JP5033070B2 - Non-pneumatic tire manufacturing method - Google Patents

Non-pneumatic tire manufacturing method Download PDF

Info

Publication number
JP5033070B2
JP5033070B2 JP2008163487A JP2008163487A JP5033070B2 JP 5033070 B2 JP5033070 B2 JP 5033070B2 JP 2008163487 A JP2008163487 A JP 2008163487A JP 2008163487 A JP2008163487 A JP 2008163487A JP 5033070 B2 JP5033070 B2 JP 5033070B2
Authority
JP
Japan
Prior art keywords
annular portion
pneumatic tire
connecting portion
reinforcing
reinforcing fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008163487A
Other languages
Japanese (ja)
Other versions
JP2010000761A (en
Inventor
政弘 瀬川
雅則 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2008163487A priority Critical patent/JP5033070B2/en
Publication of JP2010000761A publication Critical patent/JP2010000761A/en
Application granted granted Critical
Publication of JP5033070B2 publication Critical patent/JP5033070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/02Solid tyres ; Moulds therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tyre Moulding (AREA)
  • Tires In General (AREA)

Description

本発明は、タイヤ構造部材として、車両からの荷重を支持する支持構造体を備える非空気圧タイヤ(non−pneumatic tire)を製造する製造方法に関するものである。   The present invention relates to a manufacturing method for manufacturing a non-pneumatic tire including a support structure that supports a load from a vehicle as a tire structure member.

空気入りタイヤは、荷重の支持機能、接地面からの衝撃吸収能、および動力等の伝達能(加速、停止、方向転換)を有し、このため、多くの車両、特に自転車、オートバイ、自動車、トラックに採用されている。   The pneumatic tire has a load supporting function, a shock absorbing ability from the ground contact surface, and a transmission ability (acceleration, stop, change of direction) such as power. For this reason, many vehicles, particularly bicycles, motorcycles, automobiles, It is used in trucks.

特に、これらの能力は自動車、その他のモーター車両の発展に大きく貢献した。更に、空気入りタイヤの衝撃吸収能力は、医療機器や電子機器の運搬用カート、その他の用途でも有用である。   In particular, these capabilities greatly contributed to the development of automobiles and other motor vehicles. Furthermore, the impact absorbing ability of pneumatic tires is useful for medical equipment and electronic equipment transport carts and other applications.

従来の非空気圧タイヤとしては、例えばソリッドタイヤ、スプリングタイヤ、クッションタイヤ等が存在するが、空気入りタイヤの優れた性能を有していない。例えば、ソリッドタイヤおよびクッションタイヤは、接地部分の圧縮によって荷重を支持するが、この種のタイヤは重くて、堅く、空気入りタイヤのような衝撃吸収能力はない。また、非空気圧タイヤでは、弾性を高めてクッション性を改善することも可能であるが、空気入りタイヤが有するような荷重支持能または耐久性が悪くなるという問題がある。   Conventional non-pneumatic tires include, for example, solid tires, spring tires, cushion tires, and the like, but do not have the superior performance of pneumatic tires. For example, solid tires and cushion tires support the load by compressing the contact portion, but this type of tire is heavy and stiff, and does not have the ability to absorb shock like a pneumatic tire. Further, in the non-pneumatic tire, it is possible to improve the cushioning property by increasing the elasticity, but there is a problem that the load supporting ability or the durability as the pneumatic tire has is deteriorated.

そこで、下記の特許文献1には、空気入りタイヤと同様な動作特性を有する非空気圧タイヤを開発する目的で、タイヤに加わる荷重を支持する補強された環状バンドと、この補強された環状バンドとホイールまたはハブとの間で張力によって荷重力を伝達する複数のウェブスポークとを有する非空気圧タイヤが提案されている。   Therefore, in Patent Document 1 below, for the purpose of developing a non-pneumatic tire having the same operating characteristics as a pneumatic tire, a reinforced annular band that supports a load applied to the tire, and the reinforced annular band, Non-pneumatic tires have been proposed that have a plurality of web spokes that transmit load forces by tension with a wheel or hub.

特許文献1の非空気圧タイヤは、ウェブスポークにかかる張力によって、縦荷重を支持することを意図しており、ウェブスポークには高い引張モジュラスが要求される。その一方で、ウェブスポークの圧縮モジュラスが高いと、走行時においてウェブスポークの位置が接地する際、ウェブスポーク部分での打撃音によるノイズが生じやすくなるので、ウェブスポークには低い圧縮モジュラスが要求される。このような高引張モジュラス、かつ低圧縮モジュラスの要求に応えるため、ウェブスポークを繊維により補強する方法が考えられる。   The non-pneumatic tire of Patent Document 1 is intended to support a longitudinal load by the tension applied to the web spoke, and the web spoke is required to have a high tensile modulus. On the other hand, if the compression modulus of the web spoke is high, when the position of the web spoke touches down during running, noise due to the hitting sound at the web spoke portion is likely to occur, so a low compression modulus is required for the web spoke. The In order to meet such demands for high tensile modulus and low compression modulus, a method of reinforcing web spokes with fibers can be considered.

特表2005−500932号公報Special Table 2005-500932 Publication

しかしながら、特許文献1には、ウェブスポークを繊維補強した非空気圧タイヤの製造方法に関する記載はなく、また、単にモールド(金型)に繊維を配置し弾性材料の原料液を注入することで、繊維補強されたウェブスポークを一体成形すると、繊維が偏って補強の役割を果たさなくなる可能性がある。また、特に粘度の高い弾性材料の原料液を射出成型する場合、繊維の偏りが大きくなる。   However, Patent Document 1 does not describe a method for manufacturing a non-pneumatic tire in which web spokes are reinforced with fiber, and simply disposes fibers in a mold (mold) and injects a raw material liquid of an elastic material to produce fibers. If the reinforced web spokes are integrally formed, the fibers may be biased and no longer serve as a reinforcement. In addition, when the raw material liquid of an elastic material having a high viscosity is injection-molded, the deviation of the fibers becomes large.

そこで、本発明の目的は、支持構造体のスポーク部分が効果的に繊維で補強された非空気圧タイヤを製造することのできる非空気圧タイヤの製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a non-pneumatic tire manufacturing method capable of manufacturing a non-pneumatic tire in which spoke portions of a support structure are effectively reinforced with fibers.

上記目的は、下記の如き本発明により達成できる。
即ち、本発明の非空気圧タイヤの製造方法は、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結する複数の連結部とから構成され、車両からの荷重を支持するための支持構造体を備える非空気圧タイヤの製造方法であって、モールド内の連結部成型部に正面視で前記連結部の方向に沿って引張力を付与した状態で補強繊維を配置する工程と、モールド内に弾性材料の原料液を注入して、前記内側環状部と、前記外側環状部と、前記補強繊維と一体となって補強された前記連結部とを成型する工程とを備えたことを特徴とする。
The above object can be achieved by the present invention as described below.
That is, the non-pneumatic tire manufacturing method of the present invention includes an inner annular portion, an outer annular portion concentrically provided outside the inner annular portion, and a plurality of connecting the inner annular portion and the outer annular portion. And a non-pneumatic tire manufacturing method comprising a support structure for supporting a load from a vehicle, wherein the connection portion molding portion in the mold is along the direction of the connection portion in a front view. The step of arranging the reinforcing fiber in a state where the tensile force is applied and the raw material liquid of the elastic material is injected into the mold, and the inner annular portion, the outer annular portion, and the reinforcing fiber are integrally strengthened. And a step of molding the connected portion.

本発明にかかる非空気圧タイヤは、車両からの荷重を支持するための支持構造体を備えており、この支持構造体は、内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、内側環状部と外側環状部とを連結する複数の連結部とから構成される。本発明の非空気圧タイヤの製造方法では、モールド内に補強繊維を配置した後、モールド内に弾性材料の原料液を注入して支持構造体を成型するが、補強繊維はモールド内の連結部成型部に正面視で連結部の方向に沿って引張力を付与した状態で配置されるので、補強繊維と一体となって補強された連結部は、引張力に対しては補強繊維の働きにより高引張モジュラスとなり、一方で圧縮力に対しては補強繊維が働かないので低圧縮モジュラスとなる。したがって、本発明の非空気圧タイヤの製造方法によると、支持構造体の連結部(スポーク部分)が効果的に繊維で補強された非空気圧タイヤを製造することができる。   A non-pneumatic tire according to the present invention includes a support structure for supporting a load from a vehicle, and this support structure is provided concentrically on an inner annular portion and outside the inner annular portion. The outer annular portion and a plurality of connecting portions that connect the inner annular portion and the outer annular portion. In the non-pneumatic tire manufacturing method of the present invention, after the reinforcing fibers are arranged in the mold, the raw material liquid of the elastic material is injected into the mold to mold the support structure. Since the portion is arranged in a state in which a tensile force is applied along the direction of the connecting portion in front view, the connecting portion reinforced integrally with the reinforcing fiber has a high strength against the tensile force due to the function of the reinforcing fiber. On the other hand, since the reinforcing fiber does not work against the compressive force, the tensile modulus is low. Therefore, according to the non-pneumatic tire manufacturing method of the present invention, it is possible to manufacture a non-pneumatic tire in which the connecting portion (spoke portion) of the support structure is effectively reinforced with fibers.

