JPH0753561B2 - Method of operating compact using hydrogen storage alloy - Google Patents

Method of operating compact using hydrogen storage alloy

Info

Publication number
JPH0753561B2
JPH0753561B2 JP61223100A JP22310086A JPH0753561B2 JP H0753561 B2 JPH0753561 B2 JP H0753561B2 JP 61223100 A JP61223100 A JP 61223100A JP 22310086 A JP22310086 A JP 22310086A JP H0753561 B2 JPH0753561 B2 JP H0753561B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage alloy
molded body
hydrogen
operating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61223100A
Other languages
Japanese (ja)
Other versions
JPS6379701A (en
Inventor
良夫 森脇
孝治 蒲生
勉 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61223100A priority Critical patent/JPH0753561B2/en
Publication of JPS6379701A publication Critical patent/JPS6379701A/en
Publication of JPH0753561B2 publication Critical patent/JPH0753561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水素吸蔵合金を用いた成形体の動作方法に関
するものであり、アクチュエータなどを中心とする速い
反応速度を実現する用途に対応するものである。
TECHNICAL FIELD The present invention relates to a method of operating a molded body using a hydrogen storage alloy, and is applicable to applications such as actuators that realize a high reaction rate. is there.

従来の技術 水素吸蔵合金は、水素の貯蔵・輸送・精製、ヒートポン
プや蓄熱などの熱利用、アクチュエータなどの多くの用
途へ、その展開が図られている。
2. Description of the Related Art Hydrogen storage alloys are being developed for many applications such as storage / transportation / refining of hydrogen, heat utilization such as heat pump and heat storage, and actuators.

通常、LaNi5、TiFe、TiMn1.5、Mg2Niなどの水素吸蔵合
金は水素吸蔵・放出を繰り返すことによって微粉化する
ことが知られている。したがって従来、水素吸蔵合金の
成形体を作成しても成形体が水素吸蔵・放出の繰り返し
によって崩れるという問題があった。
It is generally known that hydrogen storage alloys such as LaNi 5 , TiFe, TiMn 1.5 , and Mg 2 Ni are pulverized by repeating storage and release of hydrogen. Therefore, conventionally, there has been a problem that even if a molded body of a hydrogen storage alloy is prepared, the molded body is collapsed due to repeated hydrogen storage / release.

一方、水素吸蔵合金の水素吸蔵・放出反応の反応速度は
これまで必ずしも満足できるものでは無く速い反応速度
の実現と容易な水素吸蔵合金の水素吸蔵・放出反応の制
御が強く望まれていた。
On the other hand, the reaction rate of the hydrogen storage / release reaction of the hydrogen storage alloy is not always satisfactory so far, and it has been strongly desired to realize a high reaction rate and to easily control the hydrogen storage / release reaction of the hydrogen storage alloy.

発明が解決しようとする問題点 本発明は水素吸蔵合金を成形体することによって水素吸
蔵合金の水素吸蔵・放出反応を安定でかつ速い反応速度
や容易な制御を実現しようとするものである。すなわち
水素吸蔵・放出を繰り返し行なっても崩れない成形体を
得るとともに前記成形体に直接電気を通電して水素吸蔵
・放出反応が行なえる成形体を得ることを目的とする。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention The present invention is intended to realize a stable and fast reaction rate and easy control of the hydrogen storage / release reaction of a hydrogen storage alloy by forming a hydrogen storage alloy into a compact. That is, it is an object of the present invention to obtain a molded product which does not collapse even if hydrogen storage / release is repeated, and a molded product capable of hydrogen storage / release reaction by directly applying electricity to the molded product.

問題点を解決するための手段 本発明は粉末状でその表面を水素ガスが透過可能な金属
によって被覆した水素吸蔵合金と、少なくとも前記水素
吸蔵合金よりも電気抵抗の高い材料を混合したものを一
定の形状に成形し、この成形体に直接電気を通電し水素
吸蔵・放出反応を行うことを特徴とする水素吸蔵合金を
用いた成形体の動作方法である。
MEANS FOR SOLVING THE PROBLEMS The present invention provides a constant mixture of a hydrogen storage alloy having a powdery surface coated with a metal permeable to hydrogen gas and at least a material having a higher electric resistance than the hydrogen storage alloy. The method for operating a molded body using a hydrogen storage alloy is characterized in that the molded body is molded into a shape of, and electricity is directly applied to the molded body to cause a hydrogen storage / release reaction.

作用 水素吸蔵材料の表面を水素ガスが透過可能な金属層で被
覆して成形体とすることによつって取扱い容易で、かつ
水素吸蔵・放出反応を制御し易くなる。
Action By covering the surface of the hydrogen storage material with a hydrogen gas permeable metal layer to form a molded body, it becomes easy to handle and it is easy to control the hydrogen storage / release reaction.

実施例 以下、本発明の実施例について説明する。Examples Examples of the present invention will be described below.

まず本発明の水素吸蔵合金を用いた成形体の動作方法の
一実施例について説明する。水素吸蔵合金としてZr1.0M
n1.15Cr0.5Ni0.35合金を使用した。この合金の水素平衡
圧力は、140℃で1kg/cm2、200℃で4kg/cm2、250℃で10.
5kg/cm2である。この合金を100ミクロン以下の粒径に粉
砕し、さらにこの合金粉末を通常の銅の無電解メッキ法
によって被覆した。この合金粉末表面への銅の被覆量
は、全体の20重量パーセントとした。
First, an embodiment of the method for operating a compact using the hydrogen storage alloy of the present invention will be described. Zr 1.0 M as a hydrogen storage alloy
An n 1.15 Cr 0.5 Ni 0.35 alloy was used. The hydrogen equilibrium pressure of the alloy is 10 at 4kg / cm 2, 250 ℃ at 1kg / cm 2, 200 ℃ at 140 ° C..
It is 5 kg / cm 2 . This alloy was ground to a particle size of 100 microns or less and further coated with this alloy powder by a conventional copper electroless plating method. The coating amount of copper on the surface of the alloy powder was 20% by weight of the whole.

このようにして得た水素吸蔵合金粉末と、水素吸蔵合金
よりも電気抵抗の高い材料として市販の100ミクロン以
下のアルミナ粉末を、水素吸蔵合金粉末に対し25重量パ
ーセント均質に混合しプレス成形法によって厚さ約2ミ
リの板状の成形体を得た。この水素吸蔵合金成形体は、
通常の水素ガスによる水素吸蔵・放出反応を繰り返し行
なっても形が崩れることなく安定して水素吸蔵・放出反
応ができることを確認した。
The hydrogen storage alloy powder thus obtained, and commercially available alumina powder of 100 micron or less as a material having a higher electric resistance than the hydrogen storage alloy, 25% by weight of the hydrogen storage alloy powder is homogeneously mixed by a press molding method. A plate-shaped molded body having a thickness of about 2 mm was obtained. This hydrogen storage alloy molded body,
It was confirmed that the hydrogen storage / desorption reaction can be stably performed without losing the shape even if the hydrogen storage / desorption reaction is repeated by the usual hydrogen gas.

つぎにこの水素吸蔵合金成形体直接電気を通電し、通電
電気量によっての成形体自体を発させ、水素吸蔵・放出
反応を行なった結果について説明する。
Next, description will be made on the result of hydrogen storage / desorption reaction in which the hydrogen storage alloy molded body is directly energized to generate the molded body itself according to the amount of energized electricity.

水素吸蔵・放出反応を行なうために密閉が可能なステン
レス製の容器を準備した。そしてこの容器内の圧力が検
出できるように圧力計を設けた。この容器内に先の水素
吸蔵合金成形体を入れた。なお、この水素吸蔵合金成形
体は両端から通電のための銅の電極リード板を挟みこん
だ構成にし、水素吸蔵合金成形体の温度が検知できるよ
うに熱電対式温度計を設けた。そしてこの容器内を真空
にし、その後水素ガスを導入し吸蔵合金中の水素ガス濃
度が低温時でプラトーのほぼ満杯になるように調整し
た。
A stainless steel container capable of being closed was prepared for hydrogen storage / release reactions. A pressure gauge was provided so that the pressure in this container could be detected. The above hydrogen storage alloy compact was put in this container. The hydrogen storage alloy molded body had a structure in which copper electrode lead plates for energizing were sandwiched from both ends, and a thermocouple type thermometer was provided so that the temperature of the hydrogen storage alloy molded body could be detected. Then, the inside of this container was evacuated, and then hydrogen gas was introduced so that the hydrogen gas concentration in the storage alloy was adjusted to almost fill the plateau at low temperature.

このようにして、外部電源から水素吸蔵合金成形体にパ
ルス電流を流した。この時水素吸蔵合金成形体は発熱に
より短時間に温度が上昇し水素放出反応が起こり容器内
の圧力が上昇した。つぎに通電を停止すると、放熱によ
り水素吸蔵合金成形体は温度が下降し水素吸蔵反応とな
り容器内の圧力が下降した。この通電電気量による水素
吸蔵・放出反応をおこなう方法をこれまでの気体や液体
を用いて加熱・冷却し反応する場合と反応速度で比較し
た。すなわち、目的の温度まで加熱・冷却を行なった時
いかに素早く水素吸蔵・放出反応により所定の水素平衡
圧力に達するかという点を比較した。
In this way, a pulse current was passed from the external power source to the hydrogen storage alloy compact. At this time, the temperature of the hydrogen-absorbing alloy compact was raised by heat generation in a short time and a hydrogen-releasing reaction occurred to raise the pressure in the container. Next, when the energization was stopped, the temperature of the hydrogen-absorbing alloy compact was lowered due to heat dissipation, and the hydrogen-occluding reaction was caused, and the pressure in the container was lowered. The method of carrying out hydrogen absorption / desorption reaction by the amount of electricity supplied was compared with the conventional case of heating and cooling using gas or liquid and the reaction rate. That is, how quickly the predetermined hydrogen equilibrium pressure was reached by the hydrogen absorption / desorption reaction when heating / cooling to the target temperature was compared.

その結果、本実施例の水素放出反応に要した時間は約5
秒、同じく水素吸蔵反応は約10秒であった。そして本実
施例では加熱・冷却を繰り返し水素吸蔵・放出反応を約
10000回行なったが反応は非常に安定しており再現性に
優れていた。その後容器内の水素吸蔵合金成形体を外部
に取り出してみたが成形体に崩れなどの異常は見られな
かった。
As a result, the time required for the hydrogen releasing reaction in this example was about 5
Second, the hydrogen storage reaction was also about 10 seconds. In this example, heating / cooling is repeated and hydrogen absorption / desorption reaction
It was performed 10,000 times, but the reaction was very stable and excellent in reproducibility. After that, the hydrogen storage alloy compact in the container was taken out, but no abnormality such as collapse of the compact was observed.

これに対し、これまでの気体や液体を用いた場合の反応
速度は加熱と冷却をいかに効率よく行なっても本実施例
の10〜12倍の時間を要した。
On the other hand, the reaction rate in the case of using the gas or the liquid required 10 to 12 times as long as that of the present example, no matter how efficiently the heating and cooling were performed.

また同様の比較を水素吸蔵合金成形体に直接電気を通電
し、通電電気量によって水素吸蔵合金の水素吸蔵・放出
反応を行なうのではなく、電気ヒータと水素吸蔵合金を
接触させ電気ヒータを加熱した場合についても行なっ
た。
In addition, a similar comparison is made in which electricity is directly applied to the hydrogen storage alloy compact and the hydrogen storage / release reaction of the hydrogen storage alloy is not performed by the amount of electricity supplied, but the electric heater and the hydrogen storage alloy are contacted to heat the electric heater. I also did the case.

その結果この場合は約2〜3倍の時間を要した。これは
電気ヒータによる間接加熱に起因する熱応答性の低下や
熱容量の増大が原因と思われる。
As a result, in this case, it took about 2-3 times longer. This is thought to be due to a decrease in thermal response and an increase in heat capacity due to indirect heating by the electric heater.

割合などについて調べた。I checked the percentage.

このような方法にすることにより、極めて速い反応速度
を実現することが可能となった。またそれと同時に水素
吸蔵合金の水素吸蔵・放出反応の制御が容易になった。
By adopting such a method, it became possible to realize an extremely fast reaction rate. At the same time, it became easier to control the hydrogen storage / release reaction of the hydrogen storage alloy.

この場合、通電電気量によって直接水素吸蔵合金の水素
吸蔵・放出反応を行なう上で、優れた成形体を得るため
に特に以下に示すような要件を満たすことが好ましい。
In this case, in order to directly carry out the hydrogen storage / release reaction of the hydrogen storage alloy by the amount of electricity supplied, it is preferable to satisfy the following requirements in order to obtain an excellent molded product.

なお、使用する水素吸蔵合金として水素吸蔵合金の1kg/
cm2の水素平衡圧力を示す温度が50℃〜350℃の材料を選
ぶ。つまり、1kg/cm2の水素平衡圧力を示す温度が50℃
以下では水素平衡圧力が高過ぎるため、通電する電気量
での制御がやや困難であり、逆に350℃以上の材料は消
費電力や安全性の点で避けた方がよい。
As the hydrogen storage alloy used, 1 kg of hydrogen storage alloy /
Select a material with a temperature that shows the hydrogen equilibrium pressure of cm 2 from 50 ° C to 350 ° C. That is, the temperature at which the hydrogen equilibrium pressure is 1 kg / cm 2 is 50 ° C.
In the following, the hydrogen equilibrium pressure is too high, so it is somewhat difficult to control with the amount of electricity to be applied, and conversely, it is better to avoid materials of 350 ° C or higher in terms of power consumption and safety.

また、水素吸蔵合金の粉末表面を被覆する多孔質の金属
層は銅またはニッケルがよい。
Further, the porous metal layer covering the powder surface of the hydrogen storage alloy is preferably copper or nickel.

さらに、これらの被膜の形成方法としては蒸着法、スパ
ッタ法、ディップ法、溶射法などがあるが工業的にはメ
ッキ法特に無電解メッキ法が有効である。
Further, as a method for forming these coatings, there are a vapor deposition method, a sputtering method, a dipping method, a thermal spraying method and the like, but the plating method, particularly the electroless plating method is industrially effective.

また、水素吸蔵合金よりも電気抵抗の高い材料としては
100ミクロン以下の粒径、線径である粉末状もしくは繊
維状であり、好ましくは電気絶縁性を有していることが
適当である。例えば、シリカ、アルミナ、マグネシア、
ベリリアなどの金属酸化物あるいはそれらの複合酸化
物、窒化珪素や窒化チタンなどの窒化物、炭化珪素など
の炭化物、ポリイミドやフッ素樹脂などの有機高分子な
どがよい。これらは、抵抗値を調整する作用とともに成
形体の崩れに対してもそれを防止する作用がある。さら
に、延性・展性に優れた粉末状もしくは繊維状の金属の
混入が成形体の寿命を向上する点で効果がある。その金
属成分としてはZn、Cu、Ni、Co、Crより選ばれた少なく
とも1種であることが好ましい。
In addition, as a material with higher electrical resistance than hydrogen storage alloy
It is suitable to have a powdery or fibrous form having a particle diameter and a wire diameter of 100 microns or less, and preferably having an electrical insulating property. For example, silica, alumina, magnesia,
A metal oxide such as beryllia or a composite oxide thereof, a nitride such as silicon nitride or titanium nitride, a carbide such as silicon carbide, or an organic polymer such as polyimide or fluororesin is preferable. These have the function of adjusting the resistance value and the function of preventing the collapse of the molded body. Furthermore, the mixing of powdery or fibrous metal having excellent ductility and malleability is effective in improving the life of the molded body. The metal component is preferably at least one selected from Zn, Cu, Ni, Co and Cr.

発明の効果 本発明の水素吸蔵合金を用いた形成体は水素吸蔵合金を
直接通電によって加熱し水素吸蔵・放出反応を行なうた
め、これまでにない速い反応速度が達成できる。また、
水素吸蔵・放出反応を電気的に行なうことによって反応
の制御が極めて容易にできる。
EFFECTS OF THE INVENTION In the formed body using the hydrogen storage alloy of the present invention, the hydrogen storage alloy is heated by direct energization to carry out the hydrogen storage / desorption reaction, so that an unprecedented high reaction rate can be achieved. Also,
The reaction can be extremely easily controlled by electrically conducting the hydrogen storage / release reaction.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−190570(JP,A) 特開 昭59−73401(JP,A) 特開 昭59−147032(JP,A) 特開 昭59−219429(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-60-190570 (JP, A) JP-A-59-73401 (JP, A) JP-A-59-147032 (JP, A) JP-A-59- 219429 (JP, A)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】表面を水素ガスが透過可能な金属によって
被覆した粉末状水素吸蔵合金と、少なくとも前記水素吸
蔵合金よりも電気抵抗の高い、金属酸化物、窒化物、炭
化物、ポリイミドやフッ素樹脂から選ばれる有機高分子
より選ばれる材料を混合したものを成形した成形体に直
接通電し水素吸蔵・放出反応を行う水素吸蔵合金を用い
た成形体の動作方法。
1. A powdery hydrogen storage alloy having a surface coated with a metal permeable to hydrogen gas, and a metal oxide, a nitride, a carbide, a polyimide or a fluororesin having a higher electric resistance than at least the hydrogen storage alloy. A method for operating a molded body using a hydrogen storage alloy, which directly energizes a molded body formed by mixing a material selected from selected organic polymers to cause hydrogen storage / desorption reaction.
【請求項2】成形体を延性・展性に優れた粉末状もしく
は繊維状の金属を加えて混合したものを成形したことを
特徴とする特許請求の範囲第1項記載の水素吸蔵合金を
用いた成形体の動作方法。
2. A hydrogen storage alloy according to claim 1, characterized in that a molded body is formed by mixing a powdery or fibrous metal having excellent ductility and malleability and mixing the molded body. How to operate the molded body.
【請求項3】水素吸蔵合金の粒径が100ミクロン以下で
あり、その粉末表面を被覆する金属は銅またはニッケル
の多孔質であることを特徴とする特許請求の範囲第1項
または第2項記載の水素吸蔵合金を用いた成形体の動作
方法。
3. A hydrogen storage alloy having a particle size of 100 μm or less, and the metal coating the powder surface is copper or nickel porous. A method for operating a molded body using the hydrogen storage alloy as described.
【請求項4】水素吸蔵合金よりも電気抵抗の高い、金属
酸化物、窒化物、炭化物、ポリイミドやフッ素樹脂から
選ばれる有機高分子より選ばれる材料が100ミクロン以
下の粒径を有する粉末状もしくは100ミクロン以下の線
形を有する繊維状であり、好ましくは電気絶縁性を有し
ていることを特徴とする特許請求の範囲第1項または第
2項記載の水素吸蔵合金を用いた成形体の動作方法。
4. A material selected from metal oxides, nitrides, carbides, polyimides and organic polymers selected from organic polymers having a higher electric resistance than hydrogen storage alloys, having a particle size of 100 μm or less, or An operation of a molded article using the hydrogen storage alloy according to claim 1 or 2, which is a fibrous material having a linear shape of 100 microns or less and preferably having electrical insulation properties. Method.
【請求項5】延性・展性に優れた粉末状もしくは繊維状
の金属はZn、Cu、Ni、Co、Crより選ばれた少なくとも1
種であることを特徴とする特許請求の範囲第2項記載の
水素吸蔵合金を用いた成形体の動作方法。
5. The powdery or fibrous metal having excellent ductility and malleability is at least one selected from Zn, Cu, Ni, Co and Cr.
A method of operating a molded body using a hydrogen storage alloy according to claim 2, characterized in that it is a seed.
【請求項6】1kg/cm2の水素平衡圧力を示す温度が50℃
〜350℃である水素吸蔵合金材料を使用する特許請求の
範囲第1項または第2項記載の水素吸蔵合金を用いた成
形体の動作方法。
6. A temperature showing a hydrogen equilibrium pressure of 1 kg / cm 2 is 50 ° C.
A method of operating a molded body using the hydrogen storage alloy according to claim 1 or 2, which uses a hydrogen storage alloy material having a temperature of up to 350 ° C.
JP61223100A 1986-09-19 1986-09-19 Method of operating compact using hydrogen storage alloy Expired - Fee Related JPH0753561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61223100A JPH0753561B2 (en) 1986-09-19 1986-09-19 Method of operating compact using hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61223100A JPH0753561B2 (en) 1986-09-19 1986-09-19 Method of operating compact using hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JPS6379701A JPS6379701A (en) 1988-04-09
JPH0753561B2 true JPH0753561B2 (en) 1995-06-07

Family

ID=16792825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61223100A Expired - Fee Related JPH0753561B2 (en) 1986-09-19 1986-09-19 Method of operating compact using hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JPH0753561B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5662729A (en) * 1994-10-04 1997-09-02 Sanyo Electric Co., Ltd. Shaped body of hydrogen absorbing alloy and container packed with hydrogen absorbing alloy
JP2002033113A (en) * 1999-11-18 2002-01-31 Toyota Motor Corp Fuel gas generating device for fuel cell and composite material for hydrogen separation
JP4663845B2 (en) * 2000-04-10 2011-04-06 日本重化学工業株式会社 Quick-release hydrogen storage alloy storage container
JP5394767B2 (en) * 2008-03-12 2014-01-22 国立大学法人北海道大学 Method for producing hydrogen absorbing / releasing sheet
JP5498188B2 (en) * 2010-02-08 2014-05-21 株式会社神戸製鋼所 Container for hydrogen separation and purification
JP6277540B2 (en) * 2013-08-29 2018-02-14 パナソニックIpマネジメント株式会社 Contact device
CN105531783B (en) 2013-08-29 2019-01-08 松下知识产权经营株式会社 contact device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5973401A (en) * 1982-10-19 1984-04-25 Sumitomo Metal Ind Ltd Hydrogen occlusion material
JPS59147032A (en) * 1983-02-14 1984-08-23 Santoku Kinzoku Kogyo Kk Formed material of hydrogen occulusion alloy
JPS59219429A (en) * 1983-05-25 1984-12-10 Toyobo Co Ltd Production of porous metal for occluding hydrogen
JPS60190570A (en) * 1984-03-09 1985-09-28 Agency Of Ind Science & Technol Production of hydrogen occluding alloy material
JPS62143801A (en) * 1985-12-18 1987-06-27 Agency Of Ind Science & Technol Purification of hydrogen gas with hydrogen occlusion alloy

Also Published As

Publication number Publication date
JPS6379701A (en) 1988-04-09

Similar Documents

Publication Publication Date Title
US3181936A (en) Superconductors and method for the preparation thereof
CN112794734B (en) Multi-metal carbide modified carbon-based material and preparation method thereof
US3711279A (en) Methods for manufacture of sintering thin porous metallic sheets
US20010040935A1 (en) Commercial power production by catalytic fusion of deuterium gas
TWI548752B (en) Nickel alloys for hydrogen storage and the generation of energy therefrom
US20190245129A1 (en) Polycrystalline magnesium silicide and use thereof
JPH0753561B2 (en) Method of operating compact using hydrogen storage alloy
JPS596388A (en) Manufacture of electrode activated with tungsten carbide
Chung et al. Effect of partial substitution of Mn and Ni for Fe in FeTi on hydriding kinetics
US2984807A (en) Corrosion-resistant high-temperature bodies for metal vaporizing heaters and other applications
JPS5833685B2 (en) Kotaidenkaicondensano Seizouhou
Chirkin et al. High-temperature and electrochemical oxidation of transition metal silicides
US6764561B1 (en) Palladium-boron alloys and methods for making and using such alloys
US4600660A (en) Foil material for the storage of hydrogen
Kozma et al. Initiation of directional grain growth during liquid-phase sintering of tungsten and nickel
Amano et al. Hydrogen storage properties of FeTi1+ x and FeTi1+ xOy flakes produced by splat quenching
JPH0247535B2 (en)
US4421718A (en) Alloy for occlusion of hydrogen
JPH0250968B2 (en)
US20050230009A1 (en) Palladium-boron alloys and methods for making and using such alloys
Orimo et al. Low temperature formation of MgH2 in Ti0. 6Zr0. 4Mn0. 8CrCu0. 2/Mg
Kashkooli et al. The equilibrium and free surface sublimation pressures of oriented single crystals of bismuth telluride
JPS6385001A (en) Hydrogen occlusion and release device using hydrogen occlusion alloy
US6179897B1 (en) Method for the generation of variable density metal vapors which bypasses the liquidus phase
Adachi et al. Preparation of LaNi5 films and effects of hydrogen absorption on electrical resistivities of the films

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees