JP5397218B2 - CMP slurry for silicon film - Google Patents

CMP slurry for silicon film Download PDF

Info

Publication number
JP5397218B2
JP5397218B2 JP2009501161A JP2009501161A JP5397218B2 JP 5397218 B2 JP5397218 B2 JP 5397218B2 JP 2009501161 A JP2009501161 A JP 2009501161A JP 2009501161 A JP2009501161 A JP 2009501161A JP 5397218 B2 JP5397218 B2 JP 5397218B2
Authority
JP
Japan
Prior art keywords
film
silicon
polishing
cmp slurry
polishing rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009501161A
Other languages
Japanese (ja)
Other versions
JPWO2008105223A1 (en
Inventor
武憲 成田
雅也 西山
寅之助 芦沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2009501161A priority Critical patent/JP5397218B2/en
Publication of JPWO2008105223A1 publication Critical patent/JPWO2008105223A1/en
Application granted granted Critical
Publication of JP5397218B2 publication Critical patent/JP5397218B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Description

本発明は、コンタクトプラグ形成に使われるシリコン膜のCMP(Chemical Mechanical Polishing)において、少ない工程数で、優れた平坦性とウエハー面内均一性を得ることができるシリコン膜用CMPスラリーに関する。   The present invention relates to a CMP slurry for a silicon film that can provide excellent flatness and wafer in-plane uniformity with a small number of steps in CMP (Chemical Mechanical Polishing) of a silicon film used for forming a contact plug.

半導体素子の高集積化のため、特にDRAM、SRAMのようなメモリー素子では、MOSトランジスタのソース及びドレインと上層配線の接続のため、セルフアライン方式によるコンタクトプラグの形成が必須となっている。図1に、セルフアライン方式でコンタクトホールを形成した後、導電材となるポリシリコン膜をウエハー全面に形成したときの半導体素子の断面の模式図を示す。図1において、1はシリコン基板、2はゲート絶縁膜、3はゲート構造を示す。ゲート構造3は、導電層の上に絶縁膜のゲートキャップ層4を有した構造となっている。ゲートの導電層には、金属シリサイド9とポリシリコン10からなる2層構造が用いられ、ゲートキャップ層4にはシリコン窒化膜が用いられる。5はゲートスペーサー、6はエッチストパーを示し、ゲートスペーサー5及びエッチストパー6にはシリコン窒化膜が用いられる。7は絶縁膜を示し、絶縁膜7にはシリコン酸化膜又はBPSG膜などが用いられる。   In order to increase the integration density of semiconductor elements, in particular in memory elements such as DRAMs and SRAMs, it is essential to form contact plugs by a self-alignment method in order to connect the source and drain of MOS transistors to the upper layer wiring. FIG. 1 shows a schematic diagram of a cross section of a semiconductor element when a contact hole is formed by a self-alignment method and then a polysilicon film as a conductive material is formed on the entire surface of the wafer. In FIG. 1, 1 is a silicon substrate, 2 is a gate insulating film, and 3 is a gate structure. The gate structure 3 has a structure having a gate cap layer 4 of an insulating film on a conductive layer. A two-layer structure made of metal silicide 9 and polysilicon 10 is used for the gate conductive layer, and a silicon nitride film is used for the gate cap layer 4. 5 denotes a gate spacer, 6 denotes an etch stopper, and a silicon nitride film is used for the gate spacer 5 and the etch stopper 6. Reference numeral 7 denotes an insulating film, and a silicon oxide film or a BPSG film is used for the insulating film 7.

コンタクトホールは、フォトレジストを用いたドライエッチングにより、絶縁膜7を除去することで形成される。8はコンタクトプラグの導電材となるポリシリコン膜を示す。   The contact hole is formed by removing the insulating film 7 by dry etching using a photoresist. Reference numeral 8 denotes a polysilicon film serving as a conductive material for the contact plug.

コンタクトプラグを形成するためには、ポリシリコン膜8の不要な部分をCMPによって除去し、さらに、コンタクトホール間の短絡を防ぐため、ゲートキャップ層4も一部除去する必要がある。但し、ゲートキャップ層4はCMP後も残す必要があるため、ゲートキャップ層4を構成するシリコン窒化膜の研磨速度は速すぎてはいけない。従って、ポリシリコン膜とシリコン窒化膜の研磨速度比、すなわち、ポリシリコン膜の研磨速度:シリコン窒化膜の研磨速度は5〜50:1が適切である。   In order to form a contact plug, it is necessary to remove an unnecessary portion of the polysilicon film 8 by CMP and to remove a part of the gate cap layer 4 in order to prevent a short circuit between contact holes. However, since it is necessary to leave the gate cap layer 4 after CMP, the polishing rate of the silicon nitride film constituting the gate cap layer 4 should not be too high. Accordingly, the polishing rate ratio between the polysilicon film and the silicon nitride film, that is, the polishing rate of the polysilicon film: the polishing rate of the silicon nitride film is appropriately 5 to 50: 1.

ゲートキャップ層4の一部を除去し、ポリシリコン膜8の不要な部分を完全に除去するためのオーバー研磨は、絶縁膜7が露出した状態で行われる。この時、絶縁膜7の研磨速度が大きいと、ゲートキャップ層4が消失し、ゲートの導電層まで研磨が進行し、デバイスの歩留まりや信頼性の低下を招く。そのため、絶縁膜7を構成するシリコン酸化膜の研磨速度が、ゲートキャップ層4を構成するシリコン窒化膜に対して十分小さく、CMPがほぼ停止することが必要となる。但し、シリコン酸化膜が全く研磨されないと、逆に平坦性を損ねる。そのため、シリコン酸化膜の研磨速度は、シリコン窒化膜の1/3〜1/20が適切である。CMP後の半導体素子の断面図を図2に示す。   Over-polishing for removing a part of the gate cap layer 4 and completely removing an unnecessary part of the polysilicon film 8 is performed with the insulating film 7 exposed. At this time, if the polishing rate of the insulating film 7 is high, the gate cap layer 4 disappears and the polishing progresses to the gate conductive layer, leading to a decrease in device yield and reliability. Therefore, the polishing rate of the silicon oxide film that forms the insulating film 7 is sufficiently lower than that of the silicon nitride film that forms the gate cap layer 4, and it is necessary for CMP to substantially stop. However, if the silicon oxide film is not polished at all, the flatness is adversely affected. Therefore, 1/3 to 1/20 of the silicon nitride film is appropriate for the polishing rate of the silicon oxide film. A cross-sectional view of the semiconductor element after CMP is shown in FIG.

図1に示すような半導体素子において、ポリシリコン膜8の膜厚は100〜400nm、ゲートキャップ層4の膜厚は10〜100nm程度である。このような場合に、CMPを1種類のスラリーで実施するためには、ポリシリコン膜の研磨速度は100〜300nm/分、シリコン窒化膜の研磨速度は5.0〜30nm/分、シリコン酸化膜の研磨速度は0.3〜3nm/分が適切であり、ポリシリコン膜とシリコン窒化膜の研磨速度比、すなわち、ポリシリコン膜の研磨速度:シリコン窒化膜の研磨速度は5〜50:1、シリコン窒化膜とシリコン酸化膜の研磨速度比、すなわち、シリコン窒化膜の研磨速度:シリコン酸化膜の研磨速度は3〜20:1が適切である。   In the semiconductor element as shown in FIG. 1, the polysilicon film 8 has a thickness of 100 to 400 nm, and the gate cap layer 4 has a thickness of about 10 to 100 nm. In such a case, in order to perform CMP with one kind of slurry, the polishing rate of the polysilicon film is 100 to 300 nm / min, the polishing rate of the silicon nitride film is 5.0 to 30 nm / min, and the silicon oxide film A polishing rate of 0.3 to 3 nm / min is appropriate, and a polishing rate ratio between the polysilicon film and the silicon nitride film, that is, a polishing rate of the polysilicon film: a polishing rate of the silicon nitride film is 5 to 50: 1, The polishing rate ratio between the silicon nitride film and the silicon oxide film, that is, the polishing rate of the silicon nitride film: the polishing rate of the silicon oxide film is suitably 3 to 20: 1.

しかし、従来の技術では、ポリシリコン膜、シリコン窒化膜、シリコン酸化膜に対して、1種類のスラリーで上記の研磨速度と研磨速度比が得られるスラリーはなかった。そのため、2種類のスラリーを用いて2段階のCMPを行うなどの方法が必要となり、プロセスコストの増大が大きな問題となっていた。   However, in the prior art, there is no slurry that can obtain the above polishing rate and polishing rate ratio with one type of slurry with respect to the polysilicon film, silicon nitride film, and silicon oxide film. Therefore, a method such as performing two-stage CMP using two types of slurry is required, and an increase in process cost has been a big problem.

米国特許出願公開第2006/0105569号明細書には、ポリシリコン膜の研磨速度:シリコン窒化膜の研磨速度:シリコン酸化膜の研磨速度が、1:1:1〜4:1:1となるCMP条件で1種類のスラリーでCMPを行なう方法が示されている。しかし、この方法では、シリコン窒化膜とシリコン酸化膜の研磨速度比、すなわち、シリコン窒化膜の研磨速度:シリコン酸化膜の研磨速度が1:1と小さいため、シリコン酸化膜がCMPの停止層にならず、研磨量の制御が難しいと考えられる。   US Patent Application Publication No. 2006/0105569 describes a CMP in which the polishing rate of a polysilicon film: the polishing rate of a silicon nitride film: the polishing rate of a silicon oxide film is 1: 1: 1 to 4: 1: 1. A method of performing CMP with one kind of slurry under conditions is shown. However, in this method, since the polishing rate ratio between the silicon nitride film and the silicon oxide film, that is, the polishing rate of the silicon nitride film: the polishing rate of the silicon oxide film is as small as 1: 1, the silicon oxide film becomes the CMP stop layer. Therefore, it is considered difficult to control the polishing amount.