また、上記目的は、下記の如き本発明により達成できる。
即ち、本発明の非空気圧タイヤの製造方法は、内側環状部と、その内側環状部の外側に同心円状に設けられた中間環状部と、その中間環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記中間環状部とを連結する複数の内側連結部と、前記外側環状部と前記中間環状部とを連結する複数の外側連結部とから構成され、車両からの荷重を支持するための支持構造体を備える非空気圧タイヤの製造方法であって、モールド内の内側連結部成型部および外側連結部成型部に正面視で前記内側連結部および前記外側連結部の方向に沿って引張力を付与した状態で補強繊維を配置する工程と、モールド内に弾性材料の原料液を注入して、前記内側環状部と、前記中間環状部と、前記外側環状部と、前記補強繊維と一体となって補強された前記内側連結部と、前記補強繊維と一体となって補強された前記外側連結部とを成型する工程とを備えたことを特徴とする。
The above object can be achieved by the present invention as described below.
That is, the non-pneumatic tire manufacturing method of the present invention includes an inner annular portion, an intermediate annular portion provided concentrically outside the inner annular portion, and an outer portion provided concentrically outside the intermediate annular portion. An annular portion, a plurality of inner connecting portions that connect the inner annular portion and the intermediate annular portion, and a plurality of outer connecting portions that connect the outer annular portion and the intermediate annular portion. A method of manufacturing a non-pneumatic tire including a support structure for supporting a load, wherein the inner connecting portion molding portion and the outer connecting portion molding portion in a mold are directed to the inner connecting portion and the outer connecting portion in a front view. A step of arranging reinforcing fibers in a state where a tensile force is applied along with, and injecting a raw material liquid of an elastic material into the mold, the inner annular portion, the intermediate annular portion, the outer annular portion, Reinforced with the reinforcing fiber Said inner connecting portion that is, characterized by comprising the step of molding and the reinforcing fibers and the outer coupling portion that is reinforced together.

本発明にかかる非空気圧タイヤは、車両からの荷重を支持するための支持構造体を備えており、この支持構造体は、内側環状部と、その内側環状部の外側に同心円状に設けられた中間環状部と、その中間環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記中間環状部とを連結する複数の内側連結部と、前記外側環状部と前記中間環状部とを連結する複数の外側連結部とから構成される。本発明の非空気圧タイヤの製造方法では、モールド内に補強繊維を配置した後、モールド内に弾性材料の原料液を注入して支持構造体を成型するが、補強繊維はモールド内の内側連結部成型部および外側連結部成型部に正面視で内側連結部および外側連結部の方向に沿って引張力を付与した状態で配置されるので、補強繊維と一体となって補強された内側連結部と、補強繊維と一体となって補強された外側連結部は、引張力に対しては補強繊維の働きにより高引張モジュラスとなり、一方で圧縮力に対しては補強繊維が働かないので低圧縮モジュラスとなる。したがって、本発明の非空気圧タイヤの製造方法によると、支持構造体の内側連結部および外側連結部(スポーク部分)が効果的に繊維で補強された非空気圧タイヤを製造することができる。   A non-pneumatic tire according to the present invention includes a support structure for supporting a load from a vehicle, and this support structure is provided concentrically on an inner annular portion and outside the inner annular portion. An intermediate annular portion, an outer annular portion concentrically provided outside the intermediate annular portion, a plurality of inner connecting portions connecting the inner annular portion and the intermediate annular portion, the outer annular portion and the intermediate It is comprised from the some outer connection part which connects an annular part. In the method for producing a non-pneumatic tire according to the present invention, after the reinforcing fibers are arranged in the mold, the raw material liquid of the elastic material is injected into the mold to mold the support structure. Since the molded part and the outer connecting part are arranged in a state where a tensile force is applied along the direction of the inner connecting part and the outer connecting part in a front view, the inner connecting part reinforced with the reinforcing fiber and The outer connecting part reinforced with the reinforcing fiber has a high tensile modulus due to the action of the reinforcing fiber against the tensile force, while the reinforcing fiber does not work against the compressive force. Become. Therefore, according to the non-pneumatic tire manufacturing method of the present invention, it is possible to manufacture a non-pneumatic tire in which the inner connecting portion and the outer connecting portion (spoke portion) of the support structure are effectively reinforced with fibers.

本発明にかかる非空気圧タイヤの製造方法において、前記補強繊維の一端部を、前記内側環状部の内側の前記モールドに設けた係止部に係止し、他端部を引っ張ることで、前記補強繊維に引張力を付与することが好ましい。   In the non-pneumatic tire manufacturing method according to the present invention, one end of the reinforcing fiber is locked to a locking portion provided in the mold inside the inner annular portion, and the other end is pulled, thereby It is preferable to apply a tensile force to the fiber.

補強繊維の一端部を、内側環状部の内側のモールドに設けた係止部に係止し、他端部を引っ張るので、確実に補強繊維に引張力を付与することができ、支持構造体の連結部が効果的に繊維で補強された非空気圧タイヤを製造することができる。   One end of the reinforcing fiber is locked to the locking portion provided in the mold inside the inner annular portion, and the other end is pulled, so that a tensile force can be reliably applied to the reinforcing fiber, and the support structure A non-pneumatic tire in which the connecting portion is effectively reinforced with fibers can be manufactured.

本発明にかかる非空気圧タイヤの製造方法において、前記補強繊維を前記外側環状部の外側に設けたプーリーにかけ、前記他端部に取り付けた錘により前記補強繊維に引張力を付与することが好ましい。   In the non-pneumatic tire manufacturing method according to the present invention, it is preferable that the reinforcing fiber is applied to a pulley provided outside the outer annular portion, and a tensile force is applied to the reinforcing fiber by a weight attached to the other end portion.

この構成によれば、補強繊維をプーリーにかけ、他端部に取り付けた錘により、補強繊維に引張力を付与するので、補強繊維に容易に、かつ、一本一本確実に引張力を付与することができ、支持構造体の連結部が効果的に繊維で補強された非空気圧タイヤを製造することができる。また、錘により引張力を付与するので、複数の補強繊維に対してそれぞれ錘を取り付けることにより、それぞれの補強繊維に付与する引張力を全て同じにすることも、それぞれ変えることも容易である。   According to this configuration, the reinforcing fiber is applied to the pulley, and the tensile force is applied to the reinforcing fiber by the weight attached to the other end. Therefore, the tensile force is easily and surely applied to the reinforcing fiber one by one. Thus, a non-pneumatic tire in which the connecting portion of the support structure is effectively reinforced with fibers can be manufactured. In addition, since the tensile force is applied by the weight, it is easy to make the tensile force applied to each reinforcing fiber the same or change by attaching the weight to each of the plurality of reinforcing fibers.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<非空気圧タイヤの構造>
図1は本発明の製造方法により製造される非空気圧タイヤの一例を示す正面図であり、(a)は全体を示す正面図、(b)は要部を示す正面図である。ここで、Oは軸芯を、H1はタイヤ断面高さを、それぞれ示している。
<Structure of non-pneumatic tire>
FIG. 1 is a front view showing an example of a non-pneumatic tire manufactured by the manufacturing method of the present invention, (a) is a front view showing the whole, and (b) is a front view showing the main part. Here, O indicates the axial center, and H1 indicates the tire cross-sectional height.

本発明の製造方法による非空気圧タイヤは、車両からの荷重を支持する支持構造体を備えるものである。非空気圧タイヤは、このような支持構造体を備えるものであればよく、その支持構造体の外側(外周側)や内側(内周側)に、トレッドに相当する部材、補強層、車軸やリムとの適合用部材などを備えていてもよい。   The non-pneumatic tire according to the manufacturing method of the present invention includes a support structure that supports a load from a vehicle. The non-pneumatic tire may be provided with such a support structure, and a member corresponding to a tread, a reinforcing layer, an axle, and a rim are provided on the outer side (outer peripheral side) and the inner side (inner peripheral side) of the support structure. May be provided.

本発明の製造方法による非空気圧タイヤは、図1に示すように、支持構造体SSが、内側環状部1と、その外側に同心円状に設けられた中間環状部2と、その外側に同心円状に設けられた外側環状部3と、内側環状部1と中間環状部2とを連結する複数の内側連結部4(連結部に相当)と、外側環状部3と中間環状部2とを連結する複数の外側連結部5(これも連結部に相当)とを備えている。   In the non-pneumatic tire according to the manufacturing method of the present invention, as shown in FIG. 1, the support structure SS has an inner annular portion 1, an intermediate annular portion 2 provided concentrically on the outer side, and a concentric shape on the outer side. A plurality of inner connecting portions 4 (corresponding to connecting portions) for connecting the inner annular portion 1 and the intermediate annular portion 2, and the outer annular portion 3 and the intermediate annular portion 2. A plurality of outer connecting portions 5 (also corresponding to connecting portions) are provided.

内側環状部1は、ユニフォーミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。また、内側環状部1の内周面には、車軸やリムとの装着のために、嵌合性を保持するための凹凸等を設けるのが好ましい。   The inner annular portion 1 is preferably a cylindrical shape having a constant thickness from the viewpoint of improving uniformity. Moreover, it is preferable to provide the inner peripheral surface of the inner annular portion 1 with irregularities or the like for maintaining fitting properties for mounting with an axle or a rim.

内側環状部1の厚みは、内側連結部4に力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さH1の2〜7%が好ましく、3〜6%がより好ましい。   The thickness of the inner annular portion 1 is preferably 2 to 7%, and 3 to 6% of the tire cross-section height H1 from the viewpoint of reducing weight and improving durability while sufficiently transmitting force to the inner connecting portion 4. More preferred.

内側環状部1の内径は、非空気圧タイヤを装着するリムや車軸の寸法などに併せて適宜決定されるが、本実施形態では中間環状部2を備えるために、内側環状部1の内径を従来より大幅に小さくすることが可能である。但し、一般の空気入りタイヤの代替を想定した場合、250〜500mmが好ましく、330〜440mmがより好ましい。   An inner diameter of the inner annular portion 1 is appropriately determined in accordance with a rim on which a non-pneumatic tire is mounted, a size of an axle, and the like. However, in the present embodiment, the inner annular portion 1 is provided with an inner diameter of the conventional inner annular portion 1. It can be made much smaller. However, when an alternative to a general pneumatic tire is assumed, 250 to 500 mm is preferable, and 330 to 440 mm is more preferable.

内側環状部1の軸方向の幅は、用途、車軸の長さ等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The axial width of the inner annular portion 1 is appropriately determined according to the application, the length of the axle, and the like, but when an alternative to a general pneumatic tire is assumed, it is preferably 100 to 300 mm, more preferably 130 to 250 mm. preferable.

内側環状部1の引張モジュラスは、内側連結部4に力を十分伝達しつつ、軽量化や耐久性の向上、装着性を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。なお、本発明における引張モジュラスは、JIS K7312に準じて引張試験を行い、10%伸び時の引張応力から算出した値である。   The tensile modulus of the inner annular portion 1 is preferably 5 to 180000 MPa, more preferably 7 to 50000 MPa, from the viewpoint of reducing weight, improving durability, and wearing properties while sufficiently transmitting force to the inner connecting portion 4. The tensile modulus in the present invention is a value calculated from a tensile stress at 10% elongation by conducting a tensile test according to JIS K7312.

内側環状部1の材質としては、熱可塑性エラストマー、架橋ゴム、その他の樹脂等の弾性材料、又はこれらを繊維等の補強材で補強した繊維補強材料、金属等が使用できる。但し、支持構造体SSを製造する際に、一体成形が可能となる観点から、内側環状部1の材質としては、熱可塑性エラストマー、架橋ゴム、その他の樹脂等の弾性材料、又はこれらを繊維等で補強した繊維補強材料が好ましい。   As the material of the inner annular portion 1, an elastic material such as a thermoplastic elastomer, a crosslinked rubber, or other resin, a fiber reinforced material obtained by reinforcing these with a reinforcing material such as a fiber, a metal, or the like can be used. However, from the viewpoint of enabling integral molding when the support structure SS is manufactured, the material of the inner annular portion 1 is an elastic material such as a thermoplastic elastomer, a crosslinked rubber, or other resin, or a fiber or the like thereof. A fiber reinforced material reinforced with is preferred.

熱可塑性エラストマーとしては、ポリエステルエラストマー、ポリオレフィンエラストマー、ポリアミドエラストマー、ポリスチレンエラストマー、ポリ塩化ビニルエラストマー、ポリウレタンエラストマー等が例示される。架橋ゴム材料を構成するゴム材料としては、天然ゴムの他、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IIR)、ニトリルゴム(NBR)、水素添加ニトリルゴム(水添NBR)、クロロプレンゴム(CR)、エチレンプロピレンゴム(EPDM)、フッ素ゴム、シリコンゴム、アクリルゴム、ウレタンゴム等の合成ゴムが例示される。これらのゴム材料は必要に応じて2種以上を併用してもよい。   Examples of the thermoplastic elastomer include polyester elastomer, polyolefin elastomer, polyamide elastomer, polystyrene elastomer, polyvinyl chloride elastomer, polyurethane elastomer and the like. Rubber materials constituting the crosslinked rubber material include natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IIR), nitrile rubber (NBR), hydrogenated nitrile rubber (hydrogenated NBR). And synthetic rubbers such as chloroprene rubber (CR), ethylene propylene rubber (EPDM), fluorine rubber, silicon rubber, acrylic rubber, and urethane rubber. These rubber materials may be used in combination of two or more as required.

その他の樹脂としては、熱可塑性樹脂、又は熱硬化性樹脂が挙げられる。熱可塑性樹脂としては、ポリエチレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂などが挙げられ、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、シリコン樹脂、ポリイミド樹脂、メラミン樹脂などが挙げられる。なお、発泡材料を使用してもよく、上記の熱可塑性エラストマー、架橋ゴム、その他の樹脂を発泡させたものも使用可能である。 Examples of other resins include thermoplastic resins and thermosetting resins. Examples of the thermoplastic resin include polyethylene resin, polystyrene resin, and polyvinyl chloride resin, and examples of the thermosetting resin include epoxy resin, phenol resin, polyurethane resin, silicon resin, polyimide resin, and melamine resin. In addition, a foam material may be used, and the above-mentioned thermoplastic elastomer, crosslinked rubber, and other resins foamed can also be used.

補強材としては、長繊維、短繊維、織布、不織布などの補強繊維、粒状フィラー等が挙げられるが、長繊維、短繊維、織布、不織布などの補強繊維を用いるのが好ましく、長繊維、又は長繊維を用いた織布(スダレ状織物、メッシュ状織物を含む)がより好ましい。補強繊維としては、例えば、レーヨンコード、ナイロン−6,6等のポリアミドコード、ポリエチレンテレフタレート等のポリエステルコード、アラミドコード、ガラス繊維コード、カーボンファイバー、スチールコード等が挙げられる。粒状フィラーとしては、カーボンブラック、シリカ、アルミナ等のセラミックス、その他の無機フィラーなどが挙げられる。   Examples of the reinforcing material include reinforcing fibers such as long fibers, short fibers, woven fabrics, and non-woven fabrics, and granular fillers. It is preferable to use reinforcing fibers such as long fibers, short fibers, woven fabrics, and non-woven fabrics. Or, a woven fabric (including a suede-like woven fabric and a mesh-like woven fabric) using long fibers is more preferable. Examples of the reinforcing fibers include rayon cords, polyamide cords such as nylon-6,6, polyester cords such as polyethylene terephthalate, aramid cords, glass fiber cords, carbon fibers, steel cords, and the like. Examples of the particulate filler include ceramics such as carbon black, silica, and alumina, and other inorganic fillers.

中間環状部2の形状は、円筒形状に限られず、多角形筒状、などでもよい。 The shape of the intermediate annular portion 2 is not limited to a cylindrical shape, and may be a polygonal cylindrical shape.

中間環状部2の厚みは、内側連結部4と外側連結部5とを十分補強しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さH1の3〜10%が好ましく、4〜9%がより好ましい。   The thickness of the intermediate annular portion 2 is preferably 3 to 10% of the tire cross-section height H1 from the viewpoint of reducing the weight and improving the durability while sufficiently reinforcing the inner connecting portion 4 and the outer connecting portion 5. -9% is more preferable.

中間環状部2の内径は、内側環状部1の内径を超えて、外側環状部3の内径未満となる。但し、中間環状部2の内径としては、前述したような内側連結部4と外側連結部5との補強効果を向上させる観点から、外側環状部3の内径から内側環状部1の内径を差し引いた値の20〜80%の値を、内側環状部1の内径に加えた内径とすることが好ましく、30〜60%の値を、内側環状部1の内径に加えた内径とすることがより好ましい。   The inner annular portion 2 has an inner diameter that exceeds the inner diameter of the inner annular portion 1 and less than the inner diameter of the outer annular portion 3. However, as the inner diameter of the intermediate annular portion 2, the inner diameter of the inner annular portion 1 is subtracted from the inner diameter of the outer annular portion 3 from the viewpoint of improving the reinforcing effect of the inner connecting portion 4 and the outer connecting portion 5 as described above. A value of 20 to 80% of the value is preferably the inner diameter added to the inner diameter of the inner annular portion 1, and a value of 30 to 60% is more preferably the inner diameter added to the inner diameter of the inner annular portion 1. .

中間環状部2の軸方向の幅は、用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The axial width of the intermediate annular portion 2 is appropriately determined according to the application and the like, but is preferably 100 to 300 mm, more preferably 130 to 250 mm, assuming an alternative to a general pneumatic tire.

中間環状部2の引張モジュラスは、内側連結部4と外側連結部5とを十分補強して、耐久性の向上、負荷能力の向上を図る観点から、8000〜180000MPaが好ましく、10000〜50000MPaがより好ましい。   The tensile modulus of the intermediate annular portion 2 is preferably 8000 to 18000 MPa, more preferably 10,000 to 50000 MPa from the viewpoint of sufficiently reinforcing the inner connecting portion 4 and the outer connecting portion 5 to improve durability and load capacity. preferable.

中間環状部2の材質としては、内側環状部1と同様のものが使用でき、熱可塑性エラストマー、架橋ゴム、その他の樹脂等の弾性材料、又はこれらを繊維等の補強材で補強した繊維補強材料、金属等が使用できる。但し、支持構造体SSを製造する際に、一体成形が可能となる観点から、内側環状部1の材質と同じ材料又は母材を使用することが好ましい。   As the material of the intermediate annular portion 2, the same material as that of the inner annular portion 1 can be used, and an elastic material such as a thermoplastic elastomer, a crosslinked rubber and other resins, or a fiber reinforcing material obtained by reinforcing these with a reinforcing material such as a fiber. Metal, etc. can be used. However, when manufacturing the support structure SS, it is preferable to use the same material or base material as the material of the inner annular portion 1 from the viewpoint of enabling integral molding.

中間環状部2の引張モジュラスは、内側環状部1のそれより高いことが好ましいため、熱可塑性エラストマー、架橋ゴム、その他の樹脂等の弾性材料を繊維等で補強した繊維補強材料が好ましい。つまり、図1(b)に示すように、中間環状部2は補強繊維により補強されていることが好ましい。補強繊維は、単数又は複数の層として設けることが可能である。   Since the tensile modulus of the intermediate annular portion 2 is preferably higher than that of the inner annular portion 1, a fiber reinforced material obtained by reinforcing an elastic material such as a thermoplastic elastomer, a crosslinked rubber, or other resin with a fiber or the like is preferable. That is, as shown in FIG.1 (b), it is preferable that the intermediate | middle annular part 2 is reinforced with the reinforcement fiber. The reinforcing fiber can be provided as a single layer or a plurality of layers.

補強繊維としては、長繊維、短繊維、織布、不織布など形態が挙げられるが、長繊維、又は長繊維を用いた織布(スダレ状織物を含む)がより好ましい。その際の補強繊維としては、例えば、レーヨンコード、ナイロン−6,6等のポリアミドコード、ポリエチレンテレフタレート等のポリエステルコード、アラミドコード、ガラス繊維コード、カーボンファイバー、スチールコード等が好ましい。   Examples of the reinforcing fibers include long fibers, short fibers, woven fabrics, non-woven fabrics, and the like, but long fibers or woven fabrics using long fibers (including suede-like woven fabrics) are more preferable. As the reinforcing fiber at that time, for example, rayon cord, polyamide cord such as nylon-6, 6, polyester cord such as polyethylene terephthalate, aramid cord, glass fiber cord, carbon fiber, steel cord and the like are preferable.

外側環状部3の形状は、ユニフォーミティを向上させる観点から、厚みが一定の円筒形状であることが好ましい。外側環状部3の厚みは、外側連結部5からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、タイヤ断面高さH1の2〜7%が好ましく、2〜5%がより好ましい。 The shape of the outer annular portion 3 is preferably a cylindrical shape with a constant thickness from the viewpoint of improving uniformity. The thickness of the outer annular portion 3 is preferably 2 to 7% of the tire cross-section height H1, and preferably 2 to 5% from the viewpoint of reducing the weight and improving the durability while sufficiently transmitting the force from the outer connecting portion 5. Is more preferable.

外側環状部3の内径は、その用途等応じて適宜決定されるが、本発明では中間環状部2を備えるために、外側環状部3の内径を従来より大きくすることが可能である。但し、一般の空気入りタイヤの代替を想定した場合、420〜750mmが好ましく、480〜680mmがより好ましい。   The inner diameter of the outer annular portion 3 is appropriately determined according to its use and the like, but since the intermediate annular portion 2 is provided in the present invention, the inner diameter of the outer annular portion 3 can be made larger than before. However, when an alternative to a general pneumatic tire is assumed, 420 to 750 mm is preferable, and 480 to 680 mm is more preferable.

外側環状部3の軸方向の幅は、用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   The axial width of the outer annular portion 3 is appropriately determined according to the application and the like, but is preferably 100 to 300 mm, and more preferably 130 to 250 mm when an alternative to a general pneumatic tire is assumed.

外側環状部3の引張モジュラスは、図1に示すように外側環状部3の外周に補強層6が設けられている場合には、内側環状部1と同程度に設定できる。このような補強層6を設けない場合には、外側連結部5からの力を十分伝達しつつ、軽量化や耐久性の向上を図る観点から、5〜180000MPaが好ましく、7〜50000MPaがより好ましい。   The tensile modulus of the outer annular portion 3 can be set to the same level as that of the inner annular portion 1 when the reinforcing layer 6 is provided on the outer periphery of the outer annular portion 3 as shown in FIG. In the case where such a reinforcing layer 6 is not provided, 5 to 180000 MPa is preferable, and 7 to 50000 MPa is more preferable from the viewpoint of reducing the weight and improving the durability while sufficiently transmitting the force from the outer connecting portion 5. .

外側環状部3の材質としては、内側環状部1と同様のものが使用でき、熱可塑性エラストマー、架橋ゴム、その他の樹脂等の弾性材料、又はこれらを繊維等の補強材で補強した繊維補強材料、金属等が使用できる。但し、支持構造体SSを製造する際に、一体成形が可能となる観点から、内側環状部1の材質と同じ材料又は母材を使用することが好ましい。   As the material of the outer annular portion 3, the same material as that of the inner annular portion 1 can be used, and an elastic material such as a thermoplastic elastomer, a crosslinked rubber and other resins, or a fiber reinforcing material obtained by reinforcing these with a reinforcing material such as a fiber. Metal, etc. can be used. However, when manufacturing the support structure SS, it is preferable to use the same material or base material as the material of the inner annular portion 1 from the viewpoint of enabling integral molding.

補強層6を設けずに、外側環状部3の引張モジュラスを高める場合、熱可塑性エラストマー、架橋ゴム、その他の樹脂等の弾性材料を繊維等で補強した繊維補強材料が好ましい。つまり、補強層6を設けない場合、外側環状部3は補強繊維により補強されていることが好ましい。   In the case where the tensile modulus of the outer annular portion 3 is increased without providing the reinforcing layer 6, a fiber reinforcing material in which an elastic material such as a thermoplastic elastomer, a crosslinked rubber, or other resin is reinforced with fibers or the like is preferable. That is, when the reinforcing layer 6 is not provided, the outer annular portion 3 is preferably reinforced with reinforcing fibers.

内側連結部4は、内側環状部1と中間環状部2とを連結するものであり、両者の間に適当な間隔を開けるなどして、複数設けられる。内側連結部4は、ユニフォーミティを向上させる観点から、一定の間隔を置いて設けることが好ましい。内側連結部4を全周に渡って設ける際の数(軸方向に複数設ける場合は1個として数える)としては、車両からの荷重を十分支持しつつ、軽量化、動力伝達の向上、耐久性の向上を図る観点から、10〜80個が好ましく、40〜60個がより好ましい。 The inner connecting portion 4 connects the inner annular portion 1 and the intermediate annular portion 2, and a plurality of inner connecting portions 4 are provided, for example, with an appropriate interval between them. It is preferable to provide the inner side connection part 4 with a fixed space | interval from a viewpoint of improving uniformity. As for the number of inner connection parts 4 provided over the entire circumference (when a plurality of inner connection parts 4 are provided in the axial direction, it is counted as one), while supporting the load from the vehicle sufficiently, weight reduction, improvement of power transmission, durability From the viewpoint of improving the quality, 10 to 80 are preferable, and 40 to 60 are more preferable.

個々の内側連結部4の形状としては、板状体、柱状体などが挙げられ、これらの内側連結部4は、正面視断面において、半径方向又は半径方向から傾斜した方向に延びている。非空気圧タイヤの剛性変動を生じにくくすると共に、耐久性を向上させる観点から、正面視断面において、内側連結部4の延設方向が、半径方向±25°以内が好ましく、半径方向±15°以内がより好ましく、半径方向が最も好ましい。   Examples of the shape of each inner connecting portion 4 include a plate-like body and a columnar body, and these inner connecting portions 4 extend in a radial direction or a direction inclined from the radial direction in a front view cross section. From the viewpoint of making the non-pneumatic tire difficult to change in rigidity and improving durability, the extending direction of the inner connecting portion 4 is preferably within ± 25 ° in the radial direction and within ± 15 ° in the radial direction in the front view cross section. Is more preferable, and the radial direction is most preferable.

内側連結部4の厚みは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、タイヤ断面高さH1の4〜12%が好ましく、6〜10%がより好ましい。   The thickness of the inner connecting portion 4 is preferably 4 to 12% of the tire cross-sectional height H1 from the viewpoint of reducing the weight, improving the durability, and improving the lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. 6 to 10% is more preferable.

内側連結部4を軸方向に単数設ける場合、内側連結部4の軸方向の幅は、用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   In the case where a single inner connecting portion 4 is provided in the axial direction, the axial width of the inner connecting portion 4 is appropriately determined according to the application and the like, but when an alternative to a general pneumatic tire is assumed, 100 to 300 mm is Preferably, 130 to 250 mm is more preferable.

内側連結部4の材質としては、内側環状部1と同様のものが使用でき、熱可塑性エラストマー、架橋ゴム、その他の樹脂等の弾性材料、又はこれらを繊維等の補強材で補強した繊維補強材料、金属等が使用できる。但し、支持構造体SSを製造する際に、一体成形が可能となる観点から、内側環状部1の材質と同じ材料又は母材を使用することが好ましい。   As the material of the inner connecting portion 4, the same material as that of the inner annular portion 1 can be used, and an elastic material such as a thermoplastic elastomer, a crosslinked rubber and other resins, or a fiber reinforcing material obtained by reinforcing these with a reinforcing material such as a fiber. Metal, etc. can be used. However, when manufacturing the support structure SS, it is preferable to use the same material or base material as the material of the inner annular portion 1 from the viewpoint of enabling integral molding.

内側連結部4の引張モジュラスは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、内側連結部4が弾性材料のみから構成される場合には、5〜50MPaが好ましく、7〜20MPaがより好ましい。   The tensile modulus of the inner connecting portion 4 is such that the inner connecting portion 4 is made of only an elastic material from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. 5 to 50 MPa is preferable, and 7 to 20 MPa is more preferable.

内側連結部4の引張モジュラスを高めるため、内側連結部4の材質としては、熱可塑性エラストマー、架橋ゴム、その他の樹脂等の弾性材料を繊維等で補強した繊維補強材料が好ましい。つまり、図1(b)に示すように、内側連結部4は補強繊維8により補強されていることが好ましい。なお、内側連結部4が繊維補強材料により構成される場合、内側連結部4の引張モジュラスは、1200〜280000MPaが好ましく、10000〜50000MPaがより好ましい。   In order to increase the tensile modulus of the inner connecting portion 4, the material of the inner connecting portion 4 is preferably a fiber reinforced material in which an elastic material such as a thermoplastic elastomer, a crosslinked rubber, or other resin is reinforced with fibers or the like. That is, as shown in FIG. 1B, the inner connecting portion 4 is preferably reinforced by the reinforcing fibers 8. In addition, when the inner connection part 4 is comprised with a fiber reinforcement material, 1200-280,000 MPa is preferable and, as for the tensile modulus of the inner connection part 4, 10000-50000 MPa is more preferable.

外側連結部5は、外側環状部3と中間環状部2とを連結するものであり、両者の間に適当な間隔を開けるなどして、複数設けられる。外側連結部5は、ユニフォーミティを向上させる観点から、一定の間隔を置いて設けることが好ましい。中間環状部2による補強効果を向上させる観点から、外側連結部5と内側連結部4とは全周の同じ位置に設けている。 The outer connecting portion 5 connects the outer annular portion 3 and the intermediate annular portion 2, and a plurality of outer connecting portions 5 are provided, for example, with an appropriate interval between them. The outer connecting portions 5 are preferably provided at a certain interval from the viewpoint of improving uniformity. From the viewpoint of improving the reinforcing effect of the intermediate annular portion 2, the outer connecting portion 5 and the inner connecting portion 4 are provided at the same position on the entire circumference.

外側連結部5を全周に渡って設ける際の数(軸方向に複数設ける場合は1個として数える)としては、車両からの荷重を十分支持しつつ、軽量化、動力伝達の向上、耐久性の向上を図る観点から、10〜80個が好ましく、40〜60個がより好ましい。   As for the number of outer connecting parts 5 provided over the entire circumference (when a plurality of outer connecting parts 5 are provided in the axial direction, they are counted as one), while supporting the load from the vehicle sufficiently, weight reduction, improvement of power transmission, durability From the viewpoint of improving the quality, 10 to 80 are preferable, and 40 to 60 are more preferable.

個々の外側連結部5の形状としては、板状体、柱状体などが挙げられ、これらの外側連結部5は、正面視断面において、半径方向又は半径方向から傾斜した方向に延びている。非空気圧タイヤの剛性変動を生じにくくすると共に、耐久性を向上させる観点から、正面視断面において、外側連結部5の延設方向が、半径方向±25°以内が好ましく、半径方向±15°以内がより好ましく、半径方向が最も好ましい。   Examples of the shape of each outer connecting portion 5 include a plate-like body and a columnar body, and these outer connecting portions 5 extend in a radial direction or a direction inclined from the radial direction in a front view cross section. From the viewpoint of making the non-pneumatic tire less susceptible to fluctuations in rigidity and improving durability, the extending direction of the outer connecting portion 5 is preferably within ± 25 ° in the radial direction and within ± 15 ° in the radial direction in the front view cross section. Is more preferable, and the radial direction is most preferable.

外側連結部5の厚みは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、タイヤ断面高さH1の4〜12%が好ましく、6〜10%がより好ましい。   The thickness of the outer connecting portion 5 is preferably 4 to 12% of the tire cross-sectional height H1 from the viewpoint of reducing the weight, improving the durability, and improving the lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. 6 to 10% is more preferable.

外側連結部5を軸方向に単数設ける場合、外側連結部5の軸方向の幅は、用途等に応じて適宜決定されるが、一般の空気入りタイヤの代替を想定した場合、100〜300mmが好ましく、130〜250mmがより好ましい。   In the case where a single outer connecting portion 5 is provided in the axial direction, the axial width of the outer connecting portion 5 is appropriately determined according to the application and the like, but assuming an alternative to a general pneumatic tire, 100 to 300 mm is Preferably, 130 to 250 mm is more preferable.

外側連結部5の材質としては、内側環状部1と同様のものが使用でき、熱可塑性エラストマー、架橋ゴム、その他の樹脂等の弾性材料、又はこれらを繊維等の補強材で補強した繊維補強材料、金属等が使用できる。但し、支持構造体SSを製造する際に、一体成形が可能となる観点から、内側環状部1の材質と同じ材料又は母材を使用することが好ましい。   As the material of the outer connecting portion 5, the same material as that of the inner annular portion 1 can be used, and an elastic material such as a thermoplastic elastomer, a crosslinked rubber and other resins, or a fiber reinforcing material obtained by reinforcing these with a reinforcing material such as a fiber. Metal, etc. can be used. However, when manufacturing the support structure SS, it is preferable to use the same material or base material as the material of the inner annular portion 1 from the viewpoint of enabling integral molding.

外側連結部5の引張モジュラスは、内側環状部1からの力を十分伝達しつつ、軽量化や耐久性の向上、横剛性の向上を図る観点から、外側連結部5が弾性材料のみから構成される場合には、5〜50MPaが好ましく、7〜20MPaがより好ましい。   The tensile modulus of the outer connecting portion 5 is such that the outer connecting portion 5 is made of only an elastic material from the viewpoint of reducing weight, improving durability, and improving lateral rigidity while sufficiently transmitting the force from the inner annular portion 1. 5 to 50 MPa is preferable, and 7 to 20 MPa is more preferable.

外側連結部5の引張モジュラスを高めるため、外側連結部5の材質としては、熱可塑性エラストマー、架橋ゴム、その他の樹脂等の弾性材料を繊維等で補強した繊維補強材料が好ましい。つまり、図1(b)に示すように、外側連結部5は補強繊維8により補強されていることが好ましい。なお、外側連結部5が繊維補強材料により構成される場合、外側連結部5の引張モジュラスは、1200〜280000MPaが好ましく、10000〜50000MPaがより好ましい。補強繊維8は、内側環状部1から外側環状部3まで連続して延びており、内側連結部4と外側連結部5を補強している。   In order to increase the tensile modulus of the outer connecting portion 5, the material of the outer connecting portion 5 is preferably a fiber reinforced material in which an elastic material such as thermoplastic elastomer, crosslinked rubber, or other resin is reinforced with fibers or the like. That is, as shown in FIG. 1B, the outer connecting portion 5 is preferably reinforced by the reinforcing fibers 8. In addition, when the outer connection part 5 is comprised with a fiber reinforcement material, 1200-280,000 MPa is preferable and the tensile modulus of the outer connection part 5 is more preferable 10000-50000 MPa. The reinforcing fiber 8 continuously extends from the inner annular portion 1 to the outer annular portion 3 and reinforces the inner connecting portion 4 and the outer connecting portion 5.

本実施形態では、図1に示すように、支持構造体SSの外側環状部3の外側に、その外側環状部3の曲げ変形を補強する補強層6が設けられている例を示す。補強層6としては、従来の空気入りタイヤのベルト層と同様のものを設けることが可能である。 In the present embodiment, as shown in FIG. 1, an example is shown in which a reinforcing layer 6 that reinforces bending deformation of the outer annular portion 3 is provided outside the outer annular portion 3 of the support structure SS. The reinforcing layer 6 can be the same as the belt layer of a conventional pneumatic tire.

補強層6は、単数又は複数の層から構成され、例えば、タイヤ周方向に対して約20°の傾斜角度で平行配列したスチールコード、アラミドコード、レーヨンコード等をゴム引きした層を、スチールコード等が逆方向に交差するように積層して、形成することができる。また、両層の上層に、タイヤ周方向に平行配列した各種コードからなる層を設けてもよい。   The reinforcing layer 6 is composed of one or a plurality of layers. For example, a steel cord, an aramid cord, a rayon cord, etc. rubberized layers arranged in parallel at an inclination angle of about 20 ° with respect to the tire circumferential direction are used as a steel cord. Etc. can be formed so as to cross in the opposite direction. Further, a layer made of various cords arranged in parallel in the tire circumferential direction may be provided on the upper layer of both layers.

本実施形態では、図1に示すように、補強層6の更に外側にトレッド層7が設けられている例を示すが、本発明では、このように外側環状部3の外側の最外層に、トレッド層7が設けられているのが好ましい。トレッド層7としては、従来の空気入りタイヤのトレッド層と同様のものを設けることが可能である。また、トレッドパターンとして、従来の空気入りタイヤと同様のパターンを設けることが可能である。   In the present embodiment, as shown in FIG. 1, an example in which a tread layer 7 is provided on the outer side of the reinforcing layer 6 is shown, but in the present invention, on the outermost layer on the outer side of the outer annular portion 3 in this way, A tread layer 7 is preferably provided. As the tread layer 7, it is possible to provide the same tread layer as that of a conventional pneumatic tire. Moreover, it is possible to provide the same pattern as a conventional pneumatic tire as a tread pattern.

例えば、トレッド層7を形成するトレッドゴムの原料としては、天然ゴム、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、イソプレンゴム(IR)、ブチルゴム(IIR)等が挙げられる。これらのゴムはカーボンブラックやシリカ等の充填材で補強されると共に、加硫剤、加硫促進剤、可塑剤、老化防止剤等が適宜配合される。   For example, the raw material of the tread rubber forming the tread layer 7 includes natural rubber, styrene butadiene rubber (SBR), butadiene rubber (BR), isoprene rubber (IR), butyl rubber (IIR) and the like. These rubbers are reinforced with fillers such as carbon black and silica, and a vulcanizing agent, a vulcanization accelerator, a plasticizer, an antiaging agent, and the like are appropriately blended.

本実施形態では、外側環状部3の外側に補強層6を介してトレッド層7を設ける例を示したが、本発明では、外側環状部3に直接トレッド層を設けることも可能である。また、用途によっては、トレッド層を省略することも可能である。   In the present embodiment, an example in which the tread layer 7 is provided on the outer side of the outer annular portion 3 via the reinforcing layer 6 has been described. However, in the present invention, it is also possible to provide a tread layer directly on the outer annular portion 3. Depending on the application, the tread layer can be omitted.

本発明の製造方法により製造される非空気圧タイヤは、耐久性に優れると共に、スポーク位置と接地面中央位置との位置関係によって剛性変動が生じにくいため、従来の空気入りタイヤの代替が可能となると共に、ソリッドタイヤ、スプリングタイヤ、クッションタイヤ等の非空気圧タイヤの代替として使用することが可能となる。一般の空気入りタイヤ以外の具体的な用途としては、例えば車椅子用タイヤ、建設車両用タイヤ等が挙げられる。   The non-pneumatic tire manufactured by the manufacturing method of the present invention is excellent in durability, and is less likely to cause rigidity fluctuation depending on the positional relationship between the spoke position and the center position of the ground contact surface, so that a conventional pneumatic tire can be substituted. In addition, it can be used as a substitute for non-pneumatic tires such as solid tires, spring tires, and cushion tires. Specific uses other than general pneumatic tires include wheelchair tires, construction vehicle tires, and the like.

<非空気圧タイヤの製造方法>
本発明にかかる非空気圧タイヤの製造方法について、図面を参照しながら説明する。図2は、支持構造体SSの製造に用いられる製造装置の構成を示す。(a)は装置を上方から見た上面図、(b)は(a)のA−A断面図である。
<Method for producing non-pneumatic tire>
A method for producing a non-pneumatic tire according to the present invention will be described with reference to the drawings. FIG. 2 shows a configuration of a manufacturing apparatus used for manufacturing the support structure SS. (A) is the top view which looked at the apparatus from upper direction, (b) is AA sectional drawing of (a).

本発明の非空気圧タイヤは、モールド成型、射出成型などにより支持構造体SSを製造した後、必要に応じて、補強層6、トレッド層7などを形成して製造することができる。図2(a)の破線で示すように、モールド10内には、内側環状部1、中間環状部2、外側環状部3、内側連結部4、外側連結部5を成型するために、それぞれ内側環状部成型部11、中間環状部成型部12、外側環状部成型部13、内側連結部成型部14、外側連結部成型部15を備えている。また、モールド10の内周部10aであって、隣接する内側連結部成型部14の間には、内側環状部成型部11へ弾性材料の原料液を注入するための注入口10cが設けられている。この注入口10cから弾性材料の原料液を高圧で注入することにより、内側環状部成型部11、中間環状部成型部12、外側環状部成型部13、内側連結部成型部14、外側連結部成型部15に弾性材料の原料液を充填することができる。内側連結部成型部14と外側連結部成型部15はともに連結部成型部に相当する。なお、注入口10cは、図示していないが、周方向に複数設けられている。   The non-pneumatic tire of the present invention can be manufactured by forming the support layer SS by molding, injection molding, or the like, and then forming the reinforcing layer 6, the tread layer 7 or the like as necessary. As shown by a broken line in FIG. 2A, in the mold 10, in order to mold the inner annular portion 1, the intermediate annular portion 2, the outer annular portion 3, the inner connecting portion 4 and the outer connecting portion 5, respectively, An annular part molding part 11, an intermediate annular part molding part 12, an outer annular part molding part 13, an inner coupling part molding part 14, and an outer coupling part molding part 15 are provided. In addition, an injection port 10 c for injecting a raw material liquid of an elastic material into the inner annular portion molding portion 11 is provided between the adjacent inner connection portion molding portions 14 on the inner peripheral portion 10 a of the mold 10. Yes. By injecting the raw material liquid of the elastic material from the injection port 10c at a high pressure, the inner annular portion molding portion 11, the intermediate annular portion molding portion 12, the outer annular portion molding portion 13, the inner coupling portion molding portion 14, and the outer coupling portion molding. The portion 15 can be filled with a raw material liquid of an elastic material. Both the inner connection part molding part 14 and the outer connection part molding part 15 correspond to a connection part molding part. In addition, although not shown in figure, the injection port 10c is provided with two or more by the circumferential direction.

図2(a)に示すように、モールド10の内周部10aには、軸芯Oから内側連結部成型部14に向かう貫通孔10dが設けられており、補強繊維8が貫通可能である。また、モールド10の外周部10bにも、外側連結部成型部15から半径方向外側に向かう貫通孔10eが設けられており、補強繊維8が貫通可能である。すなわち、一本の補強繊維8は、貫通孔10d、内側連結部成型部14、外側連結部成型部15、貫通孔10eを通過することができるようになっている。なお、貫通孔10d,10eは、使用する補強繊維8の本数に相当する個数が軸芯O方向に並設される。   As shown in FIG. 2A, the inner peripheral portion 10a of the mold 10 is provided with a through hole 10d extending from the shaft core O toward the inner connecting portion molding portion 14 so that the reinforcing fiber 8 can pass therethrough. Further, the outer peripheral portion 10b of the mold 10 is also provided with a through hole 10e extending radially outward from the outer connecting portion molding portion 15, and the reinforcing fiber 8 can be penetrated. That is, one reinforcing fiber 8 can pass through the through hole 10d, the inner connecting portion molding portion 14, the outer connecting portion molding portion 15, and the through hole 10e. The through holes 10d and 10e are arranged in parallel in the direction of the axis O, corresponding to the number of reinforcing fibers 8 to be used.

図2(b)に示すように、補強繊維8の一端部8aは、貫通孔10dを貫通し、先端に設けたループにピン16を通すことにより、モールド10の内周部10aに係止される。ピン16は補強繊維8ごとに係止してもよいし、複数の補強繊維8を同時に係止してもよい。なお、本実施形態では、貫通孔10dが係止部に相当し、ピン16により補強繊維8の一端部8aを係止しているが、補強繊維8の一端部8aを係止する方法としては、これに限定されず、適宜の方法を用いることができる。   As shown in FIG. 2 (b), the one end 8a of the reinforcing fiber 8 passes through the through hole 10d and is passed through the loop provided at the tip so as to be locked to the inner peripheral portion 10a of the mold 10. The The pin 16 may be locked for each reinforcing fiber 8 or a plurality of reinforcing fibers 8 may be locked simultaneously. In the present embodiment, the through hole 10d corresponds to a locking portion, and the one end 8a of the reinforcing fiber 8 is locked by the pin 16, but as a method of locking the one end 8a of the reinforcing fiber 8, However, the present invention is not limited to this, and an appropriate method can be used.

モールド10の外周部10bの外側には、プーリー17が複数設けられている。プーリー17は、不図示の支持手段により回動自在に設けられる。また、図2(b)のように、複数のプーリー17は、半径方向および軸芯O方向にそれぞれずらして設けられている。補強繊維8をプーリー17にかけ、補強繊維8の他端部8bに錘18を取り付けることで、錘18の自重により補強繊維8に引張力を付与することができる。   A plurality of pulleys 17 are provided outside the outer peripheral portion 10 b of the mold 10. The pulley 17 is rotatably provided by support means (not shown). As shown in FIG. 2B, the plurality of pulleys 17 are provided so as to be shifted in the radial direction and the axis O direction. By applying the reinforcing fiber 8 to the pulley 17 and attaching the weight 18 to the other end 8 b of the reinforcing fiber 8, a tensile force can be applied to the reinforcing fiber 8 by the weight of the weight 18.

このようにして、補強繊維8に半径方向の引張力を付与した状態において、モールド10内に注入口10cから弾性材料の原料液を高圧で注入する。これにより、支持構造体SS、すなわち、内側環状部1、中間環状部2、外側環状部3、内側連結部4、外側連結部5を一体成型することができる。なお、内側環状部1の内側、および外側環状部3の外側の余分な補強繊維8は切断する。その後、必要に応じて、補強層6、トレッド層7などを形成して非空気圧タイヤを製造することができる。   In this manner, the raw material liquid of the elastic material is injected into the mold 10 from the injection port 10c at a high pressure in a state where a radial tensile force is applied to the reinforcing fiber 8. Thereby, the support structure SS, that is, the inner annular portion 1, the intermediate annular portion 2, the outer annular portion 3, the inner coupling portion 4, and the outer coupling portion 5 can be integrally molded. The excess reinforcing fibers 8 inside the inner annular portion 1 and outside the outer annular portion 3 are cut. Thereafter, if necessary, the non-pneumatic tire can be manufactured by forming the reinforcing layer 6, the tread layer 7, and the like.

支持構造体SSを成型する際、補強繊維8は半径方向に引張力を付与した状態で内側連結部4および外側連結部5と一体となるので、内側連結部4および外側連結部5は、引張力に対しては補強繊維8の働きにより高引張モジュラスとなり、一方で圧縮力に対しては補強繊維8が働かないので低圧縮モジュラスとなる。また、補強繊維8を半径方向に引張力を付与した状態で弾性材料の原料液を注入するので、高圧の弾性材料の原料液によって補強繊維8が偏ってしまい、補強の役割を果たさなくなる不都合も生じない。したがって、本発明の非空気圧タイヤの製造方法によれば、支持構造体SSの内側連結部4および外側連結部5(スポーク部分)が効果的に繊維で補強された非空気圧タイヤを製造することができる。   When the support structure SS is molded, the reinforcing fibers 8 are integrated with the inner connecting portion 4 and the outer connecting portion 5 in a state where a tensile force is applied in the radial direction, so that the inner connecting portion 4 and the outer connecting portion 5 are tensioned. A high tensile modulus is obtained with respect to the force by the action of the reinforcing fiber 8, while a low compression modulus is obtained with respect to the compressive force because the reinforcing fiber 8 does not work. Moreover, since the raw material liquid of the elastic material is injected in a state where the reinforcing fiber 8 is given a tensile force in the radial direction, the reinforcing fiber 8 is biased by the raw material liquid of the high-pressure elastic material, so that the reinforcing fiber 8 does not play a reinforcing role. Does not occur. Therefore, according to the method for manufacturing a non-pneumatic tire of the present invention, it is possible to manufacture a non-pneumatic tire in which the inner connecting portion 4 and the outer connecting portion 5 (spoke portion) of the support structure SS are effectively reinforced with fibers. it can.

[他の実施形態]
(1)前述の実施形態では、内側環状部1と外側環状部3を連結するために、内側環状部1と外側環状部3との間に中間環状部2を設け、連結部として、内側連結部4と外側連結部5とを備えている。しかし、中間環状部2を設けず、内側環状部1と外側環状部3をひとつの連結部で連結してもよい。また、中間環状部2を複数設けることも可能である。
[Other Embodiments]
(1) In the above-described embodiment, in order to connect the inner annular portion 1 and the outer annular portion 3, the intermediate annular portion 2 is provided between the inner annular portion 1 and the outer annular portion 3, and the inner coupling is used as the coupling portion. A portion 4 and an outer connecting portion 5 are provided. However, the intermediate annular portion 2 may not be provided, and the inner annular portion 1 and the outer annular portion 3 may be connected by a single connecting portion. It is also possible to provide a plurality of intermediate annular portions 2.

(2)前述の実施形態では、内側連結部4および外側連結部5は、正面視断面においてほぼ半径方向に延びているが、半径方向から大きく傾斜した方向に延びていてもよい。すなわち、周方向に隣接する連結部(内側連結部4または外側連結部5)を互いに半径方向に対して反対方向に傾斜させてV字型を構成するように成型してもよい。このように隣接する連結部をV字型に成型すると、タイヤ前後方向の力に対して有効となる。   (2) In the above-described embodiment, the inner connecting portion 4 and the outer connecting portion 5 extend substantially in the radial direction in the front sectional view, but may extend in a direction greatly inclined from the radial direction. That is, you may shape | mold so that the connection part (inner connection part 4 or the outer connection part 5) adjacent to the circumferential direction may incline in the opposite direction mutually with respect to a radial direction, and may comprise V shape. In this way, when the adjacent connecting portions are molded into a V shape, it becomes effective against the force in the tire longitudinal direction.

(3)前述の実施形態では、補強繊維8の一端部8aをモールド10に係止するようにしたが、補強繊維8の一端部8aを、内側環状部1を補強するためのネット状補強繊維に係止するようにして、他端部8bを引っ張るようにしてもよい。   (3) In the above-described embodiment, the one end portion 8a of the reinforcing fiber 8 is locked to the mold 10, but the one end portion 8a of the reinforcing fiber 8 is a net-like reinforcing fiber for reinforcing the inner annular portion 1. The other end portion 8b may be pulled so as to be locked to.

(4)また、補強繊維8に引張力を付与する方法としては、前述の実施形態のほか図3に示すような方法も例示される。図3(a)のように、ボビン20に巻回された補強繊維8の一端部にループ8cを設け、このループ8cを針21の後端に掛ける(破線で囲んだ円内の拡大図を図3(a)下部に示す)。次いで、図3(b)のように、ボビン20から補強繊維8を繰り出しながら、針21をモールド10の内周部10aの貫通孔10dと外周部10bの貫通孔10eにボビン20に近い位置から交互に通していく。このとき、モールド10の内周部10aと外周部10bには、補強繊維8をガイドするローラ22が複数設けられており、補強繊維8は、貫通孔10d,10eをスムースに通過することができる。最後に、図3(c)に示すように、補強繊維8のループ8cを、針21の後端から外してモールド10の外周部10bに設けたフック23に掛け、ボビン20を補強繊維8に引張力が付与される方向(図の時計周り方向)に回転させる。この方法によれば、一本一本の補強繊維8の他端部8bに錘18を設けて引張力を付与する方法に比べて、製造装置は省スペースとすることができる。   (4) Further, as a method for applying a tensile force to the reinforcing fiber 8, a method as shown in FIG. As shown in FIG. 3A, a loop 8c is provided at one end of the reinforcing fiber 8 wound around the bobbin 20, and the loop 8c is hung on the rear end of the needle 21 (an enlarged view in a circle surrounded by a broken line). FIG. 3 (a) shows the lower part). Next, as shown in FIG. 3B, while feeding the reinforcing fiber 8 from the bobbin 20, the needle 21 is inserted into the through hole 10 d of the inner peripheral part 10 a and the through hole 10 e of the outer peripheral part 10 b from a position close to the bobbin 20. Pass alternately. At this time, the inner peripheral portion 10a and the outer peripheral portion 10b of the mold 10 are provided with a plurality of rollers 22 for guiding the reinforcing fibers 8, and the reinforcing fibers 8 can smoothly pass through the through holes 10d and 10e. . Finally, as shown in FIG. 3 (c), the loop 8 c of the reinforcing fiber 8 is removed from the rear end of the needle 21 and hooked on the hook 23 provided on the outer peripheral portion 10 b of the mold 10, and the bobbin 20 is attached to the reinforcing fiber 8. Rotate in the direction in which a tensile force is applied (clockwise direction in the figure). According to this method, the manufacturing apparatus can save space as compared with a method in which a weight 18 is applied to the other end 8b of each reinforcing fiber 8 to apply a tensile force.

本発明の製造方法により製造される非空気圧タイヤの一例を示す正面図The front view which shows an example of the non-pneumatic tire manufactured with the manufacturing method of this invention 本発明の非空気圧タイヤの製造方法の一例を説明するための説明図Explanatory drawing for demonstrating an example of the manufacturing method of the non-pneumatic tire of this invention 本発明の非空気圧タイヤの製造方法の他の例を説明するための説明図Explanatory drawing for demonstrating the other example of the manufacturing method of the non-pneumatic tire of this invention

符号の説明Explanation of symbols

1 内側環状部
2 中間環状部
3 外側環状部
4 内側連結部
5 外側連結部
8 補強繊維
8a 一端部
8b 他端部
10 モールド
11 内側環状部成型部
12 中間環状部成型部
13 外側環状部成型部
14 内側連結部成型部
15 外側連結部成型部
16 ピン
17 プーリー
18 錘
DESCRIPTION OF SYMBOLS 1 Inner annular part 2 Intermediate annular part 3 Outer annular part 4 Inner coupling part 5 Outer coupling part 8 Reinforcing fiber 8a One end part 8b Other end part 10 Mold 11 Inner annular part molding part 12 Intermediate annular part molding part 13 Outer annular part molding part 14 Inner connection part molding part 15 Outer connection part molding part 16 Pin 17 Pulley 18 Weight

Claims (4)

内側環状部と、その内側環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記外側環状部とを連結する複数の連結部とから構成され、車両からの荷重を支持するための支持構造体を備える非空気圧タイヤの製造方法であって、
モールド内の連結部成型部に正面視で前記連結部の方向に沿って引張力を付与した状態で補強繊維を配置する工程と、
モールド内に弾性材料の原料液を注入して、前記内側環状部と、前記外側環状部と、前記補強繊維と一体となって補強された前記連結部とを成型する工程とを備えたことを特徴とする非空気圧タイヤの製造方法。
An inner annular portion, an outer annular portion concentrically provided on the outer side of the inner annular portion, and a plurality of connecting portions that connect the inner annular portion and the outer annular portion. A non-pneumatic tire manufacturing method comprising a support structure for supporting,
A step of arranging reinforcing fibers in a state in which a tensile force is applied along the direction of the connecting portion in a front view to the connecting portion molding portion in the mold; and
Injecting a raw material solution of an elastic material into the mold, and molding the inner annular portion, the outer annular portion, and the connecting portion reinforced integrally with the reinforcing fiber. A manufacturing method of a non-pneumatic tire characterized by the above.
内側環状部と、その内側環状部の外側に同心円状に設けられた中間環状部と、その中間環状部の外側に同心円状に設けられた外側環状部と、前記内側環状部と前記中間環状部とを連結する複数の内側連結部と、前記外側環状部と前記中間環状部とを連結する複数の外側連結部とから構成され、車両からの荷重を支持するための支持構造体を備える非空気圧タイヤの製造方法であって、
モールド内の内側連結部成型部および外側連結部成型部に正面視で前記内側連結部および前記外側連結部の方向に沿って引張力を付与した状態で補強繊維を配置する工程と、
モールド内に弾性材料の原料液を注入して、前記内側環状部と、前記中間環状部と、前記外側環状部と、前記補強繊維と一体となって補強された前記内側連結部と、前記補強繊維と一体となって補強された前記外側連結部とを成型する工程とを備えたことを特徴とする非空気圧タイヤの製造方法。
An inner annular part, an intermediate annular part provided concentrically outside the inner annular part, an outer annular part provided concentrically outside the intermediate annular part, the inner annular part and the intermediate annular part Non-pneumatic comprising a support structure for supporting a load from a vehicle, and a plurality of inner connecting portions that connect the outer annular portion and a plurality of outer connecting portions that connect the intermediate annular portion. A tire manufacturing method comprising:
Arranging the reinforcing fibers in a state in which a tensile force is applied along the direction of the inner connecting portion and the outer connecting portion in a front view to the inner connecting portion molding portion and the outer connecting portion molding portion in the mold; and
Injecting a raw material liquid of an elastic material into the mold, the inner annular portion, the intermediate annular portion, the outer annular portion, the inner connecting portion reinforced together with the reinforcing fiber, and the reinforcement A method for producing a non-pneumatic tire, comprising the step of molding the outer connecting portion reinforced together with fibers.
前記補強繊維の一端部を、前記内側環状部の内側の前記モールドに設けた係止部に係止し、他端部を引っ張ることで、前記補強繊維に引張力を付与することを特徴とする請求項1又は2に記載の非空気圧タイヤの製造方法。   One end portion of the reinforcing fiber is locked to a locking portion provided in the mold inside the inner annular portion, and a tensile force is applied to the reinforcing fiber by pulling the other end portion. The manufacturing method of the non-pneumatic tire according to claim 1 or 2. 前記補強繊維を前記外側環状部の外側に設けたプーリーにかけ、前記他端部に取り付けた錘により前記補強繊維に引張力を付与することを特徴とする請求項3に記載の非空気圧タイヤの製造方法。   The non-pneumatic tire manufacturing method according to claim 3, wherein the reinforcing fiber is applied to a pulley provided outside the outer annular portion, and a tensile force is applied to the reinforcing fiber by a weight attached to the other end portion. Method.
JP2008163487A 2008-06-23 2008-06-23 Non-pneumatic tire manufacturing method Active JP5033070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008163487A JP5033070B2 (en) 2008-06-23 2008-06-23 Non-pneumatic tire manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008163487A JP5033070B2 (en) 2008-06-23 2008-06-23 Non-pneumatic tire manufacturing method

Publications (2)

Publication Number Publication Date
JP2010000761A JP2010000761A (en) 2010-01-07
JP5033070B2 true JP5033070B2 (en) 2012-09-26

Family

ID=41582863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008163487A Active JP5033070B2 (en) 2008-06-23 2008-06-23 Non-pneumatic tire manufacturing method

Country Status (1)

Country Link
JP (1) JP5033070B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5774406B2 (en) * 2011-08-01 2015-09-09 東洋ゴム工業株式会社 Non-pneumatic tire
JP5879089B2 (en) * 2011-10-20 2016-03-08 株式会社ブリヂストン Non-pneumatic tire manufacturing method
WO2018067597A1 (en) * 2016-10-03 2018-04-12 Compagnie Generale Des Etablissements Michelin Reinforced rubber spoke for a tire
US10259179B2 (en) * 2016-11-15 2019-04-16 The Goodyear Tire & Rubber Company Method of producing a non-pneumatic support structure
FR3061675A1 (en) 2017-01-12 2018-07-13 Compagnie Generale Des Etablissements Michelin ASSEMBLY COMPRISING A ROMPABLE STRUCTURE AND A CARRIER STRUCTURE
FR3061674A1 (en) * 2017-01-12 2018-07-13 Compagnie Generale Des Etablissements Michelin ASSEMBLY COMPRISING PARTIALLY BREAKABLE FABRIC AND CARRIER STRUCTURE
FR3061673A1 (en) * 2017-01-12 2018-07-13 Compagnie Generale Des Etablissements Michelin ASSEMBLY COMPRISING AN ELASTIC STRUCTURE AND A CARRIER STRUCTURE
CN113226794B (en) * 2018-12-28 2023-04-25 普利司通美国轮胎运营有限责任公司 Non-pneumatic tire with reinforced support structure
BR112021020353A2 (en) * 2019-04-11 2021-12-07 Michelin & Cie Solid tire made from elastomeric material for a cable car pulley
US20220194129A1 (en) * 2020-12-21 2022-06-23 The Goodyear Tire & Rubber Company Non-pneumatic tire and wheel assembly with reinforced spoke structure

Also Published As

Publication number Publication date
JP2010000761A (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP5033070B2 (en) Non-pneumatic tire manufacturing method
US9643453B2 (en) Annular structure having multiple reinforcement bands
JP4530231B2 (en) Non-pneumatic tire
JP5225743B2 (en) Non-pneumatic tire
JP5208570B2 (en) Non-pneumatic tires, rim wheels, and wheels
JP4818220B2 (en) Non-pneumatic tire and manufacturing method thereof
JP5314621B2 (en) Non-pneumatic tire
US20100200131A1 (en) Non-pneumatic tire and its manufacturing method
JP4674253B2 (en) Non-pneumatic tire
JP5461303B2 (en) Non-pneumatic tire
JP5436365B2 (en) Non-pneumatic tire
US11021015B2 (en) Non-pneumatic tire
JP5808048B2 (en) Non-pneumatic tire
JP5530258B2 (en) Non-pneumatic tire and manufacturing method thereof
JP2011183894A (en) Non-pneumatic tire
JP2016113105A (en) Non-pneumatic tire
JP5921364B2 (en) Non-pneumatic tire
JP5774905B2 (en) Non-pneumatic tire
JP6377515B2 (en) Non-pneumatic tire
JP2013018462A (en) Non-pneumatic tire
JP2016199069A (en) Non-pneumatic tire
JP2010274776A (en) Non-pneumatic tire
JP6351109B2 (en) Non-pneumatic tire
JP6045401B2 (en) Non-pneumatic tire
JP2017100640A (en) Non-pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120629

R150 Certificate of patent or registration of utility model

Ref document number: 5033070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250