JP2015145483A - Polyamideimide precursor solution - Google Patents

Polyamideimide precursor solution Download PDF

Info

Publication number
JP2015145483A
JP2015145483A JP2014019462A JP2014019462A JP2015145483A JP 2015145483 A JP2015145483 A JP 2015145483A JP 2014019462 A JP2014019462 A JP 2014019462A JP 2014019462 A JP2014019462 A JP 2014019462A JP 2015145483 A JP2015145483 A JP 2015145483A
Authority
JP
Japan
Prior art keywords
pai
precursor solution
lithium
chloride
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014019462A
Other languages
Japanese (ja)
Inventor
寿史朗 江口
Jushiro Eguchi
寿史朗 江口
朗 繁田
Akira Shigeta
朗 繁田
山田 宗紀
Munenori Yamada
宗紀 山田
雅弘 細田
Masahiro Hosoda
雅弘 細田
良彰 越後
Yoshiaki Echigo
良彰 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2014019462A priority Critical patent/JP2015145483A/en
Publication of JP2015145483A publication Critical patent/JP2015145483A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polyamideimide (PAI) precursor solution which contains lithium chloride which is a blended material suitable as a binder for an electrode of a lithium secondary battery or the like and provides a polyamideimide (PAI) in which no free hydrogen chloride remains, and to provide a method for producing the polyamideimide (PAI) precursor solution which is simple and has good environmental suitability.SOLUTION: There is provided a polyamideimide precursor solution containing a polyamideimide precursor and lithium chloride. There is provided a method for producing the polyamideimide precursor solution in which when polymerizing an anhydrous tricarboxylic acid chloride with a diamine in a solvent, hydrogen chloride produced as a byproduct is converted into lithium chloride.

Description

本発明は、ポリアミドイミド(以下、「PAI」と略記することがある)前駆体溶液、電極用バインダ樹脂溶液およびPAI前駆体溶液の製造方法に関するものである。 The present invention relates to a method for producing a polyamideimide (hereinafter sometimes abbreviated as “PAI”) precursor solution, a binder resin solution for an electrode, and a PAI precursor solution.

PAIの製造方法としては、イソシアネート法(例えば、特許文献1)、酸クロライド法(例えば、特許文献2)等が知られている。この中で酸クロライド法は、低温溶液重合により直線性の優れた高重合度ポリアミドイミドの重合体が得られやすく、耐熱性、力学的特性に優れるので、リチウム二次電池等の電極のバインダとして利用することが知られている。 As a method for producing PAI, an isocyanate method (for example, Patent Document 1), an acid chloride method (for example, Patent Document 2), and the like are known. Among them, the acid chloride method is easy to obtain a polymer of high degree of polymerization polyamideimide having excellent linearity by low-temperature solution polymerization, and is excellent in heat resistance and mechanical properties, so as a binder for electrodes of lithium secondary batteries and the like. It is known to use.

このPAIをバインダとして使用した電極において、その電極特性、特に初期効率を向上させるために、特許文献3、4には、PAI中に塩化リチウム等のリチウム塩を配合することが提案されている。
例えば、特許文献4には、酸クロライド法で重合したPAI前駆体溶液を大量の水中に投入して、重合反応で副生した塩化水素を水中に溶解させることにより除去しつつ、PAI前駆体の沈殿を生じせしめ、これを洗浄、単離、乾燥、熱イミド化して回収されたPAI粉体に前記リチウム塩を配合し、これを溶媒に再溶解して前記バインダ樹脂溶液とする方法が提案されている。
In an electrode using this PAI as a binder, in order to improve the electrode characteristics, particularly the initial efficiency, Patent Documents 3 and 4 propose that a lithium salt such as lithium chloride is blended in the PAI.
For example, in Patent Document 4, a PAI precursor solution polymerized by the acid chloride method is introduced into a large amount of water, and hydrogen chloride produced as a by-product in the polymerization reaction is removed by dissolving in water. A method is proposed in which a precipitate is formed, the lithium salt is added to the PAI powder recovered by washing, isolation, drying and thermal imidization, and then redissolved in a solvent to form the binder resin solution. ing.