特開2002−305167号公報には、ポリエチレンイミンとコリン誘導体を含む研磨液を用いる方法が提案されている。この研磨液では、ポリシリコン膜の研磨速度600nm/分、シリコン酸化膜の研磨速度15.2nm/分、シリコン窒化膜の研磨速度33.4nm/分が得られるとされている。しかし、この方法でも、シリコン窒化膜とシリコン酸化膜の研磨速度比、すなわち、シリコン窒化膜の研磨速度:シリコン酸化膜の研磨速度が2.2:1と小さいため、シリコン酸化膜がCMPの停止層にならず、研磨量の制御が難しいと考えられる。   Japanese Patent Laid-Open No. 2002-305167 proposes a method using a polishing liquid containing polyethyleneimine and a choline derivative. With this polishing liquid, it is said that a polysilicon film polishing rate of 600 nm / min, a silicon oxide film polishing rate of 15.2 nm / min, and a silicon nitride film polishing rate of 33.4 nm / min can be obtained. However, even in this method, since the polishing rate ratio between the silicon nitride film and the silicon oxide film, that is, the polishing rate of the silicon nitride film: the polishing rate of the silicon oxide film is as small as 2.2: 1, the silicon oxide film stops the CMP. It is considered that it is difficult to control the polishing amount without forming a layer.

特許第3457144号公報には、塩基性有機化合物を含むポリシリコン研磨用組成物を用いる方法が示されている。この方法では、ポリシリコン膜とシリコン酸化膜の研磨速度比が大きいが、シリコン窒化膜の研磨速度が遅いため、コンタクトプラグ形成のCMPを1種類のスラリーで実施することは出来ない。   Japanese Patent No. 3457144 discloses a method using a polysilicon polishing composition containing a basic organic compound. In this method, the polishing rate ratio between the polysilicon film and the silicon oxide film is large, but because the polishing rate of the silicon nitride film is low, the CMP for forming the contact plug cannot be performed with one type of slurry.

特許第3190742号公報には、燐酸を含む研磨剤を用いてシリコン窒化膜を研磨する方法が示されている。この方法では、シリコン窒化膜の研磨速度は120nm/分、シリコン酸化膜の研磨速度は15nm/分であり、シリコン窒化膜に対するシリコン酸化膜の研磨速度比は十分小さいが、ポリシリコン膜の研磨速度が70nm/分と遅い。そのため、この場合も、コンタクトプラグ形成のCMPを1種類のスラリーで実施することは出来ない。   Japanese Patent No. 3190742 discloses a method of polishing a silicon nitride film using an abrasive containing phosphoric acid. In this method, the polishing rate of the silicon nitride film is 120 nm / min, the polishing rate of the silicon oxide film is 15 nm / min, and the polishing rate ratio of the silicon oxide film to the silicon nitride film is sufficiently small. Is slow at 70 nm / min. Therefore, also in this case, the CMP for forming the contact plug cannot be performed with one type of slurry.

このように、コンタクトプラグ形成のCMPを1種類のスラリーで実施可能なCMPスラリーは従来技術では得られていない。   As described above, no CMP slurry capable of performing contact plug formation CMP with one type of slurry has been obtained in the prior art.

本発明の課題は、セルフアライン方式によるコンタクトプラグ形成のためのCMPを1種類のスラリーで実施することができるシリコン膜用CMPスラリーを提供することであり、さらには、半導体素子の製造コスト低減が可能なシリコン膜用CMPスラリーを提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a CMP slurry for silicon film that can perform CMP for forming a contact plug by a self-alignment method with one kind of slurry. It is to provide a CMP slurry for a silicon film.

本発明は、カチオン性界面活性剤を用いることで上記課題を解決するシリコン膜用CMPスラリーに関する。また本発明の別の側面としては、砥粒、カチオン性界面活性剤及び水を含有し、pHを最適範囲に調整してなるシリコン膜用CMPスラリーに関する。   The present invention relates to a CMP slurry for silicon film that solves the above problems by using a cationic surfactant. Another aspect of the present invention relates to a CMP slurry for a silicon film containing abrasive grains, a cationic surfactant and water and adjusting the pH to an optimum range.

本発明のシリコン膜用CMPスラリーによれば、シリコン膜、シリコン窒化膜、シリコン酸化膜の各膜を適切な研磨速度と研磨速度比でCMPすることが出来るため、半導体素子のセルフアラインコンタクトプラグ形成のためのCMPを1種類のスラリーで行うことが出来る。それによって、半導体素子の製造コスト低減が可能である。   According to the CMP slurry for silicon film of the present invention, a silicon film, a silicon nitride film, and a silicon oxide film can be CMPed at an appropriate polishing rate and polishing rate ratio. CMP can be performed with one kind of slurry. Thereby, the manufacturing cost of the semiconductor element can be reduced.

図1は、CMP前の半導体素子を示す断面図である。FIG. 1 is a cross-sectional view showing a semiconductor element before CMP. 図2は、CMP後の半導体素子を示す断面図である。FIG. 2 is a cross-sectional view showing the semiconductor element after CMP.

以下に発明を実施するための最良の形態について詳述する。   The best mode for carrying out the invention will be described in detail below.

本発明のシリコン膜用CMPスラリーは、その実施態様の一つとして、砥粒、カチオン性界面活性剤及び水を含有するものであり、ポリシリコン膜又はアモルファスシリコン膜などのシリコン膜のCMPに有用である。   The CMP slurry for silicon film of the present invention contains abrasive grains, a cationic surfactant and water as one embodiment, and is useful for CMP of a silicon film such as a polysilicon film or an amorphous silicon film. It is.

本発明で用いられる砥粒は、シリカ、アルミナ、セリア、ジルコニア、チタニア、ゲルマニア等が例示される。これら砥粒の中ではシリカが好ましく、特にコロイダルシリカは粒径が小さい砥粒を低コストで得られ、研磨傷を低減できる点で好ましい。   Examples of the abrasive grains used in the present invention include silica, alumina, ceria, zirconia, titania, germania and the like. Among these abrasive grains, silica is preferable, and colloidal silica is particularly preferable in that abrasive grains having a small particle diameter can be obtained at low cost and polishing scratches can be reduced.

研磨傷の発生はLSIの歩留まりを低下させるため、微細化したLSIほど研磨傷の低減の要求が厳しくなっている。従って、砥粒の平均粒径として、CMPスラリー作製前の砥粒の二次粒子の平均粒径は、好ましくは5〜150nm、より好ましくは10〜100nmである。また、CMPスラリー作製後の砥粒の二次粒子の平均粒径は、好ましくは5〜200nm、より好ましくは10〜150nmである。CMPスラリー作製前後における砥粒の二次粒子の平均粒径が上記範囲を外れる場合は、研磨傷が発生し易くなる可能性がある。ここで、CMPスラリー作製後とは、CMPスラリー作製から約24時間経過後を指す。また、砥粒の二次粒子の平均粒径は、動的光散乱法により測定できる。具体的には、ベックマンコールター製のサブミクロン粒子アナライザーN5などにより測定することができる。   Since the generation of polishing flaws reduces the yield of LSIs, the demand for reduction of polishing flaws becomes more severe as LSIs become finer. Therefore, the average particle diameter of the secondary particles of the abrasive grains before preparation of the CMP slurry is preferably 5 to 150 nm, more preferably 10 to 100 nm as the average grain diameter of the abrasive grains. Moreover, the average particle diameter of the secondary particles of the abrasive grains after the CMP slurry preparation is preferably 5 to 200 nm, more preferably 10 to 150 nm. When the average particle size of the secondary particles of the abrasive grains before and after the CMP slurry preparation is out of the above range, there is a possibility that polishing scratches are likely to occur. Here, “after CMP slurry preparation” refers to after about 24 hours have elapsed since the CMP slurry preparation. Moreover, the average particle diameter of the secondary particles of the abrasive grains can be measured by a dynamic light scattering method. Specifically, it can be measured by a submicron particle analyzer N5 manufactured by Beckman Coulter.

シリコン膜用CMPスラリー中の砥粒の濃度は、好ましくは0.1〜10重量%、より好ましくは0.5〜5重量%である。前記砥粒の濃度が0.1重量%未満である場合はシリコン膜の研磨速度が遅くなる傾向にあり、10重量%を超える場合は研磨傷が発生し易くなる傾向にある。   The concentration of abrasive grains in the CMP slurry for silicon film is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight. When the concentration of the abrasive grains is less than 0.1% by weight, the polishing rate of the silicon film tends to be slow, and when it exceeds 10% by weight, polishing flaws tend to occur.

本発明では、カチオン性界面活性剤を用いることにより、シリコン膜の高い研磨速度、シリコン酸化膜に対するシリコン窒化膜の十分な研磨速度比、シリコン窒化膜に対するシリコン膜の十分な研磨速度比を得ることができる。また、このような効果を得るために最適なpHは6.0〜8.0の中性領域であり、pHが前記範囲にあることにより、シリコン窒化膜の研磨速度がシリコン酸化膜の研磨速度より速くなり、シリコン酸化膜の研磨速度に対するシリコン窒化膜の研磨速度比が大きくなり、シリコン窒化膜の研磨選択性を高めることが容易となる。pHが8.0より大きいと、シリコン膜の研磨速度は速くなるが、シリコン窒化膜の研磨速度がシリコン酸化膜の研磨速度よりも遅くなるため、結果として適切な研磨速度比が得られない。pHが6.0未満である場合は、シリコン膜の研磨速度が遅くなり、シリコン窒化膜の研磨速度に対するシリコン膜の研磨速度比が小さくなる。なお、それぞれの膜の好ましい研磨速度及び好ましい研磨速度比については後述する。   In the present invention, by using a cationic surfactant, a high polishing rate of the silicon film, a sufficient polishing rate ratio of the silicon nitride film to the silicon oxide film, and a sufficient polishing rate ratio of the silicon film to the silicon nitride film are obtained. Can do. Further, the optimum pH for obtaining such an effect is in a neutral region of 6.0 to 8.0, and the polishing rate of the silicon nitride film is reduced by the polishing rate of the silicon oxide film because the pH is in the above range. It becomes faster, the ratio of the polishing rate of the silicon nitride film to the polishing rate of the silicon oxide film becomes larger, and it becomes easy to improve the polishing selectivity of the silicon nitride film. When the pH is higher than 8.0, the polishing rate of the silicon film is increased, but the polishing rate of the silicon nitride film is slower than the polishing rate of the silicon oxide film, and as a result, an appropriate polishing rate ratio cannot be obtained. When the pH is less than 6.0, the polishing rate of the silicon film becomes slow, and the ratio of the polishing rate of the silicon film to the polishing rate of the silicon nitride film becomes small. A preferable polishing rate and a preferable polishing rate ratio of each film will be described later.

