JP5392746B2 - Novel water-soluble iridium complex compound and oxygen concentration measuring reagent using the same - Google Patents

Novel water-soluble iridium complex compound and oxygen concentration measuring reagent using the same Download PDF

Info

Publication number
JP5392746B2
JP5392746B2 JP2008239660A JP2008239660A JP5392746B2 JP 5392746 B2 JP5392746 B2 JP 5392746B2 JP 2008239660 A JP2008239660 A JP 2008239660A JP 2008239660 A JP2008239660 A JP 2008239660A JP 5392746 B2 JP5392746 B2 JP 5392746B2
Authority
JP
Japan
Prior art keywords
asp
oxygen concentration
btp
residue
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008239660A
Other languages
Japanese (ja)
Other versions
JP2010070494A (en
Inventor
利忠 吉原
成史 飛田
正博 穂坂
利行 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Original Assignee
Gunma University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC filed Critical Gunma University NUC
Priority to JP2008239660A priority Critical patent/JP5392746B2/en
Publication of JP2010070494A publication Critical patent/JP2010070494A/en
Application granted granted Critical
Publication of JP5392746B2 publication Critical patent/JP5392746B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は新規水溶性イリジウム錯体化合物、およびそれを用いて酸素濃度をリアルタイムで可視化し定量することのできる試薬に関する。   The present invention relates to a novel water-soluble iridium complex compound and a reagent capable of visualizing and quantifying the oxygen concentration in real time using the compound.

イリジウム(III)錯体(非特許文献1〜4)はりん光を発することが知られており、有機ELディスプレイなどへの応用が期待されている。
一方、本発明者らは、イリジウム錯体((btp)2Ir(acac))が酸素濃度に依存してりん光を発することを発見し、イリジウム錯体((btp)2Ir(acac))の室温りん光(強度、寿命)を用いた生体組織中における酸素濃度計測方法を開発した(特許文献1)。また、(btp)2Ir(acac)のりん光強度、寿命の測定から、リポソーム膜中の酸素濃度の定量、癌細胞中の酸素濃度の可視化、担癌マウス中の腫瘍の可視化に成功した(特許文献1)。

Figure 0005392746
さらに、酸素濃度に依存して近赤外光領域にりん光を発する化合物も開発した((btq)2Ir(acac)、(btiq)2Ir(acac)、(btph)2Ir(acac))(特許文献2)。 Iridium (III) complexes (Non-Patent Documents 1 to 4) are known to emit phosphorescence, and are expected to be applied to organic EL displays and the like.
On the other hand, at room temperature of the present inventors, an iridium complex discovered ((btp) 2 Ir (acac )) to emit the phosphorescent depending on the oxygen concentration, the iridium complex ((btp) 2 Ir (acac )) A method for measuring oxygen concentration in living tissue using phosphorescence (intensity, life) was developed (Patent Document 1). In addition, from the measurement of phosphorescence intensity and lifetime of (btp) 2 Ir (acac), we succeeded in quantifying the oxygen concentration in the liposome membrane, visualizing the oxygen concentration in cancer cells, and visualizing the tumor in tumor-bearing mice ( Patent Document 1).
Figure 0005392746
Furthermore, compounds that emit phosphorescence in the near-infrared region depending on the oxygen concentration were also developed ((btq) 2 Ir (acac), (btiq) 2 Ir (acac), (btph) 2 Ir (acac)) (Patent Document 2).

しかしながら、これらの化合物は水に溶解しないため、生体に投与する場合、ジメチルスルホキシド(DMSO)などの有機溶媒に一度溶解させ、生理食塩水で希釈する必要があり、有機溶媒が生体に何らかの影響を及ぼす可能性も否定できない。これまで水溶性りん光化合物として、ルテニウム錯体、金属ポルフィリン錯体がある。これらの化合物はイリジウム錯体と比較してりん光量子収率(0.1以下)が低く、また、ルテニウム錯体では、細胞毒性があることが指摘されており、これらの化合物を用いて細胞や組織中の酸素濃度を定量することは困難である。   However, since these compounds do not dissolve in water, when administered to a living body, it is necessary to dissolve once in an organic solvent such as dimethyl sulfoxide (DMSO) and dilute with physiological saline. The possibility of effect cannot be denied. Until now, there are ruthenium complexes and metal porphyrin complexes as water-soluble phosphorescent compounds. These compounds have low phosphorescence quantum yields (less than 0.1) compared to iridium complexes, and ruthenium complexes have been shown to be cytotoxic. Using these compounds, oxygen in cells and tissues It is difficult to quantify the concentration.

一般に、水に溶解性の低い有機化合物を水溶性化する方法として、ポリエチレングリコール(PEG)を結合させることが知られている。しかしながら、PEGは生体に対して毒性が低いとされているが、分子量(一般に5000以上)が大きくなりすぎることが問題視されている。
飛田成史,吉原利忠,竹内利行,穂坂正博,「酸素濃度測定試薬および酸素濃度測定方法」,特願2007-126518 飛田成史,吉原利忠,竹内利行,穂坂正博,特願2008-185151 S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc., 123, 4303 (2001). H. Konno,Chem. Times, 199, 13 (2006). M. Nonoyama, Bull. Chem. Soc. Jpn., 47, 767 (1974). S. Sprouse, K. A. King, P. J. Spellane, and R. J. Watts, J. Am. Chem. Soc., 106, 6647 (1984).
In general, it is known that polyethylene glycol (PEG) is bound as a method for solubilizing an organic compound having low solubility in water. However, although PEG is said to be low in toxicity to living bodies, it has been regarded as a problem that the molecular weight (generally 5000 or more) becomes too large.
Shunji Tobita, Toshitada Yoshihara, Toshiyuki Takeuchi, Masahiro Hosaka, “Oxygen Concentration Reagent and Oxygen Concentration Method”, Japanese Patent Application 2007-126518 Satoshi Tobita, Toshitada Yoshihara, Toshiyuki Takeuchi, Masahiro Hosaka, Japanese Patent Application 2008-185151 S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. Lee, C. Adachi, PE Burrows, SR Forrest, and ME Thompson, J. Am. Chem. Soc., 123, 4303 (2001 ). H. Konno, Chem. Times, 199, 13 (2006). M. Nonoyama, Bull. Chem. Soc. Jpn., 47, 767 (1974). S. Sprouse, KA King, PJ Spellane, and RJ Watts, J. Am. Chem. Soc., 106, 6647 (1984).

本発明は、水溶液中でも使用可能な、酸素濃度に依存してりん光を発する新規イリジウム錯体を提供すること、及びそれを用いた酸素濃度測定試薬を提供することを課題とする。   An object of the present invention is to provide a novel iridium complex that can be used even in an aqueous solution and emits phosphorescence depending on the oxygen concentration, and to provide an oxygen concentration measuring reagent using the same.

本発明者は上記課題を解決すべく鋭意検討を行った。その結果、イリジウム錯体の配位子であるアセチルアセトンをアミノ酸残基またはペプチド残基を含む水溶性配位子に変えることにより、りん光特性を維持した水溶性イリジウム錯体を合成することに成功し、さらに、そのりん光が酸素濃度に依存することを見出し、本発明を完成するに至った。   The present inventor has intensively studied to solve the above problems. As a result, we succeeded in synthesizing a water-soluble iridium complex maintaining phosphorescence properties by changing acetylacetone, which is a ligand of iridium complex, to a water-soluble ligand containing amino acid residues or peptide residues. Furthermore, the inventors have found that the phosphorescence depends on the oxygen concentration, and have completed the present invention.

すなわち、本発明は以下の通りである。
(1)下記一般式(I)〜(IV)のいずれかで表される化合物(nは1〜5の自然数を表し、Rはアミノ酸残基またはペプチド残基を表す)。
(2)前記アミノ酸残基またはペプチド残基が、側鎖に水酸基、カルボキシル基もしくはアミノ基を有するアミノ酸の残基または該アミノ酸からなるペプチドの残基である、(1)の化合物。
(3)前記アミノ酸残基またはペプチド残基が、チロシン、アスパラギン酸、グルタミン酸、リシンおよびアルギニンから選ばれるアミノ酸の残基または該アミノ酸からなるペプチドの残基である、(1)の化合物。
(4)前記アミノ酸残基またはペプチド残基が、アスパラギン酸残基またはアスパラギン酸からなるペプチドの残基である、(1)の化合物。
(5)下記式(V)または(VI)で表される化合物。
(6)(1)〜(5)のいずれかの化合物を含む酸素濃度測定試薬。
That is, the present invention is as follows.
(1) A compound represented by any one of the following general formulas (I) to (IV) (n represents a natural number of 1 to 5, and R represents an amino acid residue or a peptide residue).
(2) The compound of (1), wherein the amino acid residue or peptide residue is a residue of an amino acid having a hydroxyl group, a carboxyl group or an amino group in the side chain, or a residue of a peptide comprising the amino acid.
(3) The compound according to (1), wherein the amino acid residue or peptide residue is an amino acid residue selected from tyrosine, aspartic acid, glutamic acid, lysine and arginine or a peptide residue comprising the amino acid.
(4) The compound of (1), wherein the amino acid residue or peptide residue is a residue of a peptide comprising aspartic acid residue or aspartic acid.
(5) A compound represented by the following formula (V) or (VI).
(6) An oxygen concentration measurement reagent containing the compound according to any one of (1) to (5).

本発明のイリジウム錯体は、酸素濃度に依存してりん光を発するため、水溶液中の酸素濃度をモニターすることができ、さらにりん光寿命の値から酸素濃度を定量することができる。これにより、分析化学、生命科学、バイオイメージング分野、医療診断、細胞生物学などの分野に用いることができる。具体的には、酸素濃度定量試薬、低酸素細胞画像化試薬、低酸素腫瘍診断試薬などとして用いることができる。
本発明のIr錯体は、(btp)2Ir(acac)のりん光特性を維持した水溶性イリジウム錯体であり、生体投与において有機溶媒の割合を軽減させることができる。また、水中で利用できる酸素センサーとしても有用である。
Since the iridium complex of the present invention emits phosphorescence depending on the oxygen concentration, the oxygen concentration in the aqueous solution can be monitored, and the oxygen concentration can be determined from the value of the phosphorescence lifetime. Thereby, it can be used in fields such as analytical chemistry, life science, bioimaging field, medical diagnosis, and cell biology. Specifically, it can be used as an oxygen concentration determination reagent, a hypoxic cell imaging reagent, a hypoxic tumor diagnostic reagent, and the like.
The Ir complex of the present invention is a water-soluble iridium complex that maintains the phosphorescent properties of (btp) 2 Ir (acac), and can reduce the proportion of organic solvents in living organisms. It is also useful as an oxygen sensor that can be used in water.

以下に本発明を詳しく説明する。   The present invention is described in detail below.

本発明の化合物は下記一般式(I)〜(IV)のいずれかで表される化合物である。

Figure 0005392746
The compound of the present invention is a compound represented by any one of the following general formulas (I) to (IV).
Figure 0005392746

ここで、nは1〜5の自然数を表し、1〜3が好ましく、2が特に好ましい。
Rはアミノ酸残基またはペプチド残基を表し、側鎖に水酸基、カルボキシル基またはアミノ基を有するアミノ酸の残基または該アミノ酸からなるペプチドの残基であることが好ましい。
なお、「アミノ酸残基およびペプチド残基」とは、アミノ酸またはペプチドがそのアミノ基を介してアミド結合したときの残基をいう。
側鎖に水酸基を有するアミノ酸としては、チロシン、セリン、スレオニンが挙げられ、チロシンがより好ましい。
側鎖にカルボキシル基を有するアミノ酸としては、アスパラギン酸、グルタミン酸が挙げられ、側鎖にアミノ基を有するアミノ酸としてはリシンおよびアルギニンが挙げられる。なお、アミノ酸はL体でもD体でもよく、非天然のアミノ酸でもよい。
ペプチド残基としては、上記アミノ酸の1種又は複数種からなるペプチド残基が挙げられ、その長さは好ましくは2〜10、より好ましくは2〜5である。
Here, n represents a natural number of 1 to 5, preferably 1 to 3, and particularly preferably 2.
R represents an amino acid residue or a peptide residue, and is preferably an amino acid residue having a hydroxyl group, a carboxyl group or an amino group in the side chain, or a peptide residue comprising the amino acid.
The “amino acid residue and peptide residue” refers to a residue when an amino acid or peptide is amide-bonded via its amino group.
Examples of amino acids having a hydroxyl group in the side chain include tyrosine, serine, and threonine, and tyrosine is more preferable.
Examples of amino acids having a carboxyl group in the side chain include aspartic acid and glutamic acid, and examples of amino acids having an amino group in the side chain include lysine and arginine. The amino acid may be L-form, D-form, or non-natural amino acid.
Examples of peptide residues include peptide residues composed of one or more of the above amino acids, and the length is preferably 2 to 10, more preferably 2 to 5.

より具体的には、Rがアスパラギン酸残基またはアスパラギン酸ジペプチドの残基である、下記式(V)または(VI)で表される化合物が挙げられる。ただし、本発明の化合物は水溶性を示し、酸素濃度に依存したりん光を発するものである限り、下記化合物に限定されるものではない。

Figure 0005392746
More specifically, examples include compounds represented by the following formula (V) or (VI), wherein R is an aspartic acid residue or an aspartic acid dipeptide residue. However, the compounds of the present invention are not limited to the following compounds as long as they exhibit water solubility and emit phosphorescence depending on the oxygen concentration.
Figure 0005392746

本発明のイリジウム錯体は、後述の実施例に記載の方法に従って合成することができる。なお、実施例ではRがアスパラギン酸またはアスパラギン酸ジペプチドの残基である上記式(V)または(VI)の化合物の合成例を示したが、アミド結合させるアミノ酸又はペプチドの種類を変えることにより他のアミノ酸またはペプチドが結合した化合物を得ることができる。   The iridium complex of this invention is compoundable according to the method as described in the below-mentioned Example. In the examples, synthesis examples of compounds of the above formula (V) or (VI) in which R is a residue of aspartic acid or aspartic acid dipeptide are shown, but other examples can be obtained by changing the type of amino acid or peptide to be amide-bonded. The compound which the amino acid or peptide of this couple | bonded can be obtained.

