TW200849366A - CMP slurry for silicon film - Google Patents

CMP slurry for silicon film Download PDF

Info

Publication number
TW200849366A
TW200849366A TW097106044A TW97106044A TW200849366A TW 200849366 A TW200849366 A TW 200849366A TW 097106044 A TW097106044 A TW 097106044A TW 97106044 A TW97106044 A TW 97106044A TW 200849366 A TW200849366 A TW 200849366A
Authority
TW
Taiwan
Prior art keywords
film
cmp
polishing
polishing rate
cationic surfactant
Prior art date
Application number
TW097106044A
Other languages
Chinese (zh)
Inventor
Takenori Narita
Masaya Nishiyama
Toranosuke Ashizawa
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of TW200849366A publication Critical patent/TW200849366A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Abstract

A CMP slurry for silicon film having a polishing speed and a polishing speed ratio of silicon film, silicon nitride film, and silicon oxide film which are necessary for reducing the fabricating cost of semiconductor device, enhancing the yield, and performing a CMP process for forming a contact plug by a self-align method with one kind of slurry is provided. The CMP slurry includes abrasive particles, a cation surfactant and water, and the pH thereof is 6.0 to 8.0.

Description

200849366 27262pif 九、發明說明: 【發明所屬之技術領域】 本發明是關於一種在形成接觸插塞(c〇ntactplUg)所 •- 使用的石夕膜的 CMP ( Chemical Mechanical Polishing,化學 ·★ 機械研磨)中,能以較少的步驟數來獲得優異的平坦性及 晶圓面内均勻性的石夕膜用CMP研漿(Slurry )。 【先前技術】 (' 由於半導體元件趨於高積體化,故尤其是在dram (Dynamic Random Access Memory,動態隨機存取記憶 體)、SRAM ( Static Random Access Memory,靜態隨機存 取記憶體)此類記憶元件中,為了將MOS (Metal Oxide Semiconductor,金屬氧化物半導體)電晶體(transist〇r) 的源極(source)及汲極(drain)與上層配線連接,必須 藉由自對準(Self-aligned)方式來形成接觸插塞。圖1是 表示以自對準方式形成接觸孔(contact hob)後,於晶圓 的整個面上形成有成為導電材料的多晶石夕膜時的半導I#开 J 件的剖面模式圖。圖1中,1表示矽基板,2表示閘極絕緣 膜,3表示閘極結構。閘極結構3是在導電層上具有絕緣 膜的閘極覆蓋層4的結構。閘極的導電層是使用由金屬矽 . 化物9與多晶矽1〇所構成的二層結構,閘極覆蓋層4是使 用氮化石夕膜。5表示閘極間隙壁(gate Spacer),6表示姓 刻阻擋層(etch stopper),閘極間隙壁5及蝕刻阻擋層6 是使用氮化矽膜。7表示絕緣膜,絕緣膜7是使用氧化矽 膜或 BPSG (Borophospho-silicate glass,硼磷矽玻璃)膜 5 200849366 27262pif 导 接觸孔是藉由使用光阻 (dry etching)將絕緣膜7去除(=)的乾式钱刻 塞的導電材料的多晶矽膜.。、^成。8表不成為接觸插 為了形成接觸插塞,必須藓由 多餘部分去除,另外,為了防;=將夕晶频8的 須將閘極覆蓋層4的一部分=之=的短路,亦必 CMP後亦必須殘留,故構成:極;::閘極覆蓋層4在 磨速度不可過快。因此,夕曰復的氮化矽膜的研 比,即多晶石夕膜的研磨速df,化石夕膜之研磨速度 的是5〜50 ··;[。 又虱化矽膜的研磨速度較適當 用以將閘極覆蓋層4的-部分去除 的多餘部分完全去除的過研磨(_二將:曰曰矽膜8 露出的狀態下進行。此時,若絕緣抑:)在絕緣膜7 則閘極覆蓋層4消失,職、隹/_ ’、纟研磨速度較大, 致元件的良率及可靠性下‘進:土問2,層為止:導 研磨二目對於構成間極覆蓋層4的氮化石夕膜的 石夕膜完全未婉研廑且CMP幾乎停止。然而,若氧化 的Ξϋί為H :反而有損平坦性。因此’氧化石夕膜 將CMP後又的半導=的研磨速度的1/3〜㈣較適當。 一、歧7L件的剖面圖示於圖2。 圖所示的半導體元件中,多晶石夕膜8的膜厚為100 =〜4(K^m’閑極覆蓋層4的膜厚為10 nm〜100⑽左 右。於此情形時’為了用一種研漿來實施cMp,較適當的 200849366 27262pif 是多晶石夕骐的研磨速度為100 石夕膜的研錢“ 5.Gnm/min〜3GnnJnGt=、氮化 磨速度為M _nin〜3 nm/min, ^研 與氮化矽膜之讲麻、击麻杈週田的疋多晶矽膜 _ _ λΑ 、研磨速度比亦即多晶矽膜的研磨速产& 石夕膜的研磨逮度為5〜5 =逆度·鼠化 速度比亦即氮化石夕_研磨的研磨 3〜2〇:1。 關所潑迷度·乳化石夕膜的研磨速度為 Ο ο 化』而尤術中,對於多晶石夕膜、氮化石夕膜、氧 、# 存在用一種㊉浆來獲得上述研磨速度及研磨 ^等的^°,因此,必須採用使用2種研漿進行2階段 :、、,,因此存在製程成本的增加較大的問題。 2國專利申請案公開第纖細测號說明書中 研^疮下方法:於使多晶石夕膜的研磨速度:氮化石夕膜的 研磨速度.氧化矽膜的研磨速度為1 : 1 ·· 1〜4 ·· !:〗的 条件下使用—種研絲進行⑽。然而—般認為: :孩方法中,氮化矽膜與氧化矽膜的研磨速度比亦即氮化 石夕膜的研磨速度:氧化石夕膜的研磨速度小至!:卜故氧化 矽膜並未成為CMP的停止層,難以控制研磨量。 a =日本專利特開2〇〇2_3〇5167號公報中,揭示了使用 3有聚乙稀亞胺(pdyethylenimine)及膽驗(福心)衍 生物的研磨液的方法。利用該研磨液,可獲得多晶石夕膜的 研磨速度為600 nm/min,氧化矽膜的研磨速度為152 rnn/min,氮化矽膜的研磨速度為33 4 nm/min。然而,即使 方法中,氮化石夕膜與氧化石夕膜的研磨速度比即氮化石夕 7 ο ο 200849366 27262pif 膜的研磨速度:氧化矽膜的研磨 切膜絲絲⑽略故氧 於曰本專利第3457144號公報t,揭 销的研磨速纽A,但氮化石夕膜的 CM^T又她’故無法用—種研漿來實施形成接觸插塞的 於曰本專利第3190742號公報中,揭 酸的研磨劑來研磨氮切膜的方法。於該方法中,1 : 膜的研磨速度為12G nm/min,氧切_研磨速度^ 15 nm/min ’氧化賴與氮化賴的研磨速度比足夠小, 晶石夕膜的研錢度慢至7G nm/min。因此,鱗亦無 一種研漿來實施形成接觸插塞的CMP。 如上所述,在先前技術中並未獲得可用一種研漿來每 施形成接觸插塞的CMP的CMP研漿。 貝 本發明的課題在於,提供可用一種研漿來實施用以藉 由自對準方式形成接觸插塞的CMP的稍用CMp研^ 另外提供可降辨導體科㈣私本㈣則C碰 漿。 【發明内容】 本發明是關於一種藉由使用陽離子性界面活性劑來解 決上述課題的矽膜用CMP研漿。另外,本發明另一方面 是關於一種含有研磨粒(abrasive grain)、陽離子性界面活 性劑及水且將pH值調整到最適範圍而形成的矽膜^CMp 8 200849366 27262pif 研漿。 根據本發明的矽膜用CMP研漿,能以適當的研磨速 度及研磨速度比來對頻、氮化賴、氧化賴各膜實施 CMP’故可用—種研漿來進行用以形成半導體元件的自對 準接觸插塞的CMP。藉此,可減少半導體树的製造成本。 【實施方式】 以下,就本發明之實施方式加以詳述。200849366 27262pif IX. OBJECTS OF THE INVENTION: 1. Field of the Invention The present invention relates to a CMP (Chemical Mechanical Polishing) used in forming a contact plug (c〇ntactplUg). Among them, CMP slurry (Slurry) for stone film with excellent flatness and uniformity in wafer surface can be obtained in a small number of steps. [Prior Art] ('Because semiconductor devices tend to be highly integrated, especially in Dram (Dynamic Random Access Memory), SRAM (Static Random Access Memory) In a memory-like device, in order to connect a source and a drain of a MOS (Metal Oxide Semiconductor) transistor (transistor) to an upper layer wiring, it is necessary to self-align (Self - Aligned to form a contact plug. Fig. 1 is a view showing a semi-conductor when a contact hole is formed in a self-aligned manner and a polycrystalline stone is formed as a conductive material on the entire surface of the wafer. Fig. 1 shows a 矽 substrate, 2 denotes a gate insulating film, 3 denotes a gate structure, and gate structure 3 is a gate cap layer 4 having an insulating film on a conductive layer. The structure of the gate electrode is a two-layer structure composed of a metal ruthenium compound 9 and a polysilicon layer 1 ,, the gate cap layer 4 is a nitride film, and 5 is a gate space. 6 means that the last name is blocked (etch stopper), the gate spacer 5 and the etch barrier layer 6 are tantalum nitride films. 7 indicates an insulating film, and the insulating film 7 is a ruthenium oxide film or a BPSG (Borophospho-silicate glass) film 5 200849366 27262pif The contact hole is a polycrystalline germanium film of a conductive material which is removed by a dry etching of the insulating film 7 by using a dry etching. The surface of the transistor is not contact plugged to form a contact plug. The plug must be removed from the excess portion. In addition, in order to prevent it, the short circuit of the gate layer 4 of the gate layer must be left after the CMP, so it must be: : The gate coating layer 4 should not be too fast in the grinding speed. Therefore, the grinding ratio of the tantalum nitride film, that is, the grinding speed df of the polycrystalline stone film, the grinding speed of the fossil film is 5 to 50. The polishing speed of the ruthenium film is more appropriately used to completely remove the excess portion of the gate cover layer 4, and the ruthenium film 8 is exposed. At this time, if the insulation is suppressed:) in the insulating film 7, the gate cap layer 4 disappears, the job, 隹 / _ ', 纟 grinding speed is large, resulting in the yield and reliability of the component. 'Into the soil 2, the layer is up to: the guide grinding head is completely unfinished for the lining film of the nitriding film forming the interpole coating layer 4 The CMP is almost stopped. However, if the oxidized 为 is H: the flatness is impaired, the oxidized stone film is more suitable for 1/3 to (four) of the polishing rate after CMP. 1. A cross-sectional view of the 7L piece is shown in Figure 2. In the semiconductor device shown in the figure, the film thickness of the polycrystalline film 8 is 100 = 〜4 (K^m' the thickness of the idle cap layer 4 is about 10 nm to 100 (10). In this case, 'in order to use one Grinding slurry to implement cMp, the more appropriate 200849366 27262pif is the grinding speed of polycrystalline stone 骐 为 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 , research and yttrium nitride film, numbness 杈 杈 田 疋 疋 疋 _ _ _ 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 研磨 、 、 研磨 研磨 研磨 研磨 研磨 研磨 研磨 研磨 研磨 研磨 研磨 研磨 研磨 研磨 研磨The inverse degree and the ratification speed ratio, that is, the nitriding stone _ the grinding of the grinding 3~2 〇: 1. The degree of turbidity and the pulverization speed of the emulsified stone film is Ο ο 化 而 尤 尤 尤 尤 尤 尤 尤 尤 尤Membrane, nitriding film, oxygen, # There is a ten-pulp used to obtain the above-mentioned polishing rate and polishing, etc. Therefore, it is necessary to use two kinds of slurry for two stages: ,,,, therefore, there is a process cost. Adding a big problem. The method of the second country patent application disclosed in the detailed measurement manual, the method of the sore: the grinding of the polycrystalline stone film Degree: the polishing rate of the nitriding film. The polishing rate of the yttrium oxide film is 1 : 1 ·· 1~4 ··:: 〗 〖Use the seeding wire to carry out (10). However, it is generally considered: The polishing rate of the tantalum nitride film and the yttrium oxide film is the polishing rate of the nitriding film: the polishing rate of the oxidized stone film is as small as possible: Therefore, the yttrium oxide film does not become a stop layer of CMP, and it is difficult to control the polishing. A. A method of using a polishing liquid having 3 polyethylenimine and a phlegm (fussin) derivative is disclosed in Japanese Patent Laid-Open Publication No. Hei. The grinding rate of the polycrystalline stone film is 600 nm/min, the polishing speed of the yttrium oxide film is 152 rnn/min, and the polishing speed of the tantalum nitride film is 33 4 nm/min. However, even in the method, nitrogen The grinding speed of the fossil lithology film and the oxidized stone cerium film is the nitriding stone eve 7 ο ο 200849366 27262pif film grinding speed: the cerium oxide film grinding and cutting film wire (10) slightly oxygenated in this patent No. 3457144 t The grinding speed of the pin is A, but the CM^T of the nitride film is her A method for polishing a nitrogen-cut film by using an acid-based abrasive to form a contact plug is disclosed in Japanese Patent No. 3190742. In this method, the film is ground at a rate of 12 G nm. /min, oxygen cutting_grinding speed^ 15 nm/min 'The grinding speed ratio of oxidizing and nitriding is sufficiently small, and the research cost of the crystallizer is slow to 7G nm/min. Therefore, there is no slurry in the scale. The CMP forming the contact plug is implemented. As described above, a CMP slurry which can be used for each of the CMP forming the contact plug is not obtained in the prior art. SUMMARY OF THE INVENTION The object of the present invention is to provide a CMp which can be used to form a contact plug by self-alignment, and to provide a lowering conductor (4) private (4) C-crush. SUMMARY OF THE INVENTION The present invention relates to a CMP slurry for a ruthenium film which solves the above problems by using a cationic surfactant. Further, another aspect of the present invention relates to a ruthenium film CMp 8 200849366 27262pif slurry containing an abrasive grain, a cationic surfactant, and water and adjusting the pH to an optimum range. According to the CMP slurry for ruthenium film of the present invention, CMP can be performed on the respective films at a suitable polishing rate and polishing rate ratio, so that the CMP can be used to form a semiconductor device. Self-aligned contact plug CMP. Thereby, the manufacturing cost of the semiconductor tree can be reduced. [Embodiment] Hereinafter, embodiments of the present invention will be described in detail.

Ο 本發明的矽膜用CMP研漿的實施態樣之一,是含有 研磨粒、陽離子性界面活性劑及水⑽顧響研衆, 可用於多晶石夕膜或非晶石夕(am〇rph〇us仙_ r本發明中使用之研磨粒,可例示二氧化石夕(silica)、 ,化紹(alUmma)、二氧化鈽(eeria)、氧化錯(zirconia)、 ,化鈦titama)、氧化錯(germania)等。該些研磨粒中 :::(研轉傷的方面考慮’較好的是膠體二氧化 石夕(colloidal silica)。 .LSI (Large Scale 積體魏)邮率獨,触微細化的⑸ CMP ^研二‘、研磨損傷。因此,作為研磨粒的平均粒徑, HZ水二的研練的二絲子的平均粒徑較好的 疋5 nm〜15〇 _ ’更好的是1〇 〜 研浆:後的研磨粒的二次粒子的平糧較= M〇nm,^^l〇nm^150nm〇tCMP^t 9 200849366 27262plf 作前後的研磨粒的二次粒子的平均粒徑偏出上述範圍時, 可能容易產生研磨損傷。其中,所謂CMP研漿製作後是 才曰自CMP研襞製作開始經過約24小時後。另外,研磨粒 的二次粒子的平均粒徑可藉由動態光散射法而測定。具體 而吕,可藉由Beckman Coulter製造的次微米粒子分析儀 N5等進行測定。之一 One of the embodiments of the CMP slurry for enamel film of the present invention contains abrasive particles, a cationic surfactant, and water (10) Gu Yanyan, which can be used for polycrystalline or australis (am〇) Rph〇us仙_r The abrasive particles used in the present invention may be exemplified by silica, alUmma, eeria, zirconia, and titanium (titama). Oxidation error (germania) and the like. Among the abrasive grains: :: (considering the aspect of grinding damage is better colloidal silica. LSI (Large Scale integrated) mail rate alone, touch micronized (5) CMP ^ Research 2', grinding damage. Therefore, as the average particle size of the abrasive grains, the average particle size of the diazed yarn of HZ water two is better 疋5 nm~15〇_ 'better is 1〇~ slurry : The average grain size of the secondary particles of the abrasive particles after the above-mentioned range is lower than the average grain size of the secondary particles of the abrasive grains before and after the reduction of the average particle diameter of the secondary particles of the abrasive particles It may be easy to cause abrasive damage. The so-called CMP slurry is produced after about 24 hours from the start of the CMP mortar production. In addition, the average particle size of the secondary particles of the abrasive particles can be obtained by dynamic light scattering. The measurement can be carried out by a submicron particle analyzer N5 manufactured by Beckman Coulter or the like.

Ο f膜用CMP研漿中的研磨粒濃度較好的是wt〇/〇〜 10 wt/〇,更好的是〇·5 wt%〜5彬%。當上述研磨粒的濃度 未達〇·1 wt%時,有矽膜的研磨速度變慢的傾向,當上述 =磨粒的濃度超過1G wt%時,有容易產生研磨損傷的傾 砂膜胁= 子性界面活性劑,可獲得 、比研磨速度、氮化賴純化賴的充分的研磨 =匕、销與氮切膜的充分的研磨速度比 二=此種效果,最適_值為6.0〜80的中性區域為 :々P域於上4翻,氮切 於 膜的研磨速度與二= 值大於易提高氮化頻的研磨選擇性。當ΡΗ 速师 T ^的研磨速度變快,但氮切膜的研磨 速产,結果無法獲得二: 的研磨逮度^化卵^ _㈣磨速度變慢’石夕膜 ”虱化夕艇的研磨速度之比變小。另外,旧 加以說日^好的研磨逮度及較好㈣磨速度比,將於後= 】〇 200849366 27262pif :有親水部分二 所表=:肪_,較好的是使用以下述通式⑴ [R]N(R2)3]+X- (1) (式中,R]表示主鏈的碳數為8〜 分別獨立表示-價取代基。) W ^絲,R2 述Γ式〇)所表示的脂肪族銨鹽具有長鏈-價烷 的研磨速度及研裝的保存穩定性的方面 f慮’ R缺的是主鏈碳數為8〜18的―價絲 1G〜16的—價燒基。若上述魅過小則有石夕 膜f研磨速度變慢的傾向,故較好的是大於等於8,更好 t 1〇 °若上述碳數過大則有⑽研梁的穩定 ,交i的傾向’故較好的是小於等於18,更好的是小於等 =16於上述通式⑴中,χ只要成為相對於陽離子部 /刀的負離子則並無特別限制,例如可列舉α、扮、Ν〇3、 ai3coo、〇H等。另外,以上述通式⑴所表示的脂肪 族銨鹽只要最終在CMP㈣巾成為㈣式⑴所表示的 化合物即可,亦可藉由在水中將於CMP研漿中成為 [R]N(R2)3]+的物質與成為χ-的物質加以混合而獲得。使用 四乙基氫氧化叙(tetraethyl ammonium hydroxide)之類的 不具有長鏈烷基的四級銨鹽時,尤其於pH值為6·〇〜8·〇 11 ΓThe concentration of the abrasive particles in the CMP slurry for Ο f film is preferably wt 〇 / 〇 10 10 10 / 〇, more preferably 5 5 wt% 〜 5 彬 %. When the concentration of the above-mentioned abrasive grains is less than wt·1 wt%, the polishing rate of the ruthenium film tends to be slow. When the concentration of the above-mentioned abrasive grains exceeds 1 G wt%, there is a tendency to cause abrasive damage. The surfactant can be obtained, the specific polishing rate, the sufficient polishing rate of the ruthenium lysate, the sufficient polishing rate of the pin and the nitrogen film, and the like. The optimum value is 6.0 to 80. The neutral region is: the 々P domain is turned up by 4, and the polishing rate and the second value of the nitrogen cut film are larger than the grinding selectivity which is easy to increase the nitriding frequency. When the speed of the tempering T ^ is faster, but the grinding of the nitrogen film is faster, the result is not able to obtain two: the grinding arrest ^ ^ egg ^ _ (four) grinding speed slower 'Shi Xi film' The ratio of the speed becomes smaller. In addition, the old one says that the fine grinding degree and the better (four) grinding speed ratio will be later = 】 200849366 27262pif: there is a hydrophilic part two table =: fat _, preferably The following formula (1) [R]N(R2)3]+X- (1) (wherein R) represents that the carbon number of the main chain is 8 to independently represent a -valent substituent.) W ^ silk, R 2 The aliphatic ammonium salt represented by the above formula has a polishing rate of a long-chain valence alkane and a storage stability of the research and development, and it is considered that the R-deficient is a valence wire 1G having a main chain carbon number of 8 to 18. ~16 - the price of the base. If the above charm is too small, there is a tendency for the grinding speed of the stone film to slow down, so it is preferably greater than or equal to 8, more preferably t 1 〇 ° if the carbon number is too large, there is (10) research beam Stable, the tendency to pay i is therefore preferably less than or equal to 18, more preferably less than equal = 16 in the above formula (1), as long as it becomes a negative ion relative to the cation portion / knife For example, the aliphatic ammonium salt represented by the above formula (1) may be a compound represented by the formula (1) in the CMP (four) towel, and may be, for example, a compound of the formula (1). It can be obtained by mixing a substance which becomes [R]N(R2)3]+ in CMP slurry with a substance which becomes χ- in water, using tetraethyl ammonium hydroxide or the like. When the quaternary ammonium salt does not have a long-chain alkyl group, especially at a pH of 6·〇~8·〇11 Γ

200849366 27262pif 的r性區域中,;^睹μ _ 度變快 ,中,销的研磨速度變慢,氧切膜的研磨速 自矽膜的研磨速度、矽膜盥 氮化石夕膜魏切膜 逹的研磨速度比、 π脂肪:r更好的是112㈣的以下述 aJonLm)〇'^^^"^^^lkyl trimethyl [CnH2n+1N(CH3)3]+X- (2) (式中,η為8〜18的整數。) η # ^述通式⑴所表示的月旨肪族錢鹽,較好的 ^用R ^鏈碳數為8〜18的—價絲、減卜個 R與:R相同而其他r2為甲基的二垸基二甲基銨,、立中〆 個R為緑(benzyl)、其他R2為甲基的烧基二甲基辛基 錢0 上述脂肪胺或其鹽較好的是單胺(m〇n〇ami〇胺 (diamine)或它們的鹽。脂肪族二胺較好的是使用以下述 通式(3)所表示的化合物。 H2N_R3-NH2 (3) (式中,R3表示主鏈石炭數為8〜18的二價烷基。) 另外,脂肪族銨的鹽較好的是使用以下述通式(4)戶斤 表示的曱烯胺(methonium)化合物。 ((CH3)3N-R3-N(CH3)3)2+2X- ( 4 ) (式中,R3表示主鏈碳數為8〜18之二價烷基。) 以上述通式(3)或(4)所表示的化合物可獲得與以 12 200849366 27262pif =:方表面T广勿相同之特性,自可減少CMp研 二,3方面考慮較為優異。於上述通式(3)或⑷ ^ 的主鏈碳數過小則有矽膜的研磨速度變慢的傾 Γ200849366 27262pif in the r-region, ^^μ _ degree becomes faster, the grinding speed of the middle and pin becomes slower, the grinding speed of the oxygen-cut film is from the polishing speed of the ruthenium film, and the ruthenium film 盥 盥 魏 魏 魏 魏 魏 魏The grinding speed ratio, π fat: r is better than 112 (four) with the following aJonLm) 〇 '^^^"^^^lkyl trimethyl [CnH2n+1N(CH3)3]+X- (2) (where, η is an integer of 8 to 18.) η # ^ The monthly aliphatic salt represented by the general formula (1), preferably the R ^ chain carbon number of 8 to 18 - the valence, the reduction of the R and : a di- dimethyl dimethyl ammonium wherein R is the same and the other r 2 is a methyl group, and R is a benzyl group, and the other R 2 is a methyl group. The salt is preferably a monoamine (m〇n〇amiamine or a salt thereof. The aliphatic diamine is preferably a compound represented by the following formula (3). H2N_R3-NH2 (3) (In the formula, R3 represents a divalent alkyl group having a main chain charcoal number of 8 to 18.) Further, the aliphatic ammonium salt is preferably a methionamine represented by the following formula (4). Compound ((CH3)3N-R3-N(CH3)3)2+2X- (4) R3 represents a divalent alkyl group having a main chain carbon number of 8 to 18. The compound represented by the above formula (3) or (4) can be obtained by the same characteristics as 12 200849366 27262 pif =: square surface T It can reduce CMp research 2, and it is considered to be excellent in 3 aspects. When the carbon number of the main chain of the above formula (3) or (4) ^ is too small, the polishing rate of the enamel film becomes slower.

C:支較好的是大於等於8,更好的是大於等於10。若上 1 i:過大财CMp賴的敎性變差龍向,故較好 的是小於等於18,更好的是小於等於16。於上述通式⑷ 中,X只要成為相對於陽離子部分的負離子則並無特別限 制’例如可列舉Cl、Br、NO3、CH3COO、OH等。 本發明中使用的知離子性界面活性劑的具體例,可列 舉/臭化辛基二曱基銨(〇吻1 trimethyl &πιιη〇ηί· bromide)、>臭化癸基三甲基銨(decyl出祕㈣amin〇nium bromide)、氯化月桂基三甲基銨(iauryl trimethyl am獅 chloride )、氯化十四烷基三甲基銨(myristyl trimethyl ammonium chloride )、氯化十六烷基三?基銨(cetyl trimethyl ammonium chloride )、溴化硬脂基三甲基銨 (stearyl trimethyl ammonium bromide)等脂肪族銨鹽;辛 基胺、癸基胺、十二烧基胺(dodecylamine)、1,8-辛二胺 (158-diamino octane )、1,10-癸二胺(l,l〇-diamino decane)、1,12-十二烷二胺(l,12-diaminododecane)、1,14-十四烧二胺(l,14-diaminotetradecane)、1,16-十六烧二胺 (l,16_diamino hexadecane)等脂肪族胺;氯化八甲烯胺 (octamethonium chloride ),溴化十甲烯胺(decamethonium bromide )、溴化十二甲烯胺(dodecamethonium bromide )、 氯化十四曱烯胺(tetradecamethonium chloride)、氯化十六 13 200849366 zribzpix 甲稀胺(hexadecamethonium chloride )等曱稀胺化合物等。 石夕膜用CMP研漿中的陽離子性界面活性劑的濃度較 好的是1 ppm〜1000 ppm,更好的是5 ppm〜500 ppm(ppm 為總重量換算)。當上述陽離子性界面活性劑的濃度未達j ppm時,有矽膜的研磨速度變慢、矽膜的研磨速度與氮化 矽膜的研磨速度之比下降的傾向,當上述陽離子性界面活 性劑的濃度超過丨000 ppm時,有研磨粒產生凝聚、 fPreferably, the C: branch is greater than or equal to 8, more preferably greater than or equal to 10. If the upper 1 i: over-the-counter CMp depends on the temperament of the dragon, it is better to be less than or equal to 18, and more preferably less than or equal to 16. In the above formula (4), X is not particularly limited as long as it is a negative ion with respect to the cation moiety. For example, Cl, Br, NO3, CH3COO, OH or the like can be mentioned. Specific examples of the ionic surfactant used in the present invention include/smelling octyl decyl ammonium (〇1 trimethyl & πιιη〇ηί·bromide), > odorant decyltrimethylammonium (decyl secret) (a) amin〇nium bromide), iauryl trimethyl amyl chloride, myristyl trimethyl ammonium chloride, cetyl chloride ? An aliphatic ammonium salt such as cetyl trimethyl ammonium chloride or stearyl trimethyl ammonium bromide; octylamine, mercaptoamine, dodecylamine, 1,8 - 158-diamino octane, 1,10-diamino decane, 1,12-diaminododecane, 1,14-ten An aliphatic amine such as 1,14-diaminotetradecane or 1,16-diamino hexadecane; octamethonium chloride; decamethylamine bromide ( Decamethonium bromide), dodecamethonium bromide, tetradecamethonium chloride, chlorinated dilute amine compound such as hexadecamethonium chloride. The concentration of the cationic surfactant in the CMP slurry for the stone film is preferably from 1 ppm to 1000 ppm, more preferably from 5 ppm to 500 ppm (ppm is converted by total weight). When the concentration of the above cationic surfactant is less than j ppm, the polishing rate of the ruthenium film becomes slow, and the ratio of the polishing rate of the ruthenium film to the polishing rate of the ruthenium nitride film tends to decrease, and the above cationic surfactant When the concentration exceeds 丨000 ppm, there is abrasive grains to produce agglomeration, f

研漿的保存穩定性惡化的傾向。 於本發明中,藉由添加陽離子性界面活性劑,可於pH 值為6·0〜8.0的中性區域實現矽膜的較高研磨速度及氧化 矽膜的較低研磨速度,從而可使矽膜的研磨速度與氮化矽 膜的研磨速度之比、及氧化矽膜的研磨速度與氮化矽膜的 研磨速度之比為適當的值。 、 本發明的矽膜用CMP研漿是於水中將研磨粒分散 研漿狀㈣顧CMP研漿。水的調配量是相對於上述各 種成分的合計量的剩餘部分。 矽膜用CMP研漿的ΡΗ值為6·〇〜8·〇,較好的是62 了7.8。本發明的矽膜用CMP研漿於pH值為6.0〜8.〇的 ^域中,pH i越低則氮化石夕膜的研磨速度越快,相對於 =,石夕,研磨速度及氧化硬膜的研磨速度的變化較; ,,由调整pH值,可容易地調節各研磨膜的研磨 二比。Μ上述石夕膜用CMP研襞的pH值未達⑻時= 白=磨速度變慢,氮化賴的研磨速度變快 , 適當的研磨速度比。當上述PH值超過8.0時,氮 14 200849366 27262pif 研磨速度慢於氧化频的研磨速度,麵獲得射的研磨 速度比。CMP研漿的ρΗ值可藉由使用阳計來測定。 對石夕膜用CMP研漿的ΡΗ值進行調整時,可視需要而 使用適當的酸、㉟。酸並無特別限制,可使用越酸 (hydrochloric acidnitric acid)^Lgi( sulfuric a;id) 荨無機酸,草酸(oxallc acid)、醋酸(咖如、顏果 酸(malic acid)等有機酸。鹼亦無特別限制,可使用氨The storage stability of the slurry tends to deteriorate. In the present invention, by adding a cationic surfactant, a higher polishing rate of the ruthenium film and a lower polishing rate of the ruthenium oxide film can be achieved in a neutral region having a pH of 8.0 to 8.0, thereby enabling ruthenium. The ratio of the polishing rate of the film to the polishing rate of the tantalum nitride film, and the ratio of the polishing rate of the hafnium oxide film to the polishing rate of the tantalum nitride film are appropriate values. The CMP slurry for enamel film of the present invention is obtained by dispersing abrasive grains in water in the form of a slurry (4) CMP slurry. The amount of water to be formulated is the remainder of the total amount of the above various components. The ΡΗ value of the CMP slurry for the ruthenium film is 6·〇~8·〇, preferably 62 7.8. The ruthenium film of the present invention is CMP slurry in a pH range of 6.0 to 8. 〇, the lower the pH i, the faster the nitriding film is polished, relative to =, Shi Xi, polishing speed and oxidized hard The change in the polishing rate of the film is relatively small; and the polishing ratio of each of the polishing films can be easily adjusted by adjusting the pH. Μ When the pH of the CMP mortar used in the above-mentioned stone film is less than (8) = white = the grinding speed is slow, the polishing speed of the nitriding aging is increased, and the appropriate polishing rate ratio is obtained. When the above pH value exceeds 8.0, the polishing rate of nitrogen 14 200849366 27262pif is slower than the polishing rate of the oxidation frequency, and the surface obtains the polishing rate ratio of the shot. The ρΗ value of the CMP slurry can be determined by using a positive meter. When adjusting the enthalpy of the CMP slurry for the stone film, an appropriate acid or 35 may be used as needed. The acid is not particularly limited, and an acid (hydrochloric acid nitric acid) Lgi (sulfic acid a; id) 荨 inorganic acid, oxalic acid (oxallc acid), acetic acid (caru, malic acid) and other organic acids can be used. There is no special restriction, and ammonia can be used.

Ο (ammonia)、胺、四級銨聽錄、氫氧化料。上述酸 或驗的調配量可適當選擇,通常相對於贿用cMp研聚 為 1 ppm〜1〇〇〇 ppm 〇 _ 3457144公報中所揭示的含有驗 性有機化合物的研s,可獲得賴的較高的研磨速度及氧 =夕膜的較低的研磨速度,但若PH值未達60财膜的研 度麦〖又’若pH值超過8則氮化石夕膜的研磨速度變慢, 無法獲得適當的研磨速度比。 本發明的石夕膜用CMP研衆中,陽離子性界面活性劑 =用以調整PH值所使用的酸或驗的添 磨粒難以產生凝聚,保存敎性優異。 里文研 =1,本發明的矽膜用C MP研漿即便將c MP研漿的 、刀/辰縮亦較穩定,故亦可制在使用時加以稀釋然後使 用的方,。藉此,可進一步減少CMP研漿的成本。 於藉由自對準方式形成接觸插塞時的矽膜的CMP步 ^ ’必須根财膜、氮切膜、氧化频各膜的厚度來 周郎研磨條件,以獲得各膜的適當的研磨速度及研磨速度 15 200849366Ο (ammonia), amine, quaternary ammonium listen, hydroxide. The amount of the above-mentioned acid or test can be appropriately selected, and it is usually compared with the cMp of 1 ppm~1 〇〇〇ppm 〇 _ 3457144 published in the publication of the organic compound containing the organic compound. High grinding speed and low grinding speed of oxygen = celestial film, but if the PH value is less than 60, the grinding degree of the film is 〖又'. If the pH value exceeds 8, the grinding speed of the nitriding film becomes slower and cannot be obtained. Proper grinding speed ratio. In the CMP researcher for the stone film of the present invention, the cationic surfactant = the acid used for adjusting the pH value or the added abrasive grains is less likely to be aggregated, and the storage property is excellent. Li Wenyan =1. The C MP slurry for the ruthenium film of the present invention can be diluted and used at the time of use even if the knives and dies of the c MP slurry are relatively stable. Thereby, the cost of the CMP slurry can be further reduced. The CMP step of forming the ruthenium film when the contact plug is formed by self-alignment method must be subjected to the grinding conditions of the thickness of the film, the nitrogen film, and the oxidized film to obtain an appropriate polishing speed of each film. And grinding speed 15 200849366

Z/202plT :、;、而 般§忍為各膜的研磨速度會由於膜質、或研磨 類、研磨裝置的種類等各種因素而產生變化。相對 ^广口素,可藉由研磨壓力或研磨定盤的轉速等研磨條 .- 件進^調節的範圍有限,故僅藉由使研磨條件最適化,難 _· 轉*各膜的適當的研磨速度及研磨速度比。因此,必須 利用CMP砸觸職速度及研磨速纽。 Λ 對於本發明的矽膜用CMP研漿而言,藉由調整?11值 $財翻研磨速度及氧化賴的研磨速度料為大致固 疋並且可僅凋節氮化矽膜的研磨速度,故各膜的研磨速 度比的調節變容易,可容易地實現適當的研磨速度及研磨 速度比。 +其次,就使用本發明的矽膜用CMP研漿之情形時, 各膜的適#的研磨速度純說明。賴的研磨速度以剛 較好的是大於等於100nm/min,更好的是· nm/min〜· nm/mm ’進一步更好的是llOnm/min〜250 nm/min。當上 述賴的研料度R (pSi)未達⑽nm/mhi時,研^時 〇 Μ變長,故生紐下降’當上述補的研磨速度R (pSi) 超過300 nm/min時’有由於過剩研磨而使平坦性惡化的傾 向。氮化石夕膜的研磨速度R (SiN)較好較5 〇 nm/min • 〜3〇nm/min,更好的是5.0〜2〇nm/min。當上述氮化矽膜 的研磨速度R⑽)未達5.〇 nm/min時,必須延長氮化 . ㈣的研磨時間’故有生產性下降的傾向,當上述氮化石夕 膜的研磨速度R (SiN)超過3G nm/min時,有由於過剩研 磨而使平坦性惡化的傾向。氧化石夕膜的研磨速度以叫) 200849366 27262pif 較好的是0.3 nm/min〜3 nm/min,更好的是〇 3 nm/min〜 2.5 nm/min。當上述氧化矽膜的研磨速度R (si〇2)未達 0.3 rnn/min時,矽膜表面的自然氧化膜變得難以研2磨,故 , 賴的研磨時間變長,有生產性下降的傾向,當上述氧化 * 賴的研磨速度R⑽:)超過3 nm/min時,有由於過剩 研磨而使平坦性惡化的傾向。 +另外,使用本發明的矽膜用CMJ>研漿時,較好的是 f) 各膜的適當的研磨速度比同時滿足下述式(5)及式。 R (pSi) /R (siN) >5 (5) 工 。 R (SiN) /R (si〇2) >2 (6) 上述式⑸表示石夕膜的研磨速度與氮化石夕膜的研磨速 度之比’ R (PSi) /R (SiN)的值較好的是大於5,更好的 是大於5小於等於5〇,尤其好的是大於等於9小 5〇。當上述R (pSi) /R (SiN)的值小於等於$時了 =餘^晶魏絲岐行過研料,氮切膜被 「 =坦性下降的傾向。上述式(6)表示氮切膜的Z/202plT:,;, and § The polishing rate of each film is changed by various factors such as the film quality, the type of polishing, and the type of polishing device. Relative to the wide-mouth, the grinding bar can be adjusted by the grinding pressure or the rotational speed of the polishing plate. Therefore, the adjustment range is limited, so it is difficult to optimize the polishing conditions. Grinding speed and grinding speed ratio. Therefore, it is necessary to use the CMP, the touch speed and the grinding speed. Λ For the CMP slurry for enamel film of the present invention, by adjusting? The 11-value grinding speed and the polishing rate of the oxidizing-based material are substantially solid and can only be used to reduce the polishing rate of the tantalum nitride film, so that the polishing rate ratio of each film is easily adjusted, and appropriate polishing can be easily achieved. Speed and grinding speed ratio. + Next, in the case of using the CMP slurry for the ruthenium film of the present invention, the polishing rate of each film is purely described. The polishing rate of Lai is preferably 100 nm/min or more, more preferably nm/min to · nm/mm', and further preferably llOnm/min to 250 nm/min. When the R (pSi) of the above-mentioned Lai is less than (10) nm/mhi, the 〇Μ 〇Μ becomes longer, so the growth 纽 decreases when the grinding speed R (pSi) of the above supplementary exceeds 300 nm/min. Excessive polishing tends to deteriorate flatness. The polishing rate R (SiN) of the nitride film is preferably 5 〇 nm / min • 〜3 〇 nm / min, more preferably 5.0 〜 2 〇 nm / min. When the polishing rate R(10) of the tantalum nitride film is less than 5. 〇nm/min, the nitriding must be prolonged. The polishing time of (4) tends to decrease in productivity, and the polishing rate R of the above-mentioned nitride film is When SiN) exceeds 3 G nm/min, flatness tends to be deteriorated due to excessive polishing. The polishing rate of the oxidized stone film is called 200849366 27262pif, preferably 0.3 nm/min to 3 nm/min, more preferably 〇 3 nm/min to 2.5 nm/min. When the polishing rate R (si 〇 2) of the ruthenium oxide film is less than 0.3 rnn/min, the natural oxide film on the surface of the ruthenium film becomes difficult to be ground, so that the polishing time of the ruthenium is long and the productivity is lowered. When the polishing rate R(10):) of the above oxidation is more than 3 nm/min, the flatness tends to be deteriorated due to excessive polishing. Further, in the case of using the CMJ of the ruthenium film of the present invention, it is preferred that f) the appropriate polishing rate ratio of each film satisfies the following formula (5) and formula. R (pSi) /R (siN) >5 (5) Work. R (SiN) /R (si〇2) >2 (6) The above formula (5) represents the ratio of the polishing rate of the stone film to the polishing rate of the nitride film, R (PSi) / R (SiN) Preferably, it is greater than 5, more preferably greater than 5 and less than or equal to 5 〇, and particularly preferably greater than or equal to 9 small 5 〇. When the value of R (pSi) / R (SiN) is less than or equal to $ = 余 晶 魏 魏 魏 研 研 研 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮 氮Membrane

" 研磨速度與魏賴的研磨速叙比,R(SiN)/R(SiCM 大於2,更好的是大於2小咖二) =Z5小於等於2G°當上述R⑽)/R( Si〇r) .纟值小於寻於2時,有平坦性惡化的傾向。 • 使用本發明的矽膜用⑽研漿的C MP研磨方法是# • 用上述本發明的矽膜用CMP 漿,對开:使 ,化石夕膜及氧化頻的被·_基板進行研^。作為研 磨對象的被研磨膜是石夕膜、氮化石夕膜及氧化石夕膜,該些各 17 () Ο 200849366 iribzpir 層亦可為積層。於本發明一為多一或 开β in列舉與半導體裝置的製造相_基板,例如於 雷脸-I*讀及配線®案的赌的半導體絲、形成有 朗料縣衫轉體基板上形成有 士研磨被研磨膜可藉由化學機械研磨而進行,具 (墊)::m:的基板按壓於研磨定盤的研磨布 一、真播從府—下,一达供給本發明的矽膜用cmp研漿 磨地I定盤與基板相對移動,藉此對被研磨面進行研 研磨裝置例如可使料t之研縣置,其 ΐ的!可保持被研磨基板的_、及與^速可 厂達4連接且貼附著研磨布的定盤。例如," Grinding speed and Weilai's grinding speed ratio, R(SiN)/R(SiCM is greater than 2, more preferably greater than 2 small coffee two) = Z5 is less than or equal to 2G° when R(10))/R( Si〇r When the 纟 value is less than 2, the flatness tends to deteriorate. • The C MP polishing method using the (10) slurry for the ruthenium film of the present invention is # • Using the CMP slurry for the ruthenium film of the present invention described above, the CVD slurry and the oxidized frequency substrate are ground. The film to be polished is a stone film, a nitride film, and an oxidized stone film, and the 17 () Ο 200849366 iribzpir layer may be laminated. In the present invention, a plurality of ones or an open beta is listed as a substrate for manufacturing a semiconductor device, for example, a semiconductor wire that is gambling in a Ray-I* reading and wiring® case, and formed on a substrate of a Lange County shirt. The polishing of the film by the mortar can be carried out by chemical mechanical polishing, and the substrate with the (mat)::m: is pressed against the polishing cloth of the polishing plate, and the film is supplied to the film of the present invention. The grinding plate is ground with the cmp and the substrate is moved relative to the substrate, whereby the polishing device for grinding the surface to be polished can be placed, for example, by the research and development of the material t. It is possible to maintain the _ of the substrate to be polished, and the fixing plate that is connected to the stencil 4 and adheres to the polishing cloth. E.g,

Applied Materials 製造的 Mirra。 用 研磨布可使用通常的不織布、發泡聚 (polyurethane) 條件並無限制,定盤的轉研磨 以使基板不會飛出。具有被磨 附壓力(研磨壓力)較好的是3kPa::rkPn^iMirra made by Applied Materials. The general non-woven fabric and the polyurethane conditions can be used for the polishing cloth without any limitation, and the polishing of the fixing plate is performed so that the substrate does not fly out. It is preferred that the pressure to be applied (grinding pressure) is 3 kPa::rkPn^i

遑度的被研磨面内均勻性及圖案的平坦性,更好的B 6 kPa〜40 kPa。 更好的疋 =磨過程中,以料_顧CMp研 至研磨布1顧⑽研_供給量並無限制,較^ 200849366 27262pif 是研磨布的表面一直由矽膜用CMP研漿所覆蓋著。 y對於研磨結束後的基板,較好的是於流水中充分清洗 之後仰使用旋轉乾燥機(Spindryer)等將附著於基板上的 水滴撣落後進行乾燥。為了使研磨布的表面狀態—直相同 而進行CMP,較好較於研狀前增加研磨布的調節 』(rdlti〇ning)步驟。例如,使用附有金剛石⑽mond) 粒子的修整器(dr⑽)以至少含水的液體來進行研磨布 的調節。繼而實施本發明的CMp研磨步驟,較好的是進 一步增加基板清洗步驟。 使用本發明的矽膜用CMp研漿,對具有圖丨所示的 f面的半導體元件進行CMP時,多晶賴8經研磨後, 路出閘極覆蓋層4及絕賴7。此後進行適當的過研磨。 使用本發明的矽膜用CMp研漿進行CMp的過程中,多晶 石夕膜8的研磨速度、難覆蓋層4的研磨速度、絕緣膜7 的研磨速度、多晶頻8的研磨速度與閘極覆蓋層4的研 磨速度之比、閘極覆i層4的研磨速度與絕緣膜7的研磨 ^之比分別適當,故可如圖2所示,將閘極覆蓋層4的 〜部分去除而不露出閘極導電層,可將多餘的多晶石夕膜8 凡全去除。因此,可利用使用一種研漿的CMP,而獲得良 好的平坦性及被研磨面内均勻性,可減少半導體元 造成本、提高良率、提高可靠性。 實施例 以下,對本發明的實施例加以說明。本發明並不受該 些實施例限制。 19 200849366 27262pit 實施例1〜15 於=施例1〜15中,將水、膠體二氧化矽、表1或表 2中所不的陽離子性界面活性劑加以混合之後 ,添加蘋果The uniformity of the surface to be polished and the flatness of the pattern are better, B 6 kPa to 40 kPa. Better 疋 = In the grinding process, the material is _ CMp research to the polishing cloth 1 (10) _ _ supply is not limited, compared to ^ 200849366 27262pif is the surface of the polishing cloth has been covered by the CMP film with CMP. y It is preferable that the substrate after the polishing is sufficiently washed in the running water, and then the water droplets adhering to the substrate are dried by using a spin dryer or the like. In order to perform the CMP in the surface state of the polishing cloth, it is preferable to increase the adjustment of the polishing cloth before the grinding. For example, the dresser (dr(10)) with diamond (10) mond) particles is used to adjust the polishing cloth with at least an aqueous liquid. Following the CMp milling step of the present invention, it is preferred to further increase the substrate cleaning step. When CMP is performed on the semiconductor element having the f-plane shown in Fig. 使用 using the CMp slurry of the ruthenium film of the present invention, the polycrystalline ray 8 is polished, and the gate cover layer 4 and the slab 7 are eliminated. Thereafter, appropriate over-grinding is carried out. In the process of performing CMp using the CMp slurry of the ruthenium film of the present invention, the polishing rate of the polycrystalline stone film 8, the polishing rate of the hard coat layer 4, the polishing rate of the insulating film 7, the polishing rate of the polycrystalline frequency 8, and the gate The ratio of the polishing rate of the electrode layer 4, the polishing rate of the gate electrode layer 4, and the polishing ratio of the insulating film 7 are respectively appropriate, so that the portion of the gate cap layer 4 can be removed as shown in FIG. Excessive polysilicon film 8 can be removed without exposing the gate conductive layer. Therefore, CMP using a slurry can be used to obtain good flatness and uniformity in the surface to be polished, thereby reducing semiconductor element cost, improving yield, and improving reliability. EXAMPLES Hereinafter, examples of the invention will be described. The invention is not limited by these examples. 19 200849366 27262pit Examples 1 to 15 In the following Examples 1 to 15, water, colloidal cerium oxide, and cationic surfactants not shown in Table 1 or Table 2 were mixed, and then apples were added.

ί/ 酸以气整成表1或表2中所示的ρΗ值,來製作CMp研聚。 pH值是以pH計(東亞DKK股份有限公司製造,型號: HM — 21P)進行測定。具體而言,使用標準緩衝液(鄰笨 二曱酸鹽pH緩衝液PH值·· 4·01 (25。〇,中性磷酸鹽pH 缓衝液pH值:6.86 (25°C ),硼酸鹽標準液pH值:9.18 (25 C))進行二點校正之後,將電極放入至cmp研漿 中,測疋經過10分鐘或10分鐘以上而穩定後的值。 产CMP研襞中的膠體二氧化石夕的濃度為3 wt〇/〇。膠體二 氧化矽的二次粒子的平均粒徑於CMp研漿製作前為 左右研水‘作後為20 nm左右,該平均粒徑於研漿製作 後於至/凰下放置一個月後亦幾乎無變化。平均粒徑是使用 次微米粒子分析儀N5 (Beckman c〇ulter製造)進行測定。 —CMP研料的陽離子性界面活性_濃度,於實施例 1〜貫施例13中為100 ppm,於實施例14及實施例15中 為40 ppm (ppm為總重量換算)。另外,為使CMp研漿的 pH值成為表丨或表2中所示的值而使用的躲酸的調配量 為CMP研漿中5 ppm〜1〇〇 ppm之間。 使用形成有多晶矽膜、氮化矽膜、氧化矽膜的以下所 示的各晶圓,一邊將上述實施例丨〜實施例15的各cMp 研漿滴加於貼附於定盤的墊上,一邊於下示研磨條件下進 行CMP處理。用光干涉膜厚計來測定CMp處理前後的各 20 200849366 27262pif 膜厚,根據其膜厚差及研磨時間來算出 果示於表1或表2。 听磨速度 將其結ί/ Acid is gas-solidified into the ρΗ value shown in Table 1 or Table 2 to prepare CMp. The pH was measured by a pH meter (manufactured by Toa DKK Co., Ltd., model: HM-21P). Specifically, standard buffer (o-studate pH buffer pH·································· Liquid pH: 9.18 (25 C)) After two-point calibration, the electrode was placed in the cmp slurry and the value was stabilized after 10 minutes or more. The colloidal dioxide in the CMP mortar was produced. The concentration of Shixi is 3 wt〇/〇. The average particle size of the secondary particles of colloidal ceria is about 20 nm after the preparation of CMp slurry, and the average particle size is after the slurry is produced. There was almost no change after one month of placement under phoenix. The average particle size was measured using a submicron particle analyzer N5 (manufactured by Beckman Culter). - Catalytic interface activity of CMP material _ concentration, in Examples 1 to 100 ppm in Example 13, and 40 ppm (ppm in total weight) in Example 14 and Example 15. In addition, the pH of the CMp slurry was expressed in Table or Table 2. The amount of acid used in the CMP slurry is between 5 ppm and 1 〇〇 ppm. The polycrystalline tantalum film is formed and nitrided. Each of the cMp slurry of the above-described Example to Example 15 of the ruthenium film and the ruthenium oxide film was dropped on the pad attached to the platen, and CMP was performed under the polishing conditions shown below. The film thickness of each of the 20 200849366 27262 pif films before and after the CMp treatment was measured by a light interference film thickness meter, and the results were shown in Table 1 or Table 2 based on the difference in film thickness and the polishing time.

曰圓==膜的CMP,是使用於直後⑷夕 :口,成ioonm的氧化石夕膜之後,藉由cvD(chemicai 職,化學氣相沈積)形成有500舢的多晶 碎膜的晶圓。曰 round == CMP of the film, which is used to form a 500-inch polycrystalline film wafer by cvD (chemicai, chemical vapor deposition) after the straight (4) eve: mouth, into the ioonm oxidized stone film. .

Ο 曰口用,氮化矽膜的CMP,是使用於直徑(0) 8吋的矽 晶圓上藉由CVD而形成有200nm的氮化矽膜的晶圓。 用於氧化矽膜的CMP,是使用於直徑(#) 8吋的矽 晶圓上藉由電漿CVD而形成有500 nm的氧化矽膜的晶 (研磨條件) 研磨裝置:定盤尺寸600 mm#,旋轉式 研磨墊:發泡聚胺基甲酸乙酯樹脂 墊溝槽:同心圓狀的溝槽 研磨壓力:210 hPa 晶圓基板的轉速:80mirf] 研磨定盤的轉速:SOmirf1 研聚流量:200ml/min 研磨時間:各膜分別為1分鐘 21 200849366CMP For rinsing, the CMP of tantalum nitride film is a wafer on which a tantalum nitride film of 200 nm is formed by CVD on a ( wafer having a diameter of (0) 8 Å. The CMP used for the yttrium oxide film is a crystal (grinding condition) for forming a 500 nm yttrium oxide film by plasma CVD on a ruthenium (直径) 8 矽 矽 wafer: a plate size of 600 mm #,Rotary polishing pad: Foamed polyurethane resin pad groove: Concentric groove grinding pressure: 210 hPa Wafer substrate rotation speed: 80mirf] Grinding plate rotation speed: SOmirf1 Grinding flow rate: 200ml/min Grinding time: each film is 1 minute 21 200849366

22 研磨速度 比 研磨速度 (nm/min ) pH值 陽離子性界面活性劑 氮化矽膜/氧化矽膜 氧化矽膜 氤化矽膜 多晶矽膜 H-* 〇 H—k 〇\ a ο Η—^ g CTn 氯化十六烧 基三甲基銨 〇〇 實施例 4^ ·〇 to oo Lo ί—^ On ok o to 氯化硬脂基 三甲基銨 On h—^ <1 o bo Η—^ Η—λ 〇 On 氣化硬脂 基三甲基 銨 Ό Ιλ so to b I—λ CTs Os 氯化硬脂 基三曱基 銨 h—^ 1—^ to Lh to ί〇 o to ο 1—λ H— 〇\ 'O 辛基胺 fo 私 ο t—i 00 bo tsj ο 00 H—L Os 癸基胺 k) 1—^· oo Lr\ 1—* bo U) to o 〇\ 溴化十 曱烯胺 fV>v) Lh to l>-> Γ° ο •^ι ON 1,10- 癸二胺 【,2】 研磨速度比 研磨速度 (nm/min ) pH值 陽離子性界面活性劑 氮化矽膜/氧化矽膜 多晶矽膜/氮化矽膜 氧化矽膜 氮化矽膜 多晶矽膜 4^ 〇 to 〇 〇 bO Ο οο 5; ο Os 溴化辛基 三甲基銨 實施例 〇\ 〇 Η—* Ο ο ro Ln *—* Lh 0's Ον 溴化辛基 三曱基銨 to 〇\ 〇 οο L〇 o 1—A to Ν-) Ν-) Ο 〇\ 溴化癸基 三甲基銨 ON u> u> Lo to ο •<1 氣化月桂基 三甲基銨 Ό L〇 Η—a H—* H—* LO to ο Ον 氣化月桂基 三甲基銨 Ut t—^ Κ) Lh VO ο ON Η—^ g 〇\ bs 氣化月桂基 三曱基銨 Ch ί—* ο 1—k bo μ—^ Kj Ό Ο ΟΝ in ? ^ ^ fT ^ 1 【41】 27262pif 200849366 27262pif 主如表1或表2所示,於實施例〗〜實施例15中的任一 十月形下,多晶矽膜的研磨速度、氮化矽膜的研磨速度、 ,石夕膜的研錢度、多晶賴的研磨速度錢切ς的研 磨連度之比、氮化賴的研磨速度與氧切朗研磨速产 =比均可獲得良好的值。並且,若減小ρΗ值則氮化石夕ς 的研磨速度變慢’故可較藉由調整ρΗ值可調節氮化石夕 Μ的研磨速度。使用BPSG膜代替氧化石夕膜時,可預 =磨速度最大會增大至2倍左右,而根據本實施例的結 果,使用BPSG時亦可使用本發明的CMp研漿。 比較例1 7 使用四甲基氫氧化銨來代替陽離子性界面活性劑,添 力曲口四曱基氫氧化触使CMP研料的㈣基氫氧化按的 >辰度為100 ppm,並添加蘋果酸以使pH值 外以與實施例相同之方式製作CMP冊,敎各^研 磨速度。將結果示於表3。 比較例2 使用四曱基氫氧化銨來代替陽離子性界面活性劑,添 加四曱基氫氧化銨錢CMP研漿中的四f基氫氧化敍的 濃度為100 ppm,並添加蘋果酸以使pH值為6 9,除此以 外以與實關相同之料製作CMp贿 磨速度。將結果示於表3。 、 比較例3 ▲使用IUb月桂基二曱基銨來作為陽離子性界面活性 剑,添加氯化月桂基二甲基銨以使CMP研漿中的氯化月 200849366 27262pit 桂基三甲基銨的濃度為l〇〇 ppm,並添加蘋果酸以使pH值 為5.7 ’除此以外以與實施例相同之方式製作研漿, 測定各膜的研磨速度,將結果示於表3。 比較例4 使用氯化月桂基三甲基銨來作為陽離子性界面活性 劑,添加氯化月桂基三甲基銨以使CMp研漿中的氯化月 桂基二曱基銨的濃度為1〇〇 ppm,並添加四甲基氫氧化銨 以使pH值為8.3,除此以外以與實施例相同之方式製作 CMP研漿’測定各膜的研磨速度。將結果示於表3。 [表3]22 Grinding speed ratio Grinding speed (nm/min) pH value Cationic surfactant Tantalum nitride film/Thick Oxide film Oxide film Deuterated film Polycrystalline film H-* 〇H—k 〇\ a ο Η—^ g CTn hexadecyl trimethylammonium chloride Example 4^ ·〇to oo Lo ί—^ On ok o to Chlorostearyltrimethylammonium On h—^ <1 o bo Η—^ Η—λ 〇On gasified stearyl trimethylammonium Ό Ιλ so to b I—λ CTs Os chlorinated stearyl sulphate h—^ 1—^ to Lh to ί〇o to ο 1—λ H— 〇\ 'O octylamine fo private ο t—i 00 bo tsj ο 00 H—L Os decylamine k) 1—^· oo Lr\ 1—* bo U) to o 〇\ bromination Enamine fV>v) Lh to l>-> Γ° ο •^ι ON 1,10-decanediamine [,2] Grinding speed ratio grinding rate (nm/min) pH cationic surfactant nitriding矽 film/矽 矽 多 多 / 矽 矽 矽 矽 〇〇 O O O O O ; ; ; ; ; ; O O O ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; * Ο ο ro Ln *—* Lh 0's Ον Bromooctyl Ammonium to 〇\ 〇οο L〇o 1—A to Ν-) Ν-) Ο 〇\ bromomethyltrimethylammonium ON u>u> Lo to ο •<1 gasification lauryl trimethyl Ammonium Ό L〇Η—a H—* H—* LO to ο Ον gasification lauryl trimethylammonium Ut t—^ Κ) Lh VO ο ON Η—^ g 〇\ bs gasification lauryl triammonium Ch ί—* ο 1—k bo μ—^ Kj Ό Ο ΟΝ in ^ ^ ^ fT ^ 1 [41] 27262pif 200849366 27262pif Main as shown in Table 1 or Table 2, in Examples ~ to 15 The shape of the polycrystalline tantalum film, the polishing rate of the tantalum nitride film, the research cost of the stone film, the grinding speed of the polycrystalline Lai, the ratio of the grinding degree of the tangent, and the grinding of the nitride Good values can be obtained for both speed and oxygen chopping speed = ratio. Further, if the value of ρ 减小 is decreased, the polishing rate of the nitride nitrite becomes slower. Therefore, the polishing rate of the nitrite can be adjusted by adjusting the ρ Η value. When a BPSG film is used in place of the oxidized stone film, it is possible to predict that the grinding speed is increased to about 2 times at the maximum, and according to the results of the present embodiment, the CMp slurry of the present invention can also be used when BPSG is used. Comparative Example 1 7 Using tetramethylammonium hydroxide in place of the cationic surfactant, the addition of the tetrakisyl hydroxide to the quaternary hydroxide of the CMP material was <100 ppm and added The malic acid was prepared in the same manner as in the examples in the same manner as in the examples, and the respective polishing speeds were obtained. The results are shown in Table 3. Comparative Example 2 Using tetradecyl ammonium hydroxide instead of the cationic surfactant, adding tetradecyl ammonium hydroxide, the concentration of the tetraf-hydroxy hydroxide in the CMP slurry was 100 ppm, and adding malic acid to adjust the pH. The value is 6 9, and otherwise the CMp bribe speed is made with the same material as the real one. The results are shown in Table 3. , Comparative Example 3 ▲Using IUb lauryl dimercaptoammonium as a cationic interface-active sword, adding lauryl dimethylammonium chloride to make the concentration of chlorinated month 200849366 27262pit glyceryl trimethylammonium in CMP slurry A slurry was prepared in the same manner as in the Example except that malic acid was added at a pH of 5.7 Å, and the polishing rate of each film was measured. The results are shown in Table 3. Comparative Example 4 Using lauryl trimethylammonium chloride as a cationic surfactant, lauryl trimethylammonium chloride was added to make the concentration of lauryl diammonium chloride in the CMp slurry to be 1 〇〇. The polishing rate of each film was measured by making CMP slurry in the same manner as in the example except that tetramethylammonium hydroxide was added to adjust the pH to 8.3. The results are shown in Table 3. [table 3]

U 24 200849366 27262pif pH值較低的比較例3中,多晶矽膜的研磨速度慢,多晶矽 膜的研磨速度與氮化㈣的研磨速度之比不充分。⑽ 漿的pH值較高的比較例4中,氮化 氧化石夕膜㈣錢度。㈣軸結料^研磨速度反於 的pH值未達6.0或大於8.0時,無法獲得3 研磨速度、研磨速度比。 【圖式簡單說明】 當CMP研漿 種膜的適當的U 24 200849366 27262pif In Comparative Example 3 having a low pH value, the polishing rate of the polycrystalline germanium film was slow, and the ratio of the polishing rate of the polycrystalline germanium film to the polishing rate of the nitride (four) was insufficient. (10) In Comparative Example 4 in which the pH of the slurry was high, the nitrous oxide oxide film (four) was used. (4) When the pH of the shaft material is less than 6.0 or greater than 8.0, the grinding speed and the grinding speed ratio cannot be obtained. [Simple description of the pattern] When the CMP slurry is suitable for the seed film

圖1是表示CMP前的半導體元件的剖 圖2是表示CMP後的半導體元件的音j 【主要元件符號說明】 面圖 面圖 Ο 1 :石夕基板 2 :閘極絕緣膜 3 :閘極結構 4:閘極覆蓋層 5 :閘極間隙壁 6 :蝕刻阻擋層 7 :絕緣膜 8 :多晶矽膜 9:金屬矽化物 10 :多晶矽 251 is a cross-sectional view showing a semiconductor element before CMP. FIG. 2 is a view showing a sound of a semiconductor element after CMP. [Explanation of main element symbols] FIG. 1 : Shi Xi substrate 2 : Gate insulating film 3 : Gate structure 4: gate cap layer 5: gate spacer 6: etch barrier layer 7: insulating film 8: polysilicon film 9: metal germanide 10: polysilicon 25

Claims (1)

200849366 ζ/ζοζριτ 十、申請專利範圍: 1·一種石夕膜用CMP研漿,其是含有研磨粒、陽離子性 界面活性劑及水而形成,且pH值為6.0〜8.0。 … 2·如申請專利範圍第1項所述的矽膜用CMP研漿,其 •- 中上述陽離子性界面活性劑是選自脂肪族胺或其鹽、脂肪 族銨鹽中的一種或一種以上。 3·如申請專利範圍第1項或第2項所述的矽膜用CMP (') 研裝’其中上述陽離子性界面活性劑是以下述通式(1)所 表示的脂肪族録鹽: [R]N(R2)3]+X· (1) (式中’ R1表示主鏈碳數為8〜18的一價烷基,R2 分別獨立表示一價取代基)。 4·如申請專利範圍第1項或第2項所述的矽膜用CMP 研聚’其中上述陽離子性界面活性劑是以下述通式(2)所 表示的脂肪族銨鹽: ◎ [CnH2n+1N(CH3)3]+X- (2) (式中,η為8〜18的整數)。 5·如申請專利範圍第1項或第2項所述的矽膜用CMP 研毁’其中上述陽離子性界面活性劑是選自烷基三曱基 .. 錢、二垸基二甲基銨、烷基二曱基节基銨中的一種或一種 以上的脂肪族銨鹽。 6·如申請專利範圍第1項或第2項所述的矽膜用CMP 研聚’其中上述陽離子性界面活性劑是以下述通式(3)所 表示的脂肪族胺: 26 200849366 27262pif H2N-R3_NH2 ( 3 ) (式中’ R/表示主鏈碳數為8〜18的一價统基)。 7·如申請專利範圍第1項或第2項所述的矽膜用CMP 研漿’其中上述陽離子性界面活性劑是以下述通式(4)所 表示的脂肪族銨的鹽·· ((CH3)3N-R3-N(CH3)3)2+2X- (4) (式中,R3表示主鏈碳數為8〜18的二價烷基)。 Ο 8·如申請專利範圍第1項或第2項所述的矽膜用CMP 研漿’其中矽膜的研磨速度R(pSi)大於等於i〇〇 nm/min, 氮化矽膜的研磨速度R(SiN)為5.0nm/min〜3()nm/min, 氧化矽膜的研磨速度R(Si02)為〇·3 nm/min〜3 nm/min。 9·如申請專利第!項或第2韻述的㈣用cMp 研漿,其中石夕膜的研磨速度與氮化矽膜的研磨速产之比 R (pSi) /R 大於5,且氮切膜的研磨^ 矽膜的研磨速度之比即R (SiN) /R (Si〇2)大於/、 〇 27200849366 ζ/ζοζριτ X. Patent application scope: 1. A CMP slurry for stone film, which is formed by containing abrasive particles, a cationic surfactant and water, and has a pH of 6.0 to 8.0. The CMP slurry for enamel film according to the first aspect of the invention, wherein the cationic surfactant is one or more selected from the group consisting of an aliphatic amine or a salt thereof and an aliphatic ammonium salt. . 3. The CMP (') coating for enamel film according to the first or second aspect of the patent application, wherein the cationic surfactant is an aliphatic salt represented by the following formula (1): R]N(R2)3]+X· (1) (wherein R1 represents a monovalent alkyl group having a main chain carbon number of 8 to 18, and R2 each independently represents a monovalent substituent). 4. The CMP of the ruthenium film according to the first or second aspect of the patent application, wherein the cationic surfactant is an aliphatic ammonium salt represented by the following formula (2): ◎ [CnH2n+ 1N(CH3)3]+X- (2) (wherein η is an integer of 8 to 18). 5. The ruthenium film described in Item 1 or 2 of the patent application is destroyed by CMP. The above-mentioned cationic surfactant is selected from the group consisting of alkyl tridecyl.. money, dimercaptodimethylammonium, One or more aliphatic ammonium salts of alkyl diindenyl quaternary ammonium. 6. The CMP film of the ruthenium film according to the first or second aspect of the patent application wherein the above cationic surfactant is an aliphatic amine represented by the following formula (3): 26 200849366 27262pif H2N- R3_NH2 ( 3 ) (wherein R / represents a monovalent base having a main chain carbon number of 8 to 18). 7. The CMP slurry for enamel film according to the first or second aspect of the invention, wherein the cationic surfactant is a salt of an aliphatic ammonium represented by the following formula (4) (( CH3) 3N-R3-N(CH3)3)2+2X- (4) (wherein R3 represents a divalent alkyl group having a main chain carbon number of 8 to 18). Ο 8· As in the CMP slurry for enamel film described in the first or second paragraph of the patent application, in which the polishing rate R(pSi) of the ruthenium film is greater than or equal to i〇〇nm/min, the polishing rate of the tantalum nitride film R (SiN) is 5.0 nm/min to 3 () nm/min, and the polishing rate of the hafnium oxide film R (SiO 2 ) is 〇·3 nm/min to 3 nm/min. 9. If you apply for a patent! (4) using cMp slurry, wherein the ratio of the polishing rate of the stone film to the polishing yield of the tantalum nitride film is R (pSi) /R is greater than 5, and the polishing of the nitrogen film is The ratio of the grinding speed is R (SiN) / R (Si 〇 2) is greater than /, 〇 27
TW097106044A 2007-02-27 2008-02-21 CMP slurry for silicon film TW200849366A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007047008 2007-02-27
JP2007139482 2007-05-25

Publications (1)

Publication Number Publication Date
TW200849366A true TW200849366A (en) 2008-12-16

Family

ID=39721061

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097106044A TW200849366A (en) 2007-02-27 2008-02-21 CMP slurry for silicon film

Country Status (4)

Country Link
JP (1) JP5397218B2 (en)
KR (1) KR20100014849A (en)
TW (1) TW200849366A (en)
WO (1) WO2008105223A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513126B2 (en) * 2010-09-22 2013-08-20 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Slurry composition having tunable dielectric polishing selectivity and method of polishing a substrate
TWI582184B (en) * 2012-01-16 2017-05-11 福吉米股份有限公司 Polishing composition, method for producing polishing composition, undiluted solution, method for producing silicon substrate, and silicon substrate
JP6533439B2 (en) * 2015-09-15 2019-06-19 株式会社フジミインコーポレーテッド Polishing composition

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2889810B2 (en) * 1994-03-14 1999-05-10 三菱マテリアル株式会社 Polishing method for polysilicon film and polishing agent for polysilicon film
JP3230986B2 (en) * 1995-11-13 2001-11-19 株式会社東芝 Polishing method, semiconductor device manufacturing method, and semiconductor manufacturing apparatus.
JP2001077060A (en) * 1999-09-08 2001-03-23 Toshiba Corp Manufacture of semiconductor device
JP2002114969A (en) * 2000-10-04 2002-04-16 Toto Ltd Abrasive for moisture absorptive composite material and repair method of moisture absorptive composite material
JP2002155268A (en) * 2000-11-20 2002-05-28 Toshiba Corp Slurry for chemical and mechanical polishing and method for producing semiconductor device
JP2002190458A (en) * 2000-12-21 2002-07-05 Jsr Corp Water dispersion for chemical mechanical polishing
KR100416587B1 (en) * 2000-12-22 2004-02-05 삼성전자주식회사 Chemical mechanical polishing slurry
JP4187206B2 (en) * 2002-10-04 2008-11-26 花王株式会社 Polishing liquid composition
JP2004266155A (en) * 2003-03-03 2004-09-24 Jsr Corp Water dispersed element for chemical mechanical polishing and chemical mechanical polishing method using the same and method for manufacturing semiconductor device
JP2004247542A (en) * 2003-02-14 2004-09-02 Kao Corp Method for manufacturing substrate for precision component
JP4637464B2 (en) * 2003-07-01 2011-02-23 Jsr株式会社 Aqueous dispersion for chemical mechanical polishing
JP2005064285A (en) * 2003-08-14 2005-03-10 Hitachi Chem Co Ltd Polishing solution and polishing method for cmp
JP2005236275A (en) * 2004-01-23 2005-09-02 Jsr Corp Water disperse form for chemical mechanical polishing and chemical mechanical polishing method

Also Published As

Publication number Publication date
WO2008105223A1 (en) 2008-09-04
JPWO2008105223A1 (en) 2010-06-03
JP5397218B2 (en) 2014-01-22
KR20100014849A (en) 2010-02-11

Similar Documents

Publication Publication Date Title
US9022834B2 (en) Polishing solution for CMP and polishing method using the polishing solution
JP7250530B2 (en) Polishing composition, method for producing polishing composition, polishing method, and method for producing semiconductor substrate
TW200914591A (en) CMP slurry for polishing silicon film and polishing method
CN101016440B (en) Multi-component barrier polishing solution
JP5516604B2 (en) Polishing liquid for CMP and polishing method using the same
TWI290949B (en) Polishing slurry and chemical mechanical polishing method
US20100001229A1 (en) Cmp slurry for silicon film
EP3670620B1 (en) Polishing compositions and methods of using same
CN101311205A (en) Cmp polishing agent and method for polishing substrate
TWI826834B (en) Grinding composition
TWI758069B (en) Polishing compositions and methods of using same
US10246620B2 (en) CMP polishing agent, method for manufacturing thereof, and method for polishing substrate
TW201939596A (en) Polishing composition, manufacturing method of polishing composition, polishing method, and manufacturing method of semiconductor substrate for polishing a polishing object at a high polishing speed
JPWO2017169808A1 (en) Polishing composition
JP4027929B2 (en) Polishing liquid composition for semiconductor substrate
JP2020155775A (en) Chemical mechanical polishing compositions and methods for suppressing removal rate of amorphous silicon
JP2010056127A (en) Cmp slurry for silicon film
CN102559062A (en) Stabilized, concentratable chemical mechanical polishing composition and method of polishing a substrate
TW200849366A (en) CMP slurry for silicon film
JP5843093B2 (en) Stabilized chemical mechanical polishing composition and method for polishing a substrate
JP2008112970A (en) Polishing composition
JP7236270B2 (en) Polishing liquid composition
CN101622695A (en) CMP slurry for silicon film
US20240018390A1 (en) Polishing composition
JP2013098557A (en) Method of polishing using tunable polishing formulation