JP5394304B2 - Non-pneumatic tire and manufacturing method thereof - Google Patents

Non-pneumatic tire and manufacturing method thereof Download PDF

Info

Publication number
JP5394304B2
JP5394304B2 JP2010091677A JP2010091677A JP5394304B2 JP 5394304 B2 JP5394304 B2 JP 5394304B2 JP 2010091677 A JP2010091677 A JP 2010091677A JP 2010091677 A JP2010091677 A JP 2010091677A JP 5394304 B2 JP5394304 B2 JP 5394304B2
Authority
JP
Japan
Prior art keywords
annular portion
support structure
mold
pneumatic tire
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010091677A
Other languages
Japanese (ja)
Other versions
JP2011219009A (en
Inventor
義雄 三村
邦至 赤坂
晶吾 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2010091677A priority Critical patent/JP5394304B2/en
Publication of JP2011219009A publication Critical patent/JP2011219009A/en
Application granted granted Critical
Publication of JP5394304B2 publication Critical patent/JP5394304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)
  • Tyre Moulding (AREA)

Description

本発明は、タイヤ構造部材として、車両からの荷重を支持する支持構造体を備える非空気圧タイヤ(non−pneumatic tire)及びその製造方法に関するものであり、好ましくは空気入りタイヤの代わりとして使用することができる非空気圧タイヤ及びその製造方法に関するものである。   The present invention relates to a non-pneumatic tire provided with a support structure that supports a load from a vehicle as a tire structure member and a method for manufacturing the same, and preferably used as a substitute for a pneumatic tire. The present invention relates to a non-pneumatic tire that can be used and a manufacturing method thereof.

空気入りタイヤは、荷重の支持機能、接地面からの衝撃吸収能、および動力等の伝達能(加速、停止、方向転換)を有し、このため、多くの車両、特に自転車、オートバイ、自動車、トラックに採用されている。   The pneumatic tire has a load supporting function, a shock absorbing ability from the ground contact surface, and a transmission ability (acceleration, stop, change of direction) such as power. For this reason, many vehicles, particularly bicycles, motorcycles, automobiles, It is used in trucks.

特に、これらの能力は自動車、その他のモーター車両の発展に大きく貢献した。更に、空気入りタイヤの衝撃吸収能力は、医療機器や電子機器の運搬用カート、その他の用途でも有用である。   In particular, these capabilities greatly contributed to the development of automobiles and other motor vehicles. Furthermore, the impact absorbing ability of pneumatic tires is useful for medical equipment and electronic equipment transport carts and other applications.

従来の非空気圧タイヤとしては、例えばソリッドタイヤ、スプリングタイヤ、クッションタイヤ等が存在するが、空気入りタイヤの優れた性能を有していない。例えば、ソリッドタイヤおよびクッションタイヤは、接地部分の圧縮によって荷重を支持するが、この種のタイヤは重くて、堅く、空気入りタイヤのような衝撃吸収能力はない。また、非空気圧タイヤでは、弾性を高めてクッション性を改善することも可能であるが、空気入りタイヤが有するような荷重支持能または耐久性が悪くなるという問題がある。   Conventional non-pneumatic tires include, for example, solid tires, spring tires, cushion tires, and the like, but do not have the superior performance of pneumatic tires. For example, solid tires and cushion tires support the load by compressing the contact portion, but this type of tire is heavy and stiff, and does not have the ability to absorb shock like a pneumatic tire. Further, in the non-pneumatic tire, it is possible to improve the cushioning property by increasing the elasticity, but there is a problem that the load supporting ability or the durability as the pneumatic tire has is deteriorated.

そこで、下記の特許文献1には、空気入りタイヤと同様な動作特性を有する非空気圧タイヤを開発する目的で、タイヤに加わる荷重を支持する補強された環状バンドと、この補強された環状バンドとホイールまたはハブとの間で張力によって荷重力を伝達する複数のウェブスポークとを有する非空気圧タイヤが提案されている。補強された環状バンドは、エラストマー剪断層と、該エラストマー剪断層の放射方向内側に接着した少なくとも1つの第1メンブレンと、該エラストマー剪断層の放射方向外側に接着した少なくとも1つの第2メンブレンとを有している。この第1メンブレンと第2メンブレンは、エラストマー被覆層中に実質的に伸びないコード補強材を埋め込んだ構成である。   Therefore, in Patent Document 1 below, for the purpose of developing a non-pneumatic tire having the same operating characteristics as a pneumatic tire, a reinforced annular band that supports a load applied to the tire, and the reinforced annular band, Non-pneumatic tires have been proposed that have a plurality of web spokes that transmit load forces by tension with a wheel or hub. The reinforced annular band comprises an elastomer shear layer, at least one first membrane adhered radially inward of the elastomer shear layer, and at least one second membrane adhered radially outward of the elastomer shear layer. Have. The first membrane and the second membrane have a structure in which a cord reinforcing material that does not substantially extend is embedded in the elastomer coating layer.

また、下記の特許文献2には、スポーク構造体を備える非空気圧タイヤが記載されており、スポーク構造体の外周輪には線材が埋設されている。   Moreover, the following patent document 2 describes a non-pneumatic tire including a spoke structure, and a wire rod is embedded in the outer peripheral ring of the spoke structure.

特表2005−500932号公報Special Table 2005-500932 Publication 特開2009−286208号公報JP 2009-286208 A

ところで、特許文献1において、環状バンドの第1メンブレンと第2メンブレンを補強するために埋設するコード補強材に関し、詳しい位置や方法については記載されていない。また、特許文献2においても、外周輪へ埋設する線材に関し、具体的な位置や方法については記載されていない。しかしながら、特許文献1の環状バンド、特許文献2の外周輪のような外側環状部は、補強が不十分であると、強度不足により破壊に至り、非空気圧タイヤは所望の耐久性を得ることができない。また、環状バンドおよび外周輪の外周側には、通常、ベルト層とトレッド層が接合されるが、環状バンドおよび外周輪は、上記の強度不足、また、隣接するベルト層への接着力不足により、ベルト層との間で剥離が起こりやすくなる。   By the way, in patent document 1, regarding the cord reinforcement material embedded in order to reinforce the 1st membrane and 2nd membrane of an annular band, the detailed position and method are not described. Moreover, also in patent document 2, it is not described about the specific position and method regarding the wire embed | buried in an outer periphery ring | wheel. However, the outer annular portion such as the annular band of Patent Document 1 and the outer peripheral ring of Patent Document 2 may be destroyed due to insufficient strength if the reinforcement is insufficient, and the non-pneumatic tire may obtain a desired durability. Can not. In addition, the belt layer and the tread layer are usually joined to the outer peripheral side of the annular band and the outer peripheral ring. However, the annular band and the outer peripheral ring are insufficient due to the above-described strength and insufficient adhesion to the adjacent belt layer. , Peeling is likely to occur between the belt layer.

そこで、本発明の目的は、車両からの荷重を支持する支持構造体を備える非空気圧タイヤであって、支持構造体の外側環状部を補強し、ベルト層への接着力を向上させることで、耐久性を向上させた非空気圧タイヤ、及びその製造方法を提供することにある。   Accordingly, an object of the present invention is a non-pneumatic tire provided with a support structure that supports a load from a vehicle, by reinforcing the outer annular portion of the support structure and improving the adhesive force to the belt layer, An object is to provide a non-pneumatic tire with improved durability and a method for manufacturing the same.

上記目的は、下記の如き本発明により達成できる。
即ち、本発明の非空気圧タイヤは、車両からの荷重を支持する支持構造体と、支持構造体の外周側に設けられるベルト層とを備える非空気圧タイヤにおいて、前記支持構造体は、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結する複数の連結部とを備え、前記外側環状部の外周面には、一部露出した状態で補強繊維が環状に埋設されていることを特徴とする。
The above object can be achieved by the present invention as described below.
That is, the non-pneumatic tire according to the present invention is a non-pneumatic tire including a support structure that supports a load from a vehicle and a belt layer provided on an outer peripheral side of the support structure, and the support structure includes an inner annular portion. And an outer annular portion provided concentrically on the outer side of the inner annular portion, and a plurality of connecting portions that connect the inner annular portion and the outer annular portion, and on the outer circumferential surface of the outer annular portion. The reinforcing fiber is embedded in an annular shape in a partially exposed state.

本発明の非空気圧タイヤは、車両からの荷重を支持する支持構造体と、その支持構造体の外周側に設けられるベルト層とを備える。支持構造体の外側環状部の外周面には、一部露出した状態で補強繊維が環状に埋設されている。この構成によれば、埋設された補強繊維により外側環状部が補強され、外側環状部の変形が抑制される。さらに、外側環状部の外周面に補強繊維が一部露出していることにより、支持構造体の外周側、すなわち外側環状部の外周側にベルト層を接合する際にアンカー効果が生じ、支持構造体のベルト層への接着力が向上する。その結果、本発明によれば、耐久性を向上させた非空気圧タイヤを提供することができる。   The non-pneumatic tire of the present invention includes a support structure that supports a load from a vehicle, and a belt layer that is provided on the outer peripheral side of the support structure. Reinforcing fibers are embedded in an annular shape on the outer peripheral surface of the outer annular portion of the support structure in a partially exposed state. According to this configuration, the outer annular portion is reinforced by the embedded reinforcing fiber, and deformation of the outer annular portion is suppressed. Further, since the reinforcing fibers are partially exposed on the outer peripheral surface of the outer annular portion, an anchor effect occurs when the belt layer is joined to the outer peripheral side of the support structure, that is, the outer peripheral side of the outer annular portion, and the support structure Adhesion to body belt layer is improved. As a result, according to the present invention, a non-pneumatic tire with improved durability can be provided.

本発明にかかる非空気圧タイヤにおいて、前記支持構造体は、イソシアネート成分としてパラフェニレンジイソシアネート(PPDI)を用いたポリウレタン樹脂で構成されていることが好ましい。   In the non-pneumatic tire according to the present invention, the support structure is preferably made of a polyurethane resin using paraphenylene diisocyanate (PPDI) as an isocyanate component.

イソシアネート成分としてパラフェニレンジイソシアネート(PPDI)を用いたポリウレタン樹脂で構成することで、支持構造体の屈曲疲労性が向上し、耐久性が向上するともに、耐加水分解性も向上する。   By constituting with a polyurethane resin using paraphenylene diisocyanate (PPDI) as an isocyanate component, the bending fatigue resistance of the support structure is improved, the durability is improved, and the hydrolysis resistance is also improved.

一方、本発明の非空気圧タイヤの製造方法は、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結する複数の連結部とから構成される支持構造体を備える非空気圧タイヤの製造方法であって、前記内側環状部の内周側を成形するための中型と、前記外側環状部の外周側を成形するための外型と、中型と外型の間に周方向に配置され、前記内側環状部の外周側、前記外側環状部の内周側、および前記連結部を成形するための複数の中子と、前記支持構造体のタイヤ幅方向両側面を成形するための一対の上型、下型とを配置して、前記内側環状部、前記外側環状部および前記連結部に相当するキャビティを形成する工程と、前記外型の内周面に接するように補強繊維を環状に配置する工程と、前記キャビティに弾性材料の原料液を供給して硬化させて前記支持構造体を成形する工程と、成形された前記支持構造体の外周側にベルト層を接合する工程と、を備えることを特徴とする。   On the other hand, the manufacturing method of a non-pneumatic tire of the present invention includes an inner annular portion, an outer annular portion provided concentrically on the outer side of the inner annular portion, and a plurality of connecting the inner annular portion and the outer annular portion. A non-pneumatic tire manufacturing method comprising a support structure comprising a connecting portion for forming an inner mold for forming the inner peripheral side of the inner annular part and an outer peripheral side of the outer annular part A plurality of cores for forming the outer side of the inner annular part, the outer peripheral side of the outer annular part, the inner peripheral side of the outer annular part, and the connecting part, between the outer mold and the outer mold Disposing a pair of upper and lower molds for molding both sides of the support structure in the tire width direction, and forming cavities corresponding to the inner annular part, the outer annular part, and the connecting part; The reinforcing fibers are annularly arranged so as to contact the inner peripheral surface of the outer mold. A step of supplying a raw material liquid of an elastic material to the cavity to be cured and molding the support structure, and a step of bonding a belt layer to the outer peripheral side of the molded support structure. It is characterized by that.

この構成によれば、補強繊維を外型の内周面に接するように環状に配置し、キャビティに弾性材料の原料液を供給して硬化させることで、支持構造体の外側環状部の外周面に、一部露出した状態で補強繊維が埋設されることとなる。これにより、上記のように、耐久性を向上させた非空気圧タイヤを製造することができる。   According to this configuration, the outer peripheral surface of the outer annular portion of the support structure is formed by arranging the reinforcing fibers in an annular shape so as to contact the inner peripheral surface of the outer mold and supplying the raw material liquid of the elastic material to the cavity and curing it. In addition, the reinforcing fiber is embedded in a partially exposed state. Thereby, as described above, a non-pneumatic tire with improved durability can be manufactured.

本発明にかかる非空気圧タイヤの製造方法において、前記支持構造体を成形する工程の後、成形された前記支持構造体の外周面をバフ処理する工程を備えることが好ましい。   In the method for manufacturing a non-pneumatic tire according to the present invention, it is preferable that a step of buffing the outer peripheral surface of the formed support structure is provided after the step of forming the support structure.

弾性材料の原料液を硬化させて支持構造体を成形する際、補強繊維を外型の内周面に接するように環状に配置していても、補強繊維と外型の間に原料液がわずかに侵入し、補強繊維の外周面に弾性材料の薄い膜が形成されることがある。成形された支持構造体の外周面をバフ処理することで、弾性材料の薄い膜が除去され、外側環状部の外周面に埋設された補強繊維を確実に露出させることができる。   When forming the support structure by curing the raw material liquid of the elastic material, the raw material liquid is slightly between the reinforcing fiber and the outer mold even if the reinforcing fibers are arranged in an annular shape so as to contact the inner peripheral surface of the outer mold. In some cases, a thin film of an elastic material is formed on the outer peripheral surface of the reinforcing fiber. By buffing the outer peripheral surface of the formed support structure, the thin film of the elastic material is removed, and the reinforcing fibers embedded in the outer peripheral surface of the outer annular portion can be reliably exposed.

本発明の非空気圧タイヤの一例を示す(a)は正面図、(b)は一部拡大図(A) which shows an example of the non-pneumatic tire of this invention is a front view, (b) is a partially enlarged view 環状の補強繊維を示す斜視図Perspective view showing annular reinforcing fiber 支持構造体を成形するための成形型を示す(a)は正面図、(b)は縦断面図(A) which shows the shaping | molding die for shape | molding a support structure is a front view, (b) is a longitudinal cross-sectional view 中型の別実施形態を示す斜視図Perspective view showing another embodiment of the medium size 中型の別実施形態を示す斜視図Perspective view showing another embodiment of the medium size

以下、本発明の実施の形態について、図面を参照しながら説明する。初めに、本発明の非空気圧タイヤの構成を説明する。図1は非空気圧タイヤの一例を示す正面図であり、(a)は全体図、(b)は一部拡大図である。ここで、Oは軸芯を、H1はタイヤ断面高さを、それぞれ示している。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, the configuration of the non-pneumatic tire of the present invention will be described. FIG. 1 is a front view showing an example of a non-pneumatic tire, (a) is an overall view, and (b) is a partially enlarged view. Here, O indicates the axial center, and H1 indicates the tire cross-sectional height.

本発明の非空気圧タイヤTは、車両からの荷重を支持する支持構造体SSと、支持構造体SSの外周側に設けられるベルト層6とを備えるものである。本発明の非空気圧タイヤTは、このような支持構造体SS、ベルト層6を備えるものであればよく、その支持構造体SSとベルト層6の外側(外周側)や内側(内周側)に、トレッド層7、補強層、車軸やリムとの適合用部材などを備えていてもよい。   The non-pneumatic tire T of the present invention includes a support structure SS that supports a load from a vehicle, and a belt layer 6 provided on the outer peripheral side of the support structure SS. The non-pneumatic tire T of the present invention only needs to have such a support structure SS and the belt layer 6, and the outer side (outer peripheral side) and the inner side (inner peripheral side) of the support structure SS and the belt layer 6. Further, a tread layer 7, a reinforcing layer, a member for fitting with an axle or a rim, and the like may be provided.

本実施形態の非空気圧タイヤTは、図1の正面図に示すように、支持構造体SSが、内側環状部1と、その外側に同心円状に設けられた中間環状部2と、その外側に同心円状に設けられた外側環状部3と、内側環状部1と中間環状部2とを連結し周方向に各々が独立する複数の内側連結部4と、外側環状部3と中間環状部2とを連結し周方向に各々が独立する複数の外側連結部5とを備えている。この実施形態では、支持構造体SSが中間環状部2を備えているが、中間環状部2は必ずしも必要ではなく、中間環状部2を設けず、内側連結部4と外側連結部5とが連続し1本の連結部を構成してもよい。   As shown in the front view of FIG. 1, the non-pneumatic tire T according to the present embodiment includes an inner annular portion 1, an intermediate annular portion 2 provided concentrically on the outer side thereof, and an outer side thereof. A concentric outer ring part 3, an inner ring part 1, an intermediate ring part 2, a plurality of inner connection parts 4 that are independent in the circumferential direction, an outer ring part 3, and an intermediate ring part 2 And a plurality of outer connecting portions 5 that are independent of each other in the circumferential direction. In this embodiment, the support structure SS includes the intermediate annular portion 2, but the intermediate annular portion 2 is not always necessary, and the intermediate annular portion 2 is not provided, and the inner connecting portion 4 and the outer connecting portion 5 are continuous. However, you may comprise one connection part.

内側環状部1は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。また、内側環状部1の内周面には、車軸やリムとの装着のために、嵌合性を保持するための凹凸等を設けるのが好ましい。   The inner annular portion 1 is preferably a cylindrical shape having a constant thickness from the viewpoint of improving uniformity. Moreover, it is preferable to provide the inner peripheral surface of the inner annular portion 1 with irregularities or the like for maintaining fitting properties for mounting with an axle or a rim.

内側環状部1の厚みは、内側連結部4に力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さH1の2〜10%が好ましく、3〜7%がより好ましい。   The thickness of the inner annular portion 1 is preferably 2 to 10% and 3 to 7% of the tire cross-section height H1 from the viewpoint of reducing weight and improving durability while sufficiently transmitting force to the inner connecting portion 4. More preferred.

内側環状部1の内径は、非空気圧タイヤTを装着するリムや車軸の寸法などに併せて適宜決定されるが、本発明では中間環状部2を備えるために、内側環状部1の内径を従来より大幅に小さくすることが可能である。但し、一般の空気入りタイヤの代替を想定した場合、250〜500mmが好ましく、330〜440mmがより好ましい。   The inner annular portion 1 has an inner diameter that is appropriately determined in accordance with the dimensions of the rim on which the non-pneumatic tire T is mounted, the axle, and the like. It can be made much smaller. However, when an alternative to a general pneumatic tire is assumed, 250 to 500 mm is preferable, and 330 to 440 mm is more preferable.

内側環状部1の軸方向の幅は、用途、車軸の長さ等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The axial width of the inner annular portion 1 is appropriately determined according to the application, the length of the axle, and the like, but when an alternative to a general pneumatic tire is assumed, it is preferably 100 to 300 mm, more preferably 130 to 250 mm. preferable.

内側環状部1の引張モジュラスは、内側連結部4に力を十分伝達しつつ、軽量化や耐久性の向上、装着性を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。なお、本発明における引張モジュラスは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した値である。   The tensile modulus of the inner annular portion 1 is preferably 5 to 180000 MPa, more preferably 7 to 50000 MPa, from the viewpoint of reducing weight, improving durability, and wearing properties while sufficiently transmitting force to the inner connecting portion 4. The tensile modulus in the present invention is a value calculated from a tensile stress at 10% elongation by conducting a tensile test according to JIS K7312.

本発明における支持構造体SSは、弾性材料で成形されるが、支持構造体SSを製造する際に、一体成形が可能となる観点から、内側環状部1、中間環状部2、外側環状部3、内側連結部4、及び外側連結部5は、補強構造を除いて基本的に同じ材質とすることが好ましい。   The support structure SS in the present invention is formed of an elastic material. From the viewpoint of enabling integral molding when the support structure SS is manufactured, the inner annular portion 1, the intermediate annular portion 2, and the outer annular portion 3 are used. The inner connecting portion 4 and the outer connecting portion 5 are preferably basically made of the same material except for the reinforcing structure.

本発明における弾性材料とは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した引張モジュラスが、100MPa以下のものを指す。本発明の弾性材料としては、十分な耐久性を得ながら、適度な剛性を付与する観点から、好ましくは引張モジュラスが5〜100MPaであり、より好ましくは7〜95MPaである。母材として用いられる弾性材料としては、熱可塑性エラストマー、架橋ゴム、その他の樹脂が挙げられる。   The elastic material in the present invention refers to a material having a tensile modulus calculated from a tensile stress at 10% elongation by a tensile test according to JIS K7312 and 100 MPa or less. The elastic material of the present invention preferably has a tensile modulus of 5 to 100 MPa, more preferably 7 to 95 MPa, from the viewpoint of imparting adequate rigidity while obtaining sufficient durability. Examples of the elastic material used as the base material include thermoplastic elastomers, crosslinked rubbers, and other resins.

熱可塑性エラストマーとしては、ポリエステルエラストマー、ポリオレフィンエラストマー、ポリアミドエラストマー、ポリスチレンエラストマー、ポリ塩化ビニルエラストマー、ポリウレタンエラストマー等が例示される。架橋ゴム材料を構成するゴム材料としては、天然ゴムの他、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IIR)、ニトリルゴム(NBR)、水素添加ニトリルゴム(水添NBR)、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPDM)、フッ素ゴム、シリコンゴム、アクリルゴム、ウレタンゴム等の合成ゴムが例示される。これらのゴム材料は必要に応じて2種以上を併用してもよい。   Examples of the thermoplastic elastomer include polyester elastomer, polyolefin elastomer, polyamide elastomer, polystyrene elastomer, polyvinyl chloride elastomer, polyurethane elastomer and the like. Rubber materials constituting the crosslinked rubber material include natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IIR), nitrile rubber (NBR), hydrogenated nitrile rubber (hydrogenated NBR). And synthetic rubbers such as chloroprene rubber (CR), ethylene propylene rubber (EPDM), fluorine rubber, silicon rubber, acrylic rubber, and urethane rubber. These rubber materials may be used in combination of two or more as required.

その他の樹脂としては、熱可塑性樹脂、又は熱硬化性樹脂が挙げられる。熱可塑性樹脂としては、ポリエチレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂などが挙げられ、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、シリコン樹脂、ポリイミド樹脂、メラミン樹脂などが挙げられる。   Examples of other resins include thermoplastic resins and thermosetting resins. Examples of the thermoplastic resin include polyethylene resin, polystyrene resin, and polyvinyl chloride resin, and examples of the thermosetting resin include epoxy resin, phenol resin, polyurethane resin, silicon resin, polyimide resin, and melamine resin.

上記の弾性材料のうち、成形・加工性やコストの観点から、好ましくは、ポリウレタン樹脂が用いられる。ポリウレタン樹脂のなかでも、主原料のイソシアネート成分にパラフェニレンジイソシアネート(PPDI)を用いたものが特に好ましい。PPDIを用いたポリウレタン樹脂は、優れた耐屈曲疲労性、耐加水分解性を持つ。また、PPDIを用いたポリウレタン樹脂は、トルエンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)を用いたポリウレタン樹脂と比較して、ヒステリシスによる発熱性が低く(低発熱性)、動的特性が優れている。また、ポリウレタン樹脂のポリオール成分としては、エステル(アジペート)系、カプロラクトン系、カーボネート系、エーテル系などを用いることができる。これらのうち、耐屈曲疲労性やその他の機械特性では、エステル(アジペート)系、カプロラクトン系、カーボネート系のほうが更に良好であるのに対して、耐加水分解性では、エーテル系>カーボネート系>カプロラクトン系>エステル(アジペート)系の順となっているが、いずれのポリオール成分を用いた場合であっても、PPDIを用いたポリウレタン樹脂は、TDIを用いたポリウレタン樹脂と比較して、高い耐加水分解性を持つ。なお、弾性材料としては、発泡材料を使用してもよく、上記の熱可塑性エラストマー、架橋ゴム、その他の樹脂を発泡させたものが使用可能である。   Of the above elastic materials, a polyurethane resin is preferably used from the viewpoint of moldability / workability and cost. Among polyurethane resins, those using paraphenylene diisocyanate (PPDI) as the isocyanate component of the main raw material are particularly preferable. Polyurethane resins using PPDI have excellent bending fatigue resistance and hydrolysis resistance. Polyurethane resins using PPDI have lower exothermicity due to hysteresis (low exothermic properties) and better dynamic characteristics than polyurethane resins using toluene diisocyanate (TDI) and diphenylmethane diisocyanate (MDI). . As the polyol component of the polyurethane resin, ester (adipate), caprolactone, carbonate, ether, and the like can be used. Of these, ester (adipate), caprolactone, and carbonate are better in bending fatigue resistance and other mechanical properties, while ether> carbonate> caprolactone in hydrolysis resistance. Although the order of the system> ester (adipate) system, the polyurethane resin using PPDI is higher in water resistance than the polyurethane resin using TDI, regardless of which polyol component is used. Degradable. In addition, as an elastic material, you may use a foam material, The thing which foamed said thermoplastic elastomer, crosslinked rubber, and other resin can be used.

弾性材料で一体成形された支持構造体SSは、内側環状部1、中間環状部2、外側環状部3、内側連結部4、及び外側連結部5が、補強繊維により補強されていることが好ましい。   In the support structure SS integrally formed of an elastic material, the inner annular portion 1, the intermediate annular portion 2, the outer annular portion 3, the inner connecting portion 4, and the outer connecting portion 5 are preferably reinforced with reinforcing fibers. .

補強繊維としては、長繊維、短繊維、織布、不織布などの補強繊維が挙げられるが、長繊維を使用する形態として、タイヤ軸方向に配列される繊維とタイヤ周方向に配列される繊維とから構成されるネット状繊維集合体を使用するのが好ましい。   Examples of the reinforcing fibers include reinforcing fibers such as long fibers, short fibers, woven fabrics, and non-woven fabrics. As a form using long fibers, fibers arranged in the tire axial direction and fibers arranged in the tire circumferential direction It is preferable to use a net-like fiber assembly composed of:

補強繊維の種類としては、例えば、レーヨンコード、ナイロン−6,6等のポリアミドコード、ポリエチレンテレフタレート等のポリエステルコード、アラミドコード、ガラス繊維コード、カーボンファイバー、スチールコード等が挙げられる。   Examples of the types of reinforcing fibers include rayon cords, polyamide cords such as nylon-6,6, polyester cords such as polyethylene terephthalate, aramid cords, glass fiber cords, carbon fibers, and steel cords.

本発明では、補強繊維を用いる補強の他、粒状フィラーによる補強や、金属リング等による補強を行うことが可能である。粒状フィラーとしては、カーボンブラック、シリカ、アルミナ等のセラミックス、その他の無機フィラーなどが挙げられる。   In the present invention, in addition to reinforcement using reinforcing fibers, it is possible to perform reinforcement with a granular filler or reinforcement with a metal ring or the like. Examples of the particulate filler include ceramics such as carbon black, silica, and alumina, and other inorganic fillers.

本実施形態において、内側環状部1は、径方向の厚み中央部に埋設された補強繊維1aにより補強されている。補強繊維1aは、タイヤ周方向に巻回された上記のコード材や、環状に形成したネット状繊維集合体が例示される。内側環状部1を補強繊維1aにより補強することで、ホイールとの嵌合力が増し、ホイールとのずれ(滑り)を抑制し、荷重負荷時の変形を抑制することができる。また、補強繊維1aは、内側環状部1の径方向の厚み中央部に埋設されるので、内側環状部1の内周面に露出せず、補強繊維1aとホイールの双方の損傷を防止することができる。   In the present embodiment, the inner annular portion 1 is reinforced by reinforcing fibers 1a embedded in the central portion of the radial thickness. Examples of the reinforcing fiber 1a include the cord material wound in the tire circumferential direction and a net-like fiber aggregate formed in an annular shape. By reinforcing the inner annular portion 1 with the reinforcing fiber 1a, the fitting force with the wheel is increased, the shift (slip) from the wheel can be suppressed, and the deformation at the time of loading can be suppressed. Further, since the reinforcing fiber 1a is embedded in the central portion of the inner annular portion 1 in the radial direction, the reinforcing fiber 1a is not exposed to the inner peripheral surface of the inner annular portion 1, and damage to both the reinforcing fiber 1a and the wheel is prevented. Can do.

また、内側環状部1は、補強繊維1aの内周側に有機繊維材1bを環状に配設してもよい。補強繊維1aの内周側に有機繊維材1bを配設することで、補強繊維1aが内側環状部1の内周面に露出しないようにすることができる。かかる有機繊維材は、織布又はネット等にて構成することができ、公知の繊維材料が限定なく使用できる。例として、レーヨン、ナイロン−6,6等のポリアミド繊維、ポリエチレンテレフタレート等のポリエステル繊維、アラミド繊維等が挙げられる。   Further, the inner annular portion 1 may be formed by annularly arranging the organic fiber material 1b on the inner peripheral side of the reinforcing fiber 1a. By disposing the organic fiber material 1b on the inner peripheral side of the reinforcing fiber 1a, the reinforcing fiber 1a can be prevented from being exposed to the inner peripheral surface of the inner annular portion 1. Such an organic fiber material can be constituted by a woven fabric or a net, and a known fiber material can be used without limitation. Examples include rayon, polyamide fibers such as nylon-6,6, polyester fibers such as polyethylene terephthalate, and aramid fibers.

中間環状部2の形状は、円筒形状に限られず、多角形筒状、などでもよい。   The shape of the intermediate annular portion 2 is not limited to a cylindrical shape, and may be a polygonal cylindrical shape.

中間環状部2の厚みは、内側連結部4と外側連結部5とを十分補強しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さH1の2〜10%が好ましく、3〜9%がより好ましい。   The thickness of the intermediate annular portion 2 is preferably 2 to 10% of the tire cross-section height H1 from the viewpoint of reducing weight and improving durability while sufficiently reinforcing the inner connecting portion 4 and the outer connecting portion 5. -9% is more preferable.

中間環状部2の内径は、内側環状部1の内径を超えて、外側環状部3の内径未満となる。但し、中間環状部2の内径としては、前述したような内側連結部4と外側連結部5との補強効果を向上させる観点から、外側環状部3の内径から内側環状部1の内径を差し引いた値の20〜80%の値を、内側環状部1の内径に加えた内径とすることが好ましく、30〜60%の値を、内側環状部1の内径に加えた内径とすることがより好ましい。   The inner annular portion 2 has an inner diameter that exceeds the inner diameter of the inner annular portion 1 and less than the inner diameter of the outer annular portion 3. However, as the inner diameter of the intermediate annular portion 2, the inner diameter of the inner annular portion 1 is subtracted from the inner diameter of the outer annular portion 3 from the viewpoint of improving the reinforcing effect of the inner connecting portion 4 and the outer connecting portion 5 as described above. A value of 20 to 80% of the value is preferably the inner diameter added to the inner diameter of the inner annular portion 1, and a value of 30 to 60% is more preferably the inner diameter added to the inner diameter of the inner annular portion 1. .

中間環状部2の軸方向の幅は、用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The axial width of the intermediate annular portion 2 is appropriately determined according to the application and the like, but is preferably 100 to 300 mm, more preferably 130 to 250 mm, assuming an alternative to a general pneumatic tire.

中間環状部2の引張モジュラスは、内側連結部4と外側連結部5とを十分補強して、耐久性の向上、負荷能力の向上を図る観点から、8000〜180000MPaが好ましく、10000〜50000MPaがより好ましい。   The tensile modulus of the intermediate annular portion 2 is preferably 8000 to 18000 MPa, more preferably 10,000 to 50000 MPa from the viewpoint of sufficiently reinforcing the inner connecting portion 4 and the outer connecting portion 5 to improve durability and load capacity. preferable.

中間環状部2の引張モジュラスは、内側環状部1のそれより高いことが好ましいため、熱可塑性エラストマー、架橋ゴム、その他の樹脂を繊維等で補強した繊維補強材料が好ましい。   Since the tensile modulus of the intermediate annular portion 2 is preferably higher than that of the inner annular portion 1, a fiber reinforced material in which a thermoplastic elastomer, a crosslinked rubber, or other resin is reinforced with fibers or the like is preferable.

外側環状部3の形状は、ユニフォミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。外側環状部3の厚みは、外側連結部5からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さH1の2〜10%が好ましく、3〜7%がより好ましい。   The shape of the outer annular portion 3 is preferably a cylindrical shape with a constant thickness from the viewpoint of improving uniformity. The thickness of the outer annular portion 3 is preferably 2 to 10% of the tire cross-section height H1, and preferably 3 to 7% from the viewpoint of reducing the weight and improving the durability while sufficiently transmitting the force from the outer connecting portion 5. Is more preferable.

外側環状部3の内径は、その用途等応じて適宜決定されるが、本発明では中間環状部2を備えるために、外側環状部3の内径を従来より大きくすることが可能である。但し、一般の空気入りタイヤの代替を想定した場合、420〜750mmが好ましく、480〜680mmがより好ましい。   The inner diameter of the outer annular portion 3 is appropriately determined according to its use and the like, but since the intermediate annular portion 2 is provided in the present invention, the inner diameter of the outer annular portion 3 can be made larger than before. However, when an alternative to a general pneumatic tire is assumed, 420 to 750 mm is preferable, and 480 to 680 mm is more preferable.

外側環状部3の軸方向の幅は、用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The axial width of the outer annular portion 3 is appropriately determined according to the application and the like, but is preferably 100 to 300 mm, and more preferably 130 to 250 mm when an alternative to a general pneumatic tire is assumed.

外側環状部3の引張モジュラスは、図1に示すように外側環状部3の外周にベルト層6が設けられている場合には、内側環状部1と同程度に設定できる。このようなベルト層6を設けない場合には、外側連結部5からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。   The tensile modulus of the outer annular portion 3 can be set to the same level as that of the inner annular portion 1 when the belt layer 6 is provided on the outer periphery of the outer annular portion 3 as shown in FIG. When such a belt layer 6 is not provided, 5 to 180000 MPa is preferable, and 7 to 50000 MPa is more preferable from the viewpoint of reducing weight and improving durability while sufficiently transmitting the force from the outer connecting portion 5. .

外側環状部3の引張モジュラスを高める場合、弾性材料を繊維等で補強した繊維補強材料が好ましい。本実施形態において、外側環状部3は、外周面に埋設された環状の補強繊維3aにより補強されている。補強繊維3aは、外側環状部3の表面に一部が露出した状態で埋設されている。このように、補強繊維3aが一部露出していることにより、外側環状部3の外周側にベルト層6を接合する際にアンカー効果が生じ、外側環状部3とベルト層6との接着が十分となる。   When the tensile modulus of the outer annular portion 3 is increased, a fiber reinforced material obtained by reinforcing an elastic material with fibers or the like is preferable. In the present embodiment, the outer annular portion 3 is reinforced by an annular reinforcing fiber 3a embedded in the outer peripheral surface. The reinforcing fiber 3a is embedded in a state where a part thereof is exposed on the surface of the outer annular portion 3. Thus, when the reinforcing fibers 3a are partially exposed, an anchor effect is produced when the belt layer 6 is joined to the outer peripheral side of the outer annular portion 3, and the adhesion between the outer annular portion 3 and the belt layer 6 is caused. It will be enough.

本実施形態では、補強繊維3aとして図2に示すような環状の補強繊維が用いられる。この補強繊維3aは、格子状に配列された非伸長性のガラス繊維コードからなり、シート状のガラス繊維ネットを切断して得られた帯状体を環状に形成することにより得られる。   In the present embodiment, an annular reinforcing fiber as shown in FIG. 2 is used as the reinforcing fiber 3a. The reinforcing fibers 3a are made of non-extensible glass fiber cords arranged in a lattice shape, and are obtained by forming a band-like body obtained by cutting a sheet-like glass fiber net in an annular shape.

内側連結部4は、内側環状部1と中間環状部2とを連結するものであり、両者の間に適当な間隔を開けるなどして、周方向に各々が独立するように複数設けられる。内側連結部4は、ユニフォミティを向上させる観点から、周方向に規則的に設けることが好ましい。   The inner connecting portion 4 connects the inner annular portion 1 and the intermediate annular portion 2, and a plurality of inner connecting portions 4 are provided so that each is independent in the circumferential direction, for example, by providing an appropriate interval therebetween. The inner connecting portion 4 is preferably provided regularly in the circumferential direction from the viewpoint of improving uniformity.

内側連結部4を全周に渡って設ける際の数(軸方向に複数設ける場合は1個として数える)としては、車両からの荷重を十分支持しつつ、軽量化、動力伝達の向上、耐久性の向上を図る観点から、10〜80個が好ましく、30〜60個がより好ましい。図1には、内側連結部4を40個設けた例を示す。   As for the number of inner connection parts 4 provided over the entire circumference (when a plurality of inner connection parts 4 are provided in the axial direction, it is counted as one), while supporting the load from the vehicle sufficiently, weight reduction, improvement of power transmission, durability From the viewpoint of improving the quality, 10 to 80 are preferable, and 30 to 60 are more preferable. FIG. 1 shows an example in which 40 inner connecting portions 4 are provided.

個々の内側連結部4の形状としては、板状体、柱状体などが挙げられるが、本実施形態では板状体の例を示す。これらの内側連結部4は、正面視断面において、タイヤ径方向又はタイヤ径方向から傾斜した方向に延びている。本発明では、ブレークポイントを高くして剛性変動を生じにくくすると共に、耐久性を向上させる観点から、正面視断面において、内側連結部4の延設方向が、タイヤ径方向±30°以内が好ましく、タイヤ径方向±15°以内がより好ましい。図1では、内側連結部4が、タイヤ径方向に延設されている例を示す。   Examples of the shape of each inner connecting portion 4 include a plate-like body and a columnar body. In this embodiment, an example of a plate-like body is shown. These inner connection parts 4 are extended in the tire radial direction or the direction inclined from the tire radial direction in the front sectional view. In the present invention, from the viewpoint of improving the durability by increasing the break point and making it difficult to change the rigidity, the extending direction of the inner connecting portion 4 is preferably within ± 30 ° in the tire radial direction in the front sectional view. The tire radial direction is more preferably within ± 15 °. FIG. 1 shows an example in which the inner connecting portion 4 is extended in the tire radial direction.

内側連結部4の厚みは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、タイヤ断面高さH1の1〜12%が好ましく、2〜10%がより好ましい。   The thickness of the inner connecting portion 4 is preferably 1 to 12% of the tire cross-section height H1 from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. 2 to 10% is more preferable.

内側連結部4の引張モジュラスは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、5〜100MPaが好ましく、7〜95MPaがより好ましい。   The tensile modulus of the inner connecting portion 4 is preferably 5 to 100 MPa, more preferably 7 to 95 MPa from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. preferable.

内側連結部4の引張モジュラスを高める場合、弾性材料を繊維等で補強した繊維補強材料が好ましい。   When the tensile modulus of the inner connecting portion 4 is increased, a fiber reinforced material obtained by reinforcing an elastic material with fibers or the like is preferable.

外側連結部5は、外側環状部3と中間環状部2とを連結するものであり、両者の間に適当な間隔を開けるなどして、周方向に各々が独立するように複数設けられる。外側連結部5は、ユニフォミティを向上させる観点から、周方向に規則的に設けることが好ましい。   The outer connecting portion 5 connects the outer annular portion 3 and the intermediate annular portion 2, and a plurality of outer connecting portions 5 are provided so that each of them is independent in the circumferential direction, for example, by providing an appropriate interval therebetween. The outer connecting portion 5 is preferably provided regularly in the circumferential direction from the viewpoint of improving uniformity.

なお、外側連結部5と内側連結部4とは全周の同じ位置に設けてもよく、異なる位置に設けてもよい。すなわち、外側連結部5と内側連結部4は、必ずしも図1のように同じ方向に連続するように延設する必要はない。   In addition, the outer side connection part 5 and the inner side connection part 4 may be provided in the same position of a perimeter, and may be provided in a different position. That is, the outer connecting portion 5 and the inner connecting portion 4 do not necessarily extend so as to be continuous in the same direction as shown in FIG.

外側連結部5を全周に渡って設ける際の数(軸方向に複数設ける場合は1個として数える)としては、車両からの荷重を十分支持しつつ、軽量化、動力伝達の向上、耐久性の向上を図る観点から、10〜80個が好ましく、30〜60個がより好ましい。図1には、外側連結部5を内側連結部4と同じく40個設けた例を示す。なお、外側連結部5の数と内側連結部4の数は、必ずしも同じとする必要はなく、外側連結部5を内側連結部4よりも多く設けてもよい。   As for the number of outer connecting parts 5 provided over the entire circumference (when a plurality of outer connecting parts 5 are provided in the axial direction, they are counted as one), while supporting the load from the vehicle sufficiently, weight reduction, improvement of power transmission, durability From the viewpoint of improving the quality, 10 to 80 are preferable, and 30 to 60 are more preferable. FIG. 1 shows an example in which 40 outer connecting portions 5 are provided in the same manner as the inner connecting portions 4. In addition, the number of the outer side connection parts 5 and the number of the inner side connection parts 4 do not necessarily need to be the same, and you may provide more outer side connection parts 5 than the inner side connection parts 4. FIG.

個々の外側連結部5の形状としては、板状体、柱状体などが挙げられるが、本実施形態では板状体の例を示す。これらの外側連結部5は、正面視断面において、タイヤ径方向又はタイヤ径方向から傾斜した方向に延びている。本発明では、ブレークポイントを高くして剛性変動を生じにくくすると共に、耐久性を向上させる観点から、正面視断面において、外側連結部5の延設方向が、タイヤ径方向±30°以内が好ましく、タイヤ径方向±15°以内がより好ましい。図1では、外側連結部5が、タイヤ径方向に延設されている例を示す。   Examples of the shape of each outer connecting portion 5 include a plate-like body and a columnar body. In this embodiment, an example of a plate-like body is shown. These outer connecting portions 5 extend in a tire radial direction or a direction inclined from the tire radial direction in a front sectional view. In the present invention, from the viewpoint of improving the durability by increasing the break point and making it difficult to change the rigidity, the extending direction of the outer connecting portion 5 is preferably within ± 30 ° in the tire radial direction in the front sectional view. The tire radial direction is more preferably within ± 15 °. FIG. 1 shows an example in which the outer connecting portion 5 is extended in the tire radial direction.

外側連結部5の厚みは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、タイヤ断面高さH1の1〜12%が好ましく、2〜10%がより好ましい。   The thickness of the outer connecting portion 5 is preferably 1 to 12% of the tire cross-sectional height H1 from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. 2 to 10% is more preferable.

外側連結部5の引張モジュラスは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、5〜100MPaが好ましく、7〜95MPaがより好ましい。   The tensile modulus of the outer connecting portion 5 is preferably 5 to 100 MPa, more preferably 7 to 95 MPa from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. preferable.

外側連結部5の引張モジュラスを高める場合、弾性材料を繊維等で補強した繊維補強材料が好ましい。   In order to increase the tensile modulus of the outer connecting portion 5, a fiber reinforced material obtained by reinforcing an elastic material with fibers or the like is preferable.

本実施形態では、図1に示すように、支持構造体SSの外側環状部3の外周側に、その外側環状部3の曲げ変形を補強するベルト層6が設けられている例を示す。ベルト層6としては、従来の空気入りタイヤのベルト層と同様のものを設けることが可能である。   In the present embodiment, as shown in FIG. 1, an example is shown in which a belt layer 6 that reinforces bending deformation of the outer annular portion 3 is provided on the outer peripheral side of the outer annular portion 3 of the support structure SS. As the belt layer 6, the same belt layer as that of a conventional pneumatic tire can be provided.

ベルト層6は、単数又は複数の層から構成され、例えば、タイヤ周方向に対して約20°の傾斜角度で平行配列したスチールコード、アラミドコード、レーヨンコード等をゴム引きした層を、スチールコード等が逆方向に交差するように積層して、形成することができる。また、両層の上層に、タイヤ周方向に平行配列した各種コードからなる層を設けてもよい。   The belt layer 6 is composed of one or a plurality of layers. For example, a steel cord, an aramid cord, a rayon cord, or the like, which is arranged in parallel at an inclination angle of about 20 ° with respect to the tire circumferential direction, is a steel cord. Etc. can be formed so as to cross in the opposite direction. Further, a layer made of various cords arranged in parallel in the tire circumferential direction may be provided on the upper layer of both layers.

本実施形態では、図1に示すように、ベルト層6の更に外側にトレッド層7が設けられている例を示すが、本発明では、このように外側環状部3の外側の最外層に、トレッド層7が設けられているのが好ましい。トレッド層7としては、従来の空気入りタイヤのトレッド層と同様のものを設けることが可能である。また、トレッドパターンとして、従来の空気入りタイヤと同様のパターンを設けることが可能である。   In the present embodiment, as shown in FIG. 1, an example in which a tread layer 7 is provided on the outer side of the belt layer 6 is shown, but in the present invention, on the outermost layer on the outer side of the outer annular portion 3 in this way, A tread layer 7 is preferably provided. As the tread layer 7, it is possible to provide the same tread layer as that of a conventional pneumatic tire. Moreover, it is possible to provide the same pattern as a conventional pneumatic tire as a tread pattern.

例えば、トレッド層7を形成するトレッドゴムの原料としては、天然ゴム、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、ブチルゴム(IIR)等が挙げられる。これらのゴムはカーボンブラックやシリカ等の充填材で補強されると共に、加硫剤、加硫促進剤、可塑剤、老化防止剤等が適宜配合される。   For example, the raw material of the tread rubber forming the tread layer 7 includes natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), butyl rubber (IIR) and the like. These rubbers are reinforced with fillers such as carbon black and silica, and a vulcanizing agent, a vulcanization accelerator, a plasticizer, an antiaging agent, and the like are appropriately blended.

<非空気圧タイヤの製造方法>
本発明の製造方法は、上記のような本発明の非空気圧タイヤTを好適に製造できる製造方法であって、内側環状部1の内周側を成形するための中型と、外側環状部3の外周側を成形するための外型と、中型と外型の間に周方向に配置され、内側環状部1の外周側、外側環状部3の内周側、および連結部4,5を成形するための複数の中子と、支持構造体SSのタイヤ幅方向両側面を成形するための一対の上型、下型とを配置して、内側環状部1、外側環状部3および連結部4,5に相当するキャビティを形成する工程と、外型の内周面に接するように補強繊維3aを環状に配置する工程と、キャビティに弾性材料の原料液を供給して硬化させて支持構造体SSを成形する工程と、成形された支持構造体SSの外周側にベルト層6を接合する工程と、を備えることを特徴とする。
<Method for producing non-pneumatic tire>
The manufacturing method of the present invention is a manufacturing method capable of suitably manufacturing the non-pneumatic tire T of the present invention as described above, and includes a middle mold for molding the inner peripheral side of the inner annular portion 1 and the outer annular portion 3. An outer mold for molding the outer peripheral side, and an intermediate mold and an outer mold are arranged in the circumferential direction, and the outer peripheral side of the inner annular part 1, the inner peripheral side of the outer annular part 3, and the connecting parts 4 and 5 are molded. And a pair of upper molds and lower molds for forming both side surfaces in the tire width direction of the support structure SS are arranged, and the inner annular portion 1, the outer annular portion 3 and the connecting portion 4 are arranged. 5, a step of forming a cavity corresponding to 5, a step of annularly arranging the reinforcing fibers 3a so as to be in contact with the inner peripheral surface of the outer mold, a raw material liquid of an elastic material is supplied to the cavity and cured, and the support structure SS And a step of joining the belt layer 6 to the outer peripheral side of the molded support structure SS. Characterized in that it comprises a and.

図3は、支持構造体SSを成形するための成形型を示しており、(a)正面図、(b)縦断面図である。成形型10は、支持構造体SSに対応するキャビティCを有する。各々のキャビティC1〜C5は、それぞれ支持構造体SSの内側環状部1、中間環状部2、外側環状部3、内側連結部4、外側連結部5に対応している。このような空間部Cは、中型11と、外型12と、中子13,14と、上型15(図3(a)では不図示)と、下型16とによって形成される。中型11は、内側環状部1の内周側を成形し、外型12は、外側環状部3の外周側を成形し、中子13は、内側環状部1の外周側と中間環状部2の内周側および内側連結部4を成形し、中子14は、外側環状部3の内周側と中間環状部2の外周側および外側連結部5を成形するためのものである。また、上型15と下型16は、支持構造体SSのタイヤ幅方向両側面を成形するためのものである。中型11、外型12、中子13,14は、下型16に固定することができ、上型15は下型16に対して開閉可能になっている。   FIG. 3 shows a forming die for forming the support structure SS, (a) a front view and (b) a longitudinal sectional view. The mold 10 has a cavity C corresponding to the support structure SS. Each of the cavities C1 to C5 corresponds to the inner annular portion 1, the intermediate annular portion 2, the outer annular portion 3, the inner coupling portion 4, and the outer coupling portion 5 of the support structure SS, respectively. Such a space C is formed by the middle mold 11, the outer mold 12, the cores 13 and 14, the upper mold 15 (not shown in FIG. 3A), and the lower mold 16. The middle die 11 is formed on the inner peripheral side of the inner annular portion 1, the outer die 12 is formed on the outer peripheral side of the outer annular portion 3, and the core 13 is formed between the outer peripheral side of the inner annular portion 1 and the intermediate annular portion 2. The inner peripheral side and the inner connecting part 4 are formed, and the core 14 is for forming the inner peripheral side of the outer annular part 3, the outer peripheral side of the intermediate annular part 2, and the outer connecting part 5. Moreover, the upper mold | type 15 and the lower mold | type 16 are for shape | molding the tire width direction both sides | surfaces of support structure SS. The middle mold 11, the outer mold 12, and the cores 13 and 14 can be fixed to the lower mold 16, and the upper mold 15 can be opened and closed with respect to the lower mold 16.

外型12と中子14との間のキャビティC3に、外型12の内周面に接するように補強繊維3aを環状に配置する。補強繊維3aは、環状に形成した際にその環状形状を保持し、自立可能となることが好ましい。補強繊維3aが柔らかすぎて自立できない場合、樹脂でコーティングするなどして自立可能にしてもよい。コーティング用の樹脂としては、ポリウレタンプライマーや樹脂エマルジョンなどが例示される。   Reinforcing fibers 3a are annularly arranged in the cavity C3 between the outer mold 12 and the core 14 so as to contact the inner peripheral surface of the outer mold 12. When the reinforcing fiber 3a is formed in an annular shape, the reinforcing fiber 3a preferably retains its annular shape and can be self-supporting. If the reinforcing fiber 3a is too soft to stand on its own, it may be made self-supporting by coating with a resin. Examples of the coating resin include polyurethane primers and resin emulsions.

中型11と中子13との間のキャビティC1には、補強繊維1aを環状に配置する。補強繊維1aは、中型11の外周面に接触しないように配置することが好ましい。補強繊維1aは、周方向に巻回されたコード材により構成され、または、環状に形成したネット状繊維集合体により構成される。   In the cavity C <b> 1 between the middle mold 11 and the core 13, the reinforcing fibers 1 a are arranged in an annular shape. The reinforcing fibers 1a are preferably arranged so as not to contact the outer peripheral surface of the middle mold 11. The reinforcing fiber 1a is constituted by a cord material wound in the circumferential direction or a net-like fiber aggregate formed in an annular shape.

コード材やネット状繊維集合体をキャビティC1に配置する際、中型11の外周面に帯状の有機繊維材1bを巻き付け、その外周にコード材を巻回するか、帯状のネット状繊維集合体を巻回して補強繊維1aを構成してもよい。   When the cord material or the net-like fiber assembly is arranged in the cavity C1, the belt-like organic fiber material 1b is wound around the outer peripheral surface of the middle mold 11, and the cord material is wound around the outer periphery. The reinforcing fiber 1a may be configured by winding.

また、図4に示すように、中型11の外周面に、支持構造体SSの軸方向に延びる突条17を周方向に所定ピッチで複数設けてもよい。この突条17の外周に架け渡されるようにコード材を巻回するか、帯状のネット状繊維集合体を巻回して補強繊維1aを構成してもよい。これにより、中型11の外周面と補強繊維1aとの間には隙間が形成される。   Further, as shown in FIG. 4, a plurality of protrusions 17 extending in the axial direction of the support structure SS may be provided on the outer peripheral surface of the middle mold 11 at a predetermined pitch in the circumferential direction. The reinforcing fiber 1a may be configured by winding a cord material so as to be spanned around the outer periphery of the ridge 17, or winding a belt-like net-like fiber aggregate. Thereby, a gap is formed between the outer peripheral surface of the middle mold 11 and the reinforcing fiber 1a.

また、中型11に上記の突条17を設ける代わりに、複数のスペーサーを中型11の外周面に配置し、その外周に架け渡されるようにコード材を巻回するか、帯状のネット状繊維集合体を巻回して補強繊維1aを構成してもよい。これにより、中型11の外周面と補強繊維1aとの間には隙間が形成される。   Further, instead of providing the above-mentioned protrusion 17 on the intermediate mold 11, a plurality of spacers are arranged on the outer peripheral surface of the intermediate mold 11, and a cord material is wound around the outer periphery, or a belt-like net-like fiber assembly The body may be wound to form the reinforcing fiber 1a. Thereby, a gap is formed between the outer peripheral surface of the middle mold 11 and the reinforcing fiber 1a.

さらに、中型11は、図5に示すように、その内周側部分を構成する芯部11aと、その外周側部分を構成して芯部11aに外嵌可能に構成されたリング部11bとを備えるようにすることが好ましい。このように、中型11を芯部11aとリング部11bに分割可能に構成することにより、コード材を中型11に巻回する際、リング部11bのみを成形型10から取り外した状態において、リング部11bの外周にコード材やネット状繊維集合体を巻回することができる。リング部11bのみであれば、軽量であり、取扱いも容易となる。また、リング部11bを複数準備することで、一方では、取り外したリング部11bにコード材等を巻回し、他方では、コード材等を巻回したリング部11bを芯部11aに外嵌して後述する支持構造体SSの成形を行うことができ、製造の効率化が図れる。   Further, as shown in FIG. 5, the middle mold 11 includes a core portion 11 a that constitutes an inner peripheral portion thereof, and a ring portion 11 b that constitutes the outer peripheral portion thereof and is configured to be fitted on the core portion 11 a. It is preferable to provide it. In this way, by configuring the middle mold 11 so as to be split into the core part 11a and the ring part 11b, when the cord material is wound around the middle mold 11, only the ring part 11b is removed from the molding die 10 in the ring part. A cord material or a net-like fiber assembly can be wound around the outer periphery of 11b. If it is only the ring portion 11b, it is lightweight and easy to handle. Also, by preparing a plurality of ring portions 11b, on the one hand, a cord material or the like is wound around the removed ring portion 11b, and on the other hand, the ring portion 11b around which the cord material or the like is wound is externally fitted to the core portion 11a. The support structure SS, which will be described later, can be molded, and the manufacturing efficiency can be improved.

次に、成形型10のキャビティCに弾性材料の原料液を充填する。弾性材料の原料液としては、前述した弾性材料を高温で軟化させたものや、反応硬化前又は架橋前の液状原料が挙げられる。充填の際、キャビティCの隙間への浸入や補強繊維への含浸を好適に行う上で、充填の際に原料液の粘度が小さいことが好ましい。   Next, the cavity C of the mold 10 is filled with a raw material liquid of an elastic material. Examples of the raw material liquid for the elastic material include those obtained by softening the above-described elastic material at a high temperature, and liquid raw materials before reaction curing or before crosslinking. At the time of filling, it is preferable that the viscosity of the raw material liquid is small at the time of filling in order to suitably enter the gap of the cavity C and impregnate the reinforcing fibers.

また、原料液の充填を均一に行う目的で、遠心力を付与する方法も効果的である。その場合、成形型10の下型16を円盤状に形成して、成形型10を軸芯Oの周りにモーター等で回転させる方法が利用できる。   In addition, a method of applying centrifugal force is also effective for the purpose of uniformly filling the raw material liquid. In that case, a method can be used in which the lower mold 16 of the mold 10 is formed in a disk shape and the mold 10 is rotated around the axis O by a motor or the like.

次いで、弾性材料の原料液を固化させ、脱型することにより支持構造体SSを得ることができる。原料液を固化させる方法としては、反応硬化、加熱硬化、冷却固化などが挙げられる。脱型を容易にするためには、成形型10の中子13,14を着脱可能な形態とすることが効果的である。   Next, the support structure SS can be obtained by solidifying and removing the raw material liquid of the elastic material. Examples of the method for solidifying the raw material liquid include reaction curing, heat curing, and cooling solidification. In order to facilitate demolding, it is effective to make the cores 13 and 14 of the mold 10 detachable.

脱型後には、ポストキュア工程などを実施することも可能である。成形された支持構造体SSの外周面は、バフ処理される。その後、支持構造体SSの外周側に接着剤を介して、ベルト層6、トレッド層7を巻き付けて接合する。ベルト層6、トレッド層7が未加硫ゴムからなる場合には、支持構造体SSの外周側に巻き付けた後、加熱プレス機等で加硫を行う。   After demolding, a post-cure process or the like can also be performed. The outer peripheral surface of the formed support structure SS is buffed. Thereafter, the belt layer 6 and the tread layer 7 are wound around and bonded to the outer peripheral side of the support structure SS via an adhesive. In the case where the belt layer 6 and the tread layer 7 are made of unvulcanized rubber, the belt layer 6 and the tread layer 7 are wound around the outer peripheral side of the support structure SS and then vulcanized with a hot press machine or the like.

以下、本発明の構成と効果を具体的に示す実施例等について説明する。なお、実施例等における評価項目は下記のようにして測定を行った。   Examples and the like specifically showing the configuration and effects of the present invention will be described below. In addition, the evaluation item in an Example etc. measured as follows.

(1)嵌合力
HOFMANN社製の嵌合力試験機を用いて、500N負荷時の内側環状部1の内径を測定し、基準径とする。それから、基準径+1mm時の嵌合力を測定する。その結果を、比較例1を100としたときの指数で示す。この値が大きい方が優れる。
(1) Fitting force Using a fitting force tester manufactured by HOFMANN, the inner diameter of the inner annular portion 1 at a load of 500 N is measured and set as a reference diameter. Then, the fitting force when the reference diameter is +1 mm is measured. The result is shown as an index when Comparative Example 1 is set to 100. The larger this value, the better.

(2)ホイール削れ
非空気圧タイヤTをホイールに装着して、ドラム試験機にて2時間走行(時速80km)後、非空気圧タイヤTと接触していたホイール表面を目視にて観察する。
(2) Wheel scraping After mounting the non-pneumatic tire T on the wheel and running for 2 hours with a drum tester (80 km / h), the wheel surface in contact with the non-pneumatic tire T is visually observed.

(3)剥離力
非空気圧タイヤTを解体して、支持構造体SSの外側環状部3とベルト層6からなる25mm幅の試験片を採取する。試験片の一方の端部の外側環状部3とベルト層6との界面で、予め剥がしておき、インストロン万能試験機の上下チャックで、剥がした外側環状部3とベルト層6を挟み込み、180度剥離試験(常温、引張速度50mm/min)を実施する。その結果を、比較例1を100としたときの指数で示す。この値が大きい方が優れる。
(3) Peeling force The non-pneumatic tire T is disassembled, and a 25 mm wide test piece composed of the outer annular portion 3 and the belt layer 6 of the support structure SS is collected. The test piece is peeled in advance at the interface between the outer annular portion 3 and the belt layer 6 at one end of the test piece, and the peeled outer annular portion 3 and the belt layer 6 are sandwiched by the upper and lower chucks of an Instron universal testing machine. Degree peel test (normal temperature, tensile speed 50 mm / min) is carried out. The result is shown as an index when Comparative Example 1 is set to 100. The larger this value, the better.

(4)走行耐久性
非空気圧タイヤTをホイールに装着して、ドラム試験機にて、時速80km、荷重350kgの条件で試験を行い、支持構造体SSに故障が生じるまでの走行距離を測定する。その結果を、実施例6を100としたときの指数で示す。この値が大きい方が優れる。
(4) Running durability A non-pneumatic tire T is mounted on a wheel, and a test is performed with a drum tester under the conditions of 80 km / h and a load of 350 kg, and the running distance until a failure occurs in the support structure SS is measured. . The result is shown as an index when Example 6 is taken as 100. The larger this value, the better.