上記のようなイリジウム錯体は、水性媒体に溶解し、水溶液中の酸素濃度が低いときにより強いりん光を発する。したがって、りん光の強度に基づいて酸素濃度を測定することができる。すなわち、りん光が強いときに酸素濃度が低いというような判定ができる。また、あらかじめ酸素濃度とりん光強度の関係を求めておくことにより、酸素濃度を定量的に測定することも可能である。   The iridium complex as described above dissolves in an aqueous medium and emits stronger phosphorescence when the oxygen concentration in the aqueous solution is low. Therefore, the oxygen concentration can be measured based on the intensity of phosphorescence. That is, it can be determined that the oxygen concentration is low when phosphorescence is strong. It is also possible to quantitatively measure the oxygen concentration by obtaining the relationship between the oxygen concentration and the phosphorescence intensity in advance.

また、マウスやラットなどの実験動物あるいはヒトにイリジウム錯体を投与し、酸素濃度が低下している部位の検出などを行うこともできる。癌組織では酸素供給が不足しているので、酸素濃度が低下している部位の検出を行うことにより、癌組織を特異的に染色し、癌の診断薬として使用することもできる。
生体内の酸素濃度を検出する場合は、イリジウム錯体を生体に添加してインキュベートした後、イリジウム錯体を励起してりん光を観察できるような蛍光顕微鏡、蛍光測定装置、蛍光イメージング装置などを用いてりん光を観察することができる。
In addition, an iridium complex can be administered to a laboratory animal such as a mouse or rat or a human to detect a site where the oxygen concentration is lowered. Since the cancer tissue lacks oxygen supply, it can be used as a diagnostic agent for cancer by specifically staining the cancer tissue by detecting the site where the oxygen concentration is lowered.
When detecting the oxygen concentration in the living body, after adding and incubating the iridium complex to the living body, use a fluorescence microscope, a fluorescence measuring apparatus, a fluorescence imaging apparatus, etc. that can excite the iridium complex and observe phosphorescence. Phosphorescence can be observed.

以下に実施例を示し、本発明をさらに具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   The following examples illustrate the present invention more specifically. However, the present invention is not limited to the following examples.

(btp)2Ir(sa)の合成
2-ベンゾチエニルピリジン(1175.4mg、3.0mmol)、塩化イリジウム三水和物(純度:90%、1373.6mg、6.5mmol)に2-エトキシエタノール(90ml)、水(30ml)を加え、16時間還流した。溶液を室温まで冷却し生成した固体をろ過した。得られた固体(859mg、0.66mmol)、トリフルオロメタンスルホン酸銀(377.2mg、1.47mol)に脱水アセトン(120ml)を加え3時間還流し、溶液をろ過した。得られたろ液にスクシニルアセトン(308.8mg、1.95mol)、トリエチルアミン(1ml)を加え室温にて20時間撹拌した。溶液を減圧乾固し、得られた固体をカラムクロマトグラフィー(展開溶媒:クロロホルム:メタノール(9:1、v/v))を用いて生成した(収量:993.5mg、収率:97.5%)。
1H HNR (300 MHz, d-DMSO, TMS, RT):δ 8.60-8.51(2H, m), 8.01-7.98(2H, d), 7.78-7.74(2H, q), 7.70-7.62(2H, q), 7.23-7.21(2H, q), 7.10-7.08(2H, q), 6.83-6.77(2H, t), 6.30-6.24(2H, t), 5.43(1H, s), 2.37-2.22(4H, m), 1.76(3H, s)

Figure 0005392746
Synthesis of (btp) 2 Ir (sa)
2-Ethoxyethanol (90 ml) and water (30 ml) were added to 2-benzothienylpyridine (1175.4 mg, 3.0 mmol) and iridium chloride trihydrate (purity: 90%, 1373.6 mg, 6.5 mmol) and refluxed for 16 hours. did. The solution was cooled to room temperature and the resulting solid was filtered. Dehydrated acetone (120 ml) was added to the obtained solid (859 mg, 0.66 mmol) and silver trifluoromethanesulfonate (377.2 mg, 1.47 mol) and refluxed for 3 hours, and the solution was filtered. Succinyl acetone (308.8 mg, 1.95 mol) and triethylamine (1 ml) were added to the obtained filtrate, and the mixture was stirred at room temperature for 20 hours. The solution was evaporated to dryness, and the resulting solid was generated using column chromatography (developing solvent: chloroform: methanol (9: 1, v / v)) (yield: 993.5 mg, yield: 97.5%).
1 H HNR (300 MHz, d-DMSO, TMS, RT): δ 8.60-8.51 (2H, m), 8.01-7.98 (2H, d), 7.78-7.74 (2H, q), 7.70-7.62 (2H, q), 7.23-7.21 (2H, q), 7.10-7.08 (2H, q), 6.83-6.77 (2H, t), 6.30-6.24 (2H, t), 5.43 (1H, s), 2.37-2.22 ( 4H, m), 1.76 (3H, s)
Figure 0005392746

(btp)2Ir(sa-NH2)の合成
(btp)2Ir(sa)(100.5mg、0.130mol)、Fmocエチレンジアミン(46.2mg、0.145mol)、ジイソプロピルエチルアミン(49μl、0.288mol)にDMF(5ml)を加え縮合剤としてHATU(56.2mg、0.148mol)を用いて、氷浴下3時間撹拌した。溶液に水を注ぎ、固体を析出させろ過した。得られた生成物をカラムクロマトグラフィー(展開溶媒:クロロホルム)を用いて生成した(収量:42.1mg、収率:31%)。得られた固体(42mg、0.041mol)に2%DBU/DMF(8ml)溶液を加え3時間室温で撹拌した。溶液に水を加え、クロロホルムを用いて抽出を行い、クロロホルム溶液を硫酸ナトリウムで乾燥し、ろ過後、ろ液を減圧乾固した。得られたオイルに少量のクロロホルムを加えた後、多量のヘキサンを加え、固体を析出させろ過した(収量:16.7mg、収率:51%)。
1H HNR (300 MHz, CDCl3, TMS, RT):δ 8.45-8.32(2H, m), 7.82-7.75(2H, d), 7.68-7.62(4H, m), 7.10-7.02(4H, m), 6.83-6.77(2H, m), 6.22-6.20(2H, d), 6.15(1H, s), 5.29(1H, s), 2.65-2.45(4H, m) 2.32-2.25(2H, m), 2.15-2.08(2H, m), 1.80(3H, s)

Figure 0005392746
Synthesis of (btp) 2 Ir (sa-NH 2 )
(btp) 2 Ir (sa) (100.5 mg, 0.130 mol), Fmoc ethylenediamine (46.2 mg, 0.145 mol), diisopropylethylamine (49 μl, 0.288 mol) in DMF (5 ml) and HATU (56.2 mg, 0.148 as a condensing agent) mol) and stirred for 3 hours in an ice bath. Water was poured into the solution to precipitate a solid and filtered. The obtained product was produced using column chromatography (developing solvent: chloroform) (yield: 42.1 mg, yield: 31%). To the obtained solid (42 mg, 0.041 mol), a 2% DBU / DMF (8 ml) solution was added and stirred at room temperature for 3 hours. Water was added to the solution, extraction was performed using chloroform, the chloroform solution was dried over sodium sulfate, and after filtration, the filtrate was dried under reduced pressure. A small amount of chloroform was added to the obtained oil, and then a large amount of hexane was added to precipitate a solid, followed by filtration (yield: 16.7 mg, yield: 51%).
1 H HNR (300 MHz, CDCl 3 , TMS, RT): δ 8.45-8.32 (2H, m), 7.82-7.75 (2H, d), 7.68-7.62 (4H, m), 7.10-7.02 (4H, m ), 6.83-6.77 (2H, m), 6.22-6.20 (2H, d), 6.15 (1H, s), 5.29 (1H, s), 2.65-2.45 (4H, m) 2.32-2.25 (2H, m) , 2.15-2.08 (2H, m), 1.80 (3H, s)
Figure 0005392746

(btp)2Ir(sa-Asp)の合成
(btp)2Ir(sa)(171mg、0.22mol)、Z基でカルボキシ基を保護したL-アスパラギン酸(97.8mg、0.20mol)、ジイソプロピルエチルアミン(85μl、0.50mol)にDMF(5ml)を加え縮合剤としてHATU(84mg、0.22mol)を用いて、氷浴下3時間撹拌した。溶液に水を注ぎ、固体を析出させろ過した。得られた生成物をカラムクロマトグラフィー(展開溶媒:クロロホルム)を用いて生成した(収量:74mg、収率:35%)。Z基で保護した(btp)2Ir(sa-Asp) (70mg、0.066mol)をテトラヒドロフランに溶解させ、5%PdCを適量加え、容器内を水素で満たし室温にて撹拌した。反応をTLCで追跡し原料が消失したところで、溶液をろ過
し、ろ液を減圧乾固した(収量:28mg、収率:49%)。
1H HNR (300 MHz, d-DMSO, TMS, RT):δ 12.5(2H, br), 8.45-8.37(2H, d), 8.12(1H, s), 8.01-7.98(2H, d), 7.79-7.71(4H, q), 7.23-7.21(2H, t), 7.10-7.08(2H, t), 6.83-6.77(2H, t), 6.10-6.02(2H, d), 5.38(1H, s), 4.50-4.45(2H, m), 2.37-2.22(4H, m), 1.76(3H, s)

Figure 0005392746
Synthesis of (btp) 2 Ir (sa-Asp)
(btp) 2 Ir (sa) (171 mg, 0.22 mol), L-aspartic acid (97.8 mg, 0.20 mol) protected with a carboxy group at the Z group, and DMF (5 ml) were added to diisopropylethylamine (85 μl, 0.50 mol) Using HATU (84 mg, 0.22 mol) as a condensing agent, the mixture was stirred for 3 hours in an ice bath. Water was poured into the solution to precipitate a solid and filtered. The obtained product was produced using column chromatography (developing solvent: chloroform) (yield: 74 mg, yield: 35%). (Btp) 2 Ir (sa-Asp) (70 mg, 0.066 mol) protected with a Z group was dissolved in tetrahydrofuran, an appropriate amount of 5% PdC was added, the container was filled with hydrogen, and the mixture was stirred at room temperature. The reaction was followed by TLC, and when the raw material disappeared, the solution was filtered and the filtrate was dried under reduced pressure (yield: 28 mg, yield: 49%).
1 H HNR (300 MHz, d-DMSO, TMS, RT): δ 12.5 (2H, br), 8.45-8.37 (2H, d), 8.12 (1H, s), 8.01-7.98 (2H, d), 7.79 -7.71 (4H, q), 7.23-7.21 (2H, t), 7.10-7.08 (2H, t), 6.83-6.77 (2H, t), 6.10-6.02 (2H, d), 5.38 (1H, s) , 4.50-4.45 (2H, m), 2.37-2.22 (4H, m), 1.76 (3H, s)
Figure 0005392746

(btp)2Ir(sa-Asp-Asp)の合成
(btp)2Ir(sa)(148.3mg、0.193mol)、Z基でカルボキシ基を保護したL-Asp-L-Asp(100.2mg、0.193mol)、ジイソプロピルエチルアミン(73μl、0.429mol)にDMF(5ml)を加え縮合剤としてHATU(82mg、0.216mol)を用いて、氷浴下3時間撹拌した。溶液に水を注ぎ、固体を析出させろ過した。得られた生成物をカラムクロマトグラフィー(展開溶媒:クロロホルム)を用いて生成した(収量:192.2mg、収率:78.2%)。Z基で保護した(btp)2Ir(sa-Asp-Asp) (192mg、0.151mol)をテトラヒドロフランに溶解させ、5%PdCを適量加え、容器内を水素で満たし室温にて撹拌した。反応をTLCで追跡し原料が消失したところで、溶液をろ過し、ろ液を減圧乾固した(収量:70.2mg、収率:46%)。
1H HNR (300 MHz, d-DMSO, TMS, RT):δ 12.5(3H, br), 8.43-8.37(2H, d), 8.20(1H, s), 8.01-7.98(2H, d), 7.81-7.73(4H, q), 7.23-7.21(2H, d), 7.10-7.08(2H, t), 6.83-6.77(2H, t), 6.10-6.02(2H, t), 5.38(1H, s), 4.50-4.45(2H, m), 4.12(1H, s), 2.20-2.10(4H, m), 1.75(3H, s)

Figure 0005392746
Synthesis of (btp) 2 Ir (sa-Asp-Asp)
(btp) 2 Ir (sa) (148.3 mg, 0.193 mol), L-Asp-L-Asp (100.2 mg, 0.193 mol) protected with a carboxy group at the Z group, diisopropylethylamine (73 μl, 0.429 mol) in DMF ( 5 ml) was added, and HATU (82 mg, 0.216 mol) was used as a condensing agent, followed by stirring in an ice bath for 3 hours. Water was poured into the solution to precipitate a solid and filtered. The obtained product was produced using column chromatography (developing solvent: chloroform) (yield: 192.2 mg, yield: 78.2%). (Btp) 2 Ir (sa-Asp-Asp) (192 mg, 0.151 mol) protected with a Z group was dissolved in tetrahydrofuran, an appropriate amount of 5% PdC was added, and the container was filled with hydrogen and stirred at room temperature. The reaction was followed by TLC, and when the raw material disappeared, the solution was filtered, and the filtrate was dried under reduced pressure (yield: 70.2 mg, yield: 46%).
1 H HNR (300 MHz, d-DMSO, TMS, RT): δ 12.5 (3H, br), 8.43-8.37 (2H, d), 8.20 (1H, s), 8.01-7.98 (2H, d), 7.81 -7.73 (4H, q), 7.23-7.21 (2H, d), 7.10-7.08 (2H, t), 6.83-6.77 (2H, t), 6.10-6.02 (2H, t), 5.38 (1H, s) , 4.50-4.45 (2H, m), 4.12 (1H, s), 2.20-2.10 (4H, m), 1.75 (3H, s)
Figure 0005392746

表1に、(btp)2Ir(sa)、(btp)2Ir(sa-NH2)、(btp)2Ir(sa-Asp)、および(btp)2Ir(sa-Asp-Asp)のTris-HCl緩衝液(pH=7.0):DMSO(95:5)およびTris-HCl緩衝液(pH=7.0)への溶解度を示す。(btp)2Ir(acac)では、Tris-HCl緩衝液(pH=7.0):DMSO(95:5)にほとんど溶解しないが、(btp)2Ir(sa)、(btp)2Ir(sa-NH2)において23mgL-1程度溶解することがわかる。一方、(btp)2Ir(sa-Asp)、(btp)2Ir(sa-Asp-Asp)では、Tris-HCl緩衝液(pH=7.0)に溶解する。特に(btp)2Ir(sa-Asp-Asp)では、モル濃度に換算すると340μMであり、ほぼ実用レベルに到達している。この結果より、水溶性のアミノ酸を導入することで水溶性を著しく向上させることができる。 Table 1 shows (btp) 2 Ir (sa), (btp) 2 Ir (sa-NH 2 ), (btp) 2 Ir (sa-Asp), and (btp) 2 Ir (sa-Asp-Asp) Tris-HCl buffer (pH = 7.0): shows solubility in DMSO (95: 5) and Tris-HCl buffer (pH = 7.0). (btp) 2 Ir (acac) hardly dissolves in Tris-HCl buffer (pH = 7.0): DMSO (95: 5), but (btp) 2 Ir (sa), (btp) 2 Ir (sa- It can be seen that about 23 mgL −1 is dissolved in NH 2 ). On the other hand, (btp) 2 Ir (sa-Asp) and (btp) 2 Ir (sa-Asp-Asp) dissolve in Tris-HCl buffer (pH = 7.0). In particular, (btp) 2 Ir (sa-Asp-Asp) is 340 μM in terms of molar concentration, and has almost reached a practical level. From this result, water solubility can be remarkably improved by introducing a water-soluble amino acid.

Figure 0005392746
Figure 0005392746

図1に、各イリジウム錯体の吸収、りん光スペクトルを示す。その結果、(btp)2Ir(sa-Asp)および(btp)2Ir(sa-Asp-Asp) はTris-HCl緩衝液(pH=7.0)中で、アセトニトリル中の(btp)2Ir(acac)とほぼ同じ吸収、りん光スペクトルを示し、acac部位のアミノ酸またはペプチドによる修飾はりん光特性に影響を及ぼさないことがわかった。表2に各化合物の窒素置換中におけるりん光量子収率を示す。(btp)2Ir(sa-Asp)および(btp)2Ir(sa-Asp-Asp) は水中においてりん光量子収率が減少するが、従来の水溶性りん光性化合物と比較して大きな値である。 FIG. 1 shows the absorption and phosphorescence spectra of each iridium complex. As a result, (btp) 2 Ir (sa-Asp) and (btp) 2 Ir (sa-Asp-Asp) were converted into (btp) 2 Ir (acac) in acetonitrile in Tris-HCl buffer (pH = 7.0). ) Showed almost the same absorption and phosphorescence spectrum as that of), and it was found that modification of the acac site with an amino acid or peptide did not affect phosphorescence properties. Table 2 shows the phosphorescence quantum yield of each compound during nitrogen substitution. (btp) 2 Ir (sa-Asp) and (btp) 2 Ir (sa-Asp-Asp) decrease the phosphorescence quantum yield in water, but they are large compared to conventional water-soluble phosphorescent compounds. is there.

Figure 0005392746
Figure 0005392746

図2に、Tris-HCl緩衝液(pH=7.0)中での、(btp)2Ir(sa-Asp-Asp)のりん光強度の酸素依存性の検討を行った。その結果、りん光強度は空気飽和下と比較してAr(アルゴン)置換下において5.3倍増加しており、水中においても酸素濃度に依存してりん光強度が変化しており、酸素センサーへの展開が期待できる。 In FIG. 2, the oxygen dependence of the phosphorescence intensity of (btp) 2 Ir (sa-Asp-Asp) in Tris-HCl buffer (pH = 7.0) was examined. As a result, the phosphorescence intensity increased 5.3 times under Ar (argon) substitution compared to under air saturation, and the phosphorescence intensity changed depending on the oxygen concentration in water. Expansion can be expected.

参考例1
ビス[2-(2'-ベンゾチエニル)-キノリナート- N,C3']イリジウム(アセチルアセトン)((btq)2Ir(acac))の合成
Reference example 1
Synthesis of bis [2- (2'-benzothienyl) -quinolinato-N, C 3 ' ] iridium (acetylacetone) ((btq) 2 Ir (acac))

2-ベンゾチエニルキノリンの合成
ベンゾ[b]チオフェン-2-イルボロン酸(990mg,5.6mmol)、2-クロロキノリン(937mg,5.7mmol)をトルエン(20ml)、エタノール(10ml)に溶解させ、パラジウム触媒(200mg,0.17mmol)、2M炭酸ナトリウム水溶液(20ml)を加え、N2置換下、5時間還流した。反応溶液を水に注ぎ、クロロホルムで抽出を行い、クロロホルム溶液を硫酸ナトリウムで乾燥し、ろ過後、ろ液を減圧乾固した。得られた固体をトルエンで洗浄した(収量:888mg、収率:61%)。
1H HNR (300 MHz, CDCl3, TMS, RT):δ 8.20-8.17(1H, d), 8.15-8.12(1H, d), 7.98(1H, S), 7.96-7.93(1H, d), 7.91-7.88(1H, q), 7.86-7.83(1H, q), 7.82-7.79(1H, d), 7.75-7.70(1H, t), 7.55-7.50(1H, t), 7.39-7.36(2H, q)

Figure 0005392746
Synthesis of 2-benzothienylquinoline Benz [b] thiophen-2-ylboronic acid (990 mg, 5.6 mmol) and 2-chloroquinoline (937 mg, 5.7 mmol) dissolved in toluene (20 ml) and ethanol (10 ml), palladium catalyst (200 mg, 0.17 mmol) and 2M aqueous sodium carbonate solution (20 ml) were added, and the mixture was refluxed for 5 hours under N 2 substitution. The reaction solution was poured into water, extracted with chloroform, the chloroform solution was dried over sodium sulfate, filtered, and the filtrate was dried under reduced pressure. The obtained solid was washed with toluene (yield: 888 mg, yield: 61%).
1 H HNR (300 MHz, CDCl 3 , TMS, RT): δ 8.20-8.17 (1H, d), 8.15-8.12 (1H, d), 7.98 (1H, S), 7.96-7.93 (1H, d), 7.91-7.88 (1H, q), 7.86-7.83 (1H, q), 7.82-7.79 (1H, d), 7.75-7.70 (1H, t), 7.55-7.50 (1H, t), 7.39-7.36 (2H , q)
Figure 0005392746

ビス[2-(2'-ベンゾチエニル)-キノリナート- N,C3']イリジウム(アセチルアセトン)の合成
2-ベンゾチエニルキノリン(581mg、2.2mmol)、塩化イリジウム三水和物(純度:90%、392mg、1.0mmol)に2-エトキシエタノール(30ml)、水(10ml)を加え、16時間還流した。溶液を室温まで冷却し生成した固体をろ過した。得られた固体(304mg、0.20mmol)に2-メトキシエタノール(25ml)、アセチルアセトン(1ml)、炭酸ナトリウム(170mg)を加え還流を加え2時間還流した。溶液を室温まで冷却し生成した固体をろ過した。得られた固体をカラムクロマトグラフィー(展開溶媒:クロロホルム)を用いて生成した(収量:262mg、収率:79%)。
1H HNR (300 MHz, CDCl3, TMS, RT):δ 8.17-8.14(2H, d), 8.01-7.98(2H, d), 7.85-7.83(2H, d), 7.75-7.73(2H, d), 7.71-7.68(2H, d), 7.37-7.32(2H, t), 7.73-7.23(2H, t), 7.02-6.97(2H, t), 6.57-6.52(2H, t), 6.32-6.30(2H, d), 4.63(1H, s), 1.55(6H, s)

