JP5394767B2 - Method for producing hydrogen absorbing / releasing sheet - Google Patents

Method for producing hydrogen absorbing / releasing sheet Download PDF

Info

Publication number
JP5394767B2
JP5394767B2 JP2009026997A JP2009026997A JP5394767B2 JP 5394767 B2 JP5394767 B2 JP 5394767B2 JP 2009026997 A JP2009026997 A JP 2009026997A JP 2009026997 A JP2009026997 A JP 2009026997A JP 5394767 B2 JP5394767 B2 JP 5394767B2
Authority
JP
Japan
Prior art keywords
hydrogen
sheet
hydrogen storage
solution
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009026997A
Other languages
Japanese (ja)
Other versions
JP2009242227A (en
Inventor
友宏 秋山
志乃 佐々木
竜太 若林
完士 谷川
松太郎 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Priority to JP2009026997A priority Critical patent/JP5394767B2/en
Publication of JP2009242227A publication Critical patent/JP2009242227A/en
Application granted granted Critical
Publication of JP5394767B2 publication Critical patent/JP5394767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は水素吸放出シートに関し、特に高効率で安定して水素を吸放出できる高性能な水素吸放出シート及びその製造方法に関する。   The present invention relates to a hydrogen storage / release sheet, and more particularly to a high-performance hydrogen storage / release sheet capable of stably absorbing and releasing hydrogen with high efficiency and a method for manufacturing the same.

従来、前記水素吸放出材料として水素吸蔵合金があり、二次電池や燃料電池の材料としての開発が行なわれている。
水素吸蔵合金は、一般的に貯蔵容器に粒状又は塊状の水素吸蔵合金をそのまま入れて使用することを基本としている。この際、水素の吸収、放出を繰り返すことで水素吸蔵合金の結晶構造の変化に伴う体積膨張と体積収縮が繰り返され、粒状又は塊状の材料が徐々に数10μmまで微粒化してしまう。このため、熱伝導特性を低下させ、容器内の水素吸蔵合金間の空隙を埋め、水素吸放出性能の劣化や気流抵抗の増加を引き起こす。また、細粒化した水素吸蔵合金が水素貯蔵容器から気流に乗って流出する問題が発生している。さらに、水素吸放出操作を温度によって制御する場合、水素吸蔵合金自体の熱伝導率が低いため、熱伝導率を向上させるための複雑な水素貯蔵容器構造を必要としている。
Conventionally, there is a hydrogen storage alloy as the hydrogen storage / release material, which has been developed as a material for secondary batteries and fuel cells.
In general, the hydrogen storage alloy is basically used by putting a granular or massive hydrogen storage alloy in a storage container as it is. At this time, by repeating absorption and release of hydrogen, volume expansion and volume contraction accompanying a change in the crystal structure of the hydrogen storage alloy are repeated, and the granular or massive material is gradually atomized to several tens of μm. For this reason, the thermal conductivity characteristics are lowered, the gaps between the hydrogen storage alloys in the container are filled, and the hydrogen absorption / release performance is deteriorated and the airflow resistance is increased. In addition, there is a problem that the finely divided hydrogen storage alloy flows out of the hydrogen storage container by the air current. Furthermore, when the hydrogen absorption / release operation is controlled by temperature, the hydrogen storage alloy itself has a low thermal conductivity, which requires a complicated hydrogen storage container structure for improving the thermal conductivity.

一方、水素吸蔵合金をシート状物に担持させることも考えられる。その関連技術として、特許文献1に本出願人が既に提案した湿式抄造法を用いてサンドイッチ構造で活性炭粉末などの吸着性粒子を繊維間に閉じこめて積層化する技術が提案されている。
抄紙に使用される木材パルプ繊維を主素材として、その繊維中に微細な水素吸蔵合金−を湿式抄造法によって付着させることにより、水素吸蔵合金の体積変化を許容するスペースを確保し、前記水素吸放出性能の劣化や気流抵抗の増加による課題を解決することが考えられる。
On the other hand, it is also conceivable to carry a hydrogen storage alloy on a sheet. As a related technique, there is proposed a technique in which adsorbent particles such as activated carbon powder are confined between fibers in a sandwich structure using the wet papermaking method already proposed by the present applicant in Patent Document 1.
By using wood pulp fibers used for papermaking as the main material and attaching a fine hydrogen storage alloy to the fibers by wet papermaking, a space allowing the volume change of the hydrogen storage alloy is secured, and the hydrogen absorption It is conceivable to solve the problems caused by the deterioration of the discharge performance and the increase of airflow resistance.

特開2004−330631「吸着性シート、その製造方法及び製造装置」Japanese Patent Application Laid-Open No. 2004-330631 “Adsorbent Sheet, Manufacturing Method and Manufacturing Apparatus”

しかしながら、上記解決方法であっても下記のような課題は残る。
(A)本発明者らが行なった実験では、微細化していないセルロース繊維主体の構造体を用いた場合、シートに付着させた水素吸蔵合金の脱落を防止できる水素吸蔵合金の最大含有率は低く、その水素貯蔵能力は充分でないのが現状である。これは、微細化していないセルロース繊維を用いた構成では、セルロース繊維の内部空隙に水素吸蔵合金を包み込むような形態になるためである。
(B)また、セルロース系微細繊維を用いることで、水素吸蔵合金の脱落および最大含有量を上げることはできるが、耐熱温度が200℃以下と低いために、一般的な水素吸蔵合金を使用した場合、初期活性化における熱処理に耐えられず、形状を保持できず、粉体の脱落も防止できない問題があった。
However, the following problems remain even with the above solution.
(A) In an experiment conducted by the present inventors, when a structure mainly composed of cellulose fibers not refined is used, the maximum content of the hydrogen storage alloy that can prevent the hydrogen storage alloy attached to the sheet from dropping is low. However, the current hydrogen storage capacity is not sufficient. This is because the structure using cellulose fibers that have not been refined is configured to wrap the hydrogen storage alloy in the internal voids of the cellulose fibers.
(B) By using cellulosic fine fibers, it is possible to drop off the hydrogen storage alloy and increase the maximum content. However, since the heat resistant temperature is as low as 200 ° C. or less, a general hydrogen storage alloy was used. In this case, there is a problem that the heat treatment in the initial activation cannot be endured, the shape cannot be maintained, and the powder cannot be prevented from falling off.

(C)初期活性化温度の低い水素吸蔵合金を使用した場合においても、セルロース系繊維を主体とした構造体では、水素吸放出時の熱履歴により、形状保持、および微粉化した水素吸蔵合金の脱落を防止できない恐れがある。 (C) Even when a hydrogen storage alloy having a low initial activation temperature is used, in the structure mainly composed of cellulosic fibers, the shape of the hydrogen storage alloy is maintained, and the powder is pulverized by the thermal history during hydrogen absorption / release. There is a risk that it cannot be prevented from falling out.

本発明は上記課題に鑑みてなされたものであり、本発明の目的は上記課題を解決できる
水素吸放出シート及びその製造方法を提供することにある。
具体的な目的の一例を示すと、以下の通りである。
(a)水素吸蔵合金の含有率を高く維持しつつ、ハニカム構造など色々な形状に形成加工しても形状保持性を高く維持して、シートから水素吸蔵合金の脱落を強力に抑制できるようにする。
(b)水素吸蔵合金の含有率を高く維持しつつ、熱伝導率も高くして短時間かつ少ないエネルギーで水素の吸放出操作ができるようにする。
(c)シートの耐熱性を向上させて水素吸蔵合金の水素の吸放出動作を長期間に亘り安定して行なえるようにする。
(d)一般に微粉化した水素吸蔵合金の表面は被毒されやすく、大気中や水中での操作により、水素吸放出能力を失うことが多い。この場合、高圧水素雰囲気下、200℃以上の条件にて活性化処理を行うことで水素吸放出性能を回復できるが、これを行えるようにする。
なお、上記に記載した以外の発明の課題、その解決手段及びその効果は、後述する明細書内の記載において詳しく説明する。
This invention is made | formed in view of the said subject, The objective of this invention is providing the hydrogen absorption-release sheet | seat which can solve the said subject, and its manufacturing method.
An example of a specific purpose is as follows.
(A) While maintaining a high content of the hydrogen storage alloy, even if it is formed into various shapes such as a honeycomb structure, the shape retention is maintained high, and the dropping of the hydrogen storage alloy from the sheet can be strongly suppressed. To do.
(B) While maintaining a high content of the hydrogen storage alloy, the thermal conductivity is also increased so that hydrogen can be absorbed and released in a short time and with less energy.
(C) The heat resistance of the sheet is improved so that the hydrogen storage / release operation of the hydrogen storage alloy can be performed stably over a long period of time.
(D) Generally, the surface of a pulverized hydrogen storage alloy is easily poisoned, and often loses the ability to absorb and release hydrogen by operation in the air or water. In this case, the hydrogen absorption / desorption performance can be recovered by performing the activation treatment under the condition of 200 ° C. or higher under the high-pressure hydrogen atmosphere.
In addition, the subject of invention other than having described above, its solution means, and its effect are demonstrated in detail in description in the specification mentioned later.

本発明は多面的に表現できるが、例えば、代表的なものを挙げると次のように構成したものである。
本発明の水素吸放出シートは、平均粒径0.001〜1mmの微細な水素吸放出粒子とフィブリル化しやすい合成高分子繊維及び無機繊維で構成され、水素吸放出粒子を70重量%以上95重量%以下の範囲で担持させたことを特徴とする。
前記水素吸放出粒子の代表的な材料としては水素吸蔵合金粒子がある。
本発明であれば、所定の条件下で微細な網目状構造を取る微細合成高分子繊維と水素吸放出粒子を適当な条件で混ぜ合わせることで、その網目構造内部に水素吸放出粒子を高含有率で内包することができ、シート形成後の粒子の脱落を強力に抑制することができる。
また、この網目構造であるために、水素吸放出粒子表面の全面を覆うことなく、水素の吸放出性能には影響を及ぼさない。
Although the present invention can be expressed in many aspects, for example, typical ones are configured as follows.
The hydrogen absorbing / releasing sheet of the present invention is composed of fine hydrogen absorbing / releasing particles having an average particle diameter of 0.001 to 1 mm, synthetic polymer fibers and inorganic fibers that are easily fibrillated, and the hydrogen absorbing / releasing particles are 70 wt% or more and 95 wt%. % Or less in the range.
As a typical material for the hydrogen absorption / release particles, there are hydrogen storage alloy particles.
According to the present invention, a fine synthetic polymer fiber that takes a fine network structure under predetermined conditions and hydrogen absorption / release particles are mixed together under appropriate conditions, so that a high content of hydrogen absorption / release particles is contained inside the network structure. It is possible to encapsulate at a rate, and it is possible to strongly suppress the dropping of particles after the sheet is formed.
Further, because of this network structure, the entire surface of the hydrogen absorbing / desorbing particles is not covered, and the hydrogen absorbing / releasing performance is not affected.

本発明に係る水素吸放出シートの製造方法は、フィブリル化しやすい合成高分子繊維を溶液中で攪拌して分散させることにより、前記溶液中に微細な網目状繊維構造体を形成するフィブリル化分散工程と、形成された微細な網目状繊維構造体に平均粒径0.001〜1mmの微細な水素吸放出粒子を攪拌しながら投入することによって前記網目状繊維構造体に前記水素吸放出粒子を付着させる粒子担持工程と、無機繊維を溶液中に混合して攪拌分散させる無機繊維分散工程と、最終的に均一な水素吸放出粒子混合溶液を形成する抄紙溶液調整工程と、調整された抄紙溶液を用いて湿式抄造法によりシートを製造する抄造工程と、得られた抄造シートを乾燥する乾燥工程とを含み、乾燥後のシートの水素吸放出粒子の含有率が70重量%以上95重量%以下であり、かつ安定して水素吸放出粒子を担持できるように前記フィブリル化分散工程において合成高分子繊維のフィブリル化の程度を調整することを特徴とする。   The method for producing a hydrogen absorbing / releasing sheet according to the present invention includes a fibrillation dispersion step in which a fine polymer fiber structure is formed in a solution by stirring and dispersing the synthetic polymer fibers that are easily fibrillated in the solution. And adhering the hydrogen absorbing / releasing particles to the mesh fiber structure by adding fine hydrogen absorbing / releasing particles having an average particle diameter of 0.001 to 1 mm to the formed fine mesh fiber structure while stirring. A particle supporting step, an inorganic fiber dispersing step in which inorganic fibers are mixed and stirred and dispersed in the solution, a paper making solution adjusting step to finally form a uniform hydrogen absorbing and releasing particle mixed solution, and the adjusted paper making solution. Using a papermaking process for producing a sheet by a wet papermaking method and a drying process for drying the obtained papermaking sheet, and the content of hydrogen absorbing / releasing particles in the dried sheet is 70% by weight or more 9 Or less by weight%, and stable and adjusting the degree of fibrillation of synthetic polymer fibers in the fibrillated dispersion step to allow carrying the hydrogen absorption and desorption particles.

本発明であれば、水素吸放出粒子の含有率が70重量%以上95重量%以下の高含有率にしても、予めフィブリル化しやすい合成高分子繊維を使用し、さらにフィブリル化分散工程において合成高分子繊維のフィブリル化の程度を調整しているので、微細な網目状繊維構造体に水素吸放出粒子を付着させることができ、比較的大きな内部空隙に水素吸放出粒子を包み込むように付着させる方法とは違ってシートから脱落することなく安定して水素吸放出粒子を担持することができる。   In the present invention, even if the content of hydrogen absorbing / releasing particles is a high content of 70% by weight or more and 95% by weight or less, synthetic polymer fibers that are easy to be fibrillated are used in advance, and further the synthetic high fiber in the fibrillation dispersion step. Since the degree of fibrillation of the molecular fiber is adjusted, the hydrogen absorbing / releasing particles can be adhered to the fine mesh fiber structure, and the hydrogen absorbing / releasing particles are encased in a relatively large internal space. Unlike this, the hydrogen absorbing / releasing particles can be stably supported without falling off the sheet.

なお、前記フィブリル化分散工程と無機繊維分散工程はほぼ同時に行うことも可能である。但し、フィブリル化分散工程→粒子担持工程→無機繊維分散工程→抄紙溶液調整工程
の順で行う方が、合成高分子繊維のフィブリル化の程度を調整しやすい。
本明細書において、「フィブリル」とは繊維を構成している微細繊維のことを意味する。「フィブリル化」とは1本の繊維が多くのフィブリルに分かれる現象や、繊維内部の微細繊維が何らかの作用によって繊維表面に現れ、ささくれたような分散状態になる現象のことを言う。
The fibrillation dispersion step and the inorganic fiber dispersion step can be performed almost simultaneously. However, it is easier to adjust the degree of fibrillation of the synthetic polymer fiber when the fibrillation / dispersion step → the particle supporting step → the inorganic fiber dispersion step → the papermaking solution adjustment step is performed in this order.
In the present specification, “fibril” means fine fibers constituting fibers. “Fibrillation” refers to a phenomenon in which a single fiber is divided into many fibrils, or a phenomenon in which fine fibers inside the fiber appear on the fiber surface by some action and become dispersed.

高結晶配向性繊維をフィブリル化する方法としては、強力に叩解・攪拌などして1本の繊維が多くのフィブリルに分かれるように溶液中で処理する方法がある。他の方法としては、溶液に投入する前の繊維を機械的又は化学的処理によって縦方向に引き裂かれ、分散されやすくする方法などがある。   As a method for fibrillating highly crystalline orientation fibers, there is a method of processing in a solution so that one fiber is divided into many fibrils by strongly beating and stirring. As another method, there is a method in which fibers before being put into a solution are easily torn and dispersed in the machine direction by mechanical or chemical treatment.

本発明の水素吸放出シートは、前記合成高分子繊維と前記無機繊維をともに200℃〜400℃の温度に耐える繊維としたことを特徴とする。
この構成であれば、合成高分子繊維と、無機繊維がともに200℃〜400℃の温度に耐えることによって成形性を低下させることなく活性化でき、繊維に担持された水素吸放出粒子をその容器に収容した状態で水素を吸収又は放出する性能を与えることができる。これに対して200℃の温度に耐えることができないと、繊維が水素吸放出粒子の保持能力を失って、担持された水素吸放出粒子が脱落してしまう問題が生じる。
The hydrogen absorbing / releasing sheet of the present invention is characterized in that both the synthetic polymer fiber and the inorganic fiber are fibers that can withstand a temperature of 200 ° C. to 400 ° C.
With this configuration, both the synthetic polymer fiber and the inorganic fiber can be activated without lowering the moldability by withstanding temperatures of 200 ° C. to 400 ° C., and the hydrogen absorbing / releasing particles carried on the fiber can be contained in the container. The capability of absorbing or releasing hydrogen in the state of being accommodated in the container can be provided. On the other hand, if the temperature cannot be withstand at 200 ° C., the fiber loses the ability to hold the hydrogen absorbing / releasing particles, causing a problem that the supported hydrogen absorbing / releasing particles fall off.

本発明の水素吸放出シートは、前記合成高分子繊維としてフィブリル化しやすい芳香族ポリアミド系繊維を採用したことを特徴とする。
この構成であれば、フィブリル化しやすい芳香族ポリアミド系繊維は水中で強力に攪拌することにより微細な網目状構造体となり、その内部に水素吸放出粒子を保持、固定できるので、水素吸放出粒子を前記のような高い含有率で包含させても微細な粒子の脱落は起こりにくい。
The hydrogen absorbing / releasing sheet of the present invention is characterized in that an aromatic polyamide fiber that is easily fibrillated is employed as the synthetic polymer fiber.
With this configuration, the aromatic polyamide fiber that is easily fibrillated becomes a fine network structure by vigorously stirring in water, and the hydrogen absorbing / releasing particles can be held and fixed therein. Even if it is included at a high content as described above, it is difficult for fine particles to fall off.

本発明の水素吸放出シートは、前記無機繊維として炭素系繊維を採用したことを特徴とする。
この構成であれば、炭素系繊維は熱伝導率が高く、炭素系繊維を含まないシートに比べて短時間かつ少ないエネルギーで水素の吸放出操作ができる利点がある。
本発明の水素吸放出シートは、前記無機繊維として金属系繊維を採用したことを特徴とする。
この構成であれば、金属系繊維は熱伝導率が高く、炭素系繊維を含まないシートに比べて短時間かつ少ないエネルギーで水素の吸放出操作ができる利点がある。
The hydrogen absorption / release sheet of the present invention is characterized in that carbon-based fibers are employed as the inorganic fibers.
If it is this structure, carbon fiber has a high thermal conductivity and there exists an advantage which can perform the absorption / release operation | movement of hydrogen with a short time and less energy compared with the sheet | seat which does not contain carbon fiber.
The hydrogen storage / release sheet of the present invention is characterized in that metal fibers are employed as the inorganic fibers.
If it is this structure, a metal fiber has the high heat conductivity, and there exists an advantage which can perform the absorption / release operation | movement of hydrogen with a short amount of energy compared with the sheet | seat which does not contain a carbon fiber.

以上説明したように、本発明であれば、合成高分子繊維をフィブリル化してその担持性能を向上させることにより、水素吸放出材料の含有量を70重量%〜95重量%の高含有量としても水素吸蔵合金の脱落を防止して、安定した性能を有することができる。また、形状保持性を高く維持できるとともに、熱伝導率も高くでき、短時間かつ少ないエネルギーで水素の吸放出操作ができるので簡便な熱発生装置で構成できる。さらに、シートの耐熱性を向上させて水素吸放出材料の水素の吸放出動作を長期間に亘り安定して行なえるとともに、200℃以上の条件にて活性化処理を行うことができる。   As described above, according to the present invention, the content of the hydrogen absorbing / releasing material can be set to a high content of 70 wt% to 95 wt% by fibrillating the synthetic polymer fiber to improve its supporting performance. It is possible to prevent the hydrogen storage alloy from falling off and to have stable performance. Further, the shape retainability can be maintained at a high level, the thermal conductivity can be increased, and the operation of absorbing and releasing hydrogen can be performed in a short time and with less energy, so that a simple heat generating device can be configured. Furthermore, the heat resistance of the sheet can be improved, the hydrogen absorption / release operation of the hydrogen absorption / release material can be stably performed over a long period of time, and the activation treatment can be performed under conditions of 200 ° C. or higher.

図1は本実施形態に係る水素吸放出シートの電子顕微鏡写真を示す図。FIG. 1 is an electron micrograph of a hydrogen storage / release sheet according to this embodiment. 図2は比較例としての木材パルプ繊維を主体とした水素吸放出シートの模式的な微細構造を示す図。FIG. 2 is a view showing a schematic microstructure of a hydrogen absorption / release sheet mainly composed of wood pulp fibers as a comparative example.

以下、本発明の実施の形態を図面に基づき説明する。なお、水素吸放出材料として水素吸蔵合金を採用した場合を例に取り説明する。
前記したように、木材パルプ繊維主体の構造体でも、水素吸蔵合金の脱落はある程度は抑制することができるが、本発明者らが行なった実験では木材パルプ繊維を主体とした構造体では、水素吸蔵合金の繊維構造体から脱落を防止できる上限の水素吸蔵合金の含有率はシートの50重量%程度となっており、水素貯蔵量の向上から充分な性能でないのが現状である。
その理由として考えられることは、木材パルプ繊維主体の構造体では繊維を溶液中に攪拌させ分散させた場合でも、その繊維径が大きい(40μm〜50ミクロン)ために微細粒子が固着する部分(繊維の表面積や内部空隙)が少なく、微粒子の含有率を高くできないのである。また、木材パルプ繊維主体の構造体では微細な単位で見ると繊維の方向がほぼ同一方向に揃いやすい状態になり、繊維構造体の内部空隙に水素吸蔵合金を包み込むしか水素吸蔵合金を担持できないことも一因と思われる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the case where a hydrogen storage alloy is employed as the hydrogen storage / release material will be described as an example.
As described above, even with a structure mainly composed of wood pulp fibers, it is possible to suppress the dropping of the hydrogen storage alloy to some extent. However, in the experiments conducted by the present inventors, a structure mainly composed of wood pulp fibers is The upper limit of the content of the hydrogen storage alloy capable of preventing the occlusion of the storage alloy from the fiber structure is about 50% by weight of the sheet.
A possible reason for this is that in the structure mainly composed of wood pulp fibers, even when the fibers are stirred and dispersed in the solution, the fiber diameter is large (40 μm to 50 μm), and therefore the fine particles are fixed (fibers). The surface area and the internal voids are small, and the content of fine particles cannot be increased. In addition, in the structure mainly composed of wood pulp fibers, the direction of the fibers is easily aligned in the same direction when viewed in fine units, and the hydrogen storage alloy can only be supported by enclosing the hydrogen storage alloy in the internal voids of the fiber structure. Seems to be a factor.

図2はそのような木材パルプ繊維の構造体5を模式的に示した図である。
図2に示すように、木材パルプ繊維1同士が矢印2の方向に延びて絡み合っており、その繊維1同士の絡み合いによって生じる内部空隙3に微細な水素吸蔵合金の粒子4が包み込むように付着されている。このような構造であると、シート物としての引っ張り強度や抄造のし易さは向上するが、内部空隙3が大きく、漏れ落ちる粒子4の数も多いうえに、繊維構造体5の表面には付着する空隙ができにくいために、水素吸蔵合金の含有率を高くすることができないのである。
FIG. 2 is a view schematically showing such a wood pulp fiber structure 5.
As shown in FIG. 2, the wood pulp fibers 1 extend in the direction of the arrow 2 and are entangled with each other, and the fine hydrogen storage alloy particles 4 are attached so as to wrap in the internal voids 3 generated by the entanglement between the fibers 1. ing. With such a structure, the tensile strength as a sheet and ease of papermaking are improved, but the internal voids 3 are large, the number of particles 4 that leak out is large, and the surface of the fiber structure 5 is on the surface. Since the adhering voids are not easily formed, the content of the hydrogen storage alloy cannot be increased.

また、繊維径が大きく、抄造中にシート状物の繊維の方向が前記のごとく同一方向に揃いやすい性質のため、水素吸蔵合金が付着する微細な空隙の数が少ないシート表面では熱が主としてパルプ繊維を介して伝わるため熱伝導率が極めて小さくなる。このため、水素吸放出操作を温度によって制御しようとする場合、前記したような熱伝導率を向上させるための特別な装置が必要になる。   In addition, because the fiber diameter is large and the fiber direction of the sheet-like material is easily aligned in the same direction during papermaking, heat is mainly generated on the sheet surface with a small number of fine voids to which the hydrogen storage alloy adheres. Since it is transmitted through the fiber, the thermal conductivity is extremely small. For this reason, when it is going to control hydrogen absorption-and-release operation with temperature, the above-mentioned special apparatus for improving thermal conductivity is needed.

本発明はこのような着眼点に基づいて、フィブリル化しやすい芳香族ポリアミドのような合成高分子繊維を溶液中で攪拌して分散させることにより、前記溶液中に微細な網目状繊維構造体を形成した後で、その微細な網目状繊維構造体に平均粒径0.001〜1mmの微細な水素吸蔵合金を攪拌しながら投入することによって網目状繊維構造体にある細かな空隙に水素吸蔵合金を付着させるようにしている。そして調整された抄紙溶液を用いて湿式抄造法によりシートを製造し、得られた抄造シートを乾燥させて水素吸放出シートを製造するようにしている。   The present invention forms a fine mesh fiber structure in the solution by stirring and dispersing synthetic polymer fibers such as aromatic polyamides that are easily fibrillated based on such a viewpoint. After that, a fine hydrogen storage alloy having an average particle diameter of 0.001 to 1 mm is added to the fine mesh fiber structure while stirring, thereby the hydrogen storage alloy is put into the fine voids in the mesh fiber structure. I try to make it adhere. And the sheet | seat is manufactured by the wet papermaking method using the adjusted papermaking solution, The obtained papermaking sheet is dried and a hydrogen absorption / release sheet | seat is manufactured.

このようにして製造された水素吸放出シートの繊維構造体は、図1に電子顕微鏡写真で示すように、フィブリルの延びる方向が乱雑になり、網目状の繊維構造体が形成されている。そして、水素吸蔵合金の粒子の含有率を70重量%以上95重量%以下の範囲に増やしても、その網目状の繊維構造体の微細な空隙に水素吸蔵合金の粒子が入り込んで粒子を強力に保持する形態になるので脱落しにくい。
また、現実にプリーツ構造、ハニカム構造、巻き構造に成形した場合でも付着した水素吸蔵合金が脱落することがない。さらに、水素吸蔵合金を微粒子化したことと炭素繊維を配合したことで、水素吸蔵合金への熱の伝わり方を大きくすることができる。
また、合成高分子繊維を使用しているので、プリーツ、ハニカム形状などへの加工も良好である。
なお、網目状の繊維構造体を構成する合成高分子繊維の長さは0.1mmから3.0mmの範囲とすることが好ましい。
また、使用する水素吸蔵合金としては、チタン系合金、希土類系合金、ラーベス相合金などの公知の合金が使用できる。
As shown in the electron micrograph of FIG. 1, the fiber structure of the hydrogen absorption / release sheet manufactured in this way has a messy extending direction of fibrils, and a network-like fiber structure is formed. Even when the content of the hydrogen storage alloy particles is increased to a range of 70% by weight or more and 95% by weight or less, the particles of the hydrogen storage alloy enter the fine voids of the mesh-like fiber structure, thereby strengthening the particles. It will be difficult to drop off because it will be held.
In addition, even when actually formed into a pleated structure, a honeycomb structure, or a wound structure, the attached hydrogen storage alloy does not fall off. Furthermore, the way in which heat is transferred to the hydrogen storage alloy can be increased by making the hydrogen storage alloy fine particles and blending the carbon fibers.
Also, since synthetic polymer fibers are used, processing into pleats, honeycomb shapes, etc. is also good.
In addition, it is preferable that the length of the synthetic polymer fiber constituting the network-like fiber structure is in the range of 0.1 mm to 3.0 mm.
Moreover, as a hydrogen storage alloy to be used, known alloys such as a titanium alloy, a rare earth alloy, and a Laves phase alloy can be used.

以下、具体的な実施例について説明する。
(実施例1)
フィブリル化可能なアラミド繊維(帝人テクノプロダクツ製 JSP 8026)15.63g(固形分8%)を水2リットルが入った混合容器内に投入し、高速で分散処理を行ない、溶液中に微細な網目状構造体を形成した。次に、予め1mm以下に微粒化したTiFe系水素吸蔵合金(北海道大学製Ti1.15FeO0.024)比重6の10.0gを混合容器内の水を攪拌しながら投入した。これにより、アラミド繊維の網目状構造体の内部及びその表面にTiFe系水素吸蔵合金(水素吸放出材料)の細粒が付着した材料が得られた。その後、熱伝導率の良好な炭素繊維(東邦レーヨン製3mmチョップ品)を1.39g配合し、所定時間攪拌して、均一な水素吸放出混合溶液を調整した。この得られた混合溶液を手抄試験装置によってシート化し、乾燥して25cm角の水素吸放出シートを得た。
この得られた水素吸放出シートのTiFe系水素吸蔵合金の含有率は約80重量%であった。なお、重量%とは、水素吸蔵合金(水素吸放出材料)の重量を(水素吸蔵合金+アラミド繊維+炭素繊維)の合計重量で除算したものである。
また、製作した水素吸放出シートは200℃、水素加圧下で30分、活性化処理を行った。
製作した水素吸放出シートの水素吸放出特性を評価した。その結果、水素吸蔵合金をそのまま使用した場合、水素吸収開始が10秒後であったのに対して水素吸放出シートは1秒であり、水素吸放出特性に優れることが証明された。
また、この得られた水素吸放出シートをプリーツ構造、ハニカム構造、巻き構造に形成加工して形状保持ができるか否かを実験したが、充分な形状保持機能があることが判明した。
Specific examples will be described below.
Example 1
Aramid fibers that can be fibrillated (Jsp 8026 made by Teijin Techno Products) 15.63 g (solid content 8%) are put into a mixing vessel containing 2 liters of water, and dispersed at high speed to form a fine mesh in the solution. A shaped structure was formed. Next, 10.0 g of TiFe-based hydrogen storage alloy (Ti 1.15 FeO 0.024 manufactured by Hokkaido University) having a specific gravity of 6 previously atomized to 1 mm or less was added while stirring the water in the mixing vessel. As a result, a material in which fine particles of TiFe-based hydrogen storage alloy (hydrogen storage / release material) adhered to the inside and the surface of the aramid fiber network structure was obtained. Thereafter, 1.39 g of carbon fiber having good thermal conductivity (3 mm chop product manufactured by Toho Rayon) was blended and stirred for a predetermined time to prepare a uniform hydrogen absorption / release mixed solution. The obtained mixed solution was formed into a sheet by a hand-sheet test apparatus and dried to obtain a 25 cm square hydrogen absorption / release sheet.
The content of the TiFe-based hydrogen storage alloy in the obtained hydrogen storage / release sheet was about 80% by weight. The weight% is obtained by dividing the weight of the hydrogen storage alloy (hydrogen storage / release material) by the total weight of (hydrogen storage alloy + aramid fiber + carbon fiber).
The produced hydrogen absorption / release sheet was subjected to an activation treatment at 200 ° C. under hydrogen pressure for 30 minutes.
The hydrogen absorption / release characteristics of the fabricated hydrogen absorption / release sheet were evaluated. As a result, when the hydrogen storage alloy was used as it was, hydrogen absorption started after 10 seconds, whereas the hydrogen absorption / release sheet was 1 second, and it was proved that the hydrogen absorption / release characteristics were excellent.
Also, an experiment was conducted to determine whether the obtained hydrogen absorption / release sheet could be formed into a pleated structure, a honeycomb structure, or a wound structure to maintain the shape.

(実施例2)
実施例1で使用したアラミド繊維を7.8g(固形分8%)、TiFe系水素吸蔵合金を11.25g、炭素繊維を0.69g配合した以外は実施例1と同様の方法によってシート化し、25cm角の水素吸放出シートを得た。
この得られた水素吸放出シートのTiFe系水素吸蔵合金の含有率は約90重量%であった。
なお、製作した水素吸放出シートは200℃、水素加圧下で30分、活性化処理を行った。
製作した水素吸放出シートの水素吸放出特性を評価した。その結果、水素吸蔵合金をそのまま使用した場合、水素吸収開始が10秒後であったのに対して水素吸放出シートは2秒であり、水素吸放出特性に優れることが証明された。
また、この得られた水素吸放出シートをプリーツ構造、ハニカム構造、巻き構造に形成加工して形状保持ができるか否かを実験したが、充分な形状保持機能があることが判明した。
(Example 2)
Aramid fiber used in Example 1 was formed into a sheet by the same method as in Example 1 except that 7.8 g (solid content 8%), TiFe-based hydrogen storage alloy 11.25 g, and carbon fiber 0.69 g were blended. A hydrogen absorption / release sheet of 25 cm square was obtained.
The content of the TiFe-based hydrogen storage alloy in the obtained hydrogen storage / release sheet was about 90% by weight.
The produced hydrogen absorption / release sheet was subjected to activation treatment at 200 ° C. under hydrogen pressure for 30 minutes.
The hydrogen absorption / release characteristics of the fabricated hydrogen absorption / release sheet were evaluated. As a result, when the hydrogen storage alloy was used as it was, hydrogen absorption started after 10 seconds, whereas the hydrogen storage / release sheet was 2 seconds, and it was proved that the hydrogen storage / release characteristics were excellent.
Also, an experiment was conducted to determine whether the obtained hydrogen absorption / release sheet could be formed into a pleated structure, a honeycomb structure, or a wound structure to maintain the shape.

(比較例1)
活性化処理を行わなかった以外は実施例1と同様にして得られた水素吸放出シートの水素吸放出特性を評価した。
その結果、水素の吸収は行われなかった。
また、この得られた水素吸放出シートをプリーツ構造、ハニカム構造、巻き構造に形成加工して形状保持ができるか否かを実験したが、充分な形状保持機能があることが判明した。
(比較例2)
アラミド繊維の替わりに微細化可能な天然繊維5.0g(固形分25%)を使用した以
外は実施例1と同様の方法でシート化し、25cm角の水素吸放出シートを得た。
この得られた水素吸放出シートのTiFe系水素吸蔵合金の含有率は約80重量%であった。
なお、製作した水素吸放出シートは200℃、水素加圧下で30分、活性化処理を行った。
製作した水素吸放出シートの水素吸放出特性を評価した。その結果、水素吸蔵合金をそのまま使用した場合、水素吸収開始が10秒後であったのに対して水素吸放出シートは2秒であり、水素吸放出特性に優れることが証明された。
一方、この得られた水素吸放出シートをプリーツ構造、ハニカム構造、巻き構造に形成加工しようとしたが、それらの構造体は形状保持ができなかった。
以上の実験結果をまとめたのが下記表1である。
(Comparative Example 1)
The hydrogen absorption / release characteristics of the hydrogen absorption / release sheet obtained in the same manner as in Example 1 except that the activation treatment was not performed were evaluated.
As a result, no hydrogen was absorbed.
Also, an experiment was conducted to determine whether the obtained hydrogen absorption / release sheet could be formed into a pleated structure, a honeycomb structure, or a wound structure to maintain the shape.
(Comparative Example 2)
A 25 cm square hydrogen absorption / release sheet was obtained in the same manner as in Example 1 except that 5.0 g of a natural fiber (solid content 25%) that can be refined was used instead of an aramid fiber.
The content of the TiFe-based hydrogen storage alloy in the obtained hydrogen storage / release sheet was about 80% by weight.
The produced hydrogen absorption / release sheet was subjected to activation treatment at 200 ° C. under hydrogen pressure for 30 minutes.
The hydrogen absorption / release characteristics of the fabricated hydrogen absorption / release sheet were evaluated. As a result, when the hydrogen storage alloy was used as it was, hydrogen absorption started after 10 seconds, whereas the hydrogen storage / release sheet was 2 seconds, and it was proved that the hydrogen storage / release characteristics were excellent.
On the other hand, an attempt was made to form and process the obtained hydrogen absorption / release sheet into a pleated structure, a honeycomb structure, and a wound structure, but these structures could not retain the shape.
Table 1 below summarizes the above experimental results.

表1に示すように、実施例1で説明したような溶液中で攪拌分散したときに微細な網目状繊維構造体を形成するアラミド繊維などを使用することで、80重量%〜90重量%にまでその含有率を飛躍的に高めた場合でも、水素吸蔵合金粒子をアラミド繊維から脱落することを強力に抑制して、実用上、問題のない形状保持レベルを維持できることが分かった。
また、吸収開始時間も短く、水素吸放出の反応性も良好であった。さらに、熱伝導率が良く、簡単な温度変化装置で水素の吸放出を実現できることが実証できた。
なお、繊維を細くすることで水素吸蔵合金粒子とのからみが増し、アラミド繊維から脱落を抑制できる。また、前記アラミド繊維はフィブリル化もされており、かつ乾燥時に収縮が起きるために、材料同士の固着が促進され、水素吸蔵合金粒子の脱落を軽減する。このように本実施例のシートであれば、合金を高含有率でシートに配合することが可能になる。
As shown in Table 1, by using an aramid fiber or the like that forms a fine network fiber structure when stirred and dispersed in a solution as described in Example 1, it is 80% to 90% by weight. It has been found that even when the content is dramatically increased, it is possible to strongly suppress the dropping of the hydrogen storage alloy particles from the aramid fiber and maintain a practically no problem shape retention level.
Also, the absorption start time was short and the hydrogen absorption / release reactivity was good. Furthermore, it has been proved that hydrogen can be absorbed and released with a simple temperature change device with good thermal conductivity.
In addition, entanglement with the hydrogen storage alloy particles is increased by thinning the fiber, and dropping off from the aramid fiber can be suppressed. Moreover, since the aramid fiber is fibrillated and shrinks during drying, the adhesion between the materials is promoted and the occlusion of the hydrogen storage alloy particles is reduced. Thus, if it is the sheet | seat of a present Example, it will become possible to mix | blend an alloy with a high content rate to a sheet | seat.

Claims (1)

フィブリル化しやすい合成高分子繊維を溶液中で攪拌して分散させることにより、前記溶液中に微細な網目状繊維構造体を形成するフィブリル化分散工程と、形成された微細な網目状繊維構造体に平均粒径0.001〜1mmの微細な水素吸放出粒子を攪拌しながら投入することによって前記網目状繊維構造体に前記水素吸放出粒子を付着させる粒子担持工程と、無機繊維を溶液中に混合して攪拌分散させる無機繊維分散工程と、最終的に均一な水素吸放出粒子混合溶液を形成する抄紙溶液調整工程と、調整された抄紙溶液を用いて湿式抄造法によりシートを製造する抄造工程と、得られた抄造シートを乾燥する乾燥工程とを含み、乾燥後のシートの水素吸放出粒子の含有率が70重量%以上95重量%以下であり、かつ安定して水素吸放出粒子を担持できるように前記フィブリル化分散工程において合成高分子繊維のフィブリル化の程度を調整することを特徴とする水素吸放出シートの製造方法。   Synthetic polymer fibers that are easily fibrillated are stirred and dispersed in the solution, thereby forming a fibrillation dispersion step for forming a fine mesh fiber structure in the solution, and a fine mesh fiber structure formed. A particle supporting step for adhering the hydrogen absorbing / releasing particles to the mesh fiber structure by adding fine hydrogen absorbing / releasing particles having an average particle size of 0.001 to 1 mm while stirring, and mixing inorganic fibers into the solution An inorganic fiber dispersion step for stirring and dispersing, a papermaking solution adjusting step for finally forming a uniform hydrogen absorbing / releasing particle mixed solution, and a papermaking step for producing a sheet by a wet papermaking method using the adjusted papermaking solution, A drying step of drying the resulting paper sheet, and the content of hydrogen absorbing / releasing particles in the dried sheet is 70 wt% or more and 95 wt% or less, and stably absorbs and releases hydrogen Hydrogen absorption and desorption method of manufacturing a sheet and adjusts the degree of fibrillation of synthetic polymer fibers in the fibrillated dispersion step to allow carrying the child.
JP2009026997A 2008-03-12 2009-02-09 Method for producing hydrogen absorbing / releasing sheet Active JP5394767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009026997A JP5394767B2 (en) 2008-03-12 2009-02-09 Method for producing hydrogen absorbing / releasing sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008062898 2008-03-12
JP2008062898 2008-03-12
JP2009026997A JP5394767B2 (en) 2008-03-12 2009-02-09 Method for producing hydrogen absorbing / releasing sheet

Publications (2)

Publication Number Publication Date
JP2009242227A JP2009242227A (en) 2009-10-22
JP5394767B2 true JP5394767B2 (en) 2014-01-22

Family

ID=41304586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009026997A Active JP5394767B2 (en) 2008-03-12 2009-02-09 Method for producing hydrogen absorbing / releasing sheet

Country Status (1)

Country Link
JP (1) JP5394767B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101514130B1 (en) * 2012-05-31 2015-04-21 주식회사 엘지화학 Structure body for storage of hydrogen and method for the preparing the same
JP6046936B2 (en) * 2012-07-23 2016-12-21 クラシエホームプロダクツ株式会社 Hydrogen generating cloth, hydrogen generating paper, and production method thereof
JP6198300B2 (en) * 2013-06-12 2017-09-20 国立研究開発法人産業技術総合研究所 Actuator and Braille display device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56114802A (en) * 1980-02-16 1981-09-09 Seijiro Suda Unit for occluding hydrogen
JPS57145001A (en) * 1981-02-27 1982-09-07 Sekisui Chem Co Ltd Reactor for metal hydride
JPH0753561B2 (en) * 1986-09-19 1995-06-07 松下電器産業株式会社 Method of operating compact using hydrogen storage alloy
JPH01246101A (en) * 1988-03-29 1989-10-02 Kanebo Ltd Hydrogen occlusion porous body and production thereof
JP4663044B2 (en) * 1999-03-26 2011-03-30 株式会社日本製鋼所 Heat transfer accelerator for gas adsorption / desorption reaction material and gas adsorption / desorption reaction material with excellent heat transfer
JP4644801B2 (en) * 2005-01-13 2011-03-09 国立大学法人福井大学 Composite sheet body and method for producing the same
US7708815B2 (en) * 2005-04-22 2010-05-04 Angstrom Power Incorporated Composite hydrogen storage material and methods related thereto
JP5005941B2 (en) * 2006-03-31 2012-08-22 古河電気工業株式会社 Hydrogen storage

Also Published As

Publication number Publication date
JP2009242227A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP5318120B2 (en) Hybrid carbon and method for producing the same
KR20210084657A (en) Carbon nanoparticle-porous framework composite material, lithium metal complex of carbon nanoparticle-porous framework composite material, preparation methods therefor, and applications thereof
JP5394767B2 (en) Method for producing hydrogen absorbing / releasing sheet
JP5113685B2 (en) Electrochemical element separator
EP2104161A1 (en) Separator for alkaline battery, method for producing the same, and battery
JP2009505931A (en) Activated carbon fibers, methods for their preparation, and devices equipped with activated carbon fibers
US20170110735A1 (en) Conductive porous material, polymer electrolyte fuel cell, and method of manufacturing conductive porous material
CN101409338A (en) Lithium ion battery cathode, preparation method thereof and lithium ion battery applying the same
JP2015041601A (en) Porous film composition for lithium ion secondary batteries, separator with protection layer for lithium ion secondary batteries, electrode with protection layer for lithium ion secondary batteries, and lithium ion secondary battery
EP3311912A1 (en) Activated carbon molded body, method for manufacturing activated carbon molded body, and absorbent material and storage material using activated carbon molded body
JP6127111B2 (en) Core-shell structure nano silicon dispersion solution manufacturing equipment
CN111183116B (en) Method for preparing carbon-graphene-lead composite particles
JP5317535B2 (en) Carbon fiber sheet and manufacturing method thereof
JP5703164B2 (en) Composite container for hydrogen storage and hydrogen filling method
WO2017064443A1 (en) Low-weight needled fabric, method for the production thereof and use of same in a diffusion layer for a fuel cell
Shi et al. Facile and green lyocell/feather nonwovens with in-situ growth of ZIF-8 as adsorbent for physicochemical CO2 capture
KR101715045B1 (en) Auto-ignition unit for candles and candles containing thereof
EP3565028A1 (en) Lithium ion battery separator and lithium ion battery
JP2004214072A (en) Carbon fiber sheet and its manufacturing method
JP2005161295A (en) Filter for filtering edible oil and its manufacturing method
JP7356053B2 (en) Air battery and method for manufacturing air battery
JP4734103B2 (en) Electrode sheet and manufacturing method thereof
US3711336A (en) Ceramic separator and filter and method of production
JP4409126B2 (en) Method for producing activated carbon sheet and activated carbon sheet
JP2004033892A (en) Carbon carrier for carrying metal catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5394767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250