特公昭50−33120号公報Japanese Patent Publication No. 50-33120 特公昭42−15637号公報Japanese Patent Publication No.42-15637 特開2009−135104号公報JP 2009-135104 A 特開2013−89437号公報JP 2013-89437 A

しかしながら、前記した酸クロライド法で得られたPAI前駆体は、例えば、特開平11−49858号公報に記載されているように、水による洗浄工程だけでは、副生する塩化水素の充分な除去が困難であるという問題があった。従い、酸クロライド法で得られたPAI前駆体中には遊離した塩化水素が残留することがある。そのため、例えば、これを熱イミド化してPAIとした後、再溶解してリチウム二次電池電極のバインダ溶液として使用した時に、その電極集電体等で、これに起因した腐食等が発生しやすいという問題があった。また、この製造プロセスにおいては、前記水洗の際、大量の廃液が発生し、環境適合性の観点からも問題があった。 However, the PAI precursor obtained by the acid chloride method described above, for example, as described in Japanese Patent Application Laid-Open No. 11-49858, can sufficiently remove by-product hydrogen chloride only by a washing step with water. There was a problem that it was difficult. Accordingly, free hydrogen chloride may remain in the PAI precursor obtained by the acid chloride method. Therefore, for example, when this is thermally imidized to form PAI, and then re-dissolved and used as a binder solution for a lithium secondary battery electrode, corrosion or the like due to the electrode current collector is likely to occur. There was a problem. Further, in this manufacturing process, a large amount of waste liquid is generated during the water washing, and there is a problem from the viewpoint of environmental compatibility.

そこで本発明は、上記課題を解決するものであって、リチウム二次電池等の電極のバインダとして好適な配合物である塩化リチウムを含有し、かつ遊離の塩化水素が残留していないPAIを与えるPAI前駆体溶液の提供、および環境適合性が良好でありかつ簡単な前記PAI前駆体溶液の製造方法を提供することを目的とする。 Accordingly, the present invention solves the above-described problems and provides a PAI containing lithium chloride, which is a compound suitable as a binder for electrodes of lithium secondary batteries and the like, and free hydrogen chloride does not remain. It is an object of the present invention to provide a PAI precursor solution and a method for producing the PAI precursor solution that has good environmental compatibility and is simple.

PAI前駆体と塩化リチウムとを含有するPAI前駆体溶液により、前記課題が解決されることを見出し、本発明の完成に至った。 It has been found that the above problems can be solved by a PAI precursor solution containing a PAI precursor and lithium chloride, and the present invention has been completed.

本発明は下記を趣旨とするものである。
<1> PAI前駆体と塩化リチウムとを含有するPAI前駆体溶液。
<2> 前記PAI前駆体溶液からなる電極用バインダ樹脂溶液。
<3> 無水トリカルボン酸クロライド(以下、「ATC」と略記することがある)とジアミン(以下、「DA」と略記することがある)とを溶媒中で重合反応する際、副生する塩化水素を塩化リチウムに変換することを特徴とする前記PAI前駆体溶液の製造方法。
The present invention has the following objects.
<1> A PAI precursor solution containing a PAI precursor and lithium chloride.
<2> An electrode binder resin solution comprising the PAI precursor solution.
<3> Hydrogen chloride produced as a by-product in the polymerization reaction of tricarboxylic anhydride chloride (hereinafter abbreviated as “ATC”) and diamine (hereinafter abbreviated as “DA”) in a solvent. The method for producing the PAI precursor solution is characterized in that is converted into lithium chloride.

本発明のPAI前駆体溶液は、塩化水素を実質的に含有しない上、塩化リチウムがPAI中に含有されているので、例えば、リチウム二次電池電極用のバインダ樹脂溶液として使用した場合、その電極特性、特に初期効率を向上させることができる。 Since the PAI precursor solution of the present invention contains substantially no hydrogen chloride and lithium chloride is contained in the PAI, for example, when used as a binder resin solution for a lithium secondary battery electrode, the electrode Characteristics, particularly initial efficiency, can be improved.

以下、本発明について詳細に説明する。
本発明はPAI前駆体溶液、電極用バインダ樹脂溶液およびPAI前駆体溶液の製造方法に関するものである。
Hereinafter, the present invention will be described in detail.
The present invention relates to a PAI precursor solution, an electrode binder resin solution, and a method for producing a PAI precursor solution.

本発明のPAI前駆体は、溶媒中で、ATCとDAとを重合反応して得られるアミド結合とアミック酸結合を有する有機高分子である。このPAI前駆体は、例えば、150〜300℃で熱イミド化して、アミック酸結合をイミド結合とすることにより、PAIとすることができる。 The PAI precursor of the present invention is an organic polymer having an amide bond and an amic acid bond obtained by polymerizing ATC and DA in a solvent. This PAI precursor can be converted to PAI by, for example, thermal imidization at 150 to 300 ° C. to convert an amic acid bond into an imide bond.

ここで用いられるATCとしては、例えば無水トリメリット酸クロライド(TAC)、無水ベンゾフェノン−3,3,4′−トリカルボン酸クロライド、無水ジフェニル−2,3,4′−トリカルボン酸クロライド、無水シクロヘキサン−1,2,4−トリカルボン酸クロライド等を挙げることができる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中で、TACが好ましい。 Examples of the ATC used herein include trimellitic anhydride chloride (TAC), anhydrous benzophenone-3,3,4'-tricarboxylic acid chloride, anhydrous diphenyl-2,3,4'-tricarboxylic acid chloride, and anhydrous cyclohexane-1. 2,4-tricarboxylic acid chloride and the like. These may be used alone or in combination of two or more. Of these, TAC is preferred.

また、DAとしては、例えば、m−フェニレンジアミン、p−フェニレンジアミン、4,4′−ジフェニルメタンジアミン、4,4′−ジアミノジフェニルエーテル、ジフェニルスルホン−4,4′−ジアミン、ジフェニルー4,4′−ジアミン、o−トリジン、2,4−トリレンジアミン、2,6−トリレンジアミン、m−キシリレンジアミン、p−キシリレンジアミン、ナフタレンジアミン等を用いることができる。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中で、4,4′−ジアミノジフェニルエーテル(DADE)およびm−フェニレンジアミン(MDA)が好ましい。 Examples of DA include m-phenylenediamine, p-phenylenediamine, 4,4′-diphenylmethanediamine, 4,4′-diaminodiphenyl ether, diphenylsulfone-4,4′-diamine, and diphenyl-4,4′-. Diamine, o-tolidine, 2,4-tolylenediamine, 2,6-tolylenediamine, m-xylylenediamine, p-xylylenediamine, naphthalenediamine, and the like can be used. These may be used alone or in combination of two or more. Of these, 4,4'-diaminodiphenyl ether (DADE) and m-phenylenediamine (MDA) are preferred.

本発明のPAI前駆体溶液は、例えば以下のような方法で、簡単に製造することができる。すなわち、先ず、略等モルのATCとDAとを、溶媒中で重合反応させてPAI前駆体を得る。この場合、DAをN−メチル−2−ピロリドン(NMP)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)等のアミド系溶媒に溶解し、ATCを添加して反応させる方法が好ましい。反応温度は−20℃〜100℃とすることが好ましく、0℃〜50℃がより好ましい。反応時間は30分間〜10時間とすることが好ましく、2時間〜5時間が好ましい。また、反応は乾燥窒素雰囲気下で行うことが好ましい。 The PAI precursor solution of the present invention can be easily produced, for example, by the following method. That is, first, a PAI precursor is obtained by polymerizing a substantially equimolar amount of ATC and DA in a solvent. In this case, DA is dissolved in an amide solvent such as N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), and ATC is added to react. The method of making it preferable is. The reaction temperature is preferably -20 ° C to 100 ° C, more preferably 0 ° C to 50 ° C. The reaction time is preferably 30 minutes to 10 hours, and preferably 2 hours to 5 hours. The reaction is preferably performed in a dry nitrogen atmosphere.

前記重合反応においては、反応に伴い塩化水素が副生する。 本発明の製造方法においては、この塩化水素を塩化リチウムに変換する。この変換を行うには、重合反応前もしくは重合反応後の反応液に、水酸化リチウムもしくは炭酸リチウムを添加すればよい。添加量としては、DA1モルに対し1〜1.02モル程度とすることが好ましい。このようにすることにより、重合反応で副生し、前記反応液に溶解している塩化水素が完全に塩化リチウムに変換され、PAI前駆体と塩化リチウムとを含有する本発明のPAI前駆体溶液とすることができる。 ここで、塩化リチウムを、別途、このPAI塗液に追加混合することにより、PAI塗液中の塩化リチウムの濃度を増加させることができる。
従い、本発明のPAI前駆体溶液には、PAI前駆体の構成単位1モルに対し、1モル以上の塩化リチウムを含有させることができる。
In the polymerization reaction, hydrogen chloride is by-produced with the reaction. In the production method of the present invention, this hydrogen chloride is converted into lithium chloride. In order to perform this conversion, lithium hydroxide or lithium carbonate may be added to the reaction solution before or after the polymerization reaction. The addition amount is preferably about 1 to 1.02 mol per 1 mol of DA. By doing so, the hydrogen chloride dissolved as a by-product in the polymerization reaction and completely dissolved in the reaction solution is completely converted into lithium chloride, and the PAI precursor solution of the present invention containing the PAI precursor and lithium chloride It can be. Here, the concentration of lithium chloride in the PAI coating liquid can be increased by separately mixing lithium chloride with the PAI coating liquid.
Therefore, the PAI precursor solution of the present invention can contain 1 mol or more of lithium chloride with respect to 1 mol of the structural unit of the PAI precursor.

本発明のPAI前駆体溶液は、例えば、スプレードライ等の方法で粉体とした後、これを150〜300℃で熱イミド化することにより塩化リチウムを含有したPAI粉体を得ることができる。また、金属箔、ガラス板等の基材上に塗布して塗膜とし、これを乾燥後、150〜300℃で熱イミド化して、塩化リチウムを含有したPAIフィルムを得ることができる。 The PAI precursor solution of the present invention can be made into a powder by a method such as spray drying, and then heat imidized at 150 to 300 ° C. to obtain a PAI powder containing lithium chloride. Moreover, it apply | coats on base materials, such as metal foil and a glass plate, makes a coating film, and after drying this, it heat-imidizes at 150-300 degreeC, and can obtain the PAI film containing lithium chloride.

前記の如くして得られたPAI前駆体溶液は、リチウム二次電池やリチウムイオンキャパシタ等の電極形成用バインダ樹脂溶液として利用することができる。すなわち、PAI前駆体溶液に電極活物質粒子を配合、混合、撹拌することにより、電極形成のための均一な塗液(以下、「PAI塗液」と略記することがある)とすることができる。PAI塗液中のPAI前駆体の配合量としては、電極活物質質量当たり1〜30質量%とすることが好ましく、5〜25質量%とすることが好ましい。また、塗液の固形分濃度としては、10〜40質量%とすることが好ましく、20〜30質量%とすることがより好ましい。ここで、電極活物質とは、電極を構成する正極および負極において、リチウムイオンを吸蔵保存できるものである。なお、前記バインダ樹脂溶液には、電極活物質以外に、必要に応じ、導電性のカーボンブラックや黒鉛粒子等の導電材、界面活性剤や粘度調整剤等の添加剤を配合することができる。 The PAI precursor solution obtained as described above can be used as a binder resin solution for electrode formation for lithium secondary batteries, lithium ion capacitors and the like. That is, by mixing, mixing, and stirring the electrode active material particles in the PAI precursor solution, a uniform coating liquid for electrode formation (hereinafter sometimes abbreviated as “PAI coating liquid”) can be obtained. . As a compounding quantity of the PAI precursor in a PAI coating liquid, it is preferable to set it as 1-30 mass% per electrode active material mass, and it is preferable to set it as 5-25 mass%. Moreover, as solid content concentration of a coating liquid, it is preferable to set it as 10-40 mass%, and it is more preferable to set it as 20-30 mass%. Here, the electrode active material is a material capable of occluding and storing lithium ions in the positive electrode and the negative electrode constituting the electrode. In addition to the electrode active material, the binder resin solution may contain additives such as conductive materials such as conductive carbon black and graphite particles, and surfactants and viscosity modifiers as necessary.

前記電極活物質としては、公知の物を使用することができる。即ち、正極活物質層として用いられる材料としては、例えばマンガン酸リチウム、LiCoO、LiNiO、およびLixV(0<x<2)等のリチウム複合酸化物、ポリアニリンおよびポリチオフェン等の高分子化合物を挙げることができる。この中でもLiMn等のマンガン酸リチウム、LiCoO、LiNiOが好ましい。また、負極活物質粒子として用いられる材料としては、例えばグラファイト粒子、アモルファスカーボン粒子、シリコン系粒子、錫系粒子等を挙げることができる。この中でもグラファイト粒子、シリコン系粒子が好ましい。前記シリコン系粒子としては、例えば、シリコン単体、シリコン合金、シリコン・二酸化珪素複合体等の粒子が挙げられ、これらシリコン系粒子の中でも、シリコン単体の粒子が、好ましい。ここで、シリコン単体とは、純度が95質量%以上の結晶質もしくは非晶質のシリコンを言う。これら活物質粒子の粒子径としては、正極、負極いずれの場合も50μm以下が好ましく、さらに10μm以下が好ましい。また、粒径が小さすぎても樹脂バインダによる結着が難しくなるので、0.1μm以上、さらには0.5μm以上の粒径のものが好ましい。 A known material can be used as the electrode active material. That is, examples of the material used for the positive electrode active material layer include lithium composite oxides such as lithium manganate, LiCoO 2 , LiNiO 2 , and LixV 2 O 5 (0 <x <2), and polymers such as polyaniline and polythiophene. A compound can be mentioned. Among these, lithium manganate such as LiMn 2 O 4 , LiCoO 2 , and LiNiO 2 are preferable. Examples of materials used as the negative electrode active material particles include graphite particles, amorphous carbon particles, silicon-based particles, and tin-based particles. Among these, graphite particles and silicon-based particles are preferable. Examples of the silicon-based particles include particles of silicon alone, silicon alloys, silicon / silicon dioxide composites, etc. Among these silicon-based particles, particles of silicon alone are preferable. Here, the silicon simple substance means crystalline or amorphous silicon having a purity of 95% by mass or more. The particle diameter of these active material particles is preferably 50 μm or less, and more preferably 10 μm or less, for both the positive electrode and the negative electrode. Moreover, since it becomes difficult to bind with a resin binder even if the particle size is too small, a particle size of 0.1 μm or more, further 0.5 μm or more is preferable.

なお、前記した塩化リチウム含有PAI粉体を、前記アミド系溶媒に再溶解し、これに電極活物質粒子を配合、混合、撹拌することにより、PAI塗液を得ることもできる。 The PAI coating liquid can also be obtained by re-dissolving the above-described lithium chloride-containing PAI powder in the amide solvent and blending, mixing and stirring the electrode active material particles therein.

前記の如くして得られたPAI塗液は、銅箔やアルミニウム箔等の金属箔からなる導電性の集電体上に塗布して、80〜350℃、より好ましくは120〜300℃の温度範囲で加熱処理して、溶媒を除去するとともにイミド化することにより前記集電体上に均一な厚みの活物質層が形成された電極を得ることができる。 ここで、活物質層の厚みは、10〜200μm程度、気孔率は10〜40体積%程度とすることが好ましい。得られた電極は、塩化リチウムが含有されているので、電極特性、特に、初期効率が向上する。従い、リチウムイオン二次電池やリチウムイオンキャパシタの電極として好適に用いることができる。 The PAI coating solution obtained as described above is applied on a conductive current collector made of a metal foil such as copper foil or aluminum foil, and a temperature of 80 to 350 ° C., more preferably 120 to 300 ° C. An electrode in which an active material layer having a uniform thickness is formed on the current collector can be obtained by performing heat treatment in a range to remove the solvent and imidize. Here, the thickness of the active material layer is preferably about 10 to 200 μm, and the porosity is preferably about 10 to 40% by volume. Since the obtained electrode contains lithium chloride, electrode characteristics, particularly, initial efficiency is improved. Therefore, it can be suitably used as an electrode of a lithium ion secondary battery or a lithium ion capacitor.

以下、実施例に基づき本発明をさらに具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited only to these Examples.

[実施例1]
乾燥窒素雰囲気下、DADE70ミリモルと MDA30ミリモル とをNMP に溶解させた。ここに100ミリモルのTACをNMPとともに加えて、冷却しつつ、20〜30℃で撹拌した。その後、30℃で4時間撹拌し、PAI前駆体溶液(固形分濃度20重量%)を得た。この溶液に100ミリモルの水酸化リチウムを加え、PAI前駆体構成単位1モルに対し、1モルの塩化リチウムを含有するPAI前駆体溶液(A−1)を得た。この溶液をイオン交換水1L中で再沈殿し、濾別後、100℃で乾燥してPAI前駆体の粉末を得た。この粉末を再度、100ccのイオン交換水に分散させて、水のpHを測定した所、そのpHは6.8と中性であり、重合反応により発生した塩化水素は、塩化リチウムに変換されため、PAI前駆体の粉末中には、遊離の塩化水素が殆ど残留していないことが判った。
前記PAI前駆体溶液(A−1)と平均粒径0.8μmのシリコン粒子と希釈用のNMPとを混合、撹拌して電極(リチウムイオン二次電池用負極)活物質であるシリコン微粒子が均一に分散されたPAI塗液(a−1)を得た。ここで、この塗液の総固形分(PAI前駆体、塩化リチウムおよびシリコン粒子)濃度は27質量%であり、PAI前駆体の配合量は、シリコン微粒子の質量当たり25質量%であった。
[Example 1]
Under a dry nitrogen atmosphere, 70 mmol of DADE and 30 mmol of MDA were dissolved in NMP. 100 mmol of TAC was added thereto together with NMP, and the mixture was stirred at 20 to 30 ° C. while cooling. Then, it stirred at 30 degreeC for 4 hours, and obtained the PAI precursor solution (solid content concentration of 20 weight%). 100 mmol of lithium hydroxide was added to this solution to obtain a PAI precursor solution (A-1) containing 1 mol of lithium chloride per 1 mol of the PAI precursor structural unit. This solution was re-precipitated in 1 L of ion-exchanged water, filtered, and dried at 100 ° C. to obtain a PAI precursor powder. When this powder was again dispersed in 100 cc of ion exchange water and the pH of the water was measured, the pH was 6.8, and the hydrogen chloride generated by the polymerization reaction was converted to lithium chloride. It was found that almost no free hydrogen chloride remained in the PAI precursor powder.
The PAI precursor solution (A-1), silicon particles having an average particle size of 0.8 μm, and NMP for dilution are mixed and stirred to uniformly form silicon fine particles as an active material of an electrode (a negative electrode for a lithium ion secondary battery). A PAI coating liquid (a-1) dispersed in 1 was obtained. Here, the total solid content (PAI precursor, lithium chloride and silicon particles) concentration of the coating liquid was 27 mass%, and the blending amount of the PAI precursor was 25 mass% per mass of silicon fine particles.