(5)中型取り扱い作業性
成形型10の中型11を、芯部11aとリング部11bとに分割可能に構成することで、リング部11bのみを中型11から取り外して作業を行うことができるため、作業性がよい。中型11が芯部11aとリング部11bに分割可能な場合に、中型取り扱い作業性を良好とした。
(5) Middle mold handling workability Since the middle mold 11 of the molding die 10 is configured to be split into the core part 11a and the ring part 11b, the ring part 11b alone can be removed from the middle mold 11 so that the work can be performed. Workability is good. When the middle mold 11 can be divided into the core part 11a and the ring part 11b, the middle mold handling workability is improved.

<実施例1>
成形型10の中型11からリング部11bのみを取り外して、張力負荷装置のドラムに外嵌させ、まず、有機繊維材1bとしてのナイロンネット(泉社製、111−B)をリング部11bの外周面に2周巻回して、両端を固定する。次いで、その外側に補強繊維1aとしてのアラミドコード(東レ・デュポン社製、KEVLAR、3300dtex、繊維径0.6mm)をエンド数が8本/inchとなるようにらせん状に張力30Nにて1層巻回する。次いで、張力負荷装置のドラムからリング部11bを取り外して、中型11の芯部11aに外嵌する。次いで、外型12の内周面に沿うように、補強繊維3aとしての環状のガラス繊維ネット(日東紡社製、KS3815)を外型12と中子14との間のキャビティC3に挿入する。その後、成形型10を所定の温度にまで加温させた後、PPDI末端プレポリマーのアジプレンLFP950A(Chemtura社製)4800重量部、ポリテトラメチレンエーテルグリコール(PTMG)(三菱化学社製、分子量1000)345重量部、及び1,4−ブタンジオール(1,4−BD)(BASF出光社製)230重量部をそれぞれ予め減圧脱泡しておき、液温を70℃に調整後、これらを攪拌、混合し、混合物を成形型10のキャビティCに注入し、110℃のオーブン内で1時間キュアを行い、その後脱型し、更に110℃のオーブン内で16時間ポストキュアを行い、支持構造体SSを作製した。支持構造体SSの外側環状部3の外周面をサンドペーパーでバフ処理した後、所定量の接着剤XJ−423(LORD社製)を塗布し、70℃のオーブン内で30分乾燥させる。乾燥後、未加硫のベルト層6及びトレッド層7を巻き付けて、加熱プレスを行い、非空気圧タイヤTを作製した。上記性能を評価した結果を表1に示す。
<Example 1>
Only the ring part 11b is removed from the middle mold 11 of the molding die 10, and is externally fitted to the drum of the tension load device. First, a nylon net (111-B made by Izumi Co., Ltd.) as the organic fiber material 1b is attached to the outer periphery of the ring part 11b. Wind twice around the surface and fix both ends. Next, one layer of aramid cord (manufactured by Toray DuPont, KEVLAR, 3300 dtex, fiber diameter 0.6 mm) as a reinforcing fiber 1a is spirally formed at a tension of 30 N so that the number of ends is 8 / inch. Wind. Next, the ring portion 11 b is removed from the drum of the tension load device and is fitted onto the core portion 11 a of the middle mold 11. Next, an annular glass fiber net (manufactured by Nittobo Co., Ltd., KS3815) as the reinforcing fiber 3 a is inserted into the cavity C <b> 3 between the outer mold 12 and the core 14 along the inner peripheral surface of the outer mold 12. Then, after the mold 10 was heated to a predetermined temperature, 4800 parts by weight of a PPDI-terminated prepolymer adiprene LFP950A (Chemtura), polytetramethylene ether glycol (PTMG) (Mitsubishi Chemical Co., molecular weight 1000) 345 parts by weight and 1,4-butanediol (1,4-BD) (BASF Idemitsu Co., Ltd.) 230 parts by weight were previously degassed under reduced pressure, and the liquid temperature was adjusted to 70 ° C. After mixing, the mixture is poured into the cavity C of the mold 10 and cured in an oven at 110 ° C. for 1 hour, then demolded, and further post-cured in an oven at 110 ° C. for 16 hours to form a support structure SS. Was made. After the outer peripheral surface of the outer annular portion 3 of the support structure SS is buffed with sandpaper, a predetermined amount of adhesive XJ-423 (manufactured by LORD) is applied and dried in an oven at 70 ° C. for 30 minutes. After drying, the unvulcanized belt layer 6 and the tread layer 7 were wound and subjected to hot pressing to produce a non-pneumatic tire T. The results of evaluating the performance are shown in Table 1.

<実施例2>
成形型10の中型11からリング部11bのみを取り外して、張力負荷装置のドラムに外嵌させ、補強繊維1aとしてのアラミドコード(東レ・デュポン社製、KEVLAR、3300dtex、繊維径0.6mm)をエンド数が8本/inchとなるようにらせん状に張力30Nにて1層巻回する。その際、アラミドコードを巻き付ける直前に、リング部11bの外周面に、厚み1.5mmの32個のスペーサーを所定間隔で、アラミドコードとリング部11bとの間に挿入されるように配置する。次いで、張力負荷装置のドラムからリング部11bを取り外して、中型11の芯部11aに外嵌する。次いで、外型12の内周面に沿うように、補強繊維3aとしての環状のガラス繊維ネット(日東紡社製、KS3815)を外型12と中子14との間のキャビティC3に挿入する。その後の方法、条件は、実施例1と同じとした。
<Example 2>
Only the ring part 11b is removed from the middle mold 11 of the molding die 10, and is externally fitted to the drum of the tension load device, and an aramid cord (Kevlar, 3300 dtex, fiber diameter 0.6 mm, manufactured by Toray DuPont) is used as the reinforcing fiber 1a. One layer is wound at a tension of 30 N in a spiral shape so that the number of ends is 8 / inch. At that time, immediately before the aramid cord is wound, 32 spacers having a thickness of 1.5 mm are arranged on the outer peripheral surface of the ring portion 11b so as to be inserted between the aramid cord and the ring portion 11b at a predetermined interval. Next, the ring portion 11 b is removed from the drum of the tension load device and is fitted onto the core portion 11 a of the middle mold 11. Next, an annular glass fiber net (manufactured by Nittobo Co., Ltd., KS3815) as the reinforcing fiber 3 a is inserted into the cavity C <b> 3 between the outer mold 12 and the core 14 along the inner peripheral surface of the outer mold 12. Subsequent methods and conditions were the same as those in Example 1.

<実施例3>
外周面上に高さ1.5mmの所定間隔で32個の突条17を設けたリング部11bのみを成形型10の中型11から取り外して、張力負荷装置のドラムに外嵌させ、補強繊維1aとしての帯状のガラス繊維ネット(日東紡社製、KS3815)を張力30Nにて1層巻回する。次いで、張力負荷装置のドラムからリング部11bを取り外して、中型11の芯部11aに外嵌する。次いで、外型12の内周面に沿うように、補強繊維3aとしての環状のガラス繊維ネット(日東紡社製、KS3815)を外型12と中子14との間のキャビティC3に挿入する。その後の方法、条件は、実施例1と同じとした。
<Example 3>
Only the ring portion 11b provided with 32 protrusions 17 at a predetermined interval of 1.5 mm in height on the outer peripheral surface is removed from the middle mold 11 of the molding die 10, and is externally fitted to the drum of the tension load device, thereby reinforcing fiber 1a. As a belt-like glass fiber net (manufactured by Nittobo Co., Ltd., KS3815), one layer is wound at a tension of 30N. Next, the ring portion 11 b is removed from the drum of the tension load device and is fitted onto the core portion 11 a of the middle mold 11. Next, an annular glass fiber net (manufactured by Nittobo Co., Ltd., KS3815) as the reinforcing fiber 3 a is inserted into the cavity C <b> 3 between the outer mold 12 and the core 14 along the inner peripheral surface of the outer mold 12. Subsequent methods and conditions were the same as those in Example 1.

<実施例4>
成形型10の中型11からリング部11bのみを取り外して、張力負荷装置のドラムに外嵌させ、まず、有機繊維材1bとしてのナイロンネット(泉社製、111−B)をリング部11bの外周面に2周巻回して、両端を固定する。次いで、その外側に補強繊維1aとしての帯状のガラス繊維ネット(日東紡社製、KS3815)を張力30Nにて1層巻回する。次いで、張力負荷装置のドラムからリング部11bを取り外して、中型11の芯部11aに外嵌する。次いで、外型12の内周面に沿うように、補強繊維3aとしての環状のガラス繊維ネット(日東紡社製、KS3815)を外型12と中子14との間のキャビティC3に挿入する。その後の方法、条件は、実施例1と同じとした。
<Example 4>
Only the ring part 11b is removed from the middle mold 11 of the molding die 10, and is externally fitted to the drum of the tension load device. First, a nylon net (111-B made by Izumi Co., Ltd.) as the organic fiber material 1b is attached to the outer periphery of the ring part 11b. Wind twice around the surface and fix both ends. Next, a belt-like glass fiber net (manufactured by Nittobo Co., Ltd., KS3815) as the reinforcing fiber 1a is wound around one layer at a tension of 30N. Next, the ring portion 11 b is removed from the drum of the tension load device and is fitted onto the core portion 11 a of the middle mold 11. Next, an annular glass fiber net (manufactured by Nittobo Co., Ltd., KS3815) as the reinforcing fiber 3 a is inserted into the cavity C <b> 3 between the outer mold 12 and the core 14 along the inner peripheral surface of the outer mold 12. Subsequent methods and conditions were the same as those in Example 1.

<実施例5>
成形型10の中型11からリング部11bのみを取り外して、張力負荷装置のドラムに外嵌させ、補強繊維1aとしての帯状のガラス繊維ネット(日東紡社製、KS3815)を張力30Nにて1層巻回する。その際、ガラス繊維ネットを巻き付ける直前に、リング部11bの外周面に、厚み1.5mmの32個のスペーサーを所定間隔で、ガラス繊維ネットとリング部11bとの間に挿入されるように配置する。次いで、外型12の内周面に沿うように、補強繊維3aとしての環状のガラス繊維ネット(日東紡社製、KS3815)を外型12と中子14との間のキャビティC3に挿入する。その後の方法、条件は、実施例1と同じとした。
<Example 5>
Only the ring portion 11b is removed from the middle mold 11 of the molding die 10, and is externally fitted to the drum of the tension load device, and one layer of a belt-shaped glass fiber net (manufactured by Nittobo Co., Ltd., KS3815) as the reinforcing fiber 1a is formed at one layer. Wind. At that time, just before winding the glass fiber net, 32 spacers having a thickness of 1.5 mm are arranged on the outer peripheral surface of the ring portion 11b at a predetermined interval between the glass fiber net and the ring portion 11b. To do. Next, an annular glass fiber net (manufactured by Nittobo Co., Ltd., KS3815) as the reinforcing fiber 3 a is inserted into the cavity C <b> 3 between the outer mold 12 and the core 14 along the inner peripheral surface of the outer mold 12. Subsequent methods and conditions were the same as those in Example 1.

<実施例6>
成形型10の中型11からリング部11bのみを取り外して、張力負荷装置のドラムに外嵌させ、まず、有機繊維材1bとしてのナイロンネット(泉社製、111−B)をリング部11bの外周面に2周巻回して、両端を固定する。次いで、その外側に補強繊維1aとしてのアラミドコード(東レ・デュポン社製、KEVLAR、3300dtex、繊維径0.6mm)をエンド数が8本/inchとなるようにらせん状に張力30Nにて1層巻回する。次いで、張力負荷装置のドラムからリング部11bを取り外して、中型11の芯部11aに外嵌する。次いで、外型12の内周面に沿うように、補強繊維3aとしての環状のガラス繊維ネット(日東紡社製、KS3815)を外型12と中子14との間のキャビティC3に挿入する。その後、成形型10を所定の温度にまで加温させた後、TDI末端プレポリマーのUTM−6(ソフランウイズ社製)4560重量部を予め減圧脱泡しておき、液温を70℃に調整後、これに液温130℃のイハラキュアミンMT(MOCA)(イハラケミカル工業社製)816重量部を添加し、攪拌、混合し、混合物を成形型10のキャビティCに注入し、100℃のオーブン内で1時間キュアを行い、その後脱型し、更に70℃のオーブン内で16時間ポストキュアを行い、支持構造体SSを作製した。支持構造体SSの外側環状部3の外周面をサンドペーパーでバフ処理した後、所定量の接着剤XJ−423(LORD社製)を塗布し、70℃のオーブン内で30分乾燥させる。乾燥後、未加硫のベルト層6及びトレッド層7を巻き付けて、加熱プレスを行い、非空気圧タイヤTを作製した。
<Example 6>
Only the ring part 11b is removed from the middle mold 11 of the molding die 10, and is externally fitted to the drum of the tension load device. First, a nylon net (111-B made by Izumi Co., Ltd.) as the organic fiber material 1b is attached to the outer periphery of the ring part 11b. Wind twice around the surface and fix both ends. Next, one layer of aramid cord (manufactured by Toray DuPont, KEVLAR, 3300 dtex, fiber diameter 0.6 mm) as a reinforcing fiber 1a is spirally formed at a tension of 30 N so that the number of ends is 8 / inch. Wind. Next, the ring portion 11 b is removed from the drum of the tension load device and is fitted onto the core portion 11 a of the middle mold 11. Next, an annular glass fiber net (manufactured by Nittobo Co., Ltd., KS3815) as the reinforcing fiber 3 a is inserted into the cavity C <b> 3 between the outer mold 12 and the core 14 along the inner peripheral surface of the outer mold 12. Thereafter, after the mold 10 is heated to a predetermined temperature, 4560 parts by weight of UDI-6 (manufactured by Soflanwiz), a TDI-terminated prepolymer, is previously degassed under reduced pressure, and the liquid temperature is adjusted to 70 ° C. Thereafter, 816 parts by weight of Iharacamine MT (MOCA) (manufactured by Ihara Chemical Industry Co., Ltd.) having a liquid temperature of 130 ° C. was added thereto, and the mixture was stirred and mixed. The mixture was poured into the cavity C of the mold 10, and 100 ° C. Curing was performed in an oven for 1 hour, then demolded, and further post-curing was performed in an oven at 70 ° C. for 16 hours to produce a support structure SS. After the outer peripheral surface of the outer annular portion 3 of the support structure SS is buffed with sandpaper, a predetermined amount of adhesive XJ-423 (manufactured by LORD) is applied and dried in an oven at 70 ° C. for 30 minutes. After drying, the unvulcanized belt layer 6 and the tread layer 7 were wound and subjected to hot pressing to produce a non-pneumatic tire T.

<比較例1>
成形型10を所定の温度にまで加温させた後、TDI末端プレポリマーのUTM−6(ソフランウイズ社製)4560重量部を予め減圧脱泡しておき、液温を70℃に調整後、これに液温130℃のイハラキュアミンMT(MOCA)(イハラケミカル工業社製)816重量部を添加し、攪拌、混合し、混合物を成形型10のキャビティCに注入し、100℃のオーブン内で1時間キュアを行い、その後脱型し、更に70℃のオーブン内で16時間ポストキュアを行い、支持構造体SSを作製した。支持構造体SSの外側環状部3の外周面をサンドペーパーでバフ処理した後、所定量の接着剤XJ−423(LORD社製)を塗布し、70℃のオーブン内で30分乾燥させる。乾燥後、未加硫のベルト層6及びトレッド層7を巻き付けて、加熱プレスを行い、非空気圧タイヤTを作製した。
<Comparative Example 1>
After heating the mold 10 to a predetermined temperature, 4560 parts by weight of UTM-6 (manufactured by Soflanwiz) of TDI terminal prepolymer was previously degassed under reduced pressure, and the liquid temperature was adjusted to 70 ° C. 816 parts by weight of Iharacamine MT (MOCA) (manufactured by Ihara Chemical Industry Co., Ltd.) having a liquid temperature of 130 ° C. was added thereto, stirred and mixed, and the mixture was poured into the cavity C of the mold 10 and placed in an oven at 100 ° C. The substrate was cured for 1 hour, then demolded, and further post-cured in an oven at 70 ° C. for 16 hours to prepare a support structure SS. After the outer peripheral surface of the outer annular portion 3 of the support structure SS is buffed with sandpaper, a predetermined amount of adhesive XJ-423 (manufactured by LORD) is applied and dried in an oven at 70 ° C. for 30 minutes. After drying, the unvulcanized belt layer 6 and the tread layer 7 were wound and subjected to hot pressing to produce a non-pneumatic tire T.

<比較例2>
成形型10から中型11全体を取り外して、張力負荷装置の回転軸に取り付け、補強繊維1aとしてのアラミドコード(東レ・デュポン社製、KEVLAR、3300dtex、繊維径0.6mm)をエンド数が8本/inchとなるようにらせん状に張力30Nにて1層巻回する。張力負荷装置の回転軸から中型11を取り外して、成形型10に取り付ける。その後の方法、条件は、比較例1と同じとした。
<Comparative example 2>
Remove the entire middle mold 11 from the molding die 10 and attach it to the rotating shaft of the tension load device. Aramid cord (Kevlar, 3300 dtex, manufactured by Toray DuPont, fiber diameter 0.6mm) as the reinforcing fiber 1a has 8 ends. 1 layer is wound at a tension of 30 N in a spiral so as to be / inch. The middle mold 11 is removed from the rotating shaft of the tension load device and attached to the mold 10. Subsequent methods and conditions were the same as those in Comparative Example 1.

<比較例3>
補強繊維1aとしての環状のガラス繊維ネット(日東紡社製、KS3815)を中型11と中子13との間のキャビティC1に、中型11の外周面に沿うように挿入する。その後の方法、条件は、比較例1と同じとした。
<Comparative Example 3>
An annular glass fiber net (manufactured by Nittobo Co., Ltd., KS3815) as the reinforcing fiber 1 a is inserted into the cavity C <b> 1 between the middle mold 11 and the core 13 along the outer peripheral surface of the middle mold 11. Subsequent methods and conditions were the same as those in Comparative Example 1.

<比較例4>
外周面上に高さ1.5mmの所定間隔で32個の突条17を設けたリング部11bのみを成形型10の中型11から取り外して、張力負荷装置のドラムに外嵌させ、補強繊維1aとしてのアラミドコード(東レ・デュポン社製、KEVLAR、3300dtex、繊維径0.6mm)をエンド数が8本/inchとなるようにらせん状に張力30Nにて1層巻回する。次いで、張力負荷装置のドラムからリング部11bを取り外して、中型11の芯部11aに外嵌する。その後の方法、条件は、比較例1と同じとした。
<Comparative Example 4>
Only the ring portion 11b provided with 32 protrusions 17 at a predetermined interval of 1.5 mm in height on the outer peripheral surface is removed from the middle mold 11 of the molding die 10, and is externally fitted to the drum of the tension load device, thereby reinforcing fiber 1a. Aramid cord (manufactured by Toray DuPont, KEVLAR, 3300 dtex, fiber diameter 0.6 mm) is spirally wound at a tension of 30 N so that the number of ends is 8 / inch. Next, the ring portion 11 b is removed from the drum of the tension load device and is fitted onto the core portion 11 a of the middle mold 11. Subsequent methods and conditions were the same as those in Comparative Example 1.

<比較例5>
成形型10の中型11からリング部11bのみを取り外して、張力負荷装置のドラムに外嵌させ、まず、有機繊維材1bとしてのナイロンネット(泉社製、111−B)をリング部11bの外周面に2周巻回して、両端を固定する。次いで、その外側に補強繊維1aとしてのアラミドコード(東レ・デュポン社製、KEVLAR、3300dtex、繊維径0.6mm)をエンド数が8本/inchとなるようにらせん状に張力30Nにて1層巻回する。次いで、張力負荷装置のドラムからリング部11bを取り外して、中型11の芯部11aに外嵌する。次いで、外型12の内周面に接触させないように、補強繊維3aとしての環状のガラス繊維ネット(日東紡社製、KS3815)を外型12と中子14との間のキャビティC3に挿入する。その後の方法、条件は、実施例1と同じとした。
<Comparative Example 5>
Only the ring part 11b is removed from the middle mold 11 of the molding die 10, and is externally fitted to the drum of the tension load device. First, a nylon net (111-B made by Izumi Co., Ltd.) as the organic fiber material 1b is attached to the outer periphery of the ring part 11b. Wind twice around the surface and fix both ends. Next, one layer of aramid cord (manufactured by Toray DuPont, KEVLAR, 3300 dtex, fiber diameter 0.6 mm) as a reinforcing fiber 1a is spirally formed at a tension of 30 N so that the number of ends is 8 / inch. Wind. Next, the ring portion 11 b is removed from the drum of the tension load device and is fitted onto the core portion 11 a of the middle mold 11. Next, an annular glass fiber net (manufactured by Nittobo Co., Ltd., KS3815) as the reinforcing fiber 3a is inserted into the cavity C3 between the outer mold 12 and the core 14 so as not to contact the inner peripheral surface of the outer mold 12. . Subsequent methods and conditions were the same as those in Example 1.

Figure 0005394304
Figure 0005394304

外側環状部3の外周面に、一部露出した状態で補強繊維3aが環状に埋設されている実施例1〜6の非空気圧タイヤTは、外側環状部3とベルト層6との接着が十分となり、比較例1〜5と比べ、剥離力が大きくなっている。   In the non-pneumatic tires T of Examples 1 to 6 in which the reinforcing fibers 3a are embedded in an annular shape in a state of being partially exposed on the outer peripheral surface of the outer annular portion 3, the outer annular portion 3 and the belt layer 6 are sufficiently bonded. Thus, the peel force is greater than in Comparative Examples 1-5.

イソシアネート成分としてPPDIを用いたポリウレタン樹脂により製造した支持構造体SSを備える実施例1〜6の非空気圧タイヤTは、従来のTDIを用いたものに比べ、走行耐久性が高くなっている。なお、実施例1〜6の走行耐久性を1000〜1200以上と表示したのは、支持構造体SSに故障が生じる前に、外側環状部3とベルト層6との間でセパレーションによる故障が発生したためである。   The non-pneumatic tires T of Examples 1 to 6 including the support structure SS manufactured by a polyurethane resin using PPDI as an isocyanate component have higher running durability than those using conventional TDI. In addition, the running durability of Examples 1 to 6 is displayed as 1000 to 1200 or more because a failure due to separation occurs between the outer annular portion 3 and the belt layer 6 before the support structure SS fails. This is because.

内側環状部1が補強繊維1aにより補強されていない比較例1の非空気圧タイヤTに比べ、補強繊維1aにより補強されている非空気圧タイヤTは、いずれも嵌合力が大きくなっている。   Compared with the non-pneumatic tire T of Comparative Example 1 in which the inner annular portion 1 is not reinforced by the reinforcing fiber 1a, the non-pneumatic tire T reinforced by the reinforcing fiber 1a has a larger fitting force.

また、中型11と補強繊維1aとしてのガラス繊維ネットとの間に隙間がない比較例3の非空気圧タイヤTでは、ホイール削れが観察された。ただし、補強繊維1aとしてアラミドコードを用いた比較例2の場合には、有機繊維材なのでホイール削れは観察されなかった。すなわち、内側環状部1の補強繊維1aとして、ガラス繊維ネットを用いる場合、実施例3〜5のように中型11と補強繊維1aとの間に隙間を設けることで、補強繊維1aが内側環状部1の内周面に露出しないため、補強繊維1aとホイールの双方の損傷を防止することができる。   Further, wheel scraping was observed in the non-pneumatic tire T of Comparative Example 3 in which there was no gap between the middle mold 11 and the glass fiber net as the reinforcing fiber 1a. However, in the case of Comparative Example 2 using an aramid cord as the reinforcing fiber 1a, wheel scraping was not observed because it was an organic fiber material. That is, when a glass fiber net is used as the reinforcing fiber 1a of the inner annular portion 1, the reinforcing fiber 1a is formed into the inner annular portion by providing a gap between the middle mold 11 and the reinforcing fiber 1a as in Examples 3 to 5. Since it is not exposed to the inner peripheral surface of 1, the damage of both the reinforcing fiber 1a and the wheel can be prevented.

<他の実施形態>
前述の実施形態では、中間環状部2を1つだけ設ける例を示したが、本発明では、中間環状部2を複数設けることも可能である。これにより内側環状部1の内径をより小さくすることが可能である。
<Other embodiments>
In the above-described embodiment, an example in which only one intermediate annular portion 2 is provided has been described. However, in the present invention, a plurality of intermediate annular portions 2 may be provided. Thereby, it is possible to make the inner diameter of the inner annular portion 1 smaller.

1 内側環状部
2 中間環状部
3 外側環状部
3a 補強繊維
4 内側連結部
5 外側連結部
6 ベルト層
7 トレッド層
10 成形型
11 中型
12 外型
13 中子
14 中子
15 上型
16 下型
C キャビティ
SS 支持構造体
T 非空気圧タイヤ

DESCRIPTION OF SYMBOLS 1 Inner annular part 2 Middle annular part 3 Outer annular part 3a Reinforcing fiber 4 Inner coupling part 5 Outer coupling part 6 Belt layer 7 Tread layer 10 Mold 11 Central mold 12 Outer mold 13 Core 14 Core 15 Upper mold 16 Lower mold C Cavity SS Support structure T Non-pneumatic tire

Claims (4)

車両からの荷重を支持する支持構造体と、支持構造体の外周側に設けられるベルト層とを備える非空気圧タイヤにおいて、
前記支持構造体は、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結する複数の連結部とを備え、
前記外側環状部の外周面には、一部露出した状態で補強繊維が環状に埋設されていることを特徴とする非空気圧タイヤ。
In a non-pneumatic tire comprising a support structure that supports a load from a vehicle, and a belt layer provided on the outer peripheral side of the support structure,
The support structure includes an inner annular portion, an outer annular portion provided concentrically on the outer side of the inner annular portion, and a plurality of connecting portions that connect the inner annular portion and the outer annular portion,
A non-pneumatic tire characterized in that a reinforcing fiber is embedded in an annular shape on the outer peripheral surface of the outer annular portion in a partially exposed state.
前記支持構造体は、イソシアネート成分としてパラフェニレンジイソシアネート(PPDI)を用いたポリウレタン樹脂で構成されている請求項1に記載の非空気圧タイヤ。   The non-pneumatic tire according to claim 1, wherein the support structure is made of a polyurethane resin using paraphenylene diisocyanate (PPDI) as an isocyanate component. 内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結する複数の連結部とから構成される支持構造体を備える非空気圧タイヤの製造方法であって、
前記内側環状部の内周側を成形するための中型と、前記外側環状部の外周側を成形するための外型と、中型と外型の間に周方向に配置され、前記内側環状部の外周側、前記外側環状部の内周側、および前記連結部を成形するための複数の中子と、前記支持構造体のタイヤ幅方向両側面を成形するための一対の上型、下型とを配置して、前記内側環状部、前記外側環状部および前記連結部に相当するキャビティを形成する工程と、
前記外型の内周面に接するように補強繊維を環状に配置する工程と、
前記キャビティに弾性材料の原料液を供給して硬化させて前記支持構造体を成形する工程と、
成形された前記支持構造体の外周側にベルト層を接合する工程と、を備えることを特徴とする非空気圧タイヤの製造方法。
A support structure including an inner annular portion, an outer annular portion provided concentrically outside the inner annular portion, and a plurality of connecting portions that connect the inner annular portion and the outer annular portion is provided. A non-pneumatic tire manufacturing method comprising:
A middle mold for molding the inner peripheral side of the inner annular part, an outer mold for molding the outer peripheral side of the outer annular part, and a circumferential direction between the middle mold and the outer mold, A plurality of cores for forming the outer peripheral side, the inner peripheral side of the outer annular portion, and the connecting portion; a pair of upper molds and lower molds for molding both side surfaces in the tire width direction of the support structure; And forming a cavity corresponding to the inner annular portion, the outer annular portion, and the connecting portion;
Arranging the reinforcing fibers in an annular shape so as to contact the inner peripheral surface of the outer mold;
Supplying a liquid material of an elastic material to the cavity and curing it to mold the support structure;
And a step of joining a belt layer to the outer peripheral side of the molded support structure.
前記支持構造体を成形する工程の後、成形された前記支持構造体の外周面をバフ処理する工程を備える請求項3に記載の非空気圧タイヤの製造方法。

The method for manufacturing a non-pneumatic tire according to claim 3, further comprising a step of buffing an outer peripheral surface of the molded support structure after the step of forming the support structure.

JP2010091677A 2010-04-12 2010-04-12 Non-pneumatic tire and manufacturing method thereof Active JP5394304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010091677A JP5394304B2 (en) 2010-04-12 2010-04-12 Non-pneumatic tire and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010091677A JP5394304B2 (en) 2010-04-12 2010-04-12 Non-pneumatic tire and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011219009A JP2011219009A (en) 2011-11-04
JP5394304B2 true JP5394304B2 (en) 2014-01-22

Family

ID=45036533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010091677A Active JP5394304B2 (en) 2010-04-12 2010-04-12 Non-pneumatic tire and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5394304B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105644270A (en) * 2015-12-30 2016-06-08 彭书成 Inflation-free master-slave tire

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356326B1 (en) * 2013-02-28 2014-01-29 한국타이어 주식회사 Non-pneumatic tire having reinforcing material of plate wire structure
US9962994B2 (en) 2013-05-22 2018-05-08 Sumitomo Rubber Industries, Ltd. Airless tire and method for manufacturing same
JP5851449B2 (en) * 2013-06-03 2016-02-03 株式会社ブリヂストン Non pneumatic tire
JP5851450B2 (en) * 2013-06-06 2016-02-03 株式会社ブリヂストン Non pneumatic tire
US9751270B2 (en) 2013-06-15 2017-09-05 Advancing Mobility, Llc Annular ring and non-pneumatic tire
JP6492076B2 (en) * 2014-06-16 2019-03-27 株式会社ブリヂストン tire
CN106457904B (en) * 2014-06-16 2019-01-22 株式会社普利司通 Tire
JP6619552B2 (en) * 2014-11-07 2019-12-11 株式会社ブリヂストン Non pneumatic tire
US10406860B2 (en) 2014-12-03 2019-09-10 Bridgestone Americas Tire Operations, Llc Non-pneumatic tire
US10953696B2 (en) 2015-02-04 2021-03-23 Camso Inc Non-pneumatic tire and other annular devices
JP6689029B2 (en) * 2015-03-24 2020-04-28 株式会社ブリヂストン Non-pneumatic tire
JP6535498B2 (en) * 2015-04-07 2019-06-26 Toyo Tire株式会社 Non pneumatic tire
JP2017100640A (en) * 2015-12-04 2017-06-08 東洋ゴム工業株式会社 Non-pneumatic tire
WO2017106750A1 (en) 2015-12-16 2017-06-22 Thompson Ronald H Track system for traction of a vehicle
CN108698345B (en) 2015-12-29 2020-11-03 普利司通美国轮胎运营有限责任公司 Tire with variable shear element
CN108495895B (en) 2016-01-29 2021-03-09 株式会社普利司通 Tyre for vehicle wheels
JP6633577B2 (en) * 2016-07-29 2020-01-22 三ツ星ベルト株式会社 Thermosetting polyurethane composition and use thereof
JP2018058541A (en) * 2016-10-07 2018-04-12 東洋ゴム工業株式会社 Non-pneumatic tire and manufacturing method of the same
JP6260881B2 (en) * 2016-11-01 2018-01-17 コンパニー ゼネラール デ エタブリッスマン ミシュラン Shear band with interlaced reinforcement
US10384409B2 (en) * 2016-11-15 2019-08-20 The Goodyear Tire & Rubber Company Method of manufacturing a non-pneumatic support structure
US10150334B2 (en) * 2016-11-15 2018-12-11 The Goodyear Tire & Rubber Company Non-pneumatic support structure
US10040317B2 (en) * 2016-11-15 2018-08-07 The Goodyear Tire & Rubber Company Non-pneumatic support structure
JP6772055B2 (en) * 2016-12-27 2020-10-21 Toyo Tire株式会社 Non-pneumatic tires and their manufacturing methods
CN107053954B (en) * 2017-01-19 2019-10-01 青岛双星轮胎工业有限公司 Non-inflatable tyre
JP6834635B2 (en) * 2017-03-15 2021-02-24 住友ゴム工業株式会社 How to manufacture airless tires and airless tires
JP2018193046A (en) * 2017-05-22 2018-12-06 株式会社ブリヂストン Non-pneumatic tire
EP3638515B1 (en) 2017-06-15 2023-04-05 Camso Inc. Wheel comprising a non-pneumatic tire
JP6910247B2 (en) * 2017-08-31 2021-07-28 Toyo Tire株式会社 Non-pneumatic tires
CN113226794B (en) * 2018-12-28 2023-04-25 普利司通美国轮胎运营有限责任公司 Non-pneumatic tire with reinforced support structure
EP3902691A4 (en) 2018-12-28 2022-10-19 Bridgestone Americas Tire Operations, LLC Non-pneumatic tire having reinforced outer ring
BR112021020353A2 (en) * 2019-04-11 2021-12-07 Michelin & Cie Solid tire made from elastomeric material for a cable car pulley
JP7248540B2 (en) * 2019-08-22 2023-03-29 Toyo Tire株式会社 Method for manufacturing non-pneumatic tires
CN113492618B (en) * 2021-07-05 2022-06-14 季华实验室 Ply laying method for a tire support structure, tire support structure and tire

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03148302A (en) * 1989-11-01 1991-06-25 Sumitomo Rubber Ind Ltd Pneumatic tire
FR2875437B1 (en) * 2004-09-23 2006-11-24 Conception & Dev Michelin Sa NON-PNEUMATIC FLEXIBLE BANDAGE
JP4804778B2 (en) * 2005-03-25 2011-11-02 シーシーアイ株式会社 Polyurethane composition and solid tire
JP3952211B1 (en) * 2006-08-11 2007-08-01 横浜ゴム株式会社 Non pneumatic tire
JP4818220B2 (en) * 2007-07-31 2011-11-16 東洋ゴム工業株式会社 Non-pneumatic tire and manufacturing method thereof
JP5208570B2 (en) * 2008-04-30 2013-06-12 東洋ゴム工業株式会社 Non-pneumatic tires, rim wheels, and wheels
JP2009286208A (en) * 2008-05-28 2009-12-10 Yokohama Rubber Co Ltd:The Non-pneumatic tire
JP5084637B2 (en) * 2008-06-26 2012-11-28 東洋ゴム工業株式会社 Non-pneumatic tire mold and non-pneumatic tire manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105644270A (en) * 2015-12-30 2016-06-08 彭书成 Inflation-free master-slave tire
CN105644270B (en) * 2015-12-30 2019-04-05 彭书成 One kind is exempted to inflate mother and sons' tire

Also Published As

Publication number Publication date
JP2011219009A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP5394304B2 (en) Non-pneumatic tire and manufacturing method thereof
US9643453B2 (en) Annular structure having multiple reinforcement bands
JP4818220B2 (en) Non-pneumatic tire and manufacturing method thereof
US9662939B2 (en) Tension-based non-pneumatic tire
US11020918B2 (en) Method of manufacturing a non-pneumatic support structure
EP2177375A1 (en) Non-pneumatic tire, and its manufacturing method
US10150334B2 (en) Non-pneumatic support structure
JP2018058541A (en) Non-pneumatic tire and manufacturing method of the same
JP5033070B2 (en) Non-pneumatic tire manufacturing method
CN103786354A (en) Method of applying an annular strip to a tire
CN111565940A (en) Reinforced resilient support for non-pneumatic tires
JP7248540B2 (en) Method for manufacturing non-pneumatic tires
JP2022088331A (en) System for manufacturing support structure
US10259179B2 (en) Method of producing a non-pneumatic support structure
JP7076299B2 (en) Non-pneumatic tires
CN111511581B (en) Reinforced annular support for a tire
JP6772055B2 (en) Non-pneumatic tires and their manufacturing methods
US11801651B2 (en) System for manufacturing a support structure
JP2006306245A (en) Run flat tire supporting element
JP2023067437A (en) Method for manufacturing non-pneumatic tire and non-pneumatic tire
JP2023067438A (en) Method for manufacturing non-pneumatic tire
JP2017100640A (en) Non-pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131016

R150 Certificate of patent or registration of utility model

Ref document number: 5394304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250