本発明で用いられるカチオン性界面活性剤としては、分子内に親水部分と疎水部分を有する化学的構造を有し、親水部分がCMPスラリー中で正イオンとなるものであれば特に制限はないが、例えば、脂肪族アミンまたはその塩、脂肪族アンモニウム塩等を挙げることができる。   The cationic surfactant used in the present invention is not particularly limited as long as it has a chemical structure having a hydrophilic portion and a hydrophobic portion in the molecule and the hydrophilic portion becomes a positive ion in the CMP slurry. Examples thereof include aliphatic amines or salts thereof, and aliphatic ammonium salts.

上記脂肪族アンモニウム塩としては、下記一般式(1)で表される化合物を使用することが好ましい。   As the aliphatic ammonium salt, a compound represented by the following general formula (1) is preferably used.

[RN(R)]・・・・・(1)
(式中、Rは主鎖の炭素数が8〜18である1価のアルキル基、Rはそれぞれ独立に一価の置換基を示す。)
前記一般式(1)で表される脂肪族アンモニウム塩は、Rとして長鎖の1価のアルキル基を有し、シリコン膜の研磨速度とスラリーの保存安定性の点で、Rは主鎖の炭素数が8〜18である1価のアルキル基が好ましく、10〜16である1価のアルキル基がより好ましい。前記炭素数が小さ過ぎるとシリコン膜の研磨速度が遅くなる傾向にあるため、8以上が好ましく、10以上がより好ましい。前記炭素数が大きすぎるとCMPスラリーの安定性が悪くなる傾向にあるため、18以下が好ましく、16以下がより好ましい。前記一般式(1)においてXは、カチオン部分に対するマイナスイオンとなるものであれば特に制限はないが、例えば、Cl、Br、NO、CHCOO、OH等を挙げることができる。また、前記一般式(1)で表される脂肪族アンモニウム塩は、最終的にCMPスラリー中で一般式(1)で表される化合物になっていればよく、CMPスラリー中で[RN(R)]となる物質とXとなる物質とを水中で混合することで得ても良い。テトラエチルアンモニウムヒドロキシドのような、長鎖アルキル基を有しない4級アンモニウム塩を用いた場合は、特にpH6.0〜8.0の中性領域において、シリコン膜の研磨速度が遅くなり、シリコン酸化膜の研磨速度が速くなってしまう。
[R 1 N (R 2 ) 3 ] + X (1)
(In the formula, R 1 is a monovalent alkyl group having 8 to 18 carbon atoms in the main chain, and R 2 independently represents a monovalent substituent.)
Aliphatic ammonium salt represented by the general formula (1) has a monovalent alkyl group of the long chain as R 1, from the viewpoint of storage stability of the polishing rate and the slurry of the silicon film, R 1 is primary A monovalent alkyl group having 8 to 18 carbon atoms in the chain is preferable, and a monovalent alkyl group having 10 to 16 carbon atoms is more preferable. If the carbon number is too small, the polishing rate of the silicon film tends to be slow, so 8 or more is preferable and 10 or more is more preferable. If the carbon number is too large, the stability of the CMP slurry tends to deteriorate, so 18 or less is preferable, and 16 or less is more preferable. In the general formula (1), X is not particularly limited as long as it becomes a negative ion for the cation moiety, and examples thereof include Cl, Br, NO 3 , CH 3 COO, and OH. Moreover, the aliphatic ammonium salt represented by the general formula (1) may be a compound represented by the general formula (1) in the CMP slurry, and [R 1 N (R 2 ) 3 ] A substance that becomes + and a substance that becomes X may be mixed in water. When a quaternary ammonium salt such as tetraethylammonium hydroxide that does not have a long-chain alkyl group is used, the polishing rate of the silicon film becomes slow, particularly in the neutral region of pH 6.0 to 8.0. The polishing rate of the film is increased.

上記一般式(1)で表される脂肪族アンモニウム塩は、シリコン膜の研磨速度、シリコン窒化膜に対するシリコン膜の研磨速度比、シリコン酸化膜に対するシリコン窒化膜の研磨速度比の点で、Rがメチル基である下記一般式(2)で表されるアルキルトリメチルアンモニウムであることがより好ましい。The aliphatic ammonium salt represented by the general formula (1) is R 2 in terms of the polishing rate of the silicon film, the polishing rate ratio of the silicon film to the silicon nitride film, and the polishing rate ratio of the silicon nitride film to the silicon oxide film. Is more preferably alkyltrimethylammonium represented by the following general formula (2).

[C2n+1N(CH]・・・・・(2)
(式中、nは8〜18の整数である。)
また、上記一般式(1)で表される脂肪族アンモニウム塩として、Rが主鎖の炭素数が8〜18である1価のアルキル基であり、Rの一つがRと同じでその他がメチル基であるジアルキルジメチルアンモニウム、Rの一つがベンジル基、その他がメチル基であるアルキルジメチルベンジルアンモニウムを使用することも好ましい。
[C n H 2n + 1 N (CH 3 ) 3 ] + X (2)
(In the formula, n is an integer of 8 to 18.)
Further, as the aliphatic ammonium salt represented by the general formula (1), a monovalent alkyl radical R 1 is the number of carbon atoms in the main chain having 8 to 18, one of R 2 is the same as R 1 It is also preferred to use a dialkyldimethylammonium whose other is a methyl group, an alkyldimethylbenzylammonium whose one of R 2 is a benzyl group and the other is a methyl group.

上記脂肪アミン又はその塩としては、モノアミン、ジアミン又はそれらの塩が好ましい。脂肪族ジアミンとしては、下記一般式(3)で表される化合物を使用することが好ましい。   As said fatty amine or its salt, a monoamine, diamine, or those salts are preferable. As the aliphatic diamine, a compound represented by the following general formula (3) is preferably used.

N−R−NH・・・・・(3)
(式中、Rは主鎖の炭素数が8〜18である2価のアルキル基を示す。)
また、脂肪族アンモニウムの塩としては、下記一般式(4)で表されるメトニウム化合物を使用することが好ましい。
H 2 N—R 3 —NH 2 (3)
(In the formula, R 3 represents a divalent alkyl group having 8 to 18 carbon atoms in the main chain.)
Moreover, it is preferable to use the methonium compound represented by following General formula (4) as a salt of aliphatic ammonium.

((CHN−R−N(CH2+2X・・・・・(4)
(式中、Rは主鎖の炭素数が8〜18である2価のアルキル基を示す。)
前記一般式(3)又は(4)で表される化合物は、一般式(1)で表される化合物と同等の特性が得られるが、CMPスラリーの泡立ちを低減できる点で優れている。前記一般式(3)又は(4)において、Rは主鎖の炭素数が小さ過ぎるとシリコン膜の研磨速度が遅くなる傾向にあるため、8以上が好ましく、10以上がより好ましい。前記炭素数が大きすぎるとCMPスラリーの安定性が悪くなる傾向にあるため、18以下が好ましく、16以下がより好ましい。前記一般式(4)においてXは、カチオン部分に対するマイナスイオンとなるものであれば特に制限はないが、例えば、Cl、Br、NO、CHCOO、OHなどを挙げることができる。
((CH 3 ) 3 N—R 3 —N (CH 3 ) 3 ) 2+ 2X (4)
(In the formula, R 3 represents a divalent alkyl group having 8 to 18 carbon atoms in the main chain.)
The compound represented by the general formula (3) or (4) has the same characteristics as the compound represented by the general formula (1), but is excellent in that the foaming of the CMP slurry can be reduced. In the general formula (3) or (4), R 3 is preferably 8 or more, more preferably 10 or more, because the polishing rate of the silicon film tends to be slow when the number of carbon atoms in the main chain is too small. If the carbon number is too large, the stability of the CMP slurry tends to deteriorate, so 18 or less is preferable, and 16 or less is more preferable. In the general formula (4), X is not particularly limited as long as it becomes a negative ion with respect to the cation moiety, and examples thereof include Cl, Br, NO 3 , CH 3 COO, and OH.

本発明において用いられるカチオン性界面活性剤の具体例としては、臭化オクチルトリメチルアンモニウム、臭化デシルトリメチルアンモニウム、塩化ラウリルトリメチルアンモニウム、塩化ミリスチルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム、臭化ステアリルトリメチルアンモニウムなどの脂肪族アンモニウム塩;オクチルアミン、デシルアミン、ドデシルアミン、1,8−ジアミノオクタン、1,10−ジアミノデカン、1,12−ジアミノドデカン、1,14−ジアミノテトラデカン、1,16−ジアミノヘキサデカンなどの脂肪族アミン;塩化オクタメトニウム、臭化デカメトニウム、臭化ドデカメトニウム、塩化テトラデカメトニウム、塩化ヘキサデカメトニウムなどのメトニウム化合物;などが挙げられる。   Specific examples of the cationic surfactant used in the present invention include octyltrimethylammonium bromide, decyltrimethylammonium bromide, lauryltrimethylammonium chloride, myristyltrimethylammonium chloride, cetyltrimethylammonium chloride, and stearyltrimethylammonium bromide. Aliphatic ammonium salts; fats such as octylamine, decylamine, dodecylamine, 1,8-diaminooctane, 1,10-diaminodecane, 1,12-diaminododecane, 1,14-diaminotetradecane, 1,16-diaminohexadecane Group amines; methenium compounds such as octamethonium chloride, decamethonium bromide, dodecamethonium bromide, tetradecamethonium chloride, hexadecamethonium chloride;

シリコン膜用CMPスラリー中のカチオン性界面活性剤の濃度は、好ましくは1〜1000ppm、より好ましくは5〜500ppmである(ppmは全て重量換算である)。前記カチオン性界面活性剤の濃度が1ppm未満である場合は、シリコン膜の研磨速度が遅くなり、シリコン窒化膜の研磨速度に対するシリコン膜の研磨速度比が低下する傾向にあり、1000ppmを超える場合は、砥粒の凝集が起こり、CMPスラリーの保存安定性が悪化する傾向にある。   The concentration of the cationic surfactant in the CMP slurry for silicon film is preferably 1 to 1000 ppm, more preferably 5 to 500 ppm (ppm is all in terms of weight). When the concentration of the cationic surfactant is less than 1 ppm, the polishing rate of the silicon film is slow, and the polishing rate ratio of the silicon film to the polishing rate of the silicon nitride film tends to decrease. Aggregation of abrasive grains occurs, and the storage stability of the CMP slurry tends to deteriorate.

本発明においては、カチオン性界面活性剤を添加することで、pH6.0〜8.0の中性領域において、シリコン膜の高い研磨速度と、シリコン酸化膜の低い研磨速度を達成することができ、シリコン窒化膜の研磨速度に対するシリコン膜の研磨速度比、及びシリコン窒化膜の研磨速度に対するシリコン酸化膜の研磨速度比を適切なものとすることができる。   In the present invention, by adding a cationic surfactant, a high polishing rate of the silicon film and a low polishing rate of the silicon oxide film can be achieved in a neutral region of pH 6.0 to 8.0. The ratio of the polishing rate of the silicon film to the polishing rate of the silicon nitride film and the ratio of the polishing rate of the silicon oxide film to the polishing rate of the silicon nitride film can be made appropriate.

本発明のシリコン膜用CMPスラリーは、砥粒が水中にスラリー状に分散したものである。水の配合量は前述した各種成分の合計量に対する残分となる。   The CMP slurry for silicon film of the present invention is a slurry in which abrasive grains are dispersed in water. The amount of water added is the remainder relative to the total amount of the various components described above.

シリコン膜用CMPスラリーのpHは6.0〜8.0であり、好ましくは6.2〜7.8である。本発明のシリコン膜用CMPスラリーは、pHが6.0〜8.0の領域では、pHが低いほどシリコン窒化膜の研磨速度が速くなるのに対し、シリコン膜の研磨速度及びシリコン酸化膜の研磨速度の変化は小さい。そのため、pHを調整することにより、各研磨膜の研磨速度比を容易に調節することが可能である。前記シリコン膜用CMPスラリーのpHが6.0未満である場合は、シリコン膜の研磨速度が遅くなり、シリコン窒化膜の研磨速度が速くなるため、適切な研磨速度比が得られない。前記pHが8.0を超える場合は、シリコン窒化膜の研磨速度がシリコン酸化膜の研磨速度よりも遅くなり、適切な研磨速度比が得られない。CMPスラリーのpHはpHメータを用いることにより測定できる。   The pH of the CMP slurry for silicon film is 6.0 to 8.0, preferably 6.2 to 7.8. In the CMP slurry for silicon film of the present invention, in the region where the pH is 6.0 to 8.0, the lower the pH, the higher the polishing rate of the silicon nitride film, whereas the polishing rate of the silicon film and the silicon oxide film The change in polishing rate is small. Therefore, it is possible to easily adjust the polishing rate ratio of each polishing film by adjusting the pH. When the pH of the CMP slurry for silicon film is less than 6.0, the polishing rate of the silicon film becomes slow and the polishing rate of the silicon nitride film becomes fast, so that an appropriate polishing rate ratio cannot be obtained. When the pH exceeds 8.0, the polishing rate of the silicon nitride film is slower than the polishing rate of the silicon oxide film, and an appropriate polishing rate ratio cannot be obtained. The pH of the CMP slurry can be measured by using a pH meter.

シリコン膜用CMPスラリーのpHの調整には、必要応じて適切な酸、アルカリを用いることが出来る。酸としては特に制限は無く、塩酸、硝酸、硫酸などの無機酸、シュウ酸、酢酸、りんご酸などの有機酸を用いることが出来る。アルカリとしても特に制限はなく、アンモニア、アミン、4級アンモニウムヒドロキシド、水酸化カリウムなどを用いることが出来る。前記酸又はアルカリの配合量は適宜選択されるが、通常、シリコン膜用CMPスラリーに対して1〜1000ppmである。   For adjusting the pH of the CMP slurry for silicon film, an appropriate acid or alkali can be used as necessary. The acid is not particularly limited, and inorganic acids such as hydrochloric acid, nitric acid and sulfuric acid, and organic acids such as oxalic acid, acetic acid and malic acid can be used. There is no restriction | limiting in particular as an alkali, Ammonia, an amine, quaternary ammonium hydroxide, potassium hydroxide etc. can be used. Although the compounding quantity of the said acid or alkali is selected suitably, it is 1-1000 ppm with respect to the CMP slurry for silicon films normally.

前記特許第3457144号公報に開示されている塩基性有機化合物を含むスラリーでは、シリコン膜の高い研磨速度とシリコン酸化膜の低い研磨速度を得ることが可能であるが、pHが6.0未満であるとシリコン膜の研磨速度が遅くなり、pHが8を超えるとシリコン窒化膜の研磨速度が遅くなり、適切な研磨速度比を得ることは出来ない。   In the slurry containing the basic organic compound disclosed in the above-mentioned Japanese Patent No. 3457144, it is possible to obtain a high polishing rate of the silicon film and a low polishing rate of the silicon oxide film, but the pH is less than 6.0. If it exists, the polishing rate of the silicon film becomes slow. If the pH exceeds 8, the polishing rate of the silicon nitride film becomes slow, and an appropriate polishing rate ratio cannot be obtained.

本発明のシリコン膜用CMPスラリーは、カチオン性界面活性剤及びpH調整用に用いる酸又はアルカリの添加量が微量であるため、砥粒の凝集が起こりにくく、保存安定性に優れている。   The CMP slurry for silicon film of the present invention has a small amount of addition of the cationic surfactant and the acid or alkali used for pH adjustment, so that the aggregation of abrasive grains hardly occurs and the storage stability is excellent.

また、本発明のシリコン膜用CMPスラリーは、CMPスラリーの成分を濃縮しても安定であることから、使用時に希釈して使用する方法も可能である。それによって、CMPスラリーのコストを更に低減することが可能である。   Further, since the CMP slurry for silicon film of the present invention is stable even when the components of the CMP slurry are concentrated, a method of diluting and using it at the time of use is also possible. Thereby, it is possible to further reduce the cost of the CMP slurry.

セルフアライン方式によるコンタクトプラグ形成時のシリコン膜のCMP工程では、シリコン膜、シリコン窒化膜、シリコン酸化膜の各膜の厚さに合わせて、各膜の適切な研磨速度及び研磨速度比が得られるように研磨条件を調節する必要がある。しかし、各膜の研磨速度は、膜質や、研磨パッドの種類、研磨装置の種類など様々な要因によって変化すると考えられる。それらの要因に対して、研磨圧力や研磨定盤の回転数などの研磨条件によって調節可能な範囲は限られるため、研磨条件の最適化のみで、各膜の適切な研磨速度及び研磨速度比を得るのは困難である。従って、CMPスラリーによる研磨速度及び研磨速度比の調節は、必須である。   In the CMP process of the silicon film during contact plug formation by the self-alignment method, an appropriate polishing rate and polishing rate ratio of each film can be obtained according to the thickness of each of the silicon film, silicon nitride film, and silicon oxide film. Thus, it is necessary to adjust the polishing conditions. However, it is considered that the polishing rate of each film varies depending on various factors such as the film quality, the type of polishing pad, and the type of polishing apparatus. For these factors, the range that can be adjusted by the polishing conditions such as the polishing pressure and the number of rotations of the polishing platen is limited. It is difficult to get. Therefore, it is essential to adjust the polishing rate and the polishing rate ratio with the CMP slurry.

本発明のシリコン膜用CMPスラリーでは、pHの調整によって、シリコン膜の研磨速度とシリコン酸化膜の研磨速度をほぼ一定に保ちながら、シリコン窒化膜の研磨速度のみを調節できるため、各膜の研磨速度比の調節が容易となり、適切な研磨速度と研磨速度比を容易に達成することが可能となる。   In the CMP slurry for silicon film of the present invention, by adjusting the pH, it is possible to adjust only the polishing speed of the silicon nitride film while keeping the polishing speed of the silicon film and the polishing speed of the silicon oxide film substantially constant. Adjustment of the speed ratio is facilitated, and an appropriate polishing speed and polishing speed ratio can be easily achieved.

次に本発明のシリコン膜用CMPスラリーを使用する場合において、各膜の適切な研磨速度について説明する。シリコン膜の研磨速度R(pSi)は、100nm/分以上であることが好ましく、100〜300nm/分であることがより好ましく、110〜250nm/分であることがさらに好ましい。前記シリコン膜の研磨速度R(pSi)が100nm/分未満である場合は、研磨時間が長くなるため、生産性が低下し、300nm/分を超える場合は、過剰研磨により平坦性が悪化する傾向にある。シリコン窒化膜の研磨速度R(SiN)は、5.0〜30nm/分であることが好ましく、5.0〜20nm/分であることがより好ましい。前記シリコン窒化膜の研磨速度R(SiN)が5.0nm/分未満である場合は、シリコン窒化膜の研磨時間を長くする必要があるため、生産性が低下する傾向にあり、30nm/分を超える場合は、過剰研磨により平坦性が悪化する傾向にある。シリコン酸化膜の研磨速度R(SiO)は、0.3〜3nm/分であることが好ましく、0.3〜2.5nm/分であることがより好ましい。前記シリコン酸化膜の研磨速度R(SiO)が0.3nm/分未満である場合は、シリコン膜表面の自然酸化膜が研磨されにくくなるため、シリコン膜の研磨時間が長くなり、生産性が低下する傾向にあり、3nm/分を超える場合は、過剰研磨により、平坦性が悪化する傾向にある。Next, when the CMP slurry for silicon film of the present invention is used, an appropriate polishing rate for each film will be described. The polishing rate R (pSi) of the silicon film is preferably 100 nm / min or more, more preferably 100 to 300 nm / min, and even more preferably 110 to 250 nm / min. When the polishing rate R (pSi) of the silicon film is less than 100 nm / min, the polishing time becomes long, so the productivity is lowered, and when it exceeds 300 nm / min, the flatness tends to deteriorate due to excessive polishing. It is in. The polishing rate R (SiN) of the silicon nitride film is preferably 5.0 to 30 nm / min, and more preferably 5.0 to 20 nm / min. When the polishing rate R (SiN) of the silicon nitride film is less than 5.0 nm / min, it is necessary to increase the polishing time of the silicon nitride film, so that the productivity tends to decrease, and 30 nm / min. When exceeding, flatness tends to deteriorate due to excessive polishing. The polishing rate R (SiO 2 ) of the silicon oxide film is preferably 0.3 to 3 nm / min, and more preferably 0.3 to 2.5 nm / min. When the polishing rate R (SiO 2 ) of the silicon oxide film is less than 0.3 nm / min, the natural oxide film on the surface of the silicon film becomes difficult to be polished. When it exceeds 3 nm / min, flatness tends to deteriorate due to excessive polishing.

また、本発明のシリコン膜用CMPスラリーを使用する場合において、各膜の適切な研磨速度比は、下記式(5)及び(6)を両方同時に満たすことが好ましい。   Moreover, when using the CMP slurry for silicon film of the present invention, it is preferable that an appropriate polishing rate ratio of each film satisfies both the following formulas (5) and (6) simultaneously.

R(pSi)/R(SiN)>5 ・・・・・(5)
R(SiN)/R(SiO)>2 ・・・・・(6)
前記式(5)は、シリコン窒化膜の研磨速度に対するシリコン膜の研磨速度比を示すものであり、R(pSi)/R(SiN)の値は5より大きいことが好ましく、5より大きく50以下であることがより好ましく、9以上50以下であることが特に好ましい。前記R(pSi)/R(SiN)の値が5以下である場合は、不要なポリシリコン膜を除去するためオーバー研磨するときに、シリコン窒化膜が過剰に研磨され、平坦性が低下する傾向にある。前記式(6)は、シリコン酸化膜の研磨速度に対するシリコン窒化膜の研磨速度比を示すものであり、R(SiN)/R(SiO)の値は2より大きいことが好ましく、2より大きく20以下であることがより好ましく、2.5以上20以下であることが特に好ましい。前記R(SiN)/R(SiO)の値が2以下である場合は、平坦性が悪化する傾向にある。
R (pSi) / R (SiN)> 5 (5)
R (SiN) / R (SiO 2 )> 2 (6)
The formula (5) represents the ratio of the polishing rate of the silicon film to the polishing rate of the silicon nitride film, and the value of R (pSi) / R (SiN) is preferably greater than 5 and greater than 5 and 50 or less. More preferably, it is 9 or more and 50 or less. When the value of R (pSi) / R (SiN) is 5 or less, the silicon nitride film is excessively polished and flatness tends to decrease when overpolishing is performed to remove unnecessary polysilicon film. It is in. The above formula (6) shows the polishing rate ratio of the silicon nitride film to the polishing rate of the silicon oxide film, and the value of R (SiN) / R (SiO 2 ) is preferably larger than 2, and larger than 2. It is more preferably 20 or less, and particularly preferably 2.5 or more and 20 or less. When the value of R (SiN) / R (SiO 2 ) is 2 or less, flatness tends to deteriorate.

本発明のシリコン膜用CMPスラリーを用いたCMP研磨方法は、上記本発明のシリコン膜用CMPスラリーを用いてシリコン膜、シリコン窒化膜及びシリコン酸化膜を含む被研磨膜が形成された基板を研磨する。研磨対象である被研磨膜はシリコン膜、シリコン窒化膜及びシリコン酸化膜であり、これらそれぞれの膜は単層でも積層でも構わない。本発明においてシリコン膜は、ポリシリコン膜又はアモルファスシリコン膜である。   The CMP polishing method using the CMP slurry for silicon film of the present invention polishes a substrate on which a polishing film including a silicon film, a silicon nitride film and a silicon oxide film is formed using the CMP slurry for silicon film of the present invention. To do. The target films to be polished are a silicon film, a silicon nitride film, and a silicon oxide film, and each of these films may be a single layer or a stacked layer. In the present invention, the silicon film is a polysilicon film or an amorphous silicon film.

基板としては、半導体装置の製造に係る基板、例えば回路素子と配線パターンが形成された段階の半導体基板、回路素子が形成された段階の半導体基板等の半導体基板上に、絶縁層が形成された基板などが挙げられる。   As the substrate, an insulating layer is formed on a semiconductor substrate such as a substrate related to the manufacture of a semiconductor device, for example, a semiconductor substrate at a stage where a circuit element and a wiring pattern are formed, or a semiconductor substrate at a stage where a circuit element is formed. Examples include substrates.

被研磨膜の研磨は化学機械研磨により行なわれ、具体的には、被研磨面が形成された基板を研磨定盤の研磨布(パッド)上に押圧した状態で、本発明のシリコン膜用CMPスラリーを供給しながら研磨定盤と基板とを相対的に動かすことによって被研磨面を研磨する。   The polishing of the film to be polished is performed by chemical mechanical polishing. Specifically, the CMP for silicon film of the present invention is performed in a state where the substrate on which the surface to be polished is pressed against the polishing cloth (pad) of the polishing surface plate. The surface to be polished is polished by relatively moving the polishing platen and the substrate while supplying the slurry.

研磨する装置としては、例えば研磨布により研磨する場合、研磨される基板を保持できるホルダと、回転数が変更可能なモータ等に接続し、研磨布を貼り付けられる定盤とを有する一般的な研磨装置が使用できる。例えば、アプライドマテリアルズ製のMirraが使用できる。   As an apparatus for polishing, for example, when polishing with a polishing cloth, a general apparatus having a holder that can hold a substrate to be polished and a surface plate that is connected to a motor that can change the number of rotations and to which the polishing cloth is attached. A polishing apparatus can be used. For example, Mirra manufactured by Applied Materials can be used.

研磨布としては、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂などが使用でき、特に制限がない。研磨条件には制限はないが、定盤の回転速度は基板が飛び出さないように130rpm以下が好ましい。被研磨面を有する基板の研磨布への押し付け圧力(研磨圧力)が3〜60kPaであることが好ましく、CMP速度の被研磨面内均一性及びパターンの平坦性を満足するためには、6〜40kPaであることがより好ましい。   As an abrasive cloth, a general nonwoven fabric, a polyurethane foam, a porous fluororesin, etc. can be used, and there is no restriction | limiting in particular. The polishing conditions are not limited, but the rotation speed of the surface plate is preferably 130 rpm or less so that the substrate does not jump out. The pressing pressure (polishing pressure) of the substrate having the surface to be polished to the polishing cloth is preferably 3 to 60 kPa. More preferably, it is 40 kPa.

研磨している間、研磨布にはシリコン膜用CMPスラリーをポンプ等で連続的に供給する。シリコン膜用CMPスラリーの供給量に制限はないが、研磨布の表面が常にシリコン膜用CMPスラリーで覆われていることが好ましい。   During polishing, the CMP slurry for silicon film is continuously supplied to the polishing cloth with a pump or the like. The supply amount of the CMP slurry for silicon film is not limited, but it is preferable that the surface of the polishing cloth is always covered with the CMP slurry for silicon film.

研磨終了後の基板は、流水中でよく洗浄後、スピンドライ等を用いて基板上に付着した水滴を払い落としてから乾燥させることが好ましい。研磨布の表面状態を常に同一にしてCMPを行うために、研磨の前に研磨布のコンディショニング工程を入れることが好ましい。例えば、ダイヤモンド粒子のついたドレッサを用いて少なくとも水を含む液で研磨布のコンディショニングを行う。続いて本発明によるCMP研磨工程を実施し、さらに、基板洗浄工程を加えることが好ましい。   The substrate after polishing is preferably washed in running water and then dried after removing water droplets adhering to the substrate using spin drying or the like. In order to perform CMP with the surface state of the polishing cloth always the same, it is preferable to perform a conditioning process of the polishing cloth before polishing. For example, the polishing cloth is conditioned with a liquid containing at least water using a dresser with diamond particles. Subsequently, it is preferable to perform a CMP polishing step according to the present invention and further add a substrate cleaning step.

本発明のシリコン膜用CMPスラリーを用いて、図1に示すような断面を有する半導体素子のCMPを行うと、ポリシリコン膜8が研磨された後、ゲートキャップ層4及び絶縁膜7が露出する。その後は適切なオーバー研磨を行う。本発明のシリコン膜用CMPスラリーを用いるCMPでは、ポリシリコン膜8の研磨速度、ゲートキャップ層4の研磨速度、絶縁膜7の研磨速度、ゲートキャップ層4の研磨速度に対するポリシリコン膜8の研磨速度比、絶縁膜7の研磨速度に対するゲートキャップ層4の研磨速度比のそれぞれが適切であることから、図2に示すように、ゲート導電層を露出することなくゲートキャップ層4を一部除去し、不要なポリシリコン膜8を完全に除去することができる。従って、1種類のスラリーを用いたCMPで、良好な平坦性と被研磨面内均一性を得ることが出来、半導体素子の製造コストの低減、歩留まりの向上、信頼性の向上が可能である。   When CMP of a semiconductor device having a cross section as shown in FIG. 1 is performed using the CMP slurry for silicon film of the present invention, the gate cap layer 4 and the insulating film 7 are exposed after the polysilicon film 8 is polished. . Thereafter, appropriate overpolishing is performed. In the CMP using the CMP slurry for silicon film of the present invention, the polishing speed of the polysilicon film 8, the polishing speed of the gate cap layer 4, the polishing speed of the insulating film 7, and the polishing of the polysilicon film 8 with respect to the polishing speed of the gate cap layer 4. Since the speed ratio and the polishing rate ratio of the gate cap layer 4 to the polishing rate of the insulating film 7 are appropriate, a part of the gate cap layer 4 is removed without exposing the gate conductive layer as shown in FIG. Then, the unnecessary polysilicon film 8 can be completely removed. Therefore, good flatness and in-plane uniformity can be obtained by CMP using one kind of slurry, and the manufacturing cost of the semiconductor element can be reduced, the yield can be improved, and the reliability can be improved.

以下、本発明の実施例を説明する。本発明はこれらの実施例により制限されるものではない。   Examples of the present invention will be described below. The present invention is not limited by these examples.

実施例1〜15
実施例1〜15は、水、コロイダルシリカ、表1又は2に示すカチオン性界面活性剤を混合後、りんご酸を添加して表1又は2のpHになるよう調整してCMPスラリーを作製した。pHは、pHメータ(東亜ディーケーケー株式会社製の型番HM−21P)で測定した。具体的には、標準緩衝液(フタル酸塩pH緩衝液pH:4.01(25℃)、中性りん酸塩pH緩衝液pH6.86(25℃)、ホウ酸塩標準液pH:9.18(25℃))を用いて、3点校正した後、電極をCMPスラリーに入れて、10分以上経過して安定した後の値を測定した。
Examples 1-15
In Examples 1 to 15, water, colloidal silica, and a cationic surfactant shown in Table 1 or 2 were mixed, and then malic acid was added to adjust the pH to Table 1 or 2 to prepare a CMP slurry. . The pH was measured with a pH meter (model number HM-21P manufactured by Toa DKK Corporation). Specifically, standard buffer solution (phthalate pH buffer solution pH: 4.01 (25 ° C.), neutral phosphate pH buffer solution pH 6.86 (25 ° C.), borate standard solution pH: 9. 18 (25 ° C.) was used, and after calibrating three points, the electrode was put in a CMP slurry, and the value after 10 minutes or more had elapsed and stabilized was measured.

CMPスラリー中のコロイダルシリカの濃度は3重量%とした。コロイダルシリカの二次粒子の平均粒径はCMPスラリー作製前が10nm程度、スラリー作製後は20nm程度であり、この平均粒径はスラリー作製後1ヶ月室温放置した後も殆ど変化しなかった。平均粒径はサブミクロン粒子アナライザーN5(ベックマンコールター製)を用いて測定した。   The concentration of colloidal silica in the CMP slurry was 3% by weight. The average particle size of the secondary particles of colloidal silica was about 10 nm before the CMP slurry preparation and about 20 nm after the slurry preparation, and this average particle diameter hardly changed even after being left at room temperature for one month after the slurry preparation. The average particle size was measured using a submicron particle analyzer N5 (manufactured by Beckman Coulter).

CMPスラリー中のカチオン性界面活性剤の濃度は、実施例1〜13が100ppm、実施例14及び15が40ppmである(ppmは全て重量換算)。また、CMPスラリーのpHを表1又は2の値になるよう用いたりんご酸の配合量は、CMPスラリー中5〜100ppmの間であった。   The concentration of the cationic surfactant in the CMP slurry is 100 ppm in Examples 1 to 13 and 40 ppm in Examples 14 and 15 (ppm is all in terms of weight). Moreover, the compounding quantity of malic acid used so that the pH of the CMP slurry became the value of Table 1 or 2 was between 5 and 100 ppm in the CMP slurry.

ポリシリコン膜、シリコン窒化膜、シリコン酸化膜が形成された以下に示す各ウエハーを使用し、上記実施例1〜15の各CMPスラリーを定盤に貼り付けたパッドに滴下しながら、下記に示す研磨条件でCMP処理を行った。CMP処理前後の各膜厚を光干渉膜厚計で測定し、その膜厚差と研磨時間とから研磨速度を算出した。その結果を表1又は2に示す。   Using each wafer shown below in which a polysilicon film, a silicon nitride film, and a silicon oxide film are formed, each CMP slurry of Examples 1 to 15 is dropped on a pad attached to a surface plate, and the following is shown. CMP treatment was performed under polishing conditions. Each film thickness before and after the CMP treatment was measured with a light interference film thickness meter, and the polishing rate was calculated from the film thickness difference and the polishing time. The results are shown in Table 1 or 2.

(ウエハ)
ポリシリコン膜のCMP用としては、直径(φ)8インチのシリコンウエハーにシリコン酸化膜100nmを形成後、CVD(Chemical Vapor Deposition)によってポリシリコン膜500nmを形成したウエハーを用いた。
(Wafer)
For CMP of the polysilicon film, a wafer in which a silicon oxide film of 100 nm was formed on a silicon wafer having a diameter (φ) of 8 inches and then a polysilicon film of 500 nm was formed by CVD (Chemical Vapor Deposition) was used.

シリコン窒化膜のCMP用としては、直径(φ)8インチのシリコンウエハーにCVDによってシリコン窒化膜200nmを形成したウエハーを用いた。   For CMP of a silicon nitride film, a wafer having a silicon nitride film of 200 nm formed by CVD on a silicon wafer having a diameter (φ) of 8 inches was used.

シリコン酸化膜のCMP用としては、直径(φ)8インチのシリコンウエハーにプラズマCVDによってシリコン酸化膜500nmを形成したウエハーを用いた。   For CMP of a silicon oxide film, a wafer in which a silicon oxide film of 500 nm was formed by plasma CVD on a silicon wafer having a diameter (φ) of 8 inches was used.

(研磨条件)
研磨装置:定盤寸法600mmφ、ロータリータイプ
研磨パッド:発泡ポリウレタン樹脂
パッドグルーブ:同心円状のもの
研磨圧力:210hPa
ウエハー基板の回転数:80min−1
研磨定盤の回転数:80min−1
スラリー流量:200ml/min
研磨時間:各膜当たり1分

Figure 0005397218
Figure 0005397218
(Polishing conditions)
Polishing device: Surface plate size 600 mmφ, rotary type Polishing pad: Polyurethane foam resin Pad groove: Concentric circular polishing pressure: 210 hPa
Number of rotations of wafer substrate: 80 min −1
Number of rotations of polishing platen: 80 min −1
Slurry flow rate: 200 ml / min
Polishing time: 1 minute for each film
Figure 0005397218
Figure 0005397218

表1又は2に示されるように、実施例1〜15のいずれの場合も、ポリシリコン膜の研磨速度、シリコン窒化膜の研磨速度、シリコン酸化膜の研磨速度、シリコン窒化膜の研磨速度に対するポリシリコン膜の研磨速度比、シリコン酸化膜の研磨速度に対するシコン窒化膜の研磨速度比のいずれにおいても良好な値が得られた。またpHを小さくすればシリコン窒化膜の研磨速度が遅くなるので、pHを調整することによって、シリコン窒化膜の研磨速度を調節できることが明らかである。シリコン酸化膜の代わりに、BPSG膜を用いた場合、研磨速度は最大で2倍程度まで増大すると予想されるが、本実施例の結果から、BPSGを用いた場合でも本発明のCMPスラリーは適用可能である。   As shown in Table 1 or 2, in any of Examples 1 to 15, the polysilicon film polishing rate, the silicon nitride film polishing rate, the silicon oxide film polishing rate, and the silicon nitride film polishing rate Good values were obtained for both the polishing rate ratio of the silicon film and the polishing rate ratio of the silicon nitride film to the polishing rate of the silicon oxide film. Further, if the pH is reduced, the polishing rate of the silicon nitride film becomes slower. Therefore, it is apparent that the polishing rate of the silicon nitride film can be adjusted by adjusting the pH. When a BPSG film is used instead of a silicon oxide film, the polishing rate is expected to increase up to about twice, but from the results of this example, the CMP slurry of the present invention is applicable even when BPSG is used. Is possible.

比較例1
カチオン性界面活性剤の代わりにテトラメチルアンモニウムヒドロキシドを用い、CMPスラリー中のテトラメチルアンモニウムヒドロキシドの濃度が100ppmになるように添加し、pHが7.2になるようにりんご酸を添加すること以外は実施例と同様にしてCMPスラリーを作製し、各膜の研磨速度を測定した。結果を表3に示す。
Comparative Example 1
Use tetramethylammonium hydroxide in place of the cationic surfactant, add tetramethylammonium hydroxide in the CMP slurry to a concentration of 100 ppm, and add malic acid to a pH of 7.2. Except for this, a CMP slurry was prepared in the same manner as in the Example, and the polishing rate of each film was measured. The results are shown in Table 3.

比較例2
カチオン性界面活性剤の代わりにテトラメチルアンモニウムヒドロキシドを用い、CMPスラリー中のテトラメチルアンモニウムヒドロキシドの濃度が100ppmになるように添加し、pHが6.9になるようにりんご酸を添加すること以外は実施例と同様にしてCMPスラリーを作製し、各膜の研磨速度を測定した。結果を表3に示す。
Comparative Example 2
Use tetramethylammonium hydroxide in place of the cationic surfactant, add tetramethylammonium hydroxide in the CMP slurry to a concentration of 100 ppm, and add malic acid to a pH of 6.9. Except for this, a CMP slurry was prepared in the same manner as in the Example, and the polishing rate of each film was measured. The results are shown in Table 3.

比較例3
カチオン性界面活性剤として塩化ラウリルトリメチルアンモニウムを用い、CMPスラリー中の塩化ラウリルトリメチルアンモニウムの濃度が100ppmになるように添加し、pHが5.7になるようにりんご酸を添加すること以外は実施例と同様にしてCMPスラリーを作製し、各膜の研磨速度を測定した。結果を表3に示す。
Comparative Example 3
Implemented except that lauryltrimethylammonium chloride is used as a cationic surfactant, and the concentration of lauryltrimethylammonium chloride in the CMP slurry is 100 ppm, and malic acid is added so that the pH is 5.7. A CMP slurry was prepared in the same manner as in the example, and the polishing rate of each film was measured. The results are shown in Table 3.

比較例4
カチオン性界面活性剤として塩化ラウリルトリメチルアンモニウムを用い、CMPスラリー中の塩化ラウリルトリメチルアンモニウムの濃度が100ppmになるように添加し、pHが8.3になるようにテトラメチルアンモニウムヒドロキシドを添加すること以外は実施例と同様にしてCMPスラリーを作製し、各膜の研磨速度を測定した。結果を表3に示す。

Figure 0005397218
Comparative Example 4
Use lauryltrimethylammonium chloride as the cationic surfactant, add lauryltrimethylammonium chloride in the CMP slurry to a concentration of 100 ppm, and add tetramethylammonium hydroxide to a pH of 8.3. Except for the above, a CMP slurry was prepared in the same manner as in the example, and the polishing rate of each film was measured. The results are shown in Table 3.
Figure 0005397218

表3に示されるように、カチオン性界面活性剤を用いない比較例1及び2は実施例1〜15に比較してポリシリコン膜の研磨速度が遅く、シリコン酸化膜の研磨速度が速くなっている。これらの結果から、カチオン性界面活性剤を用いないCMPスラリーでは、各膜の適切な研磨速度、研磨速度比を得ることができないことが明らかである。CMPスラリーのpHが低い比較例3は、ポリシリコン膜の研磨速度が遅く、シリコン窒化膜の研磨速度に対するポリシリコン膜の研磨速度比が不十分である。CMPスラリーのpHが高い比較例4は、シリコン窒化膜の研磨速度がシリコン酸化膜の研磨速度よりも遅くなってしまう。これらの結果から、CMPスラリーのpHが6.0未満又は8.0より大きい場合は、3種類の膜の適切な研磨速度、研磨速度比が得られないことが分かる。   As shown in Table 3, Comparative Examples 1 and 2, which do not use a cationic surfactant, have a lower polishing rate for the polysilicon film and a higher polishing rate for the silicon oxide film than Examples 1-15. Yes. From these results, it is clear that a CMP slurry not using a cationic surfactant cannot obtain an appropriate polishing rate and polishing rate ratio for each film. In Comparative Example 3 where the pH of the CMP slurry is low, the polishing rate of the polysilicon film is slow, and the polishing rate ratio of the polysilicon film to the polishing rate of the silicon nitride film is insufficient. In Comparative Example 4 where the pH of the CMP slurry is high, the polishing rate of the silicon nitride film is slower than the polishing rate of the silicon oxide film. From these results, it can be seen that when the pH of the CMP slurry is less than 6.0 or greater than 8.0, appropriate polishing rates and polishing rate ratios of the three types of films cannot be obtained.

Claims (11)

ポリシリコン及びアモルファスシリコンからなる群から選択されるシリコン膜と、シリコン窒化膜と、シリコン酸化膜とを有する基板を研磨するためのCMPスラリーであって、
該CMPスラリーは、砥粒、カチオン性界面活性剤及び水を含有してなり、
pHが6.0〜8.0であり、
前記カチオン性界面活性剤が、下記一般式(1)で表される脂肪族アンモニウム塩を含むCMPスラリー。
[RN(R・・・・・(1)
(式中、Rは主鎖の炭素数が8〜18である1価のアルキル基、Rはそれぞれ独立に一価の置換基を示す。)
A CMP slurry for polishing a substrate having a silicon film selected from the group consisting of polysilicon and amorphous silicon , a silicon nitride film, and a silicon oxide film ,
The CMP slurry contains abrasive grains, a cationic surfactant and water,
pH is 6.0-8.0,
A CMP slurry in which the cationic surfactant contains an aliphatic ammonium salt represented by the following general formula (1).
[R 1 N (R 2 ) 3 ] + X (1)
(In the formula, R 1 is a monovalent alkyl group having 8 to 18 carbon atoms in the main chain, and R 2 independently represents a monovalent substituent.)
ポリシリコン及びアモルファスシリコンからなる群から選択されるシリコン膜と、シリコン窒化膜と、シリコン酸化膜とを有する基板を研磨するためのCMPスラリーであって、
該CMPスラリーは、砥粒、カチオン性界面活性剤及び水を含有してなり、
pHが6.0〜8.0であり、
上記カチオン性界面活性剤が、下記一般式(2)で表される脂肪族アンモニウム塩を含むCMPスラリー。
[C2n+1N(CH・・・・(2)
(式中、nは8〜18の整数である。)
A CMP slurry for polishing a substrate having a silicon film selected from the group consisting of polysilicon and amorphous silicon , a silicon nitride film, and a silicon oxide film ,
The CMP slurry contains abrasive grains, a cationic surfactant and water,
pH is 6.0-8.0,
CMP slurry in which the cationic surfactant contains an aliphatic ammonium salt represented by the following general formula (2).
[C n H 2n + 1 N (CH 3) 3] + X - ···· (2)
(In the formula, n is an integer of 8 to 18.)
前記カチオン性界面活性剤が、アルキルトリメチルアンモニウム、ジアルキルジメチルアンモニウム、アルキルジメチルベンジルアンモニウムから選択される一種以上の脂肪族アンモニウム塩を含む請求項1又は2に記載のCMPスラリー。 The CMP slurry according to claim 1 or 2, wherein the cationic surfactant contains one or more aliphatic ammonium salts selected from alkyltrimethylammonium, dialkyldimethylammonium, and alkyldimethylbenzylammonium. ポリシリコン及びアモルファスシリコンからなる群から選択されるシリコン膜と、シリコン窒化膜と、シリコン酸化膜とを有する基板を研磨するためのCMPスラリーであって、
該CMPスラリーは、砥粒、カチオン性界面活性剤及び水を含有してなり、
pHが6.0〜8.0であり、
前記カチオン性界面活性剤が、下記一般式(3)で表される脂肪族アミンを含むCMPスラリー。
N−R−NH・・・・・(3)
(式中、Rは主鎖の炭素数が8〜18である2価のアルキル基を示す。)
A CMP slurry for polishing a substrate having a silicon film selected from the group consisting of polysilicon and amorphous silicon , a silicon nitride film, and a silicon oxide film ,
The CMP slurry contains abrasive grains, a cationic surfactant and water,
pH is 6.0-8.0,
A CMP slurry in which the cationic surfactant contains an aliphatic amine represented by the following general formula (3).
H 2 N—R 3 —NH 2 (3)
(In the formula, R 3 represents a divalent alkyl group having 8 to 18 carbon atoms in the main chain.)
ポリシリコン及びアモルファスシリコンからなる群から選択されるシリコン膜と、シリコン窒化膜と、シリコン酸化膜とを有する基板を研磨するためのCMPスラリーであって、
該CMPスラリーは、砥粒、カチオン性界面活性剤及び水を含有してなり、
pHが6.0〜8.0であり、
前記カチオン性界面活性剤が、下記一般式(4)で表される脂肪族アンモニウムの塩を含むCMPスラリー。
((CHN−R−N(CH2+2X・・・・・(4)
(式中、Rは主鎖の炭素数が8〜18である2価のアルキル基を示す。)
A CMP slurry for polishing a substrate having a silicon film selected from the group consisting of polysilicon and amorphous silicon , a silicon nitride film, and a silicon oxide film ,
The CMP slurry contains abrasive grains, a cationic surfactant and water,
pH is 6.0-8.0,
CMP slurry in which the cationic surfactant contains an aliphatic ammonium salt represented by the following general formula (4).
((CH 3 ) 3 N—R 3 —N (CH 3 ) 3 ) 2+ 2X (4)
(In the formula, R 3 represents a divalent alkyl group having 8 to 18 carbon atoms in the main chain.)
シリコン膜の研磨速度R(pSi)が100nm/分以上、シリコン窒化膜の研磨速度R(SiN)が5.0〜30nm/分、シリコン酸化膜の研磨速度R(SiO)が0.3〜3nm/分である、請求項1〜5のいずれか一項に記載のCMPスラリー。 The polishing rate R (pSi) of the silicon film is 100 nm / min or more, the polishing rate R (SiN) of the silicon nitride film is 5.0 to 30 nm / min, and the polishing rate R (SiO 2 ) of the silicon oxide film is 0.3 to The CMP slurry according to any one of claims 1 to 5, which is 3 nm / min. シリコン窒化膜の研磨速度に対するシリコン膜の研磨速度比:R(pSi)/R(SiN)が5より大きく、かつ、シリコン酸化膜の研磨速度に対するシリコン窒化膜の研磨速度比:R(SiN)/R(SiO)が2より大きい、請求項1〜6のいずれか一項に記載のCMPスラリー。 The polishing rate ratio of the silicon film to the polishing rate of the silicon nitride film: R (pSi) / R (SiN) is greater than 5, and the polishing rate ratio of the silicon nitride film to the polishing rate of the silicon oxide film: R (SiN) / R (SiO 2) is greater than 2, CMP slurry according to any one of claims 1 to 6. 前記砥粒がシリカである請求項1〜7のいずれか一項に記載のCMPスラリー。   The CMP slurry according to any one of claims 1 to 7, wherein the abrasive grains are silica. シリコン窒化膜と、少なくとも前記シリコン窒化膜の上部にシリコン膜とを有する基板を、請求項1〜8のいずれか一項に記載のCMPスラリーを用いて研磨し、前記シリコン膜の不要な部分を除去し、前記シリコン窒化膜が露出した後、該シリコン窒化膜の一部を除去した段階で研磨を停止する基板の研磨方法。   A substrate having a silicon nitride film and at least a silicon film on the silicon nitride film is polished using the CMP slurry according to claim 1, and unnecessary portions of the silicon film are polished. A method for polishing a substrate, wherein the polishing is stopped after the silicon nitride film is removed and a part of the silicon nitride film is removed. シリコン窒化膜と、シリコン酸化膜と、少なくとも前記シリコン窒化膜及び前記シリコン酸化膜の上部にシリコン膜とを有する基板を、請求項1〜8のいずれか一項に記載のCMPスラリーを用いて研磨し、前記シリコン膜の不要な部分を除去し、前記シリコン窒化膜及び前記シリコン酸化膜が露出した後、該シリコン窒化膜及び前記シリコン酸化膜の一部を除去した段階で研磨を停止する基板の研磨方法。   A substrate having a silicon nitride film, a silicon oxide film, and at least the silicon nitride film and a silicon film on the silicon oxide film is polished using the CMP slurry according to claim 1. Then, after unnecessary portions of the silicon film are removed and the silicon nitride film and the silicon oxide film are exposed, polishing is stopped when the silicon nitride film and a part of the silicon oxide film are removed. Polishing method. コンタクトプラグを形成する請求項9又は10に記載の基板の研磨方法。   The method for polishing a substrate according to claim 9 or 10, wherein a contact plug is formed.
JP2009501161A 2007-02-27 2008-02-05 CMP slurry for silicon film Expired - Fee Related JP5397218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009501161A JP5397218B2 (en) 2007-02-27 2008-02-05 CMP slurry for silicon film

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007047008 2007-02-27
JP2007047008 2007-02-27
JP2007139482 2007-05-25
JP2007139482 2007-05-25
JP2009501161A JP5397218B2 (en) 2007-02-27 2008-02-05 CMP slurry for silicon film
PCT/JP2008/051876 WO2008105223A1 (en) 2007-02-27 2008-02-05 Cmp slurry for silicon film

Publications (2)

Publication Number Publication Date
JPWO2008105223A1 JPWO2008105223A1 (en) 2010-06-03
JP5397218B2 true JP5397218B2 (en) 2014-01-22

Family

ID=39721061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009501161A Expired - Fee Related JP5397218B2 (en) 2007-02-27 2008-02-05 CMP slurry for silicon film

Country Status (4)

Country Link
JP (1) JP5397218B2 (en)
KR (1) KR20100014849A (en)
TW (1) TW200849366A (en)
WO (1) WO2008105223A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513126B2 (en) * 2010-09-22 2013-08-20 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Slurry composition having tunable dielectric polishing selectivity and method of polishing a substrate
TWI582184B (en) * 2012-01-16 2017-05-11 福吉米股份有限公司 Polishing composition, method for producing polishing composition, undiluted solution, method for producing silicon substrate, and silicon substrate
JP6533439B2 (en) * 2015-09-15 2019-06-19 株式会社フジミインコーポレーテッド Polishing composition

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199455A (en) * 1995-11-13 1997-07-31 Toshiba Corp Polishing method, method for manufacturing semiconductor device and semiconductor manufacturing apparatus
JP2001077060A (en) * 1999-09-08 2001-03-23 Toshiba Corp Manufacture of semiconductor device
JP2002114969A (en) * 2000-10-04 2002-04-16 Toto Ltd Abrasive for moisture absorptive composite material and repair method of moisture absorptive composite material
JP2002155268A (en) * 2000-11-20 2002-05-28 Toshiba Corp Slurry for chemical and mechanical polishing and method for producing semiconductor device
JP2002190458A (en) * 2000-12-21 2002-07-05 Jsr Corp Water dispersion for chemical mechanical polishing
JP2002305167A (en) * 2000-12-22 2002-10-18 Samsung Electronics Co Ltd Solution for chemical mechanical polishing and method therefor
JP2004143429A (en) * 2002-10-04 2004-05-20 Kao Corp Polishing liquid composition
JP2004247542A (en) * 2003-02-14 2004-09-02 Kao Corp Method for manufacturing substrate for precision component
JP2004266155A (en) * 2003-03-03 2004-09-24 Jsr Corp Water dispersed element for chemical mechanical polishing and chemical mechanical polishing method using the same and method for manufacturing semiconductor device
JP2005026604A (en) * 2003-07-01 2005-01-27 Jsr Corp Water-based dispersing substance for chemical machinery polishing
JP2005064285A (en) * 2003-08-14 2005-03-10 Hitachi Chem Co Ltd Polishing solution and polishing method for cmp
JP2005236275A (en) * 2004-01-23 2005-09-02 Jsr Corp Water disperse form for chemical mechanical polishing and chemical mechanical polishing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2889810B2 (en) * 1994-03-14 1999-05-10 三菱マテリアル株式会社 Polishing method for polysilicon film and polishing agent for polysilicon film

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199455A (en) * 1995-11-13 1997-07-31 Toshiba Corp Polishing method, method for manufacturing semiconductor device and semiconductor manufacturing apparatus
JP2001077060A (en) * 1999-09-08 2001-03-23 Toshiba Corp Manufacture of semiconductor device
JP2002114969A (en) * 2000-10-04 2002-04-16 Toto Ltd Abrasive for moisture absorptive composite material and repair method of moisture absorptive composite material
JP2002155268A (en) * 2000-11-20 2002-05-28 Toshiba Corp Slurry for chemical and mechanical polishing and method for producing semiconductor device
JP2002190458A (en) * 2000-12-21 2002-07-05 Jsr Corp Water dispersion for chemical mechanical polishing
JP2002305167A (en) * 2000-12-22 2002-10-18 Samsung Electronics Co Ltd Solution for chemical mechanical polishing and method therefor
JP2004143429A (en) * 2002-10-04 2004-05-20 Kao Corp Polishing liquid composition
JP2004247542A (en) * 2003-02-14 2004-09-02 Kao Corp Method for manufacturing substrate for precision component
JP2004266155A (en) * 2003-03-03 2004-09-24 Jsr Corp Water dispersed element for chemical mechanical polishing and chemical mechanical polishing method using the same and method for manufacturing semiconductor device
JP2005026604A (en) * 2003-07-01 2005-01-27 Jsr Corp Water-based dispersing substance for chemical machinery polishing
JP2005064285A (en) * 2003-08-14 2005-03-10 Hitachi Chem Co Ltd Polishing solution and polishing method for cmp
JP2005236275A (en) * 2004-01-23 2005-09-02 Jsr Corp Water disperse form for chemical mechanical polishing and chemical mechanical polishing method

Also Published As

Publication number Publication date
JPWO2008105223A1 (en) 2010-06-03
WO2008105223A1 (en) 2008-09-04
TW200849366A (en) 2008-12-16
KR20100014849A (en) 2010-02-11

Similar Documents

Publication Publication Date Title
JP5516604B2 (en) Polishing liquid for CMP and polishing method using the same
JP3768402B2 (en) Chemical mechanical polishing slurry
US8778803B2 (en) CPM slurry for silicon film polishing and polishing method
US20100001229A1 (en) Cmp slurry for silicon film
WO2010067844A1 (en) Polishing solution for cmp and polishing method using the polishing solution
JP4954462B2 (en) Composition for selective polishing of silicon nitride film and polishing method using the same
KR102649656B1 (en) polishing composition
JP2010056127A (en) Cmp slurry for silicon film
JP2015063687A (en) Low defect chemical mechanical polishing composition
TWI629324B (en) A method of polishing a substrate
JP5397218B2 (en) CMP slurry for silicon film
WO2014119301A1 (en) Surface-selective polishing composition
KR20200057566A (en) Cmp slurry composition for amorphous carbon layer and method for polishing using the same
CN113493651A (en) Polishing method and method for manufacturing semiconductor substrate
CN101622695A (en) CMP slurry for silicon film
JP2021042343A (en) Abrasive composition, manufacturing method of abrasive composition, polishing method and manufacturing method semiconductor substrate
KR20130048163A (en) Method of polishing using tunable polishing formulation
US10414019B2 (en) Polishing composition
JP5957802B2 (en) CMP slurry for silicon film
TW202124617A (en) Polishing solution, polishing method, and semiconductor component manufacturing method
JP2017076694A (en) Polishing liquid for CMP and polishing method
US11339312B2 (en) Polishing composition, production method of the same, polishing method, and manufacturing method of semiconductor substrate
TWI819067B (en) Polishing composition and polishing system
TWI759753B (en) Polishing liquid, dispersion, production method of polishing liquid, and polishing method
KR102533083B1 (en) Chemical mechanical polishing slurry composition of wafer contaning poly-silicon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R151 Written notification of patent or utility model registration

Ref document number: 5397218

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees