with (c2) component as a reaction solvent using a water-soluble organic solvent or a mixture of water-soluble organic solvent and water as necessary is employed. can do. The reaction temperature is not particularly limited, but is usually about 10 to 150 ° C., and the reaction time is not particularly limited, but is about 1 to 15 hours. Examples of the water-soluble organic solvent that can be used in the reaction include methanol, ethanol, i-propanol, n-butanol, n-octanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono- Alcohols such as n-butyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether, and ketones such as acetone and methyl ethyl ketone are preferred. The particle diameter of the component (C) to be used is not particularly limited, but usually about 5 to 50 nm, particularly 2 to 10 nm is preferable from the viewpoint of scratch resistance, surface hardness and transparency. The particle diameter is based on a 50% particle diameter measured by a laser diffraction / scattering method.

また、本発明の活性エネルギー線硬化型賦型用樹脂組成物には、1分子中に(メタ)アクリロイル基を少なくとも4つ有するラジカル重合性モノマー(D)(以下、(D)成分という)を含有させてもよい。(D)成分としては、具体的には、たとえば、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ポリペンタエリスリトールポリ(メタ)アクリレートなどがあげられる。また、ポリイソシアネート類に多官能(メタ)アクリレートオリゴマーを反応させて得られる(メタ)アクリロイル基を少なくとも4つ以上有するウレタンアクリレート類を用いてもよい。ポリイソシアネート類としては、1,5−ナフチレンジイソシアネート、4,4′−ジフェニルメタンジイソシアネート、4,4′−ジフェニルジメチルメタンジイソシアネート、4,4′−ジベンジルイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1,3−フェニレンジイソシアネート、1,4−フェニレンジイソシアネート、トリレンジイソシアネート、ブタン−1,4−ジイソシアネート、ヘキサメチレンジイソシアネート、イソプロピレンジイソシアネート、メチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート、シクロヘキサン−1,4−ジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、イソホロンジイソシアネートおよび、これらイソシアネートの2量体、3量体が挙げられる。多官能(メタ)アクリレートオリゴマーとしては、ジペンタエリスリトールペンタアクリレート、ペンタエリスリトールトリアクリレート等が挙げられる。これらの中では、ジペンタエリスリトールヘキサアクリレートが耐傷つき性、表面硬度の点で好ましい。 In addition, the active energy ray-curable resin composition for curing according to the present invention includes a radical polymerizable monomer (D) having at least four (meth) acryloyl groups in one molecule (hereinafter referred to as “component (D)”). You may make it contain. Specific examples of the component (D) include dipentaerythritol hexaacrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, and ditrimethylolpropane tetra. (Meth) acrylate, polypentaerythritol poly (meth) acrylate, and the like. Further, urethane acrylates having at least four (meth) acryloyl groups obtained by reacting polyisocyanates with polyfunctional (meth) acrylate oligomers may be used. Polyisocyanates include 1,5-naphthylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4′-diphenyldimethylmethane diisocyanate, 4,4′-dibenzyl isocyanate, dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, tolylene diisocyanate, butane-1,4-diisocyanate, hexamethylene diisocyanate, isopropylene diisocyanate, methylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2, 4,4-trimethylhexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, xylene Diisocyanate, hydrogenated xylylene diisocyanate, isophorone diisocyanate and dimer of isocyanate trimer thereof. Examples of the polyfunctional (meth) acrylate oligomer include dipentaerythritol pentaacrylate and pentaerythritol triacrylate. Among these, dipentaerythritol hexaacrylate is preferable in terms of scratch resistance and surface hardness.

本発明の活性エネルギー線硬化型賦型用樹脂組成物は、前記(B)成分を必須使用するものである。必要に応じて使用する(C)成分、(D)成分の使用量は特に限定されないが、通常、(B)成分100重量部に対し、(C)成分を10〜90重量部程度、(D)成分を20〜90重量部程度とすることが好ましい。 The active energy ray-curable resin composition for shaping according to the present invention essentially uses the component (B). Although the usage-amount of (C) component and (D) component which are used as needed is not specifically limited, Usually, about 10-90 weight part of (C) component with respect to 100 weight part of (B) component, (D ) The component is preferably about 20 to 90 parts by weight.

なお、当該活性エネルギー線硬化型賦型用樹脂組成物には、本発明の効果を損なわない範囲で、公知の樹脂を用いてもよい。併用する樹脂としては、たとえば、ポリアクリル酸、ポリメタクリル酸、ポリアクリレート、ポリメタクリレート、ポリオレフィン、ポリスチレン、ポリアミド、ポリイミド、ポリビニルクロライド、ポリビニルアルコール、ポリビニルブチラール、ポリカーボネート等を挙げることができる。また、当該活性エネルギー線硬化型賦型用樹脂組成物には、離型剤を配合してもよい。離型剤としては従来公知のもの、例えば、ポリエチレンワックス、アミドワックス、テフロン(登録商標)パウダー等の固形ワックス、フッ素系、リン酸エステル系の界面活性剤、シリコーン等が使用できる。 In addition, you may use well-known resin in the range which does not impair the effect of this invention for the said active energy ray hardening type resin composition for shaping | molding. Examples of the resin used in combination include polyacrylic acid, polymethacrylic acid, polyacrylate, polymethacrylate, polyolefin, polystyrene, polyamide, polyimide, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, and polycarbonate. Moreover, you may mix | blend a mold release agent with the said active energy ray hardening-type resin composition for shaping. As the release agent, conventionally known ones such as solid waxes such as polyethylene wax, amide wax and Teflon (registered trademark) powder, fluorine-based and phosphate-based surfactants, silicone, and the like can be used.

また、当該活性エネルギー線硬化型賦型用樹脂組成物には、必要に応じて、光重合開始剤を配合してもよい。光重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、α−メチルベンゾイン、α−フェニルベンゾイン等のベンゾイン系化合物;アントラキノン、メチルアントラキノン等のアントラキノン系化合物;ベンジルジアセチルアセトフェノン、ベンゾフェノン等のフェニルケトン系化合物;ジフェニルジスルフィド、テトラメチルチウラムスルフィド等のスルフィド系化合物;α−クロルメチルナフタレン、;アントラセン;及びヘキサクロロブタジエン、ペンタクロロブタジエン等のハロゲン化炭化水素等が挙げられる。光重合開始剤は、光硬化硬化型賦型用樹脂組成物の固形分全量に対して0.5〜10重量%の割合で配合するのが好ましい。光重合開始剤は1種のみを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。なお、必要に応じて公知の各種添加剤を用いてもよい。 Moreover, you may mix | blend a photoinitiator with the said active energy ray hardening-type resin composition for shaping | molding as needed. Examples of the photopolymerization initiator include benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, α-methylbenzoin, and α-phenylbenzoin; anthraquinone compounds such as anthraquinone and methylanthraquinone; benzyldiacetyl Phenyl ketone compounds such as acetophenone and benzophenone; sulfide compounds such as diphenyl disulfide and tetramethylthiuram sulfide; α-chloromethylnaphthalene; anthracene; and halogenated hydrocarbons such as hexachlorobutadiene and pentachlorobutadiene. The photopolymerization initiator is preferably blended at a ratio of 0.5 to 10% by weight based on the total solid content of the photocurable curable resin composition. A photoinitiator may be used individually by 1 type and may be used in combination of 2 or more type. In addition, you may use various well-known additives as needed.

本発明に用いる活性エネルギー線硬化型賦型用樹脂組成物は、通常、溶剤を用いて塗布液の状態に調製し、微細凹凸形状の形成に用いる。前記各材料を、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ベンゼン、トルエン、キシレン、クロルベンゼン、テトラヒドロフラン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、酢酸エチル、1,4−ジオキサン、1,2−ジクロロエタン、ジクロルメタン、クロロホルム、メタノール、エタノール、イソプロパノール等、またはそれらの混合溶剤に溶解、分散することにより、本発明に係る光硬化性樹脂組成物としての塗布液を調製することができる。塗布液は、通常、固形分濃度が10〜50重量%程度となるように調節する。 The active energy ray-curable resin composition for shaping used in the present invention is usually prepared in a coating solution state using a solvent and used for forming a fine uneven shape. Each of the materials is acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, benzene, toluene, xylene, chlorobenzene, tetrahydrofuran, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, ethyl acetate, 1,4-dioxane, 1 , 2-dichloroethane, dichloromethane, chloroform, methanol, ethanol, isopropanol, or the like, or a mixed solvent thereof can be used to prepare a coating solution as a photocurable resin composition according to the present invention. The coating solution is usually adjusted so that the solid content concentration is about 10 to 50% by weight.

本発明の成形体は、前記活性エネルギー線硬化型賦型用樹脂組成物を成形体表面に塗布し、賦型層を形成させることにより得られる。 The molded body of the present invention is obtained by applying the active energy ray-curable molding resin composition to the surface of the molded body to form a molding layer.

本発明に用いる活性エネルギー線硬化型賦型用樹脂組成物を成形体の表面に塗布し、必要に応じて乾燥させて微細凹凸形状を形成することができる賦型層を形成し、当該賦型層にスタンパーを圧接してエンボス加工を行い、微細凹凸形状形成層を活性エネルギー線照射して硬化させることにより、光学的機能を有する微細凹凸形状を形成することができ、光学物品やスタンパーとして利用できる。 The active energy ray-curable resin composition for molding used in the present invention is applied to the surface of the molded body, and dried as necessary to form a molding layer capable of forming a fine uneven shape, and the molding A stamper is pressed on the layer and embossed, and the fine uneven shape forming layer is irradiated with active energy rays and cured to form a fine uneven shape having an optical function, which can be used as an optical article or stamper. it can.

当該活性エネルギー線硬化型樹脂組成物が塗布される成形体は、特に限定されず、あらゆるものに適用できる。成形体の材質は、金属であってもよく、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリメチルメタクリレート、ナイロン、ポリエチレンテレフタレート、ポリイミド、ポリカーボネート、ポリノルボルネン、トリアセチルセルロース等のプラスチックであってもよい。なお、成形体は、フィルムまたはシートであることが、活性エネルギー線硬化型賦型用樹脂組成物の塗布が容易になるため好ましい。なお、成形体表面に活性エネルギー線硬化型賦型用樹脂組成物を塗布する前後に、または賦型層に微細凹凸形状を形成する前後に、必要に応じてアンカー層、剥離層、金属薄膜層、オーバーコート層、感圧又は感熱接着剤層等の他の層を形成してもよい。 The molded body to which the active energy ray-curable resin composition is applied is not particularly limited, and can be applied to all types. The material of the molded body may be metal, polyethylene terephthalate, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, polyvinyl acetate, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polystyrene, polymethyl methacrylate, nylon. Plastics such as polyethylene terephthalate, polyimide, polycarbonate, polynorbornene, and triacetyl cellulose may be used. In addition, it is preferable that a molded object is a film or a sheet | seat since application | coating of the active energy ray hardening-type resin composition is easy. In addition, an anchor layer, a peeling layer, and a metal thin film layer may be added as necessary before and after applying the active energy ray-curable molding resin composition to the surface of the molded body, or before and after forming a fine uneven shape on the molding layer. Other layers such as an overcoat layer, a pressure-sensitive or heat-sensitive adhesive layer may be formed.

賦型層は、スタンパーを圧接した状態で硬化させてもよいが、スタンパーを取り外した後で露光、加熱することにより硬化させることも可能である。後者の方法は、賦型層を硬化工程に移す前にスタンパーを取り外し、取り外したスタンパーはエンボス工程で連続使用できるので連続生産性に優れている。 The shaping layer may be cured in a state where the stamper is pressed, but can also be cured by exposure and heating after the stamper is removed. The latter method is excellent in continuous productivity because the stamper is removed before the molding layer is transferred to the curing process, and the removed stamper can be used continuously in the embossing process.

また、本発明では、上記微細凹凸形状形成材料が成膜性及び耐ブロッキング性に優れていることを利用し、成形体上に賦型層を形成した中間積層体をロール状に巻き取って一時的に貯蔵し、別の場所へ運搬して巻き戻し、スタンピング及び硬化を行うことも可能である。 Further, in the present invention, utilizing the fact that the fine uneven shape forming material is excellent in film formability and anti-blocking property, the intermediate laminate in which the shaping layer is formed on the molded body is wound up into a roll shape and temporarily Can be stored and transported to another location for rewinding, stamping and curing.

さらにスタンピング及び硬化を行った中間積層体をロール状に巻き取って一時的に貯蔵し、別の場所へ運搬し巻き戻し、必要に応じて追加の光又は熱硬化工程を行って充分に硬化させたり、あるいは、必要に応じて微細凹凸形状の上に金属薄膜、オーバーコート層、感圧又は感熱接着剤層等を形成することが可能である。 Further, the stamped and cured intermediate laminate is wound up into a roll and temporarily stored, transported to another location, rewound, and subjected to additional light or heat curing processes as necessary to be fully cured. Alternatively, a metal thin film, an overcoat layer, a pressure-sensitive or heat-sensitive adhesive layer, or the like can be formed on the fine concavo-convex shape as necessary.

硬化に用いる光としては、高エネルギー電離放射線及び紫外線が挙げられる。高エネルギー電離放射線源としては、例えば、コッククロフト型加速器、ハンデグラーフ型加速器、リニヤーアクセレーター、ベータトロン、サイクロトロン等の加速器によって加速された電子線が工業的に最も便利且つ経済的に使用されるが、その他に放射性同位元素や原子炉等から放射されるγ線、X線、α線、中性子線、陽子線等の放射線も使用できる。紫外線源としては、例えば、紫外線螢光灯、低圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノン灯、炭素アーク灯、太陽灯等が挙げられる。 Examples of the light used for curing include high energy ionizing radiation and ultraviolet rays. As the high-energy ionizing radiation source, for example, an electron beam accelerated by an accelerator such as a cockcroft accelerator, a handagraaf accelerator, a linear accelerator, a betatron, or a cyclotron is industrially most conveniently and economically used. However, radiation such as γ rays, X rays, α rays, neutron rays, proton rays emitted from radioisotopes or nuclear reactors can also be used. Examples of the ultraviolet ray source include an ultraviolet fluorescent lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a carbon arc lamp, and a solar lamp.

以下、実施例を示し、本発明をさらに詳細に説明するが、本発明は下記実施例に限定されるものではない。なお、実施例中、「部」、「%」は特記しない限り「重量部」、「重量%」を意味する。また、重量平均分子量、ガラス転移温度、50%粒子径は下記の方法で測定した値である。
重量平均分子量:ゲルパーメーションクロマトグラフィー(東ソー(株)製、商品名「HLC−8220」、カラム:TSKgelSuperHZM−M、TSKgelSuperHZ−L、TSKgelSuperHZ2000により測定。
50%粒子径:大塚電子株式会社製、レーザー散乱式粒度分布測定装置「FPAR−1000」測定温度25℃、MIBK(メチルイソブチルケトン:屈折率 1.379)もしくはIPA(イソプロパノール:屈折率 1.375)中で測定した体積表示による50%粒子径である。なお、50%粒子径とは、粉体の粒径分布において、ある粒子径より大きい個数又は質量が、全粉体のそれの50%を占めるときの粒子径をいう。
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited to the following Example. In the examples, “parts” and “%” mean “parts by weight” and “% by weight” unless otherwise specified. The weight average molecular weight, glass transition temperature, and 50% particle diameter are values measured by the following methods.
Weight average molecular weight: measured by gel permeation chromatography (manufactured by Tosoh Corporation, trade name “HLC-8220”, column: TSKgelSuperHZM-M, TSKgelSuperHZ-L, TSKgelSuperHZ2000).
50% particle size: manufactured by Otsuka Electronics Co., Ltd., laser scattering particle size distribution analyzer “FPAR-1000”, measuring temperature 25 ° C., MIBK (methyl isobutyl ketone: refractive index 1.379) or IPA (isopropanol: refractive index 1.375) ) 50% particle diameter by volume display measured in). The 50% particle diameter means the particle diameter when the number or mass larger than a certain particle diameter occupies 50% of the total powder in the particle size distribution of the powder.

ガラス転移温度(Tmg):示差走査熱量計(理学電機(株)製 商品名:DSC 8230B)によりJIS K 7121に準じて測定。
また、実施例および比較例における評価方法は下記のとおりである。
Glass transition temperature (T mg ): Measured according to JIS K 7121 using a differential scanning calorimeter (trade name: DSC 8230B, manufactured by Rigaku Corporation).
Moreover, the evaluation method in an Example and a comparative example is as follows.

(1)賦形性
表1に記載の活性エネルギー線硬化型コーティング剤組成物を、100μm膜厚のポリエチレンテレフタレート(PET)フィルム上に#48バーコーターで塗布し(計算値:膜厚約30μm)、100℃で2分乾燥させた乾燥塗膜を、30mm×30mm×20μmに切り出し、10mm×10mmのメッシュを用いて0.3MPa、100℃、30秒で熱プレスし、メッシュを離型。形状の転写性を超深度カラー3D形状測定顕微鏡((株)キーエンス製 商品名:VK−9500 GenerationII)にて形状観察し、以下の基準で評価した。
○:メッシュ型あり形状良好。△:メッシュ型あるも形状不良。×:賦形不可(樹脂癒着)
(1) Shapeability
The active energy ray-curable coating composition described in Table 1 was applied onto a polyethylene terephthalate (PET) film having a thickness of 100 μm with a # 48 bar coater (calculated value: about 30 μm in thickness), and 2 minutes at 100 ° C. The dried coating film thus dried was cut into 30 mm × 30 mm × 20 μm and heat-pressed with a 10 mm × 10 mm mesh at 0.3 MPa, 100 ° C. for 30 seconds to release the mesh. Shape transferability was observed with an ultra-deep color 3D shape measurement microscope (trade name: VK-9500 Generation II, manufactured by Keyence Corporation), and evaluated according to the following criteria.
○: Good shape with mesh type. Δ: Some mesh type but poor shape. ×: Impossible to shape (resin adhesion)

(2)形状保持性
表1に記載の活性エネルギー線硬化型コーティング剤組成物を、100μm膜厚のポリエチレンテレフタレート(PET)フィルム上に#48バーコーターで塗布し(計算値:膜厚約30μm)、100℃で2分乾燥させた乾燥塗膜を、30mm×30mm×20μmに切り出し、10mm×10mmのメッシュを用いて0.3MPa、100℃、30秒で熱プレスし、メッシュを離型、形状の転写性を超深度カラー3D形状測定顕微鏡((株)キーエンス製 商品名:VK−9500 GenerationII)にて10分間経時変化を観察し、以下の基準で評価した。
◎:経時で形状変化が極めて少ない、○:経時で若干形状変化、△:経時で形状変化大、×:経時変化が速い。
(2) Shape retention The active energy ray-curable coating composition described in Table 1 was applied onto a polyethylene terephthalate (PET) film having a thickness of 100 μm with a # 48 bar coater (calculated value: film thickness of about 30 μm). The dried coating film dried at 100 ° C. for 2 minutes was cut into 30 mm × 30 mm × 20 μm and hot pressed at 0.3 MPa, 100 ° C. for 30 seconds using a 10 mm × 10 mm mesh to release the mesh and shape The change in the film was observed for 10 minutes with an ultra-deep color 3D shape measuring microscope (trade name: VK-9500 Generation II, manufactured by Keyence Corporation), and evaluated according to the following criteria.
A: Very little change in shape over time, ○: Some change in shape over time, Δ: Large change in shape over time, ×: Fast change over time.

(3)鉛筆硬度
表1に記載の活性エネルギー線硬化型コーティング剤組成物を、100μm膜厚のポリエチレンテレフタレート(PET)フィルム上に#16バーコーターで塗布し(計算値:膜厚約10μm)、100℃で2分乾燥させ、空気下で高圧水銀灯を用いて300mJ/cmの照射量で通過させて硬化させた。この硬化膜をJIS K 5600に従い荷重500gの鉛筆引っかき試験によって評価した。結果を表1に示す。
(3) Pencil hardness The active energy ray-curable coating composition described in Table 1 was applied on a polyethylene terephthalate (PET) film having a film thickness of 100 μm with a # 16 bar coater (calculated value: film thickness of about 10 μm), The film was dried at 100 ° C. for 2 minutes, and cured by passing through a high-pressure mercury lamp under air at a dose of 300 mJ / cm 2 . This cured film was evaluated by a pencil scratch test with a load of 500 g in accordance with JIS K 5600. The results are shown in Table 1.

(4)耐傷つき性
表1に記載の活性エネルギー線硬化型コーティング剤組成物を、100μm膜厚のポリエチレンテレフタレート(PET)フィルム上に#16バーコーターで塗布し(計算値:膜厚約10μm)、100℃で2分乾燥させ、空気下で高圧水銀灯を用いて300mJ/cm2の照射量で通過させて硬化させた。この硬化膜を300gのおもりの底に10mm×10mmの範囲に付けたスチールウールで30回擦り、外観を観察し、以下の基準で評価した。結果を表1に示す。
◎:変化無し、○:数本傷あり、△:傷多数あり、×:塗膜剥離。
(4) Scratch resistance The active energy ray-curable coating agent composition described in Table 1 was applied onto a polyethylene terephthalate (PET) film having a thickness of 100 μm with a # 16 bar coater (calculated value: film thickness of about 10 μm). , Dried at 100 ° C. for 2 minutes, and cured by passing through a high-pressure mercury lamp under air at a dose of 300 mJ / cm 2 . The cured film was rubbed 30 times with steel wool attached to the bottom of a 300 g weight in a range of 10 mm × 10 mm, the appearance was observed, and the following criteria were evaluated. The results are shown in Table 1.
A: No change, B: Several scratches, B: Many scratches, X: coating film peeling.

(5)透過率・ヘイズ
表1に記載の活性エネルギー線硬化型コーティング剤組成物を、100μm膜厚のポリエチレンテレフタレート(PET)フィルム上に#40バーコーターで塗布し(計算値:膜厚約25μm)、100℃で2分乾燥させ、試験片の乾燥塗膜部を10mm×10mmのメッシュを用いて0.3MPa、100℃、30秒で熱プレスし、メッシュを離型。空気下で高圧水銀灯を用いて300mJ/cmの照射量で通過させて硬化させた。このサンプルをJIS K 7105に従い透過率・ヘイズを測定した。
(5) Transmittance / Haze The active energy ray-curable coating agent composition shown in Table 1 was applied onto a polyethylene terephthalate (PET) film having a thickness of 100 μm with a # 40 bar coater (calculated value: film thickness of about 25 μm). ), Dried at 100 ° C. for 2 minutes, the dried coating part of the test piece was hot-pressed at 0.3 MPa, 100 ° C. for 30 seconds using a 10 mm × 10 mm mesh, and the mesh was released. It was cured by passing under an air at a dose of 300 mJ / cm 2 using a high-pressure mercury lamp. The transmittance and haze of this sample were measured according to JIS K 7105.

製造例1
撹拌装置、冷却管、滴下ロート及び窒素導入管を備えた反応装置に、グリシジルメタクリレート(以下、GMAという)、320部、アダマンチルメタクリレート(以下、ADMAという)80部、メチルイソブチルケトン(以下、MIBKという)1,600部及び2,2´−アゾビスイソブチロニトリル(以下、AIBNという)6.4部を仕込んだ後、窒素気流下に約1時間かけて系内温度が約85℃になるまで昇温し、1時間保温した。次いで、あらかじめGMA 960部、ADMA 240部、及びAIBN 19.2部からなる混合液を仕込んだ滴下ロートより、窒素気流下に混合液を、約2時間を要して系内に滴下し、3時間同温度に保温後、AIBN 6.4部を仕込み、30分保温した。その後、120℃に昇温し、2.5時間保温した。室温まで冷却後、共重合体(A1)の溶液を得た。(A1)のGPCによるポリスチレン換算による重量平均分子量は、26,000、ガラス転移温度は、73℃(計算値)であった。
続いて、窒素導入管を空気導入管につけ替え、アクリル酸(以下、AAという)649.0部、メトキノン4.3部及びトリフェニルホスフィン6.4部を仕込み混合した後、空気バブリング下にて、115℃まで昇温した。同温度にて8時間保温後、メトキノン4.3部を仕込み、冷却して、不揮発分が50%となるようMIBKを加え、反応物(B1)の溶液を得た。反応物(B1)の重量平均分子量は51,000(GPCによるポリスチレン換算による)、乾燥塗膜のDSC測定によるTmgは12.0℃であった。
Production Example 1
In a reactor equipped with a stirrer, a cooling tube, a dropping funnel and a nitrogen introducing tube, glycidyl methacrylate (hereinafter referred to as GMA), 320 parts, adamantyl methacrylate (hereinafter referred to as ADMA) 80 parts, methyl isobutyl ketone (hereinafter referred to as MIBK). ) After charging 1,600 parts and 6.4 parts of 2,2′-azobisisobutyronitrile (hereinafter referred to as AIBN), the system temperature is about 85 ° C. over about 1 hour under a nitrogen stream. The temperature was raised to 1, and the temperature was kept for 1 hour. Next, the mixed solution was dropped into the system in about 2 hours from a dropping funnel previously charged with a mixed solution consisting of 960 parts of GMA, 240 parts of ADMA, and 19.2 parts of AIBN. After keeping the same temperature for the time, 6.4 parts of AIBN was charged and kept for 30 minutes. Thereafter, the temperature was raised to 120 ° C. and kept warm for 2.5 hours. After cooling to room temperature, a solution of copolymer (A1) was obtained. The weight average molecular weight in terms of polystyrene by GPC of (A1) was 26,000, and the glass transition temperature was 73 ° C. (calculated value).
Subsequently, the nitrogen introduction tube was replaced with an air introduction tube, and after mixing and mixing 649.0 parts of acrylic acid (hereinafter referred to as AA), 4.3 parts of methoquinone and 6.4 parts of triphenylphosphine, under air bubbling The temperature was raised to 115 ° C. After incubating at the same temperature for 8 hours, 4.3 parts of methoquinone was charged and cooled, and MIBK was added so that the non-volatile content was 50% to obtain a solution of the reaction product (B1). The weight average molecular weight of the reaction product (B1) was 51,000 (in terms of polystyrene by GPC), and T mg by DSC measurement of the dried coating film was 12.0 ° C.

製造例2
撹拌装置、冷却管、滴下ロート及び窒素導入管を備えた反応装置に、GMA 280部、ADMA 120部、MIBK 1,600部及びAIBN 6.4部を仕込んだ後、窒素気流下に約1時間かけて系内温度が約85℃になるまで昇温し、1時間保温した。次いで、あらかじめGMA840部、ADMA 360部、及びAIBN 19.2部からなる混合液を仕込んだ滴下ロートより、窒素気流下に混合液を、約2時間を要して系内に滴下し、3時間同温度に保温後、AIBN6.4部を仕込み、30分保温した。その後、120℃に昇温し、2.5時間保温した。室温まで冷却後、共重合体(A2)の溶液を得た。(A2)のGPCによるポリスチレン換算による重量平均分子量は、28,000、ガラス転移温度は、88℃(計算値)であった。
続いて、窒素導入管を空気導入管につけ替え、AA 567.9部、メトキノン4.3部及びトリフェニルホスフィン6.4部を仕込み混合した後、空気バブリング下にて、115℃まで昇温した。同温度にて8時間保温後、メトキノン4.3部を仕込み、冷却して、不揮発分が50%となるようMIBKを加え、反応物(B2)の溶液を得た。反応物(B2)の重量平均分子量は51,000(GPCによるポリスチレン換算による)、乾燥塗膜のDSC測定によるTmgは17.8℃であった。
Production Example 2
After charging 280 parts of GMA, 120 parts of ADMA, 1,600 parts of MIBK, and 6.4 parts of AIBN in a reactor equipped with a stirrer, a cooling pipe, a dropping funnel and a nitrogen introduction pipe, it took about 1 hour under a nitrogen stream. The system temperature was raised to about 85 ° C. over 1 hour, and the temperature was kept for 1 hour. Next, the mixed solution was dropped into the system in about 2 hours from a dropping funnel previously charged with a mixed solution consisting of 840 parts of GMA, 360 parts of ADMA, and 19.2 parts of AIBN, and took 3 hours. After keeping the same temperature, 6.4 parts of AIBN was charged and kept warm for 30 minutes. Thereafter, the temperature was raised to 120 ° C. and kept warm for 2.5 hours. After cooling to room temperature, a solution of copolymer (A2) was obtained. The weight average molecular weight in terms of polystyrene by GPC of (A2) was 28,000, and the glass transition temperature was 88 ° C. (calculated value).
Subsequently, the nitrogen introduction tube was replaced with an air introduction tube, and after adding and mixing AA 567.9 parts, methoquinone 4.3 parts and triphenylphosphine 6.4 parts, the temperature was raised to 115 ° C. under air bubbling. . After incubating at the same temperature for 8 hours, 4.3 parts of methoquinone was charged and cooled, and MIBK was added so that the non-volatile content was 50% to obtain a solution of the reaction product (B2). The weight average molecular weight of the reaction product (B2) was 51,000 (in terms of polystyrene by GPC), and T mg by DSC measurement of the dried coating film was 17.8 ° C.

製造例3
撹拌装置、冷却管、滴下ロート及び窒素導入管を備えた反応装置に、GMA 240部、ADMA 160部、MIBK 1,600部及びAIBN 6.4部を仕込んだ後、窒素気流下に約1時間かけて系内温度が約85℃になるまで昇温し、1時間保温した。次いで、あらかじめGMA 720部、ADMA 480部、及びAIBN 19.2部からなる混合液を仕込んだ滴下ロートより、窒素気流下に混合液を、約2時間を要して系内に滴下し、3時間同温度に保温後、AIBN6.4部を仕込み、30分保温した。その後、120℃に昇温し、2.5時間保温した。室温まで冷却後、共重合体(A3)の溶液を得た。(A3)のGPCによるポリスチレン換算による重量平均分子量は、25,000、ガラス転移温度は、105℃(計算値)であった。
続いて、窒素導入管を空気導入管につけ替え、AA 486.8部、メトキノン4.3部及びトリフェニルホスフィン6.4部を仕込み混合した後、空気バブリング下にて、115℃まで昇温した。同温度にて8時間保温後、メトキノン4.3部を仕込み、冷却して、不揮発分が50%となるようMIBKを加え、反応物(B3)の溶液を得た。反応物(B3)の重量平均分子量は48,000(GPCによるポリスチレン換算による)、乾燥塗膜のDSC測定によるTmgは19.4℃であった。
Production Example 3
After charging 240 parts of GMA, 160 parts of ADMA, 1,600 parts of MIBK, and 6.4 parts of AIBN in a reaction apparatus equipped with a stirrer, a cooling pipe, a dropping funnel and a nitrogen introduction pipe, it took about 1 hour under a nitrogen stream. The system temperature was raised to about 85 ° C. over 1 hour, and the temperature was kept for 1 hour. Next, the mixed solution was dropped into the system in about 2 hours from a dropping funnel previously charged with a mixed solution consisting of 720 parts of GMA, 480 parts of ADMA, and 19.2 parts of AIBN. After keeping the same temperature for the time, 6.4 parts of AIBN was charged and kept warm for 30 minutes. Thereafter, the temperature was raised to 120 ° C. and kept warm for 2.5 hours. After cooling to room temperature, a solution of copolymer (A3) was obtained. The weight average molecular weight in terms of polystyrene by GPC of (A3) was 25,000, and the glass transition temperature was 105 ° C. (calculated value).
Subsequently, the nitrogen inlet tube was replaced with an air inlet tube, 486.8 parts of AA, 4.3 parts of methoquinone and 6.4 parts of triphenylphosphine were charged and mixed, and then heated to 115 ° C. under air bubbling. . After incubating at the same temperature for 8 hours, 4.3 parts of methoquinone was charged and cooled, and MIBK was added so that the non-volatile content was 50% to obtain a solution of the reaction product (B3). The weight average molecular weight of the reaction product (B3) was 48,000 (in terms of polystyrene by GPC), and the T mg of the dried coating film as measured by DSC was 19.4 ° C.

製造例4
撹拌装置、冷却管、滴下ロート及び窒素導入管を備えた反応装置に、GMA 230部、メチルメタクリレート(以下、MMAという)12.5部、エチルアクリレート(以下、EAという)7.5部、酢酸ブチル1000部及びAIBN 7.5部を仕込んだ後、窒素気流下に約1時間かけて系内温度が約90℃になるまで昇温し、1時間保温した。次いで、あらかじめGMA 690部、MMA 37.5部、EA 22.5部及びAIBN 22.5部からなる混合液を仕込んだ滴下ロートより、窒素気流下に混合液を、約2時間を要して系内に滴下し、3時間同温度に保温後、AIBN 10部を仕込み、1時間保温した。その後、120℃に昇温し、2時間保温した。60℃まで冷却、共重合体(A4)の溶液を得た。(A4)の重量平均分子量は、21,000(GPCによるポリスチレン換算による)。ガラス転移温度は、46℃(計算値)であった。
続いて、窒素導入管を空気導入管につけ替え、AA 466.5部、メトキノン2.3部及びトリフェニルホスフィン6.0部を仕込み混合した後、空気バブリング下にて、110℃まで昇温した。同温度にて8時間保温後、メトキノン1.6部を仕込み、冷却して、不揮発分が50%となるよう酢酸エチルを加え、反応物(B4)の溶液を得た。反応物(B4)の重量平均分子量は43,000(GPCによるポリスチレン換算による)、乾燥塗膜のDSC測定によるTmgは4.3℃であった。
Production Example 4
In a reactor equipped with a stirrer, a cooling tube, a dropping funnel and a nitrogen introducing tube, 230 parts of GMA, 12.5 parts of methyl methacrylate (hereinafter referred to as MMA), 7.5 parts of ethyl acrylate (hereinafter referred to as EA), acetic acid After charging 1,000 parts of butyl and 7.5 parts of AIBN, the temperature was raised to about 90 ° C. over about 1 hour under a nitrogen stream, and the temperature was kept for 1 hour. Next, from the dropping funnel previously charged with a mixed solution consisting of 690 parts of GMA, 37.5 parts of MMA, 22.5 parts of EA and 22.5 parts of AIBN, the mixed liquid was required for about 2 hours under a nitrogen stream. The solution was dropped into the system and kept at the same temperature for 3 hours, and then 10 parts of AIBN was charged and kept warm for 1 hour. Then, it heated up at 120 degreeC and heat-retained for 2 hours. It cooled to 60 degreeC and the solution of the copolymer (A4) was obtained. The weight average molecular weight of (A4) is 21,000 (in terms of polystyrene by GPC). The glass transition temperature was 46 ° C. (calculated value).
Subsequently, the nitrogen introduction tube was replaced with an air introduction tube, and AA 466.5 parts, methoquinone 2.3 parts and triphenylphosphine 6.0 parts were charged and mixed, and then heated to 110 ° C. under air bubbling. . After incubating at the same temperature for 8 hours, 1.6 parts of methoquinone was charged, cooled, and ethyl acetate was added so that the non-volatile content was 50% to obtain a solution of the reaction product (B4). The weight average molecular weight of the reaction product (B4) was 43,000 (in terms of polystyrene by GPC), and the T mg by DSC measurement of the dried coating film was 4.3 ° C.

製造例5
撹拌装置、冷却管、滴下ロート及び窒素導入管を備えた反応装置に、GMA 175部、MMA 75部、酢酸ブチル1000部及びAIBN 7.5部を仕込んだ後、窒素気流下に約1時間かけて系内温度が約90℃になるまで昇温し、1時間保温した。次いで、あらかじめGMA 525部、MMA 225部、及びAIBN 22.5部からなる混合液を仕込んだ滴下ロートより、窒素気流下に混合液を、約2時間を要して系内に滴下し、3時間同温度に保温後、AIBN 10部を仕込み、1時間保温した。その後、120℃に昇温し、2時間保温した。60℃まで冷却、共重合体(A5)の溶液を得た。(A5)の重量平均分子量は、18,500(GPCによるポリスチレン換算による)。ガラス転移温度は、62℃(計算値)であった。
続いて、窒素導入管を空気導入管につけ替え、AA 354.9部、メトキノン2.3部及びトリフェニルホスフィン6.0部を仕込み混合した後、空気バブリング下にて、110℃まで昇温した。同温度にて8時間保温後、メトキノン1.6部を仕込み、冷却して、不揮発分が50%となるよう酢酸エチルを加え、反応物(B5)の溶液を得た。反応物(B5)の重量平均分子量は36,500(ポリスチレン換算による)、乾燥塗膜のDSC測定によるTmgは8.3℃であった。
Production Example 5
After charging 175 parts of GMA, 75 parts of MMA, 1000 parts of butyl acetate and 7.5 parts of AIBN into a reactor equipped with a stirrer, a cooling pipe, a dropping funnel and a nitrogen introducing pipe, it took about 1 hour under a nitrogen stream. The temperature was raised until the system temperature reached about 90 ° C., and the temperature was kept for 1 hour. Next, the mixture was dropped into the system in about 2 hours under a nitrogen stream from a dropping funnel previously charged with a mixture consisting of 525 parts of GMA, 225 parts of MMA, and 22.5 parts of AIBN. After keeping the same temperature for 10 hours, 10 parts of AIBN was charged and kept for 1 hour. Then, it heated up at 120 degreeC and heat-retained for 2 hours. It cooled to 60 degreeC and the solution of the copolymer (A5) was obtained. The weight average molecular weight of (A5) is 18,500 (based on polystyrene conversion by GPC). The glass transition temperature was 62 ° C. (calculated value).
Subsequently, the nitrogen introduction tube was replaced with an air introduction tube, and AA 354.9 parts, 2.3 parts of methoquinone and 6.0 parts of triphenylphosphine were charged and mixed, and then heated to 110 ° C. under air bubbling. . After incubating at the same temperature for 8 hours, 1.6 parts of methoquinone was charged, cooled, and ethyl acetate was added so that the non-volatile content was 50% to obtain a solution of the reaction product (B5). The weight average molecular weight of the reaction product (B5) was 36,500 (in terms of polystyrene), and T mg as measured by DSC of the dried coating film was 8.3 ° C.

製造例6
撹拌装置、冷却管、滴下ロート及び窒素導入管を備えた反応装置に、GMA 150部、MMA 12.5部、EA 87.5部、酢酸ブチル1000部及びAIBN 7.5部を仕込んだ後、窒素気流下に約1時間かけて系内温度が約90℃になるまで昇温し、1時間保温した。次いで、あらかじめGMA 450部、MMA 37.5部、EA 262.5部及びAIBN22.5部からなる混合液を仕込んだ滴下ロートより、窒素気流下に混合液を、約2時間を要して系内に滴下し、3時間同温度に保温後、AIBN 10部を仕込み、1時間保温した。その後、120℃に昇温し、2時間保温した。60℃まで冷却、共重合体(A6)の溶液を得た。(A6)の重量平均分子量は、23,000(GPCによるポリスチレン換算による)。ガラス転移温度は、12℃(計算値)であった。
続いて、窒素導入管を空気導入管につけ替え、AA 304.2部、メトキノン2.3部及びトリフェニルホスフィン6.0部を仕込み混合した後、空気バブリング下にて、110℃まで昇温した。同温度にて8時間保温後、メトキノン1.6部を仕込み、冷却して、不揮発分が50%となるよう酢酸エチルを加え、反応物(B6)の溶液を得た。反応物(B6)の重量平均分子量は41,000(GPCによるポリスチレン換算による)、乾燥塗膜のDSC測定によるTmgは−9.8℃であった。
Production Example 6
A reactor equipped with a stirrer, a cooling tube, a dropping funnel and a nitrogen introducing tube was charged with 150 parts of GMA, 12.5 parts of MMA, 87.5 parts of EA, 1000 parts of butyl acetate and 7.5 parts of AIBN, The system was heated up to about 90 ° C. over about 1 hour under a nitrogen stream, and kept warm for 1 hour. Next, from the dropping funnel previously charged with a mixed liquid consisting of 450 parts of GMA, 37.5 parts of MMA, 262.5 parts of EA, and 22.5 parts of AIBN, the mixed liquid was taken for about 2 hours under a nitrogen stream. The solution was dropped into the solution and kept at the same temperature for 3 hours. Then, it heated up at 120 degreeC and heat-retained for 2 hours. It cooled to 60 degreeC and the solution of the copolymer (A6) was obtained. The weight average molecular weight of (A6) is 23,000 (in terms of polystyrene by GPC). The glass transition temperature was 12 ° C. (calculated value).
Subsequently, the nitrogen introduction tube was replaced with an air introduction tube, and after AA 304.2 parts, methoquinone 2.3 parts and triphenylphosphine 6.0 parts were mixed and heated, the temperature was raised to 110 ° C. under air bubbling. . After incubating at the same temperature for 8 hours, 1.6 parts of methoquinone was charged, cooled, and ethyl acetate was added so that the nonvolatile content was 50%, to obtain a solution of the reaction product (B6). The weight average molecular weight of the reaction product (B6) was 41,000 (in terms of polystyrene by GPC), and the T mg of the dried coating film as measured by DSC was −9.8 ° C.

製造例7
撹拌装置、冷却管、滴下ロート及び窒素導入管を備えた反応装置に、GMA 125部、IBXMA 125部、酢酸ブチル1000部及びAIBN7.5部を仕込んだ後、窒素気流下に約1時間かけて系内温度が約90℃になるまで昇温し、1時間保温した。次いで、あらかじめGMA 375部、IBXMA 375部及びAIBN22.5部からなる混合液を仕込んだ滴下ロートより、窒素気流下に混合液を、約2時間を要して系内に滴下し、3時間同温度に保温後、AIBN10部を仕込み、1時間保温した。その後、120℃に昇温し、2時間保温した。60℃まで冷却、共重合体(A7)の溶液を得た。(A7)の重量平均分子量は、22,000(GPCによるポリスチレン換算による)。ガラス転移温度は、101℃(計算値)であった。
続いて、窒素導入管を空気導入管につけ替え、AA 253.5部、メトキノン2.3部及びトリフェニルホスフィン6.0部を仕込み混合した後、空気バブリング下にて、110℃まで昇温した。同温度にて8時間保温後、メトキノン1.6部を仕込み、冷却して、不揮発分が50%となるよう酢酸エチルを加え、反応物(B7)の溶液を得た。反応物(B7)の重量平均分子量は37,000(GPCによるポリスチレン換算による)、乾燥塗膜のDSC測定によるTmgは29.5℃であった。
Production Example 7
After charging 125 parts of GMA, 125 parts of IBXMA, 1000 parts of butyl acetate and 7.5 parts of AIBN in a reactor equipped with a stirrer, a cooling pipe, a dropping funnel and a nitrogen introduction pipe, it took about 1 hour under a nitrogen stream. The temperature was raised until the system temperature reached about 90 ° C., and the temperature was kept for 1 hour. Next, the mixed solution was dropped into the system in about 2 hours from a dropping funnel previously charged with a mixed solution consisting of 375 parts of GMA, 375 parts of IBXMA, and 22.5 parts of AIBN. After keeping the temperature, 10 parts of AIBN were charged and kept for 1 hour. Then, it heated up at 120 degreeC and heat-retained for 2 hours. It cooled to 60 degreeC and the solution of the copolymer (A7) was obtained. The weight average molecular weight of (A7) is 22,000 (based on polystyrene conversion by GPC). The glass transition temperature was 101 ° C. (calculated value).
Subsequently, the nitrogen introduction tube was replaced with an air introduction tube, and AA 253.5 parts, methoquinone 2.3 parts and triphenylphosphine 6.0 parts were charged and mixed, and then heated to 110 ° C. under air bubbling. . After incubating at the same temperature for 8 hours, 1.6 parts of methoquinone was charged, cooled, and ethyl acetate was added so that the non-volatile content was 50% to obtain a solution of the reaction product (B7). The weight average molecular weight of the reaction product (B7) was 37,000 (in terms of polystyrene by GPC), and T mg as measured by DSC of the dried coating film was 29.5 ° C.

製造例8
撹拌装置、冷却器、滴下ロ−ト、温度計を備えた反応装置にMIBK-ST(日産化学(株)製)500部、KBM−5103(信越化学工業(株)製) 15部、MIBK 35部を仕込んだ後、系内温度が80℃になるまで昇温し、80℃で2時間半撹拌後、冷却して、不揮発分が30%となるようMIBKを加え、50%粒子径が2.6nmのビニル基含有シリカ粒子(C1)を得た。
Production Example 8
In a reactor equipped with a stirrer, a cooler, a dropping funnel and a thermometer, 500 parts of MIBK-ST (Nissan Chemical Co., Ltd.), 15 parts of KBM-5103 (manufactured by Shin-Etsu Chemical Co., Ltd.), 15 parts, MIBK 35 Then, the system was heated to an internal temperature of 80 ° C., stirred at 80 ° C. for 2.5 hours, cooled, and MIBK was added so that the non-volatile content was 30%. .6 nm vinyl group-containing silica particles (C1) were obtained.

製造例9
撹拌装置、冷却器、滴下ロ−ト、温度計を備えた反応装置にMIBK-ST(日産化学(株)製)500部、KBM−5103 30部、MIBK 70部を仕込んだ後、系内温度が80℃になるまで昇温し、80℃で2時間半撹拌後、冷却して、不揮発分が30%となるようMIBKを加え、50%粒子径が3.0nmのビニル基含有シリカ粒子(C2)を得た。
Production Example 9
After charging 500 parts of MIBK-ST (Nissan Chemical Co., Ltd.), 30 parts of KBM-5103, and 70 parts of MIBK in a reactor equipped with a stirrer, a cooler, a dropping funnel, and a thermometer, the system temperature The mixture was heated to 80 ° C., stirred for 2 hours and a half at 80 ° C., cooled, MIBK was added so that the non-volatile content was 30%, and vinyl group-containing silica particles having a 50% particle size of 3.0 nm ( C2) was obtained.

製造例10
撹拌装置、冷却器、滴下ロ−ト、温度計を備えた反応装置にIPA−ST(日産化学(株)製)500部、KBM−503(信越化学工業(株)製)10部、IPA 23.3部を仕込んだ後、系内温度が80℃になるまで昇温し、80℃で2時間半撹拌後、冷却して、不揮発分が30%となるようIPAを加え、50%粒子径が4.6nmのビニル基含有シリカ粒子(C3)を得た。
Production Example 10
IPA-ST (Nissan Chemical Co., Ltd.) 500 parts, KBM-503 (Shin-Etsu Chemical Co., Ltd.) 10 parts, IPA 23 in a reactor equipped with a stirrer, cooler, dropping funnel and thermometer After charging 3 parts, the temperature inside the system was raised to 80 ° C., stirred for 2 hours and a half at 80 ° C., cooled, and IPA was added so that the non-volatile content was 30%. Produced vinyl group-containing silica particles (C3) of 4.6 nm.

製造例11
撹拌装置、冷却器、滴下ロ−ト、温度計を備えた反応装置にIPA−ST−L(日産化学(株)製)500部、KBM−503 10部、MIBK 23.3部を仕込んだ後、系内温度が80℃になるまで昇温し、80℃で2時間半撹拌後、冷却して、不揮発分が30%となるようIPAを加え、50%粒子径が5.4nmのビニル基含有シリカ粒子(C4)を得た。
Production Example 11
After charging IPA-ST-L (manufactured by Nissan Chemical Co., Ltd.) 500 parts, KBM-503 10 parts, MIBK 23.3 parts into a reaction apparatus equipped with a stirrer, a cooler, a dropping funnel and a thermometer The system was heated to an internal temperature of 80 ° C., stirred at 80 ° C. for 2 and a half hours, cooled, and added with IPA so that the non-volatile content was 30%, and a vinyl group having a 50% particle size of 5.4 nm. Containing silica particles (C4) were obtained.

製造例12
撹拌装置、冷却器、滴下ロ−ト、温度計を備えた反応装置にビスコート300(大阪有機化学工業(株)製)404部、VESTANAT T 1890E 300部、MIBK 173部、ヒドロキノンモノメチルエーテル0.61部を仕込んだ後、系内温度が40℃になるまで昇温し、2−エチルヘキサン酸スズ0.25部を加えた。80℃で5時間半撹拌後、IRスペクトルでイソシアネート基の吸収2270cm−1が消滅したことを確認し、ヒドロキノンモノメチルエーテル0.61部を加え、冷却して、不揮発分が70%となるようMIBKを加え、ラジカル重合性単量体(D1)を得た。
Production Example 12
A reactor equipped with a stirrer, a cooler, a dropping funnel, a thermometer, 404 parts of Biscoat 300 (manufactured by Osaka Organic Chemical Industry Co., Ltd.), 300 parts of VESTANAT T 1890E, 173 parts of MIBK, 0.61 of hydroquinone monomethyl ether Then, the temperature was raised until the system temperature reached 40 ° C., and 0.25 part of tin 2-ethylhexanoate was added. After stirring at 80 ° C. for 5 and a half hours, it was confirmed by IR spectrum that the absorption of isocyanate group 2270 cm −1 had disappeared, and 0.61 part of hydroquinone monomethyl ether was added and cooled, so that the nonvolatile content became 70%. Was added to obtain a radical polymerizable monomer (D1).

実施例1
ガラス瓶に製造例2で調整した反応物(B2)96部、製造例8で調整したビニル基含有シリカ粒子(C1)133.3部、製造例12で調製したラジカル重合性単量体(D1)8.5部、ラジカル重合性単量体ジペンタエリスリトールヘキサアクリレート(商品名:アロニックスM−405 東亜合成(株)製 以下、M−405という)(D2)6部、イルガキュア2959(チバ・スペシャルティ・ケミカルズ社製)5部、TEGO RAD 2500(デグサ社製)0.5部を加え、不揮発分が40%となるようMIBKを加え、賦形用樹脂組成物溶液を得た。
Example 1
96 parts of reaction product (B2) prepared in Production Example 2 in a glass bottle, 133.3 parts of vinyl group-containing silica particles (C1) prepared in Production Example 8, and radical polymerizable monomer (D1) prepared in Production Example 12 8.5 parts, radical polymerizable monomer dipentaerythritol hexaacrylate (trade name: Aronix M-405 manufactured by Toa Gosei Co., Ltd., hereinafter referred to as M-405) (D2) 6 parts, Irgacure 2959 (Ciba Specialty) 5 parts of Chemicals) and 0.5 part of TEGO RAD 2500 (Degussa) were added, and MIBK was added so that the non-volatile content would be 40% to obtain a resin composition solution for shaping.

実施例2
ガラス瓶に製造例2で調整した反応物(B2)96部、製造例8で調整したビニル基含有シリカ粒子(C1)133.3部、製造例12で調製したラジカル重合性単量体(D1)17.1部、イルガキュア2959 5部、TEGO RAD 2200N(デグサ社製)0.5部を加え、不揮発分が40%となるようMIBKを加え、賦形用樹脂組成物溶液を得た。
Example 2
96 parts of reaction product (B2) prepared in Production Example 2 in a glass bottle, 133.3 parts of vinyl group-containing silica particles (C1) prepared in Production Example 8, and radical polymerizable monomer (D1) prepared in Production Example 12 17.1 parts, 5 parts of Irgacure 2959, 0.5 parts of TEGO RAD 2200N (manufactured by Degussa) were added, and MIBK was added so that the nonvolatile content was 40% to obtain a resin composition solution for shaping.

実施例3
ガラス瓶に製造例5で調整した反応物(B5)84部、製造例8で調整したビニル基含有シリカ粒子(C1)100部、M−405(D2)28部、イルガキュア2959 5部、TEGO RAD 2200N 0.5部を加え、不揮発分が40%となるようMIBKを加え、賦形用樹脂組成物溶液を得た。
Example 3
84 parts of reaction product (B5) prepared in Production Example 5 in a glass bottle, 100 parts of vinyl group-containing silica particles (C1) prepared in Production Example 8, 28 parts of M-405 (D2), 5 parts of Irgacure 2959, TEGO RAD 2200N 0.5 part was added and MIBK was added so that a non-volatile content might be 40%, and the resin composition solution for shaping was obtained.

実施例4
ガラス瓶に製造例4で調整した反応物(B4)200部、イルガキュア2959 5部、TEGO RAD 2200N 0.5部を加え、不揮発分が40%となるようMIBKを加え、賦形用樹脂組成物溶液を得た。
Example 4
200 parts of the reaction product (B4) prepared in Production Example 4, 5 parts of Irgacure 2959, 0.5 part of TEGO RAD 2200N were added to the glass bottle, MIBK was added so that the nonvolatile content was 40%, and the resin composition solution for shaping Got.

実施例5
ガラス瓶に製造例1で調整した反応物(B1)200部、イルガキュア2959 5部、TEGO RAD 2200N 0.5部を加え、不揮発分が40%となるようMIBKを加え、賦形用樹脂組成物溶液を得た。
Example 5
200 parts of reaction product (B1) prepared in Production Example 1, 5 parts of Irgacure 2959, 0.5 part of TEGO RAD 2200N were added to a glass bottle, MIBK was added so that the non-volatile content was 40%, and the resin composition solution for shaping Got.

実施例6
ガラス瓶に製造例3で調整した反応物(B3)200部、イルガキュア2959 5部、TEGO RAD 2200N 0.5部を加え、不揮発分が40%となるようMIBKを加え、賦形用樹脂組成物溶液を得た。
Example 6
200 parts of the reaction product (B3) prepared in Production Example 3, 5 parts of Irgacure 2959, 0.5 part of TEGO RAD 2200N were added to a glass bottle, MIBK was added so that the nonvolatile content was 40%, and the resin composition solution for shaping Got.

実施例7
ガラス瓶に製造例2で調整した反応物(B2)96部、製造例10で調整したビニル基含有シリカ粒子(C3)133.3部、製造例12で調製したラジカル重合性単量体(D1)17.1部、イルガキュア2959 5部、TEGO RAD 2200N(デグサ社製)0.5部を加え、不揮発分が40%となるようMIBKを加え、賦形用樹脂組成物溶液を得た。
Example 7
96 parts of reaction product (B2) prepared in Production Example 2 in a glass bottle, 133.3 parts of vinyl group-containing silica particles (C3) prepared in Production Example 10, and radical polymerizable monomer (D1) prepared in Production Example 12 17.1 parts, 5 parts of Irgacure 2959, 0.5 parts of TEGO RAD 2200N (manufactured by Degussa) were added, and MIBK was added so that the nonvolatile content was 40% to obtain a resin composition solution for shaping.

実施例8
ガラス瓶に製造例2で調整した反応物(B2)96部、製造例11で調整したビニル基含有シリカ粒子(C4)133.3部、製造例12で調製したラジカル重合性単量体(D1)17.1部、イルガキュア2959 5部、TEGO RAD 2200N(デグサ社製)0.5部を加え、不揮発分が40%となるようMIBKを加え、賦形用樹脂組成物溶液を得た。
Example 8
96 parts of reaction product (B2) prepared in Production Example 2 in a glass bottle, 133.3 parts of vinyl group-containing silica particles (C4) prepared in Production Example 11, and radical polymerizable monomer (D1) prepared in Production Example 12 17.1 parts, 5 parts of Irgacure 2959, 0.5 parts of TEGO RAD 2200N (manufactured by Degussa) were added, and MIBK was added so that the nonvolatile content was 40% to obtain a resin composition solution for shaping.

実施例9
ガラス瓶に製造例2で調整した反応物(B6)96部、製造例8で調整したビニル基含有シリカ粒子(C1)133.3部、製造例12で調製したラジカル重合性単量体(D1)17.1部、イルガキュア2959 5部、TEGO RAD 2200N(デグサ社製)0.5部を加え、不揮発分が40%となるようMIBKを加え、賦形用樹脂組成物溶液を得た。
Example 9
96 parts of reaction product (B6) prepared in Production Example 2 in a glass bottle, 133.3 parts of vinyl group-containing silica particles (C1) prepared in Production Example 8, and radical polymerizable monomer (D1) prepared in Production Example 12 17.1 parts, 5 parts of Irgacure 2959, 0.5 parts of TEGO RAD 2200N (manufactured by Degussa) were added, and MIBK was added so that the nonvolatile content was 40% to obtain a resin composition solution for shaping.

実施例10
ガラス瓶に製造例2で調整した反応物(B7)96部、製造例8で調整したビニル基含有シリカ粒子(C1)133.3部、製造例12で調製したラジカル重合性単量体(D1)17.1部、イルガキュア2959 5部、TEGO RAD 2200N(デグサ社製)0.5部を加え、不揮発分が40%となるようMIBKを加え、賦形用樹脂組成物溶液を得た。
Example 10
96 parts of reaction product (B7) prepared in Production Example 2 in a glass bottle, 133.3 parts of vinyl group-containing silica particles (C1) prepared in Production Example 8, and radical polymerizable monomer (D1) prepared in Production Example 12 17.1 parts, 5 parts of Irgacure 2959, 0.5 parts of TEGO RAD 2200N (manufactured by Degussa) were added, and MIBK was added so that the nonvolatile content was 40% to obtain a resin composition solution for shaping.

比較例1
M−405(D2)100部、イルガキュア2959 5部、TEGO RAD 2200N 0.5部を加え、不揮発分が40%となるようMIBKを加え、賦形用樹脂組成物溶液を得た。
Comparative Example 1
100 parts of M-405 (D2), 5 parts of Irgacure 2959, 0.5 part of TEGO RAD 2200N were added, and MIBK was added so that the non-volatile content was 40% to obtain a resin composition solution for shaping.

比較例2
製造例12で調製したラジカル重合性単量体(D1)142.9部、イルガキュア2959(チバ・ジャパン社製)5部、TEGO RAD 2200N 0.5部を加え、不揮発分が40%となるようMIBKを加え、賦形用樹脂組成物溶液を得た。
Comparative Example 2
Add 142.9 parts of radically polymerizable monomer (D1) prepared in Production Example 12, 5 parts of Irgacure 2959 (manufactured by Ciba Japan), 0.5 part of TEGO RAD 2200N so that the nonvolatile content is 40%. MIBK was added to obtain a resin composition solution for shaping.

比較例3
製造例8で調整したビニル基含有シリカ粒子(C1)166.7部、製造例12で調製したラジカル重合性単量体(D1)71.4部、イルガキュア2959 5部、TEGO RAD 2200N 0.5部を加え、不揮発分が40%となるようMIBKを加え、賦形用樹脂組成物溶液を得た。
Comparative Example 3
166.7 parts of vinyl group-containing silica particles (C1) prepared in Production Example 8, 71.4 parts of radical polymerizable monomer (D1) prepared in Production Example 12, 5 parts of Irgacure 2959, TEGO RAD 2200N 0.5 Part was added, and MIBK was added so that a non volatile matter might be 40%, and the resin composition solution for shaping was obtained.

比較例4
M−405(D2)70部、MIBK−ST 100部、イルガキュア2959 5部、TEGO RAD 2200N 0.5部を加え、不揮発分が40%となるようMIBKを加え、賦形用樹脂組成物溶液を得た。
Comparative Example 4
M-405 (D2) 70 parts, MIBK-ST 100 parts, Irgacure 2959 5 parts, TEGO RAD 2200N 0.5 part, MIBK is added so that the non-volatile content becomes 40%, and the resin composition solution for shaping is added. Obtained.

比較例5
製造例9で調整したビニル基含有シリカ粒子(C2)166.7部、製造例12で調製したラジカル重合性単量体(D1)71.4部、イルガキュア2959 5部、TEGO RAD 2200N 0.5部を加え、不揮発分が40%となるようMIBKを加え、賦形用樹脂組成物溶液を得た。
Comparative Example 5
166.7 parts of vinyl group-containing silica particles (C2) prepared in Production Example 9, 71.4 parts of radical polymerizable monomer (D1) prepared in Production Example 12, 5 parts of Irgacure 2959, TEGO RAD 2200N 0.5 Part was added, and MIBK was added so that a non volatile matter might be 40%, and the resin composition solution for shaping was obtained.

Figure 0005402292
Figure 0005402292

Claims (10)

エポキシ基を有するラジカル重合性ビニル単量体(a1)を含有するラジカル重合成分(a)の重合体(A)カルボキシル基を有するラジカル重合性ビニル単量体(b)を反応させて得られる反応物(B)と、ビニル基含有シリカ粒子(C)とを含有する活性エネルギー線硬化型賦型用樹脂組成物。 Obtained by reacting the polymer (A) of the radical polymerization component (a) containing the radical polymerizable vinyl monomer (a1) having an epoxy group with the radical polymerizable vinyl monomer (b) having a carboxyl group. An active energy ray-curable resin composition for shaping, comprising a reaction product (B) and vinyl group-containing silica particles (C) . 反応物(B)を乾燥塗膜としたときのガラス転移温度が−10〜30℃である請求項に記載の活性エネルギー線硬化型賦型用樹脂組成物。 2. The active energy ray-curable resin composition for molding according to claim 1 , wherein the reaction product (B) has a glass transition temperature of -10 to 30 [deg.] C. when the dried coating film is used. ラジカル重合成分(a)が、単独重合した際の重合体のガラス転移温度が100℃以上であるラジカル重合性モノマーを(a)成分中5〜50重量%含有する請求項1または2に記載の活性エネルギー線硬化型賦型用樹脂組成物。 Radical polymerization component (a) is homopolymerized during polymer glass transition temperature according to claim 1 or 2 containing a radical polymerizable monomer is 100 ° C. or higher (a) 5 to 50 wt% in the component of Active energy ray-curable resin composition for shaping. ビニル基含有シリカ粒子(C)の50%粒子径が2〜10nmである請求項2〜のいずれかに記載の活性エネルギー線硬化型賦型用樹脂組成物。 The active energy ray-curable resin composition for molding according to any one of claims 2 to 3 , wherein the vinyl group-containing silica particles (C) have a 50% particle diameter of 2 to 10 nm. ビニル基含有シリカ粒子(C)が、シリカ粒子(c1)100重量部に対し、ビニル基を有するシランカップリング剤(c2)を5〜15重量部反応させたものである請求項のいずれかに記載の活性エネルギー線硬化型賦型用樹脂組成物。 Vinyl group-containing silica particles (C) is silica particles (c1) 100 parts by weight of, of claims 1 to 4, is obtained by 5-15 parts by weight reactive silane coupling agent (c2) having a vinyl group The active energy ray-curable resin composition for shaping according to any one of the above. 更に1分子中に(メタ)アクリロイル基を少なくとも4つ有するラジカル重合性単量体(D)を含有する請求項1〜のいずれかに記載の活性エネルギー線硬化型賦型用樹脂組成物。 The active energy ray-curable resin composition for molding according to any one of claims 1 to 5 , further comprising a radical polymerizable monomer (D) having at least four (meth) acryloyl groups in one molecule. 請求項1〜のいずれかに記載の活性エネルギー線硬化型賦型用樹脂組成物が塗布して得られる賦型層が表面に設けられた成形体。 The molded object by which the shaping layer obtained by apply | coating the resin composition for active energy ray hardening type shaping | molding in any one of Claims 1-6 was provided in the surface. 成形体がフィルムまたはシートである請求項の成形体。 The molded article according to claim 7 , wherein the molded article is a film or a sheet. 請求項に記載の成形体の表面に押圧成形後、硬化させて得られる表面に微細凹凸形状が設けられた成形体。 The molded object provided with the fine uneven | corrugated shape on the surface obtained by making it harden | cure after press-molding on the surface of the molded object of Claim 7 . 請求項に記載の成形体の表面に押圧成形後、硬化させて得られる表面に微細凹凸形状が設けられた光学部品。 An optical component having a fine uneven shape on a surface obtained by press-molding the surface of the molded product according to claim 7 and then curing the molded product.
JP2009146723A 2008-06-20 2009-06-19 Active energy ray-curable resin composition for molding, molded body having a molding layer provided on the surface, molded article having a fine uneven shape on the surface, and optical component Active JP5402292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009146723A JP5402292B2 (en) 2008-06-20 2009-06-19 Active energy ray-curable resin composition for molding, molded body having a molding layer provided on the surface, molded article having a fine uneven shape on the surface, and optical component

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008161218 2008-06-20
JP2008161218 2008-06-20
JP2009146723A JP5402292B2 (en) 2008-06-20 2009-06-19 Active energy ray-curable resin composition for molding, molded body having a molding layer provided on the surface, molded article having a fine uneven shape on the surface, and optical component

Publications (2)

Publication Number Publication Date
JP2010024447A JP2010024447A (en) 2010-02-04
JP5402292B2 true JP5402292B2 (en) 2014-01-29

Family

ID=41730553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009146723A Active JP5402292B2 (en) 2008-06-20 2009-06-19 Active energy ray-curable resin composition for molding, molded body having a molding layer provided on the surface, molded article having a fine uneven shape on the surface, and optical component

Country Status (1)

Country Link
JP (1) JP5402292B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103717629B (en) * 2011-08-10 2016-05-18 大阪有机化学工业株式会社 Adamantane based polymer
JP5957865B2 (en) * 2011-12-06 2016-07-27 大日本印刷株式会社 Manufacturing method of molding sheet, manufacturing method of resin-coated molding sheet, and manufacturing method of optical sheet
JP6526552B2 (en) * 2015-12-21 2019-06-05 東レ・ファインケミカル株式会社 Photosensitive polymer used for producing color filter member and photosensitive polymer
JP6767170B2 (en) * 2016-05-31 2020-10-14 三洋化成工業株式会社 Active energy ray-curable composition
KR102350325B1 (en) * 2017-03-23 2022-01-11 아라까와 가가꾸 고교 가부시끼가이샤 Active-energy-ray curable hard coating agent, curable coating film, laminated film
JP6393384B1 (en) * 2017-10-06 2018-09-19 日本ペイント・オートモーティブコーティングス株式会社 Method for forming antiglare hard coat layer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4046482B2 (en) * 2000-07-05 2008-02-13 三菱レイヨン株式会社 Photocurable resin composition, photocurable sheet and method for producing insert molded product
JP4015471B2 (en) * 2001-06-28 2007-11-28 大日本印刷株式会社 Photocurable resin composition, fine uneven pattern transfer foil, optical article, stamper, and method for forming fine uneven pattern

Also Published As

Publication number Publication date
JP2010024447A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP5125507B2 (en) Resin composition, cured film and laminate
JP4003800B2 (en) Active energy ray-curable resin composition for film protective layer and film using the same
JP4066870B2 (en) Liquid curable composition, cured film and antistatic laminate
JP5731817B2 (en) Water-absorbent resin composition and laminate using the same
JP6007789B2 (en) Acrylic resin composition, acrylic resin sheet, acrylic resin laminate, and production method thereof
JP5402292B2 (en) Active energy ray-curable resin composition for molding, molded body having a molding layer provided on the surface, molded article having a fine uneven shape on the surface, and optical component
JP4929624B2 (en) Curable composition, cured product thereof and laminate
JP4360510B2 (en) Film having cured film of radiation curable resin composition
JP5092907B2 (en) Active energy ray curable resin composition, active energy ray curable hard coating agent, cured film using these, and article having cured film
JP2013537857A (en) Curable resin composition and multilayer laminate produced using the same
JP5017809B2 (en) Antireflection film for transfer, transfer method using the same, and display device
JP5163946B2 (en) Active energy ray-curable resin composition, coating agent composition, coating agent for vapor deposition anchor layer, and cured film
JP2008069303A (en) Curl inhibitor, active energy ray-curable resin composition and film substrate
JP2010100817A (en) Active energy ray-curable resin composition for coating and film substrate
JP6295652B2 (en) Photocurable polymer, photocurable resin composition, cured product thereof, and cured coating film
JP4321319B2 (en) Liquid curable composition, cured film and antistatic laminate
JP2005068369A (en) Liquid state curable composition, cured film and laminated material for static prevention
JPWO2018105442A1 (en) Active energy ray-curable resin composition and laminated film
JPWO2008123358A1 (en) Active energy ray-curable resin composition for cast polymerization and cured product
JP5605111B2 (en) Antistatic laminate
JP2006348069A (en) Liquid curable composition and its cured film
JP2009263410A (en) Active energy ray-curing type resin composition, active energy ray-curable coating material, and molded article
JP4348992B2 (en) Transfer material, method for producing the same, and transfer product
JP2023054872A (en) Antireflection film, method for using the same and plastic molded article using the same
JP6268663B2 (en) Active energy ray curable resin composition, active energy ray curable coating agent, active energy ray curable product and molded article thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R150 Certificate of patent or registration of utility model

Ref document number: 5402292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250