[実施例2]
水酸化リチウムを炭酸リチウムに変更したこと以外は、実施例1と同様に行い、PAI前駆体溶液(A−2)およびPAI塗液(a−2)を得た。
[Example 2]
Except having changed lithium hydroxide into lithium carbonate, it carried out similarly to Example 1 and obtained the PAI precursor solution (A-2) and the PAI coating liquid (a-2).

[比較例1]
乾燥窒素雰囲気下、DADE70ミリモルと MDA30ミリモル とをNMP に溶解させた。ここに100ミリモルのTACをNMPとともに加えて、冷却しつつ、20〜30℃で撹拌した。その後、30℃で4時間撹拌し、PAI前駆体溶液(固形分濃度20重量%、A−3)を得た。この溶液をイオン交換水1L中で再沈殿し、濾別後、100℃で乾燥してPAI前駆体の粉末を得た。この粉末を再度、100ccのイオン交換水に分散させて、水のpHを測定した所、そのpHは2.5と強酸性を示し、このPAI前駆体の粉末中には、重合反応により発生した塩化水素の相当量が、遊離して残留していることが判った。前記PAI前駆体溶液(A−3)と平均粒径0.8μmのシリコン粒子と希釈用のNMPとを混合、撹拌して電極(リチウムイオン二次電池用負極)活物質であるシリコン微粒子が均一に分散されたPAI塗液(a−3)を得た。ここで、この塗液の総固形分(PAI前駆体およびシリコン粒子)濃度は25質量%であり、PAI前駆体の配合量は、シリコン微粒子の質量当たり25質量%であった。
[Comparative Example 1]
Under a dry nitrogen atmosphere, 70 mmol of DADE and 30 mmol of MDA were dissolved in NMP. 100 mmol of TAC was added thereto together with NMP, and the mixture was stirred at 20 to 30 ° C. while cooling. Then, it stirred at 30 degreeC for 4 hours, and obtained the PAI precursor solution (Solid content concentration 20 weight%, A-3). This solution was re-precipitated in 1 L of ion-exchanged water, filtered, and dried at 100 ° C. to obtain a PAI precursor powder. When this powder was again dispersed in 100 cc of ion exchange water and the pH of the water was measured, the pH showed a strong acidity of 2.5, and this PAI precursor powder was generated by a polymerization reaction. It was found that a considerable amount of hydrogen chloride remained free. The PAI precursor solution (A-3), silicon particles having an average particle diameter of 0.8 μm, and NMP for dilution are mixed and stirred to uniformly form silicon fine particles as an active material of an electrode (a negative electrode for a lithium ion secondary battery). The PAI coating liquid (a-3) dispersed in was obtained. Here, the total solid content (PAI precursor and silicon particles) concentration of the coating liquid was 25% by mass, and the blending amount of the PAI precursor was 25% by mass per mass of the silicon fine particles.

[比較例2]
水酸化リチウムを炭酸ナトリウムに変更したこと以外は、実施例1と同様に行い、塩化ナトリウムが分散したPAI前駆体溶液(A−4)を得た。この溶液と平均粒径0.8μmのシリコン粒子と希釈用のNMPとを混合、撹拌して電極(リチウムイオン二次電池用負極)活物質であるシリコン微粒子が均一に分散されたPAI塗液(a−4)を得た。ここで、この塗液の総固形分(PAI前駆体およびシリコン粒子)濃度は28質量%であり、PAI樹脂前駆体の配合量は、シリコン微粒子の質量当たり25質量%であった。
[Comparative Example 2]
Except having changed lithium hydroxide into sodium carbonate, it carried out like Example 1 and the PAI precursor solution (A-4) in which sodium chloride was disperse | distributed was obtained. This solution, silicon particles having an average particle diameter of 0.8 μm, and NMP for dilution are mixed and stirred to obtain a PAI coating liquid in which silicon fine particles as an active material of an electrode (a negative electrode for a lithium ion secondary battery) are uniformly dispersed ( a-4) was obtained. Here, the total solid content (PAI precursor and silicon particles) concentration of this coating liquid was 28% by mass, and the blending amount of the PAI resin precursor was 25% by mass of the silicon fine particles.

<電極の評価>
実施例1、2および比較例1,2で得られたPAI塗液a−1〜a−4を集電体である厚さ18μmの銅箔上にフィルムアプリケーターを用いて塗布し、その塗膜を、窒素雰囲気下、50℃で10分間、80℃で30分間、120℃で30分間、次いで200℃で30分間加熱処理して、厚みが約35μmで、気孔率が約30%の活物質層が形成されたリチウム二次電池用電極(負極)e−1〜e−4を得た。次に、この負極を直径14mmの円形に打ち抜き、そのPAI多孔質面側に、ポリプロピレン製多孔膜からなるセパレータと、リチウム箔とを順に積層し、これをステンレス製のコイン型外装容器中に収納した。この外装容器中に電解液(溶媒:エチレンカーボネートとエチルメチルカーボネートとジメチルカーボネートとを体積比で1:1:1の割合で混合させた混合溶媒、電解質:1MLiPF)を注入し、外装容器にポリプロピレン製パッキングを介して厚み0.2mmのステンレス製のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚み約3.2mmの、放電容量評価用のセルを得た。得られたセルを用いて、30℃で0.05Cの定電流で2Vまで充電し、0.05Cの定電流で0.02Vまで放電を行い、以下の式に従って、初期効率を算出した。
初期効率(%)=放電容量(mAh/g−活物質層)/充電容量(mAh/g−活物質層)×100
結果を表1に示す。
<Evaluation of electrode>
The PAI coating liquids a-1 to a-4 obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were applied onto a copper foil having a thickness of 18 μm as a current collector using a film applicator, and the coating film. In a nitrogen atmosphere at 50 ° C. for 10 minutes, 80 ° C. for 30 minutes, 120 ° C. for 30 minutes, then 200 ° C. for 30 minutes to obtain an active material having a thickness of about 35 μm and a porosity of about 30% Lithium secondary battery electrodes (negative electrodes) e-1 to e-4 on which layers were formed were obtained. Next, this negative electrode is punched into a circle having a diameter of 14 mm, and a separator made of a polypropylene porous film and a lithium foil are sequentially laminated on the PAI porous surface side, and this is stored in a stainless steel coin-type outer container. did. An electrolytic solution (solvent: a mixed solvent in which ethylene carbonate, ethylmethyl carbonate, and dimethyl carbonate are mixed at a volume ratio of 1: 1: 1, electrolyte: 1 M LiPF 6 ) is poured into the outer container, and the outer container is filled with the electrolyte. A 0.2 mm thick stainless steel cap was placed over the polypropylene packing and fixed, and the battery can was sealed to obtain a discharge capacity evaluation cell having a diameter of 20 mm and a thickness of about 3.2 mm. Using the obtained cell, the battery was charged to 2 V with a constant current of 0.05 C at 30 ° C., discharged to 0.02 V with a constant current of 0.05 C, and the initial efficiency was calculated according to the following formula.
Initial efficiency (%) = discharge capacity (mAh / g-active material layer) / charge capacity (mAh / g-active material layer) × 100
The results are shown in Table 1.

表1に示したように、本発明のPAI前駆体溶液には、塩化リチウムが配合されているので、これを電極用バインダ樹脂溶液として用いる場合、初期効率が向上する。また、この電極用バインダ樹脂溶液には、塩化水素が残留していないので、得られる電極の耐腐食性が優れている。
As shown in Table 1, since the PAI precursor solution of the present invention contains lithium chloride, the initial efficiency is improved when this is used as a binder resin solution for electrodes. Further, since no hydrogen chloride remains in this electrode binder resin solution, the resulting electrode has excellent corrosion resistance.

Claims (3)

ポリアミドイミド前駆体と塩化リチウムとを含有するポリアミドイミド前駆体溶液。 A polyamideimide precursor solution containing a polyamideimide precursor and lithium chloride. 請求項1記載のポリアミドイミド前駆体溶液からなる電極用バインダ樹脂溶液。 A binder resin solution for an electrode comprising the polyamideimide precursor solution according to claim 1. 無水トリカルボン酸クロライドとジアミンとを溶媒中で重合反応する際、副生する塩化水素を塩化リチウムに変換することを特徴とする請求項1もしくは2記載のポリアミドイミド前駆体溶液の製造方法。
3. The method for producing a polyamideimide precursor solution according to claim 1 or 2, wherein when the tricarboxylic anhydride chloride and diamine are subjected to a polymerization reaction in a solvent, hydrogen chloride produced as a by-product is converted into lithium chloride.
JP2014019462A 2014-02-04 2014-02-04 Polyamideimide precursor solution Pending JP2015145483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014019462A JP2015145483A (en) 2014-02-04 2014-02-04 Polyamideimide precursor solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014019462A JP2015145483A (en) 2014-02-04 2014-02-04 Polyamideimide precursor solution

Publications (1)

Publication Number Publication Date
JP2015145483A true JP2015145483A (en) 2015-08-13

Family

ID=53889877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014019462A Pending JP2015145483A (en) 2014-02-04 2014-02-04 Polyamideimide precursor solution

Country Status (1)

Country Link
JP (1) JP2015145483A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151421A (en) * 2014-02-12 2015-08-24 ユニチカ株式会社 Method for producing polyamide-imide, and polyamide-imide
WO2019179971A1 (en) 2018-03-22 2019-09-26 Solvay Specialty Polymers Usa, Llc Polyamide-imide binder for lithium ion battery
WO2021001300A1 (en) * 2019-07-01 2021-01-07 Solvay Specialty Polymers Italy S.P.A. Process for preparing a coated battery separator
WO2021001304A1 (en) 2019-07-01 2021-01-07 Solvay Specialty Polymers Usa, Llc Polyamide-imide binder for lithium ion battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151421A (en) * 2014-02-12 2015-08-24 ユニチカ株式会社 Method for producing polyamide-imide, and polyamide-imide
WO2019179971A1 (en) 2018-03-22 2019-09-26 Solvay Specialty Polymers Usa, Llc Polyamide-imide binder for lithium ion battery
CN111902473A (en) * 2018-03-22 2020-11-06 索尔维特殊聚合物美国有限责任公司 Polyamide-imide binders for lithium ion batteries
US20210020946A1 (en) * 2018-03-22 2021-01-21 Solvay Specialty Polymers Usa, Llc Polyamide-imide binder for lithium battery
JP2021518472A (en) * 2018-03-22 2021-08-02 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー Polyamide-imide binder for lithium-ion batteries
JP7366046B2 (en) 2018-03-22 2023-10-20 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー Polyamide imide binder for lithium ion batteries
CN111902473B (en) * 2018-03-22 2024-02-13 索尔维特殊聚合物美国有限责任公司 Polyamide-imide binder for lithium ion batteries
WO2021001300A1 (en) * 2019-07-01 2021-01-07 Solvay Specialty Polymers Italy S.P.A. Process for preparing a coated battery separator
WO2021001304A1 (en) 2019-07-01 2021-01-07 Solvay Specialty Polymers Usa, Llc Polyamide-imide binder for lithium ion battery

Similar Documents

Publication Publication Date Title
US10511025B2 (en) Electrode manufacturing method
Patnaik et al. BIAN based functional diimine polymer binder for high performance Li ion batteries
TW200902610A (en) Porous film
JP2013089437A (en) Binder for lithium ion battery electrode, paste for lithium ion battery negative electrode using the same and manufacturing method of lithium ion battery negative electrode
WO2013163862A1 (en) Active electrode material composition, electrode and lithium-ion secondary battery
TW201014016A (en) Sodium secondary battery
JP7307543B2 (en) Electrode materials and processes for their preparation
JP2011134550A (en) Method of manufacturing electrode and electrode paste, and sodium secondary battery
JP6357974B2 (en) Secondary battery negative electrode binder, secondary battery negative electrode and method for producing the same, and non-aqueous electrolyte secondary battery
JP2019059912A (en) Solid polymer electrolyte based on modified cellulose, and application thereof in lithium or sodium secondary battery
JP2015145483A (en) Polyamideimide precursor solution
Jiang et al. Gel polymer electrolyte based on hydrophilic–lipophilic TiO 2-modified thermoplastic polyurethane for high-performance Li-ion batteries
JP6299168B2 (en) Aromatic polyamide porous membrane and battery separator
Sun et al. Integrating flexible PMIA separator and electrode for dealing with multi-aspect issues in Li–S batteries
KR20180116078A (en) Coating material for nonaqueous electrolyte secondary battery
JP5446687B2 (en) Binder resin composition for electrode, electrode mixture paste, and electrode
Nimkar et al. Polyimide Compounds For Post‐Lithium Energy Storage Applications
JP2018190703A (en) Binder solution and coating liquid, and method for manufacturing power storage element electrode
JP2019204786A (en) Binder resin composition for electrode, electrode mixture paste, and electrode
JP2013229160A (en) Binder composition for electrode of power storage device
JP4490866B2 (en) Electrode for electrochemical capacitor, composition used therefor, method for producing the electrode, and electrochemical capacitor using the electrode
JP6562380B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6520497B2 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
US11532819B2 (en) Electrode binder resin composition, electrode mix paste, and electrode
JP2004152675A (en) Polyamide-imide resin for secondary battery separator, separator using the resin, and secondary battery using the separator