Figure 0005392746
Synthesis of bis [2- (2'-benzothienyl) -quinolinato-N, C 3 ' ] iridium (acetylacetone)
2-Ethoxyethanol (30 ml) and water (10 ml) were added to 2-benzothienylquinoline (581 mg, 2.2 mmol) and iridium chloride trihydrate (purity: 90%, 392 mg, 1.0 mmol), and the mixture was refluxed for 16 hours. The solution was cooled to room temperature and the resulting solid was filtered. To the obtained solid (304 mg, 0.20 mmol), 2-methoxyethanol (25 ml), acetylacetone (1 ml) and sodium carbonate (170 mg) were added and refluxed for 2 hours. The solution was cooled to room temperature and the resulting solid was filtered. The obtained solid was produced using column chromatography (developing solvent: chloroform) (yield: 262 mg, yield: 79%).
1 H HNR (300 MHz, CDCl 3 , TMS, RT): δ 8.17-8.14 (2H, d), 8.01-7.98 (2H, d), 7.85-7.83 (2H, d), 7.75-7.73 (2H, d ), 7.71-7.68 (2H, d), 7.37-7.32 (2H, t), 7.73-7.23 (2H, t), 7.02-6.97 (2H, t), 6.57-6.52 (2H, t), 6.32-6.30 (2H, d), 4.63 (1H, s), 1.55 (6H, s)
Figure 0005392746

参考例2
ビス[1-(2'-ベンゾチエニル)-キノリナート- N,C3']イリジウム(アセチルアセトン)((btiq)2Ir(acac))の合成
Reference example 2
Synthesis of bis [1- (2'-benzothienyl) -quinolinato-N, C 3 ' ] iridium (acetylacetone) ((btiq) 2 Ir (acac))

1-ベンゾチエニルイソキノリンの合成
ベンゾ[b]チオフェン-2-イルボロン酸(997mg、5.6mmol)、1-クロロイソキノリン(946mg、5.8mmol)をトルエン(20ml)、エタノール(10ml)に溶解させ、パラジウム触媒(220mg、0.19mmol)、2M炭酸ナトリウム水溶液(20ml)を加え、N2置換下、5時間還流した。反応溶液を水に注ぎ、クロロホルムで抽出を行い、クロロホルム溶液を硫酸ナトリウムで乾燥し、ろ過後、ろ液を減圧乾固した。得られた固体をカラムクロマトグラフィー(展開溶媒:クロロホルム)を用いて生成した(収量:1.16g、収率:79%)。
1H HNR (300 MHz, CDCl3, TMS, RT):δ 8.62-8.60(2H, d), 7.96-7.87(3H, m), 7.84(1H, s), 7.78-7.73(1H, d), 7.71-7.67(1H, d), 7.65-7.63(1H, d), 7.42-7.39(2H, m)

Figure 0005392746
Synthesis of 1-benzothienylisoquinoline Benz [b] thiophen-2-ylboronic acid (997mg, 5.6mmol), 1-chloroisoquinoline (946mg, 5.8mmol) dissolved in toluene (20ml), ethanol (10ml), palladium catalyst (220 mg, 0.19 mmol) and 2M aqueous sodium carbonate solution (20 ml) were added, and the mixture was refluxed for 5 hours under N 2 substitution. The reaction solution was poured into water, extracted with chloroform, the chloroform solution was dried over sodium sulfate, filtered, and the filtrate was dried under reduced pressure. The obtained solid was produced using column chromatography (developing solvent: chloroform) (yield: 1.16 g, yield: 79%).
1 H HNR (300 MHz, CDCl 3 , TMS, RT): δ 8.62-8.60 (2H, d), 7.96-7.87 (3H, m), 7.84 (1H, s), 7.78-7.73 (1H, d), 7.71-7.67 (1H, d), 7.65-7.63 (1H, d), 7.42-7.39 (2H, m)
Figure 0005392746

ビス[1-(2'-ベンゾチエニル)-キノリナート- N,C3']イリジウム(アセチルアセトン)の合成
1-ベンゾチエニルイソキノリン(574mg、2.2mmol)、塩化イリジウム三水和物(純度:90%、398mg、1.0mmol)に2-エトキシエタノール(30ml)、水(10ml)を加え、16時間還流した。溶液を室温まで冷却し生成した固体をろ過した。得られた固体(250mg、0.17mmol)に2-メトキシエタノール(30ml)、アセチルアセトン(1ml)、炭酸ナトリウム(150mg)を加え還流した。溶液を室温まで冷却し生成した固体をろ過した。得られた固体をカラムクロマトグラフィー(展開溶媒:クロロホルム)を用いて生成した(収量:50mg、収率:18%)。
1H HNR (300 MHz, CDCl3, TMS, RT):δ 8.92-8.88(2H, d), 8.22-8.19(2H, d), 7.88-7.84(2H, m), 7.68-7.64(4H, m), 7.56-7.54(2H, d), 7.32-7.27(2H, m), 6.94-6.91(2H, d), 6.56-6.53(2H, m), 6.18-6.14(2H, d), 5.12(1H, s), 1.63(6H, s)

Figure 0005392746
Synthesis of bis [1- (2'-benzothienyl) -quinolinato-N, C 3 ' ] iridium (acetylacetone)
2-Ethoxyethanol (30 ml) and water (10 ml) were added to 1-benzothienylisoquinoline (574 mg, 2.2 mmol) and iridium chloride trihydrate (purity: 90%, 398 mg, 1.0 mmol), and the mixture was refluxed for 16 hours. The solution was cooled to room temperature and the resulting solid was filtered. To the obtained solid (250 mg, 0.17 mmol), 2-methoxyethanol (30 ml), acetylacetone (1 ml) and sodium carbonate (150 mg) were added and refluxed. The solution was cooled to room temperature and the resulting solid was filtered. The obtained solid was produced using column chromatography (developing solvent: chloroform) (yield: 50 mg, yield: 18%).
1 H HNR (300 MHz, CDCl 3 , TMS, RT): δ 8.92-8.88 (2H, d), 8.22-8.19 (2H, d), 7.88-7.84 (2H, m), 7.68-7.64 (4H, m ), 7.56-7.54 (2H, d), 7.32-7.27 (2H, m), 6.94-6.91 (2H, d), 6.56-6.53 (2H, m), 6.18-6.14 (2H, d), 5.12 (1H , s), 1.63 (6H, s)
Figure 0005392746

参考例3
ビス[9-(2'-ベンゾチエニル)-フェナンスリナート- N,C3']イリジウム(アセチルアセトン)((btph)2Ir(acac))の合成
Reference example 3
Synthesis of bis [9- (2'-benzothienyl) -phenanthrinate-N, C 3 ' ] iridium (acetylacetone) ((btph) 2 Ir (acac))

9-クロロフェナンスリジンの合成
フェナンスリジノン(2.0g)にオキシ塩化リン(15ml)、ジメチルアニリン(0.63ml)を加え、3時間還流した。溶液を水に注ぎクロロホルムで抽出を行い、クロロホルム溶液を硫酸ナトリウムで乾燥し、ろ過後、ろ液を減圧乾固した。得られた固体をカラムクロマトグラフィー(展開溶媒:クロロホルム)を用いて生成した(収量:2.1g,収率:96%)。
1H HNR (300 MHz, CDCl3, TMS, RT):δ 8.63-8.60(1H, d), 8.55-8.52(1H, d), 8.50-8.48(1H, d), 8.11-8.09(1H, d), 7.94-7.92(1H, t), 7.79-7.66(3H, m)

Figure 0005392746
Synthesis of 9-chlorophenanthridine To phenanthridinone (2.0 g) was added phosphorus oxychloride (15 ml) and dimethylaniline (0.63 ml), and the mixture was refluxed for 3 hours. The solution was poured into water and extracted with chloroform. The chloroform solution was dried over sodium sulfate, filtered, and the filtrate was dried under reduced pressure. The obtained solid was produced using column chromatography (developing solvent: chloroform) (yield: 2.1 g, yield: 96%).
1 H HNR (300 MHz, CDCl 3 , TMS, RT): δ 8.63-8.60 (1H, d), 8.55-8.52 (1H, d), 8.50-8.48 (1H, d), 8.11-8.09 (1H, d ), 7.94-7.92 (1H, t), 7.79-7.66 (3H, m)
Figure 0005392746

9-ベンゾチエニルフェナンスリジリンの合成
ベンゾ[b]チオフェン-2-イルボロン酸(884mg、5.0mmol)、9-クロロフェナンスリジリン(1.0g、4.8mmol)をテトラヒドロフラン(30ml)、パラジウム触媒(160mg、0.14mmol)、2M炭酸ナトリウム水溶液(20ml)を加え、N2置換下、5時間還流した。反応溶液を水に注ぎ、クロロホルムで抽出を行い、クロロホルム溶液を硫酸ナトリウムで乾燥し、ろ過後、ろ液を減圧乾固した。得られた固体をカラムクロマトグラフィー(展開溶媒:クロロホルム)を用いて生成した(収量:1.15g、収率:78%)。
1H HNR (300 MHz, CDCl3, TMS, RT):δ 8.74-8.71(1H, d), 8.67-8.65(1H, d), 8.62-8.59(1H), 8.26-8.23(1H, d), 7.97-7.88(3H, m), 7.86(1H, s), 7.80-7.67(3H, m), 7.44-7.41(2H)

Figure 0005392746
Synthesis of 9-benzothienylphenanthridylline Benzo [b] thiophen-2-ylboronic acid (884 mg, 5.0 mmol), 9-chlorophenanthridylline (1.0 g, 4.8 mmol) in tetrahydrofuran (30 ml), palladium catalyst ( 160 mg, 0.14 mmol) and 2M aqueous sodium carbonate solution (20 ml) were added, and the mixture was refluxed for 5 hours under N 2 substitution. The reaction solution was poured into water, extracted with chloroform, the chloroform solution was dried over sodium sulfate, filtered, and the filtrate was dried under reduced pressure. The obtained solid was produced using column chromatography (developing solvent: chloroform) (yield: 1.15 g, yield: 78%).
1 H HNR (300 MHz, CDCl 3 , TMS, RT): δ 8.74-8.71 (1H, d), 8.67-8.65 (1H, d), 8.62-8.59 (1H), 8.26-8.23 (1H, d), 7.97-7.88 (3H, m), 7.86 (1H, s), 7.80-7.67 (3H, m), 7.44-7.41 (2H)
Figure 0005392746

ビス[9-(2'-ベンゾチエニル)-フェナンスリナート- N,C3']イリジウム(アセチルアセトン)の合成
9-ベンゾチエニルフェナンスリジリン(706mg、2.3mmol)、塩化イリジウム三水和物(純度:90%、398mg、1.0mmol)に2-エトキシエタノール(30ml)、水(10ml)を加え、16時間還流した。溶液を室温まで冷却し生成した固体をろ過した。得られた固体(343mg、0.20mmol)に2-メトキシエタノール(20ml)、アセチルアセトン(1ml)、炭酸ナトリウム(180mg)を加え2時間還流した。溶液を室温まで冷却し生成した固体をろ過した。得られた固体をカラムクロマトグラフィー(展開溶媒:クロロホルム)を用いて生成した(収量:293mg、収率:80%)。
1H HNR (300 MHz, CDCl3, TMS, RT):δ 9.35-9.33(2H, d), 8.72-8.70(2H, d), 8.46-8.44(2H, d), 7.98-7.87(4H, m), 7.85-7.82(2H, d), 7.73-7.70(2H, d), 7.43-7.38(2H, t), 7.20-7.15(2H, t), 7.04-6.99(2H, m), 6.52-6.51(4H, d), 4.50(1H, s), 1.39(6H, s)

Figure 0005392746
Synthesis of bis [9- (2'-benzothienyl) -phenanthrinate-N, C 3 ' ] iridium (acetylacetone)
2-Ethoxyethanol (30 ml) and water (10 ml) were added to 9-benzothienylphenanthridylline (706 mg, 2.3 mmol) and iridium chloride trihydrate (purity: 90%, 398 mg, 1.0 mmol) for 16 hours. Refluxed. The solution was cooled to room temperature and the resulting solid was filtered. To the obtained solid (343 mg, 0.20 mmol), 2-methoxyethanol (20 ml), acetylacetone (1 ml) and sodium carbonate (180 mg) were added and refluxed for 2 hours. The solution was cooled to room temperature and the resulting solid was filtered. The obtained solid was produced using column chromatography (developing solvent: chloroform) (yield: 293 mg, yield: 80%).
1 H HNR (300 MHz, CDCl 3 , TMS, RT): δ 9.35-9.33 (2H, d), 8.72-8.70 (2H, d), 8.46-8.44 (2H, d), 7.98-7.87 (4H, m ), 7.85-7.82 (2H, d), 7.73-7.70 (2H, d), 7.43-7.38 (2H, t), 7.20-7.15 (2H, t), 7.04-6.99 (2H, m), 6.52-6.51 (4H, d), 4.50 (1H, s), 1.39 (6H, s)
Figure 0005392746

表3に、(btq)2Ir(acac)、(btiq)2Ir(acac)、(btph)2Ir(acac)の1,2-ジクロロエタン中におけるりん光スペクトルを示す。また、これらの化合物のりん光は酸素濃度依存性を示した(データは示さず)。 Table 3 shows phosphorescence spectra of (btq) 2 Ir (acac), (btiq) 2 Ir (acac), and (btph) 2 Ir (acac) in 1,2-dichloroethane. The phosphorescence of these compounds was dependent on oxygen concentration (data not shown).

Figure 0005392746
Figure 0005392746

参考例1〜3のそれぞれにおいて、アセチルアセトン(acac)のかわりにスクシニルアセトン(sa)を反応させることにより、(btq)2Ir(sa)、(btiq)2Ir(sa)、(btph)2Ir(sa)を得ることができる。そして、(btq)2Ir(sa)、(btiq)2Ir(sa)、(btph)2Ir(sa)にアミノ酸やペプチドを反応させることにより、水溶性のイリジウム錯体((btq)2Ir(sa-asp)、(btiq)2Ir(sa-asp)、(btph)2Ir(sa-asp)、(btq)2Ir(sa-asp-asp)、(btiq)2Ir(sa-asp-asp)、(btph)2Ir(sa-asp-asp)など)を得ることができる。
表3より、(btq)2Ir(acac)、(btiq)2Ir(acac)、(btph)2Ir(acac)がりん光を発するため、(btq)2Ir(sa-asp)、(btiq)2Ir(sa-asp)、(btph)2Ir(sa-asp)、(btq)2Ir(sa-asp-asp)、(btiq)2Ir(sa-asp-asp)、(btph)2Ir(sa-asp-asp)などのイリジウム錯体も水溶性のりん光化合物であることが理解できる。

Figure 0005392746
In each of Reference Examples 1 to 3, by reacting succinylacetone (sa) instead of acetylacetone (acac), (btq) 2 Ir (sa), (btiq) 2 Ir (sa), (btph) 2 Ir (sa) can be obtained. Then, (btq) 2 Ir (sa), (btiq) 2 Ir (sa), (btph) 2 Ir (sa) are reacted with an amino acid or peptide to form a water-soluble iridium complex ((btq) 2 Ir ( sa-asp), (btiq) 2 Ir (sa-asp), (btph) 2 Ir (sa-asp), (btq) 2 Ir (sa-asp-asp), (btiq) 2 Ir (sa-asp- asp), (btph) 2 Ir (sa-asp-asp), and the like.
From Table 3, since (btq) 2 Ir (acac), (btiq) 2 Ir (acac), (btph) 2 Ir (acac) emits phosphorescence, (btq) 2 Ir (sa-asp), (btiq ) 2 Ir (sa-asp), (btph) 2 Ir (sa-asp), (btq) 2 Ir (sa-asp-asp), (btiq) 2 Ir (sa-asp-asp), (btph) 2 It can be understood that iridium complexes such as Ir (sa-asp-asp) are also water-soluble phosphorescent compounds.
Figure 0005392746

本発明の酸素濃度検出試薬によれば、水溶液中の酸素濃度を高感度かつリアルタイムで定量することができ、細胞内酸素濃度定量試薬、低酸素細胞画像化薬などとして有用である。   According to the oxygen concentration detection reagent of the present invention, the oxygen concentration in an aqueous solution can be quantified with high sensitivity and in real time, and is useful as an intracellular oxygen concentration quantification reagent, a hypoxic cell imaging agent, and the like.

(btp)2Ir(sa)、(btp)2Ir(sa-NH2)、(btp)2Ir(sa-Asp)、(btp)2Ir(sa-Asp-Asp)と、対照の(btp)2Ir(acac)の吸収、りん光スペクトルを示す図。(btp) 2 Ir (sa), (btp) 2 Ir (sa-NH 2 ), (btp) 2 Ir (sa-Asp), (btp) 2 Ir (sa-Asp-Asp) and control (btp) FIG. 2 is a graph showing absorption and phosphorescence spectra of 2 Ir (acac). Ar置換溶液、空気飽和溶液の(btp)2Ir(sa-Asp-Asp)のりん光スペクトルを示す図。Ar replacement solution, shows the phosphorescence spectrum of air saturated solution (btp) 2 Ir (sa- Asp-Asp).

Claims (4)

下記一般式(I)〜(IV)のいずれかで表される化合物(nは1〜5の自然数を表し、Rはチロシン、セリン、スレオニン、アスパラギン酸、グルタミン酸、リシンおよびアルギニンから選ばれるアミノ酸残基または該アミノ酸からなるペプチド残基を表す)。
Figure 0005392746
A compound represented by any one of the following general formulas (I) to (IV) (n represents a natural number of 1 to 5, R represents an amino acid selected from tyrosine, serine, threonine, aspartic acid, glutamic acid, lysine and arginine ) Represents a residue or a peptide residue comprising the amino acid ).
Figure 0005392746
前記アミノ酸残基またはペプチド残基が、アスパラギン酸残基またはアスパラギン酸からなるペプチドの残基である、請求項1に記載の化合物。 The compound according to claim 1, wherein the amino acid residue or peptide residue is a residue of a peptide consisting of aspartic acid residue or aspartic acid. 下記式(V)または(VI)で表される化合物。
Figure 0005392746
A compound represented by the following formula (V) or (VI).
Figure 0005392746
請求項1〜のいずれか一項に記載の化合物を含む酸素濃度測定試薬。 An oxygen concentration measurement reagent comprising the compound according to any one of claims 1 to 3 .
JP2008239660A 2008-09-18 2008-09-18 Novel water-soluble iridium complex compound and oxygen concentration measuring reagent using the same Expired - Fee Related JP5392746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008239660A JP5392746B2 (en) 2008-09-18 2008-09-18 Novel water-soluble iridium complex compound and oxygen concentration measuring reagent using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008239660A JP5392746B2 (en) 2008-09-18 2008-09-18 Novel water-soluble iridium complex compound and oxygen concentration measuring reagent using the same

Publications (2)

Publication Number Publication Date
JP2010070494A JP2010070494A (en) 2010-04-02
JP5392746B2 true JP5392746B2 (en) 2014-01-22

Family

ID=42202628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008239660A Expired - Fee Related JP5392746B2 (en) 2008-09-18 2008-09-18 Novel water-soluble iridium complex compound and oxygen concentration measuring reagent using the same

Country Status (1)

Country Link
JP (1) JP5392746B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5353509B2 (en) * 2008-07-16 2013-11-27 国立大学法人群馬大学 NOVEL COMPLEX COMPOUND, AND OXYGEN CONCENTRATION REAGENT USING THE SAME AND CANCER DIAGNOSIS
WO2010044465A1 (en) 2008-10-17 2010-04-22 国立大学法人 群馬大学 Novel compound and functional luminescent probe comprising same

Also Published As

Publication number Publication date
JP2010070494A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
JP5500594B2 (en) Novel compound and functional luminescent probe containing the same
US9610366B2 (en) Method for diagnosing cancer
JP6081152B2 (en) Fluorescent compounds comprising tetraphenylethene derivatives
JP2010534712A (en) Optical imaging agent
JP4930943B2 (en) Oxygen concentration measuring reagent and oxygen concentration measuring method
KR101523311B1 (en) Dipeptide derivatives, preparation method thereof, chemosensor having the same and detection method of silver ion, mercury ion, copper(I) ion and silver nano particle using the same
JP5881624B2 (en) Fluorescent dye
JP5392746B2 (en) Novel water-soluble iridium complex compound and oxygen concentration measuring reagent using the same
Wang et al. An activatable fluorescent probe enables in vivo evaluation of peroxynitrite levels in rheumatoid arthritis
Killoran et al. Impact of a conformationally restricted receptor on the BF 2 chelated azadipyrromethene fluorosensing platform
JP5353509B2 (en) NOVEL COMPLEX COMPOUND, AND OXYGEN CONCENTRATION REAGENT USING THE SAME AND CANCER DIAGNOSIS
Raj Synthesis, single crystal XRD and CT DNA/BSA binding studies of new paracetamol derivatives
JP2010203966A (en) Near-infrared fluorescent probe for imaging low-oxygen region
US9409923B2 (en) Drug-fluorophore complex for specific detection of tumor cells
JP2018090536A (en) Near-infrared fluorescent ratio type probe
KR100963136B1 (en) Derivative of Coumarin capable of using Cu II selectivity and manufacturing method thereof
KR101684409B1 (en) Complex of drug-fluorophore for specific detection of cancer cell
US20040235902A1 (en) Fluorescent probes for zinc
KR101809828B1 (en) Advanced sensory materials for detecting tyrosine kinase and use thereof
Ghosh et al. Synthesis and evaluation of an imidazole derivative–fluorescein conjugate
JP2016196608A (en) Fluorescent dye
CN105802273B (en) Fluorescence identifying dyestuff, its preparation method and application based on Nile blue parent
JP2019007961A (en) Low-oxygen region visualization reagent
Koshelev et al. NIR-emitting ytterbium complexes with a large Stokes shift for detection of sulfide
CN114057777B (en) Beta-carboline derivative and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131009

R150 Certificate of patent or registration of utility model

Ref document number: 5392746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees