JP5392778B2 - Battery and capacitor electrode materials - Google Patents

Battery and capacitor electrode materials Download PDF

Info

Publication number
JP5392778B2
JP5392778B2 JP2010005545A JP2010005545A JP5392778B2 JP 5392778 B2 JP5392778 B2 JP 5392778B2 JP 2010005545 A JP2010005545 A JP 2010005545A JP 2010005545 A JP2010005545 A JP 2010005545A JP 5392778 B2 JP5392778 B2 JP 5392778B2
Authority
JP
Japan
Prior art keywords
polymer
electrode
bbl
battery
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010005545A
Other languages
Japanese (ja)
Other versions
JP2011146221A (en
Inventor
順也 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010005545A priority Critical patent/JP5392778B2/en
Publication of JP2011146221A publication Critical patent/JP2011146221A/en
Application granted granted Critical
Publication of JP5392778B2 publication Critical patent/JP5392778B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、プロトンポリマー電池およびキャパシタに用いる新規な電極材料に関する。   The present invention relates to a novel electrode material used for proton polymer batteries and capacitors.

プロトンポリマー電池は、酸水溶液を電解液として用い、電極には有機材料を用いることから、従来の電池に比べて、軽量、安全、環境負荷の小さい電池として注目されている(特許文献1、非特許文献1)。さらに、高速での充放電が可能なことから、キャパシタとしての利用も期待されている。一般にプロトンポリマー電池では、負極にポリフェニルキノキサリン(PPQ)、正極にインドール三量体が用いられている。   A proton polymer battery uses an acid aqueous solution as an electrolyte and uses an organic material for an electrode. Therefore, it is attracting attention as a battery that is lighter, safer, and has a lower environmental load than conventional batteries (Patent Document 1, Non-Patent Document 1, Patent Document 1). Furthermore, since it can be charged and discharged at high speed, it is expected to be used as a capacitor. In general, proton polymer batteries use polyphenylquinoxaline (PPQ) for the negative electrode and indole trimer for the positive electrode.

負極のPPQは、充電時にイミンからアミンに電気化学的に還元されることによって電荷を蓄える(図1)。図1に示すように、PPQは繰り返しユニット当たり2個の電子を蓄えることができる。これから求められる単位質量当たりの電荷貯蔵容量の理論値は110mAh・g-1となる(非特許文献2)が、より高性能の電池やキャパシタを得るために、更に電荷貯蔵容量を高めることが求められている。 The PPQ of the negative electrode stores electric charge by being electrochemically reduced from imine to amine during charging (FIG. 1). As shown in FIG. 1, PPQ can store two electrons per repeating unit. The theoretical value of the charge storage capacity per unit mass to be obtained from now is 110 mAh · g −1 (Non-patent Document 2), but in order to obtain higher performance batteries and capacitors, it is required to further increase the charge storage capacity. It has been.

単位質量当たりの電荷貯蔵容量は、繰り返しユニットの質量を小さくすることにより高めることができるが、一方で、電池の寿命を向上させるためには、電極に用いる材料の化学的な安定性が高い必要がある。PPQは、フェニルキノキサリン環の活性な2位水素を不活性なフェニル基で置換することによって、その化学的安定性を高めており、繰り返しユニットの質量を小さくすることは困難である。   The charge storage capacity per unit mass can be increased by reducing the mass of the repetitive unit. On the other hand, in order to improve the battery life, the material used for the electrode must have high chemical stability. There is. PPQ enhances its chemical stability by replacing the active 2-position hydrogen of the phenylquinoxaline ring with an inactive phenyl group, and it is difficult to reduce the mass of the repeating unit.

特開2000−260422号JP 2000-260422 A

西山利彦ほか,NEC技報, 53, 75-79 (2000).Toshihiko Nishiyama et al., NEC Technical Report, 53, 75-79 (2000). Petit M. A. et al, J. Electrochem. Soc., 140, 2498-2500 (1993).Petit M. A. et al, J. Electrochem. Soc., 140, 2498-2500 (1993). Van Dausen R. L. et al, J. Polym. Sci. A-1, 6, 1777-1793 (1968).Van Dausen R. L. et al, J. Polym. Sci. A-1, 6, 1777-1793 (1968). Hegenrother P. M., Polym. Eng. Sci., 16, 303-308 (1976).Hegenrother P. M., Polym. Eng. Sci., 16, 303-308 (1976).

本発明は、従来のプロトンポリマー電池の負極やキャパシタ電極よりも単位質量当たりの電荷貯蔵容量が高く、かつ、化学安定性の高い電極材料を得ることを課題とする。   An object of the present invention is to obtain an electrode material having a higher charge storage capacity per unit mass and higher chemical stability than a negative electrode or a capacitor electrode of a conventional proton polymer battery.

本発明者らは、分子を環状構造にすると、繰り返しユニットの質量を大きく増大させることなく、化学的安定性を高めることができることに着目し、鋭意検討した結果、ベンズイミダゾベンゾフェナントロリンラダー(BBL)ポリマーを電極材料とすることにより、単位質量当たりの電荷貯蔵容量を顕著に高めることができ、更に化学的安定性をも高めることができることを見出し、本発明を完成した。   The present inventors paid attention to the fact that, when the molecule is made into a cyclic structure, the chemical stability can be enhanced without greatly increasing the mass of the repeating unit, and as a result of intensive studies, the benzimidazobenzophenanthroline ladder (BBL) It has been found that by using a polymer as an electrode material, the charge storage capacity per unit mass can be remarkably increased, and further the chemical stability can be enhanced, and the present invention has been completed.

BBLポリマー(図2)は、完全な環状構造からなる高分子であり(非特許文献3)、図3に示すように、PPQよりも顕著に高い熱的安定性と、化学的安定性を有する。また、PPQの単位重量当たりの電荷貯蔵容量が理論値においても110mAh・g-1に留まるのに対し、BBLは、およそ155mAh・g-1の単位重量当たりの電荷貯蔵容量を有し(図3)、単位体積当たりに換算すると、240mAh・cm-3の電荷貯蔵容量を有する。 The BBL polymer (FIG. 2) is a polymer having a complete cyclic structure (Non-patent Document 3), and as shown in FIG. 3, has significantly higher thermal stability and chemical stability than PPQ. . Further, while the stay 110 mAh · g -1 also in the charge storage capacity is the theoretical value per unit weight of PPQ, BBL has a charge storage capacity per unit weight of approximately 155 mAh · g -1 (Figure 3 ) When converted per unit volume, it has a charge storage capacity of 240 mAh · cm −3 .

したがって、当該BBLを電極材料として用いることにより、より高性能のプロトンポリマー電池やキャパシタを作製することができる。   Therefore, by using the BBL as an electrode material, a higher performance proton polymer battery or capacitor can be produced.

すなわち、この出願は以下の発明を提供するものである。
〈1〉以下の式で表される、ベンズイミダゾベンゾフェナントロリンラダー(BBL)ポリマーを含む電極材料。

Figure 0005392778
〈2〉電極が、プロトンポリマー電池の負極であることを特徴とする、〈1〉に記載の電極材料。
〈3〉電極が、キャパシタ電極であることを特徴とする、〈1〉に記載の電極材料。
〈4〉〈1〉に記載の電極材料を含む負極を有する、プロトンポリマー電池。
〈5〉〈1〉に記載の電極材料を含む電極を有する、キャパシタ。 That is, this application provides the following inventions.
<1> An electrode material containing a benzimidazobenzophenanthroline ladder (BBL) polymer represented by the following formula.
Figure 0005392778
<2> The electrode material according to <1>, wherein the electrode is a negative electrode of a proton polymer battery.
<3> The electrode material according to <1>, wherein the electrode is a capacitor electrode.
<4> A proton polymer battery having a negative electrode including the electrode material according to <1>.
<5> A capacitor having an electrode containing the electrode material according to <1>.

本発明のBBLポリマーを含む電極材料は、従来のプロトンポリマー電池の負極やキャパシタ電極に用いられていたポリマー電極材料の電荷貯蔵容量が小さいという問題を解決することができ、更にその熱安定性、化学的安定性を高めることができる。これにより、当該電極材料を用いることによって、より高性能のプロトンポリマー電池やキャパシタを作製することができる。   The electrode material containing the BBL polymer of the present invention can solve the problem that the charge storage capacity of the polymer electrode material used for the negative electrode and capacitor electrode of conventional proton polymer batteries is small, and further its thermal stability, Chemical stability can be increased. Thereby, a higher performance proton polymer battery and a capacitor can be produced by using the electrode material.

1MのH2SO4中でのポリフェニルキノキサリン(PPQ)の酸化還元反応。Redox reaction of polyphenylquinoxaline (PPQ) in 1M H 2 SO 4 . ベンズイミダゾベンゾフェナントロリンラダー(BBL)の化学構造。Chemical structure of benzimidazobenzophenanthroline ladder (BBL). 炭化温度に対するBBLポリマーフィルムの相対質量 加熱速度は2℃・min-1、BBLの固有粘度は0.92dl・g-1Relative mass of BBL polymer film with respect to carbonization temperature Heating rate is 2 ℃ ・ min −1 , BBL intrinsic viscosity is 0.92 dl ・ g −1 . 1MのH2SO4中でのBBLポリマーフィルムのサイクリックボルタモグラム。掃引速度は図面中に表示。予想される酸化還元反応は図5に示す。Cyclic voltammogram of BBL polymer film in 1M H 2 SO 4 . The sweep speed is displayed in the drawing. The expected redox reaction is shown in FIG. 1MのH2SO4中でのBBLポリマーの酸化還元反応。Redox reaction of BBL polymer in 1M H 2 SO 4 .

本発明を以下の実施例により更に詳細に説明する。   The invention is illustrated in more detail by the following examples.

実施例1
(実験)
BBLポリマーは、Van Dausenらの方法(非特許文献3)にしたがって調製した。まず、テトラアミノベンゼン四塩化水素(TAB・4HCl)をポリリン酸(PPA)に溶解し、100℃で撹拌して脱塩化水素化した。次に、等モルの1,4,5,8-ナフタレンテトラカルボン酸(NTCA)を加え、撹拌しながら200℃で24hr保持して重合を行った。得られたポリマーのPPA溶液を純水に投入してポリマーを凝固させ、純水、メタノール(MeOH)で順次洗浄した後、減圧乾燥した。ポリマー中に含まれる不純物を除去するために、乾燥させたポリマーをメタンスルホン酸(MSA)に溶解し、再度凝固させ、純水、ジメチルアセトアミド、MeOHで順次洗浄した後、240℃において減圧乾燥した。表1に示す種々のモノマー濃度において重合を行い、収率および固有粘度に及ぼすモノマー濃度の影響について検討した。ポリマーの固有粘度は、濃度0.15g・dl-1のMSA溶液について30℃において測定した。BBLポリマーフィルムは、ポリマーのMSA溶液からキャスト法によって作製した。フィルム中に残留するMSAを除去するために、トリエチルアミン、MeOHで順次フィルムを洗浄した後、減圧乾燥した。フィルムの密度は、浮沈法を用いて25℃にて測定した。フィルムを窒素雰囲気中において加熱したときの質量減少を測定し、熱的安定性を評価した。
電気化学的測定は、1M硫酸(H2SO4)を電解液とする三極式セルを用いて行った。参照極および対極には、それぞれ銀-塩化銀電極(電解液:3M塩化ナトリウム水溶液)および白金箔(サイズ:6mm×15mm)を用いた。円柱状のガラス状炭素(直径:5.1mm)の断面上に、前述の方法にしたがってBBLポリマーフィルムを形成し、作用極として用いた。フィルムの質量および厚さは、それぞれ0.1mgおよび7μm程度であった。
Example 1
(Experiment)
The BBL polymer was prepared according to the method of Van Dausen et al. First, tetraaminobenzene hydrogen tetrachloride (TAB · 4HCl) was dissolved in polyphosphoric acid (PPA) and stirred at 100 ° C. for dehydrochlorination. Next, equimolar 1,4,5,8-naphthalenetetracarboxylic acid (NTCA) was added, and polymerization was carried out while stirring at 200 ° C. for 24 hours. The obtained polymer PPA solution was poured into pure water to coagulate the polymer, washed sequentially with pure water and methanol (MeOH), and then dried under reduced pressure. In order to remove impurities contained in the polymer, the dried polymer was dissolved in methanesulfonic acid (MSA), coagulated again, washed sequentially with pure water, dimethylacetamide, and MeOH, and then dried under reduced pressure at 240 ° C. . Polymerization was carried out at various monomer concentrations shown in Table 1, and the influence of the monomer concentration on yield and intrinsic viscosity was examined. The intrinsic viscosity of the polymer was measured at 30 ° C. for an MSA solution having a concentration of 0.15 g · dl −1 . The BBL polymer film was produced from a polymer MSA solution by a casting method. In order to remove MSA remaining in the film, the film was washed successively with triethylamine and MeOH and then dried under reduced pressure. The density of the film was measured at 25 ° C. using a floatation method. The mass loss when the film was heated in a nitrogen atmosphere was measured to evaluate the thermal stability.
Electrochemical measurement was performed using a triode cell using 1 M sulfuric acid (H 2 SO 4 ) as an electrolyte. A silver-silver chloride electrode (electrolytic solution: 3M sodium chloride aqueous solution) and a platinum foil (size: 6 mm × 15 mm) were used for the reference electrode and the counter electrode, respectively. A BBL polymer film was formed on the cross section of cylindrical glassy carbon (diameter: 5.1 mm) according to the method described above and used as a working electrode. The mass and thickness of the film were about 0.1 mg and 7 μm, respectively.

(結果と考察)
重合時のモノマー濃度と、得られたポリマーの収率、固有粘度および元素組成を表1に示す。収率は、モノマー濃度に関係なくいずれもほぼ100%であった。一方、固有粘度は、モノマー濃度が増大するにしたがって大きくなった。固有粘度が0.9dl・g-1を超えるポリマーからは、キャスト法によって強靭なフィルムが得られた。固有粘度1.85dl・g-1のポリマーから得られたフィルムの密度は、1.55g・cm-3であった。
(Results and discussion)
Table 1 shows the monomer concentration during polymerization and the yield, intrinsic viscosity and elemental composition of the polymer obtained. The yield was almost 100% regardless of the monomer concentration. On the other hand, the intrinsic viscosity increased as the monomer concentration increased. A polymer having an intrinsic viscosity exceeding 0.9 dl · g −1 obtained a tough film by a casting method. The density of the film obtained from the polymer having an intrinsic viscosity of 1.85 dl · g −1 was 1.55 g · cm -3 .

Figure 0005392778
Figure 0005392778

BBLポリマーフィルムの熱重量分析の結果を図3に示す。PPQはおよそ450℃付近から分解が開始する(非特許文献4)のに対して、BBLポリマーの熱分解開始温度はおよそ650℃であり、PPQに比べて優れた耐熱性を有していることがわかる。
BBLポリマーフィルムのサイクリックボルタモグラム(CV)を図4に示す。縦軸の値は、電流値を電位の掃引速度とフィルムの質量の積で除して求めた単位質量当りの容量として表した。CVには、-0.15-+0.35Vの電位領域に可逆的な酸化還元によるピーク対が現れる。酸化、還元による電荷貯蔵容量は、いずれもおよそ155mAh・g-1であり、PPQの電荷貯蔵容量の理論値110mAh・g-1(非特許文献2)に比べて大きい。また、この値は、ポリマーの単位体積当たりの電荷貯蔵容量に換算すると、240mAh・cm-3となる。図5に、予想されるBBLポリマーの酸化還元反応式を示す。この反応機構から予想されるBBLポリマーの電荷貯蔵容量の理論値は160mAh・g-1であり、実験結果とよく一致している。
以上の結果から、BBLポリマーを負極材料として用いることで、従来よりも高容量のプロトンポリマー電池あるいは水系キャパシタを構成できることが明らかとなった。
The results of thermogravimetric analysis of the BBL polymer film are shown in FIG. PPQ starts to decompose at around 450 ° C (Non-patent Document 4), whereas the thermal decomposition start temperature of BBL polymer is about 650 ° C, and it has excellent heat resistance compared to PPQ. I understand.
A cyclic voltammogram (CV) of the BBL polymer film is shown in FIG. The value on the vertical axis was expressed as the capacity per unit mass obtained by dividing the current value by the product of the potential sweep rate and the film mass. In CV, a reversible redox peak pair appears in the potential region of -0.15- + 0.35V. Oxidation, charge storage capacitance by reduction are both approximately 155 mAh · g -1, greater than the theoretical value 110 mAh · g of the charge storage capacity of the PPQ -1 (Non-Patent Document 2). This value is 240 mAh · cm −3 when converted to the charge storage capacity per unit volume of the polymer. FIG. 5 shows an expected redox reaction formula of the BBL polymer. The theoretical value of the charge storage capacity of the BBL polymer predicted from this reaction mechanism is 160 mAh · g −1, which is in good agreement with the experimental results.
From the above results, it has been clarified that a proton polymer battery or a water-based capacitor having a higher capacity than the conventional one can be constructed by using BBL polymer as a negative electrode material.

Claims (5)

以下の式で表される、ベンズイミダゾベンゾフェナントロリンラダー(BBL)ポリマーを含む電極材料。
Figure 0005392778
An electrode material comprising a benzimidazobenzophenanthroline ladder (BBL) polymer represented by the following formula.
Figure 0005392778
電極が、プロトンポリマー電池の負極であることを特徴とする、請求項1に記載の電極材料。   The electrode material according to claim 1, wherein the electrode is a negative electrode of a proton polymer battery. 電極が、キャパシタ電極であることを特徴とする、請求項1に記載の電極材料。   The electrode material according to claim 1, wherein the electrode is a capacitor electrode. 請求項1に記載の電極材料を含む負極を有する、プロトンポリマー電池。   A proton polymer battery having a negative electrode comprising the electrode material according to claim 1. 請求項1に記載の電極材料を含む電極を有する、キャパシタ。   A capacitor comprising an electrode comprising the electrode material according to claim 1.
JP2010005545A 2010-01-14 2010-01-14 Battery and capacitor electrode materials Expired - Fee Related JP5392778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010005545A JP5392778B2 (en) 2010-01-14 2010-01-14 Battery and capacitor electrode materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010005545A JP5392778B2 (en) 2010-01-14 2010-01-14 Battery and capacitor electrode materials

Publications (2)

Publication Number Publication Date
JP2011146221A JP2011146221A (en) 2011-07-28
JP5392778B2 true JP5392778B2 (en) 2014-01-22

Family

ID=44460911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010005545A Expired - Fee Related JP5392778B2 (en) 2010-01-14 2010-01-14 Battery and capacitor electrode materials

Country Status (1)

Country Link
JP (1) JP5392778B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121145A1 (en) * 2011-03-10 2012-09-13 株式会社 村田製作所 Electrode active material, electrode, and secondary battery
US8951828B1 (en) * 2011-11-21 2015-02-10 The United States Of America As Represented By The Secretary Of The Navy Thin-film electro devices based on derivatized poly(benao-isimidazobenzophenanthroline) ladder polymers
US9356240B1 (en) 2011-11-21 2016-05-31 The United States Of America As Represented By The Secretary Of The Navy Tetraamino pyrazine based ladder polymer for electroactive applications
CN104704661B (en) 2013-03-11 2018-05-04 松下电器产业株式会社 Electrode active material for electricity storage and electrical storage device
CN106463781B (en) 2013-04-10 2019-07-23 休斯敦大学体系 Aqueous energy storage device with organic electrode materials
CN112531162B (en) * 2020-12-06 2023-01-31 西北工业大学 Water-based proton battery electrode based on aza-conjugated porous polymer and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3144410B2 (en) * 1999-03-11 2001-03-12 日本電気株式会社 Battery and capacitor using quinoxaline resin
JP3701952B2 (en) * 2002-08-05 2005-10-05 Necトーキン株式会社 Cell electrode and electrochemical cell using this electrode
JP2005209576A (en) * 2004-01-26 2005-08-04 Nec Tokin Corp Copolymer compound and electrochemical cell using it
JP4828112B2 (en) * 2004-10-22 2011-11-30 Necトーキン株式会社 PROTON CONDUCTIVE POLYMER MATERIAL AND SOLID ELECTROLYTE MEMBRANE, ELECTROCHEMICAL CELL, AND FUEL CELL USING THE SAME
DE502006000749D1 (en) * 2006-03-21 2008-06-19 Novaled Ag Heterocyclic radical or diradical, their dimers, oligomers, polymers, dispiro compounds and polycycles, their use, organic semiconducting material and electronic component
JP2009163918A (en) * 2007-12-28 2009-07-23 Showa Denko Kk Composite of copolymer and carbon material and its manufacturing method

Also Published As

Publication number Publication date
JP2011146221A (en) 2011-07-28

Similar Documents

Publication Publication Date Title
Wang et al. A fluorinated polycarbonate based all solid state polymer electrolyte for lithium metal batteries
JP5392778B2 (en) Battery and capacitor electrode materials
CN103022496B (en) Aromatic condensed ring quinones compound positive pole material for one-class lithium secondary battery
CN102598374B (en) Positive electrode active material for nonaqueous secondary battery
AU2017225241B2 (en) Rechargeable sodium cells for high energy density battery use
Na et al. Lithium ion capacitors fabricated with polyethylene oxide-functionalized polysilsesquioxane hybrid ionogel electrolytes
JP2019059912A (en) Solid polymer electrolyte based on modified cellulose, and application thereof in lithium or sodium secondary battery
JP5380910B2 (en) Organic radical secondary battery
Li et al. Synthesis of feather fan-like PANI electrodes for supercapacitors
Ahmed et al. Novel divalent organo-lithium salts with high electrochemical and thermal stability for aqueous rechargeable Li-Ion batteries
JP2015145483A (en) Polyamideimide precursor solution
Han et al. Realizing compatibility of high voltage cathode and poly (ethylene oxide) electrolyte in all-solid-state lithium batteries by bilayer electrolyte design
KR101904111B1 (en) Negative Electrode for Non-aqueous Aluminum ion Battery and Method for Preparation of the Same
JP5158045B2 (en) Method and apparatus for electrolysis of Group 2 element oxides
JP2003040885A (en) Glycerol dicarbonate derivative, non-aqueous electrolyte solution produced by using the same, polymer electrolyte and cell
JP5088656B2 (en) Negative electrode for lead-acid battery and lead-acid battery using the same
JPH07130356A (en) Electrode for secondary battery and secondary battery having the electrode
CN105119018B (en) A kind of electrolyte and lithium ion battery of lithium ion battery
Yang et al. Electrodeposited Nickel Hydroxide on the Reduced Graphene Oxide with High Capacitance
CN110305313A (en) A kind of purpurine functional poly aryl oxide electrode active material and preparation method thereof
Han et al. A tailorable and stable lithium-oxygen battery with close to theoretical charge-discharge overpotential
KR102035780B1 (en) Polymer binder for secondary battery and prepartation method thereof
JPS636751A (en) Nonaqueous secondary battery
KR102495553B1 (en) Electrochemical cell, electrolyte suitable for the filling thereof, production method thereof, and method for the operation thereof
Sheha Non-aqueous liquid electrolyte based magnesium perchlorate/dimethyl sulfoxide for rechargeable magnesium battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131009

R150 Certificate of patent or registration of utility model

Ref document number: 5392778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees