JP2010203966A - Near-infrared fluorescent probe for imaging low-oxygen region - Google Patents

Near-infrared fluorescent probe for imaging low-oxygen region Download PDF

Info

Publication number
JP2010203966A
JP2010203966A JP2009050992A JP2009050992A JP2010203966A JP 2010203966 A JP2010203966 A JP 2010203966A JP 2009050992 A JP2009050992 A JP 2009050992A JP 2009050992 A JP2009050992 A JP 2009050992A JP 2010203966 A JP2010203966 A JP 2010203966A
Authority
JP
Japan
Prior art keywords
infrared fluorescent
low
imaging
fluorescent probe
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009050992A
Other languages
Japanese (ja)
Inventor
Hideko Nagasawa
秀子 永澤
Kensuke Okuda
健介 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GIFU ICHI
Original Assignee
GIFU ICHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GIFU ICHI filed Critical GIFU ICHI
Priority to JP2009050992A priority Critical patent/JP2010203966A/en
Publication of JP2010203966A publication Critical patent/JP2010203966A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a near-infrared fluorescent probe for non-invasively imaging a low-oxygen region with the low-oxygen region as a target reliably and specifically. <P>SOLUTION: The near-infrared fluorescent probe for imaging a low-oxygen region comprises: a near-infrared fluorescent dye; a low-oxygen binding part that is activated by reductive metabolism at a low-oxygen region and is bound with a nucleophilic biomolecule; and linker bonding. The near-infrared fluorescent dye can be a cyanin-based dye or a BODIPY-based dye. A low-oxygen bonding part can be a unit containing a nitro aromatic ring of benzene, imidazole, and triazole. Linker bonding can be formed by a chain unit including a functional group by one of polyester, triazole, amide, thioamide, ester, thioester, carbamate, amine, sulfide, ether, and alkyl groups, or their combination. A method of imaging a low-oxygen region uses the near-infrared fluorescent probe for imaging a low-oxygen region. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、生体内の低酸素領域を近赤外蛍光により特異的に可視化して非侵襲的にイメージングする近赤外線蛍光プローブに関する。   The present invention relates to a near-infrared fluorescent probe for non-invasive imaging by specifically visualizing a hypoxic region in a living body with near-infrared fluorescence.

固形がんに存在する低酸素領域は、血管新生、転移、がんの悪性化を誘導し、化学療法剤及び放射線に抵抗性を示すので、低酸素領域をイメージングすることはがんの早期発見や最適な治療戦略の選択において重要である、また、近年、がんの発生、転移、再発の原因として注目されるがん幹細胞は低酸素ニッチに潜むと言われており、低酸素領域をイメージングすることはがん幹細胞に対する新しい検査や治療方法の開発研究において重要であると考えられる。   The hypoxic region present in solid cancer induces angiogenesis, metastasis, and malignant transformation of cancer, and is resistant to chemotherapeutic agents and radiation, so imaging the hypoxic region is an early detection of cancer It is important to select the optimal treatment strategy, and in recent years, cancer stem cells that are attracting attention as the cause of cancer development, metastasis, and recurrence are said to lurk in the hypoxic niche, and imaging the hypoxic region This is considered important in research and development of new tests and treatment methods for cancer stem cells.

従来、がんなどの病変部の場所、大きさ、形態などを診断する方法として、穿刺等の生検、X線造影、MRI造影などが挙げられるが、これらの診断方法は被験者の負担が大きく、またX線や電磁波の被爆のおそれがある侵襲性の高い診断方法とも言える。一方、近赤外光は、生体組織を透過しやすく、また安全性が高いため、非侵襲的に生体を診断する方法として、病変部を近赤外蛍光色素を用いてイメージングする近赤外蛍光造影剤が提案されている(特許文献1、特許文献2参照)。   Conventionally, methods for diagnosing the location, size, morphology, etc. of lesions such as cancer include biopsy such as puncture, X-ray contrast imaging, MRI contrast imaging, etc., but these diagnosis methods place a heavy burden on the subject. It can also be said to be a highly invasive diagnostic method that may be exposed to X-rays or electromagnetic radiation. On the other hand, near-infrared light is easy to transmit through living tissue and has high safety. As a non-invasive method for diagnosing a living body, near-infrared fluorescence is used to image a lesion using a near-infrared fluorescent dye. Contrast agents have been proposed (see Patent Document 1 and Patent Document 2).

一方、生体の低酸素領域を標的とする画像診断用プローブとして利用可能な化合物の提案がある(特許文献3参照)。   On the other hand, there is a proposal of a compound that can be used as a diagnostic imaging probe targeting a hypoxic region of a living body (see Patent Document 3).

特開2003−261464号公報JP 2003-261464 A 特開2005−120026号公報JP-A-2005-120026 特開2007−77036号公報JP 2007-77036 A

しかし、特許文献1、2に記載の近赤外蛍光造影剤は、病変部を非侵襲的にイメージングできるものの、生体の低酸素領域を特異的に標的とできない。また、特許文献3に記載の画像診断用プローブは、機能部として蛍光性の化合物を用い得るものの、抑制部の電子移動により低酸素領域の還元性環境で遊離し、生体内の求核性の生体分子と結合するものではないので、低酸素領域に留まりにくく、低酸素領域のイメージングの確実性が不十分となるおそれがある。   However, although the near-infrared fluorescent contrast agents described in Patent Documents 1 and 2 can noninvasively image a lesion, they cannot specifically target a hypoxic region of a living body. In addition, although the diagnostic imaging probe described in Patent Document 3 can use a fluorescent compound as a functional part, it is released in a reducing environment in a low oxygen region by electron transfer of a suppression part, and is nucleophilic in vivo. Since it does not bind to biomolecules, it is difficult to stay in the low oxygen region, and the certainty of imaging in the low oxygen region may be insufficient.

本発明は、上記の事情に鑑みなされたもので、確実かつ特異的に低酸素領域を標的として低酸素領域を非侵襲的にイメージングする近赤外蛍光プローブを提供することを課題とする。   This invention is made | formed in view of said situation, and makes it a subject to provide the near-infrared fluorescent probe which non-invasively images a hypoxic region by making a hypoxic region target reliably and specifically.

上記の課題を解決する本発明は、以下の通りである。
近赤外蛍光色素と、低酸素領域で還元的代謝により活性化されて求核性の生体分子と結合する低酸素結合部位と、リンカー結合とからなることを特徴とする低酸素領域イメージング用近赤外蛍光プローブを要旨とする。ここで、低酸素領域とは、病変により低酸素微少環境にある生体内の領域をいい、固形がんの病変部、脳及び心臓などの虚血疾患あるいは網膜黄斑変性症の病変部などを挙げられる。
The present invention for solving the above problems is as follows.
A near-infrared fluorescent dye characterized by comprising a near-infrared fluorescent dye, a hypoxic binding site that is activated by reductive metabolism in the hypoxic region and binds to a nucleophilic biomolecule, and a linker bond. The gist is an infrared fluorescent probe. Here, the hypoxic region refers to a region in a living body that is in a hypoxic microenvironment due to a lesion, such as a solid cancer lesion, an ischemic disease such as the brain and heart, or a lesion of retinal macular degeneration. It is done.

上記の発明において、近赤外蛍光色素をシアニン系色素又はBODIPY系色素としてもよい。低酸素結合部位をベンゼン、イミダゾール、トリアゾールのニトロ芳香環を含むユニットとしてもよい。リンカー結合をポリエーテル、トリアゾール、アミド、チオアミド、エステル、チオエステル、カルバメート、アミン、スルフィド、エーテル、アルキル基のいずれか又はそれらの組み合わせによる官能基を有する鎖状ユニットとしてもよい。   In the above invention, the near-infrared fluorescent dye may be a cyanine dye or a BODIPY dye. The low oxygen binding site may be a unit containing a nitroaromatic ring of benzene, imidazole or triazole. The linker bond may be a chain unit having a functional group of any of polyether, triazole, amide, thioamide, ester, thioester, carbamate, amine, sulfide, ether, alkyl group, or a combination thereof.

上記の低酸素領域イメージング用近赤外蛍光プローブを用いることを特徴とする低酸素領域のイメージング方法を要旨とする。   The gist of the present invention is a method for imaging a low oxygen region, characterized by using the above-described near-infrared fluorescent probe for low oxygen region imaging.

本発明の低酸素領域イメージング用近赤外蛍光プローブは、確実かつ特異的に低酸素領域を標的として非侵襲的に可視化しイメージングできるので、がんや虚血疾患などの病変部の重要な知見を得るために用いることができ、疾患の早期発見や最適な治療戦略に資することができ極めて有用である。   Since the near-infrared fluorescent probe for imaging hypoxic region of the present invention can be visualized and imaged non-invasively and specifically targeting the hypoxic region, important knowledge of lesions such as cancer and ischemic diseases And can be used for early detection of diseases and optimal treatment strategies, and is extremely useful.

本発明の低酸素領域のイメージング方法は、被験者に負担をかけることなく、疾患の早期発見や最適な治療戦略を選択することを可能とする。   The imaging method of the hypoxic region of the present invention enables early detection of a disease and selection of an optimal treatment strategy without imposing a burden on the subject.

低酸素領域イメージング用近赤外蛍光プローブを模式的に示す図である。図中、「NIR 蛍光色素」は近赤外蛍光色素を表す。It is a figure which shows typically the near-infrared fluorescent probe for low oxygen area | region imaging. In the figure, “NIR fluorescent dye” represents a near-infrared fluorescent dye. 実施例1で合成したGPU-167の励起−蛍光スペクトルである。2 is an excitation-fluorescence spectrum of GPU-167 synthesized in Example 1. 実施例2で合成したGPU-172の励起−蛍光スペクトルである。3 is an excitation-fluorescence spectrum of GPU-172 synthesized in Example 2. 実施例2で合成したGPU-172の低酸素(hypoxia)下及び常酸素(aerobic)下の近赤外領域の蛍光強度を IVIS 200 imaging systemを用いて測定した図である。It is the figure which measured the fluorescence intensity of the near infrared region under hypoxia (hypoxia) and normal oxygen (aerobic) of GPU-172 synthesize | combined in Example 2 using IVIS200 imaging system. 図4の結果を示すグラフである。It is a graph which shows the result of FIG.

本発明の低酸素領域イメージング用近赤外蛍光プローブは、近赤外領域で蛍光を発するイメージングプローブで、近赤外蛍光色素と、低酸素領域で還元的代謝により活性化されて求核性の生体分子と結合する低酸素結合部位と、リンカー結合とからなるものである。   The near-infrared fluorescent probe for imaging in the hypoxic region of the present invention is an imaging probe that emits fluorescence in the near-infrared region, and is activated by reductive metabolism in the near-infrared fluorescent dye and in the low-oxygen region. It consists of a hypoxic binding site that binds to a biomolecule and a linker bond.

近赤外蛍光色素は、励起光で励起され650nm〜2500nmの蛍光を有する色素であれば特に限定されないが、シアニン系色素、BODIPY系色素を挙げることができる。近赤外蛍光色素の発する蛍光は、生体組織の透過性が高く、また生体内の自家蛍光の影響を受けず、in vivo またはin vitroにおいて標的分子を生きたままで非侵襲的に高感度でイメージングできる。上記の近赤外蛍光色素は、下記の一般式群(1)で示される。近赤外蛍光色素は、市販の色素を利用しても、あるいは市販の色素を公知の方法によって半合成してもよい。   The near-infrared fluorescent dye is not particularly limited as long as it is excited by excitation light and has a fluorescence of 650 nm to 2500 nm, and examples thereof include a cyanine dye and a BODIPY dye. Fluorescence emitted from near-infrared fluorescent dyes is highly permeable to living tissue and is not affected by autofluorescence in the living body, and the target molecule remains alive in vivo or in vitro with high sensitivity and imaging. it can. Said near-infrared fluorescent pigment | dye is shown by the following general formula group (1). As the near-infrared fluorescent dye, a commercially available dye may be used, or a commercially available dye may be semi-synthesized by a known method.

Figure 2010203966
Figure 2010203966

上記一般式群(1)の近赤外蛍光色素は、低酸素領域イメージング用近赤外蛍光プローブの水溶性を調節するために色素の基本骨格に官能基を導入でき、例えば、シアニン系色素のA、B、X、Y、Zで示す箇所に合成化学上の公知の方法で官能基を導入することができる。   The near-infrared fluorescent dye of the general formula group (1) can introduce a functional group into the basic skeleton of the dye in order to adjust the water solubility of the near-infrared fluorescent probe for low oxygen region imaging. A functional group can be introduced at a position indicated by A, B, X, Y, or Z by a known method in synthetic chemistry.

低酸素結合部位は、ニトロ基により電子不足となったベンゼン、イミダゾール、トリアゾールのニトロ芳香環を含むユニットで、低酸素環境でp450還元酵素などの還元的代謝により活性化されてタンパク質などの求核性の生体分子と結合し(Takasawa M, Moustafa RR, Baron JC. Applications of nitroimidazole in vivo hypoxia imaging in ischemic stroke. Stroke 2008; 39(5):1629-37)、低酸素領域に特異性を示すものである。このような化合物として、下記の一般式群(2)に示すユニットを挙げることができる。   The hypoxic binding site is a unit containing nitro aromatic rings of benzene, imidazole, and triazole that have become electron deficient due to the nitro group, and is activated by reductive metabolism such as p450 reductase in a hypoxic environment to nucleophile proteins (Takasawa M, Moustafa RR, Baron JC. Applications of nitroimidazole in vivo hypoxia imaging in ischemic stroke. Stroke 2008; 39 (5): 1629-37), showing specificity in the hypoxic region It is. Examples of such compounds include units represented by the following general formula group (2).

Figure 2010203966
Figure 2010203966

リンカー結合は、近赤外蛍光色素と低酸素結合性部位の間に介在するユニットである。
このようなユニットとして下記の一般式群(3)に示すポリエーテル、トリアゾール、アミド、チオアミド、エステル、チオエステル、カルバメート、アミン、スルフィド、エーテル、アルキル基のいずれか又はそれらの組み合わせによる官能基を有する鎖状ユニットを挙げることができる。図中、ニトロ芳香環化合物は、低酸素結合部位(Arを含む一般式群(2)に示す化合物群である。)を、NIR発色団は近赤外蛍光色素を表す。また、上記の一般式群(2)で示したユニットのベンゼン、イミダゾール、トリアゾールのニトロ芳香環に結合する置換基は、リンカー結合に含まれる。
A linker bond is a unit interposed between a near-infrared fluorescent dye and a hypoxic binding site.
Such a unit has a functional group based on any one of polyether, triazole, amide, thioamide, ester, thioester, carbamate, amine, sulfide, ether, alkyl group, or a combination thereof shown in the following general formula group (3). Mention may be made of chain units. In the figure, the nitroaromatic ring compound represents a low oxygen binding site (a compound group represented by the general formula group (2) containing Ar), and the NIR chromophore represents a near-infrared fluorescent dye. Moreover, the substituent couple | bonded with the nitro aromatic ring of benzene of the unit shown by said general formula group (2), imidazole, and a triazole is contained in a linker coupling | bonding.

Figure 2010203966
Figure 2010203966

本発明の低酸素領域イメージング用近赤外蛍光プローブを模式的に示せば図1のように、近赤外蛍光色素と、低酸素領域で還元的代謝により活性化されて求核性の生体分子と結合する低酸素結合部位と、リンカー結合とからなる。   If the near-infrared fluorescent probe for low-oxygen region imaging of this invention is typically shown, as shown in FIG. 1, a near-infrared fluorescent dye and a nucleophilic biomolecule activated by reductive metabolism in the low-oxygen region It consists of a hypoxic binding site that binds to and a linker bond.

本発明の低酸素領域イメージング用近赤外蛍光プローブは、低酸素領域の還元的代謝により活性化されてタンパク質などの求核性の生体分子と結合し、低酸素領域に暫く留まるので、確実かつ特異的に低酸素領域をイメージングできる。低酸素領域イメージング用近赤外蛍光プローブは、一定期間経過後、代謝により体外に排泄される。なお、本発明の低酸素領域イメージング用近赤外蛍光プローブは、ヒト以外の動物にも広く用いることができる。   The near-infrared fluorescent probe for imaging of the hypoxic region of the present invention is activated by reductive metabolism in the hypoxic region and binds to a nucleophilic biomolecule such as a protein and stays in the hypoxic region for a while. It is possible to specifically image the hypoxic region. The near-infrared fluorescent probe for imaging a hypoxic region is excreted outside the body by metabolism after a certain period of time. In addition, the near-infrared fluorescent probe for hypoxic region imaging of this invention can be widely used also for animals other than a human.

本発明の低酸素領域のイメージング方法は、低酸素領域イメージング用近赤外蛍光プローブを被験者に投与した後、励起光源により励起光を被験者に照射し、当該励起光により励起された近赤外蛍光を検出器で検出することにより行うことができる。励起光は、可視光又は近赤外光を用い、低酸素領域イメージング用近赤外蛍光プローブの種類に応じた好適な波長を選択して行うことができる。励起光源は、イオンレーザー、色素レーザー、半導体レーザーなどのレーザー光源、ハロゲン光源、キセノン光源などを使用できる。このようにして、がんの病変部や虚血疾患の病変部などの低酸素領域を確実かつ特異的に標的化し、イメージングすることができる。   The hypoxic region imaging method of the present invention is a method for administering a near-infrared fluorescent probe for hypoxic region imaging to a subject, irradiating the subject with excitation light from an excitation light source, and exciting near-infrared fluorescence excited by the excitation light. Can be detected by detecting with a detector. As the excitation light, visible light or near infrared light can be used by selecting a suitable wavelength according to the type of the near infrared fluorescent probe for low oxygen region imaging. As the excitation light source, a laser light source such as an ion laser, a dye laser, or a semiconductor laser, a halogen light source, a xenon light source, or the like can be used. In this way, hypoxic regions such as cancerous lesions and ischemic lesions can be reliably and specifically targeted and imaged.

本発明の低酸素領域イメージング用近赤外蛍光プローブが塩である場合、薬理上許容される塩であれば特に限定はなく、例えばナトリウム塩、カリウム塩のようなアルカリ金属塩、マグネシウム塩、カルシウム塩のようなアルカリ土類金属塩などとすることができる。また、注射用蒸留水、生理食塩水、リンゲル液など溶媒中に懸濁若しくは溶解して用いることができる。さらに、担体、賦形剤などの薬理上許容される添加物を加えてもよい。本発明の低酸素領域イメージング用近赤外蛍光プローブは、血管、経口、腹腔内、皮下、皮内などに注入、噴霧等を行うことにより投与できる。また、投与量は、診断する部位を検出できる量であれば適宜増減できるが、低酸素領域イメージング用近赤外蛍光プローブの種類、被験者の年齢、性別、体重、適用部位等を考慮して設定でき、通常、0.1〜100mg/kg・体重、好ましくは0.5〜20mg/kg・体重である。   When the near-infrared fluorescent probe for imaging in the low oxygen region of the present invention is a salt, there is no particular limitation as long as it is a pharmacologically acceptable salt. For example, an alkali metal salt such as sodium salt or potassium salt, magnesium salt, calcium An alkaline earth metal salt such as a salt can be used. Moreover, it can be used by being suspended or dissolved in a solvent such as distilled water for injection, physiological saline, Ringer's solution. Furthermore, pharmacologically acceptable additives such as carriers and excipients may be added. The near-infrared fluorescent probe for hypoxic region imaging of the present invention can be administered by injection, spraying, etc. into blood vessels, oral, intraperitoneal, subcutaneous, intradermal and the like. In addition, the dose can be appropriately increased or decreased as long as the site to be diagnosed can be detected, but it is set in consideration of the type of near-infrared fluorescent probe for hypoxic region imaging, the age, sex, weight, application site, etc. of the subject. It is usually 0.1 to 100 mg / kg · body weight, preferably 0.5 to 20 mg / kg · body weight.

以下、本発明を実施例を挙げて説明するが、本発明はこれに限定されない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited to this.

〔実施例1〕(低酸素領域イメージング用近赤外蛍光プローブの合成1)
1-[4-(aminomethyl)piperidin-1-yl]-3-(2-nitro-1H-imidazol-1-yl)-propan-2-ol(以下、「GPU-174」と記載)を以下のように合成した。化合物1は、Sercelらの方法に従い、ラセミのエピクロロヒドリン(epichlorohydrin)より合成した(Sercel AD, Beylin VG, Marlatt ME, Leja b, Showalter HDH, Michel A. Synthesis of the Enantiomers of the Dual Function 2-Nitroimidazole Radiation Sensitizer RB 6145. J Heterocylic Chem 2006;43:1597-604)。化合物2は、Dioufらの方法に従って1g(8.76mmol)の4−アミノメチルピペリジン(4-aminomethylpiperidine)および1330mg(13.1 mmol) のベンズアルデヒド(benzaldehyde)よりmolecular sieves 4A共存下、エタノール(10 mL)中にて調製し、未精製のまま化合物1との反応に付した(Diouf O, Depreux P, Chavatte P, Poupaert JH. Synthesis and preliminary pharmacological results on new naphthalene derivatives as 5-HT4 receptor ligands. Eur. J. Med. Chem. 2000;35:699-706)。即ち、化合物2を含む反応溶液に1407 mg(8.32 mmol) の化合物1の2-nitro-1-(2-oxiranylmethyl)-1H-imidazole を加え、窒素雰囲気下に20時間加熱還流を行った。放冷後、遠心分離(3000rpm、5 分)によりmolecular sievesを除去し、上清を減圧溜去した。得られた油状残渣3に10% 塩酸(20 mL) を加え、40 °Cにて4 時間加熱した。この水相をクロロホルム(30 mL x 4)にて洗浄し、得られた水相に10% NaOH水溶液をゆっくりと加えてアルカリ性に傾けた(pH 9)。次いでこの水相からクロロホルム(30mLx4)にて抽出した。合わせた有機層を無水MgSO4で乾燥後、減圧濃縮して1050 mgの黄色油状残渣を得た。さらに最小量の熱エタノールで希釈し、5 °Cにて12時間静置後、978 mg (42%) のGPU-174(淡黄色結晶)を得た。下記の式(4)にGPU-174の合成反応を示す。
1H NMR (CDCl3) δ: 7.29 (s, 1H), 7.12 (s, 1H), 4.70 (dd, J = 14.0, 2.4 Hz, 1H), 4.23 (dd, J = 7.1, 7.1 Hz, 1H), 4.05 (m, 1H), 2.94 (d, J = 11.6 Hz, 1H), 2.79 (d, J = 11.1 Hz, 1H), 2.55 (d, J = 6.3 Hz, 2H), 2.45 (dd, J = 12.3, 4.1 Hz, 1H), 2.26 (m, 2H), 2.00 (td, J = 11.6, 2.4 Hz, 1H), 1.72 (d, J = 12.1 Hz, 2H), 1.31-1.13 (m, 5H); 13C NMR (CDCl3) δ: 144.8, 127.8, 127.4, 65.7, 60.8, 55.1, 53.5, 52.5, 47.8, 38.9, 30.0, 29.8; HRMS (FAB+): calcd. for C12H22N5O3 ([M+H]+) m/z 284.1723,found 284.1742
[Example 1] (Synthesis 1 of near-infrared fluorescent probe for low oxygen region imaging)
1- [4- (aminomethyl) piperidin-1-yl] -3- (2-nitro-1H-imidazol-1-yl) -propan-2-ol (hereinafter referred to as “GPU-174”) was Was synthesized as follows. Compound 1 was synthesized from racemic epichlorohydrin according to the method of Sercel et al. (Sercel AD, Beylin VG, Marlatt ME, Lejab, Showalter HDH, Michel A. Synthesis of the Enantiomers of the Dual Function 2 -Nitroimidazole Radiation Sensitizer RB 6145. J Heterocylic Chem 2006; 43: 1597-604). Compound 2 was prepared from ethanol (10 mL) in the presence of molecular sieves 4A from 1 g (8.76 mmol) 4-aminomethylpiperidine and 1330 mg (13.1 mmol) benzaldehyde according to the method of Diouf et al. And subjected to reaction with compound 1 without purification (Diouf O, Depreux P, Chavatte P, Poupaert JH. Synthesis and preliminary pharmacological results on new naphthalene derivatives as 5-HT4 receptor ligands. Eur. J. Med. Chem. 2000; 35: 699-706). That is, 1407 mg (8.32 mmol) of 2-nitro-1- (2-oxiranylmethyl) -1H-imidazole of Compound 1 was added to the reaction solution containing Compound 2, and the mixture was heated to reflux for 20 hours under a nitrogen atmosphere. After allowing to cool, molecular sieves were removed by centrifugation (3000 rpm, 5 minutes), and the supernatant was distilled off under reduced pressure. To the resulting oily residue 3, 10% hydrochloric acid (20 mL) was added and heated at 40 ° C. for 4 hours. This aqueous phase was washed with chloroform (30 mL × 4), and 10% NaOH aqueous solution was slowly added to the obtained aqueous phase to make it alkaline (pH 9). Subsequently, this aqueous phase was extracted with chloroform (30 mL × 4). The combined organic layers were dried over anhydrous MgSO4 and concentrated under reduced pressure to give 1050 mg of a yellow oily residue. Furthermore, after diluting with a minimum amount of hot ethanol and leaving to stand at 5 ° C. for 12 hours, 978 mg (42%) of GPU-174 (pale yellow crystals) was obtained. A synthesis reaction of GPU-174 is shown in the following formula (4).
1H NMR (CDCl3) δ: 7.29 (s, 1H), 7.12 (s, 1H), 4.70 (dd, J = 14.0, 2.4 Hz, 1H), 4.23 (dd, J = 7.1, 7.1 Hz, 1H), 4.05 (m, 1H), 2.94 (d, J = 11.6 Hz, 1H), 2.79 (d, J = 11.1 Hz, 1H), 2.55 (d, J = 6.3 Hz, 2H), 2.45 (dd, J = 12.3, 4.1 Hz, 1H), 2.26 (m, 2H), 2.00 (td, J = 11.6, 2.4 Hz, 1H), 1.72 (d, J = 12.1 Hz, 2H), 1.31-1.13 (m, 5H); 13C NMR (CDCl3) δ: 144.8, 127.8, 127.4, 65.7, 60.8, 55.1, 53.5, 52.5, 47.8, 38.9, 30.0, 29.8; HRMS (FAB +): calcd.for C 12 H 22 N 5 O 3 ([M + H ] +) m / z 284.1723, found 284.1742

Figure 2010203966
Figure 2010203966

シアニン系色素4は、Mujumdarらに準じて合成した(Mujumdar RB, Ernst LA, Mujumdar SR, Lewis CJ, Waggoner AS. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjugate Chem 1993;4:105-11)。窒素雰囲気下、300mg(0.34mmol)のシアニン系色素4と553.4mg(2.16mmol)のN,N'-ジスクシンイミジルカルボネート(N,N'-disuccineimidylcarbonate)を6.3mLの無水N,N−ジメチルフォルムアミド(N,N-dimethylformamide):無水ピリジン(pyridine)(20:1)混合溶液に溶かし、60℃にて2時間加熱した。冷後、反応混合液を50mLの無水酢酸エチルにあけて、得られた懸濁物を遠心し(3000rpm、5分)、上清を除いた。沈殿物を減圧乾燥して、活性エステルを得た。窒素雰囲気下、この活性エステルと102mg(0.32mmol)の上記で合成したGPU-174を6mLの無水N,N−ジメチルフォルムアミド(N,N-dimethylformamide)に溶かし、146.7mg(1.44mmol、202μL)のトリエチルアミン(triethylamine)を加え、室温にて1時間撹拌した。反応液50mLの冷クロロホルムにあけて、懸濁液を得た。これを遠心し(3000rpm、5分)、上清を除いた。沈殿物をアミンコートシリカゲルカラムクロマトグラフィー(クロロホルム/66%メタノール)にて精製し、暗緑色の固体(140mg)を得た。その粗精製物を逆相HPLCで精製し、低酸素領域イメージング用近赤外蛍光プローブのGPU-167(4.2mg、0.9%)を得た。下記の式(5)に合成反応を示す。
HRMS(ESI、positive):calcd. for C63H87N12O14S2([M+H]+)m/z 1299.5906、found 1299.5897
The cyanine dye 4 was synthesized according to Mujumdar et al. (Mujumdar RB, Ernst LA, Mujumdar SR, Lewis CJ, Waggoner AS. Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. Bioconjugate Chem 1993; 4: 105-11). In a nitrogen atmosphere, 300 mg (0.34 mmol) of cyanine dye 4 and 553.4 mg (2.16 mmol) of N, N'-disuccineimidylcarbonate were added to 6.3 mL of anhydrous N, N- Dissolved in a mixed solution of dimethylformamide (N, N-dimethylformamide): anhydrous pyridine (20: 1) and heated at 60 ° C. for 2 hours. After cooling, the reaction mixture was poured into 50 mL of anhydrous ethyl acetate, and the resulting suspension was centrifuged (3000 rpm, 5 minutes) to remove the supernatant. The precipitate was dried under reduced pressure to obtain an active ester. Under a nitrogen atmosphere, this active ester and 102 mg (0.32 mmol) of GPU-174 synthesized above are dissolved in 6 mL of anhydrous N, N-dimethylformamide and 146.7 mg (1.44 mmol, 202 μL) Of triethylamine was added and stirred at room temperature for 1 hour. The reaction solution was poured into 50 mL of cold chloroform to obtain a suspension. This was centrifuged (3000 rpm, 5 minutes), and the supernatant was removed. The precipitate was purified by amine-coated silica gel column chromatography (chloroform / 66% methanol) to obtain a dark green solid (140 mg). The crude product was purified by reversed-phase HPLC to obtain GPU-167 (4.2 mg, 0.9%), a near-infrared fluorescent probe for low oxygen region imaging. The synthesis reaction is shown in the following formula (5).
HRMS (ESI, positive): calcd. For C 63 H 87 N 12 O 14 S 2 ([M + H] + ) m / z 1299.5906, found 1299.5897

Figure 2010203966
Figure 2010203966

〔実施例2〕(低酸素領域イメージング用近赤外蛍光プローブの合成2)
シアニン系色素5は、Narayananらの方法に従って合成した(Narayanan N, Patonay G. A New Method for the Synthesis of Heptamethine Cyanine Dyes: Synthesis of New Near-Infrared Fluorescent Labels. J. Org. Chem. 1995;60:2391-5)。50mg(0.077mmol)のシアニン系色素5と87mg(0.31mmol)のGPU-174を6.3mLの無水N,N−ジメチルフォルムアミド(N,N-dimethylformamide)に溶かし、85℃にて12時間加熱した。冷後、溶媒を減圧留去して得られた、残渣202mgをODSカラムクロマトグラフィー(水/50%メタノール)で分離し、青色固体(28mg)を得た。さらに、セミ分取逆相HPLCで精製し、低酸素領域イメージング用近赤外蛍光プローブのGPU-172(7.6mg、12%)を得た。下記の式(6)に合成反応を示す。
HRMS(ESI、positive):calcd. for C50H68N7O9S2([M+H]+)m/z 974.4520、found 974.4523
[Example 2] (Synthesis 2 of near-infrared fluorescent probe for low oxygen region imaging)
The cyanine dye 5 was synthesized according to the method of Narayanan et al. (Narayanan N, Patonay G. A New Method for the Synthesis of Heptamethine Cyanine Dyes: Synthesis of New Near-Infrared Fluorescent Labels. J. Org. Chem. 1995; 60: 2391-5). 50 mg (0.077 mmol) cyanine dye 5 and 87 mg (0.31 mmol) GPU-174 were dissolved in 6.3 mL anhydrous N, N-dimethylformamide and heated at 85 ° C. for 12 hours. . After cooling, 202 mg of the residue obtained by distilling off the solvent under reduced pressure was separated by ODS column chromatography (water / 50% methanol) to obtain a blue solid (28 mg). Furthermore, it was purified by semi-preparative reverse-phase HPLC to obtain GPU-172 (7.6 mg, 12%), a near-infrared fluorescent probe for imaging in a low oxygen region. The synthesis reaction is shown in the following formula (6).
HRMS (ESI, positive): calcd. For C 50 H 68 N 7 O 9 S 2 ([M + H] + ) m / z 974.4520, found 974.4523

Figure 2010203966
Figure 2010203966

〔実施例3〕(GPU-167及び GPU-172の励起−蛍光スペクトル)
図2に、GPU-167、DMSO溶媒、2.307×10-6Mにおける励起−蛍光スペクトルを示した。図2は、紫外−可視吸光スペクトルの結果から、励起光として765nmを選択し、蛍光波長、強度を測定したもので、左側の縦軸は励起光強度、右側の縦軸は蛍光強度を示す。図2から、GPU-167の蛍光波長は、λExmax=695nm、λEmmax=801nmであることが分かった。
[Example 3] (Excitation-fluorescence spectrum of GPU-167 and GPU-172)
FIG. 2 shows an excitation-fluorescence spectrum in GPU-167, DMSO solvent, 2.307 × 10 −6 M. FIG. 2 shows the result of measuring the fluorescence wavelength and intensity by selecting 765 nm as the excitation light from the result of the ultraviolet-visible absorption spectrum. The left vertical axis indicates the excitation light intensity and the right vertical axis indicates the fluorescence intensity. From Figure 2, the fluorescence wavelength of the GPU-167 is, lambda] ex max = 695 nm, was found to be λEm max = 801nm.

図3に、GPU-172、溶媒メタノール、6.833×10-6Mにおける励起−蛍光スペクトルを示した。図3は、紫外−可視吸光スペクトルの結果から、励起光として640nmを選択し、蛍光波長、強度を測定した。図3から、GPU-172の蛍光波長は、λExmax=632nm、λEmmax=763nmであることが分かった。 FIG. 3 shows an excitation-fluorescence spectrum in GPU-172, solvent methanol, and 6.833 × 10 −6 M. In FIG. 3, 640 nm was selected as the excitation light from the results of the ultraviolet-visible absorption spectrum, and the fluorescence wavelength and intensity were measured. From FIG. 3, it was found that the fluorescence wavelengths of GPU-172 were λEx max = 632 nm and λEm max = 763 nm.

下記表1にGPU-167及び GPU-172の励起−蛍光スペクトルのデータを纏めた。   Table 1 below summarizes the excitation-fluorescence spectrum data of GPU-167 and GPU-172.

Figure 2010203966
Figure 2010203966

〔実施例4〕(細胞を用いた低酸素選択性の検討)
細胞を用い、GPU-172の低酸素選択性を検討した。常酸素(aerobic)下培養した細胞または低酸素(hypoxia)下培養した細胞を用い、細胞内に取り込まれたGPU-172を蛍光強度を測定することにより比較・評価した。すなわち、常酸素下または嫌気性培養装置にてヒト胎児腎臓細胞(HEK293)を、チャンバースライドに一定数播種した。常酸素下または低酸素下(酸素濃度0.02%)24時間の37℃にて培養した。次いで、それぞれにGPU-172を加えて2時間培養した。低酸素の場合は、低酸素状態を保ったまま培養した。培地を除いてから、PBSでウェルを数回洗浄した。IVIS 200 imaging system(Xenogen社製)を用い、近赤外領域の蛍光強度を測定して比較した。
[Example 4] (Examination of hypoxia selectivity using cells)
Using cells, we examined the hypoxia selectivity of GPU-172. Using cells cultured under normal oxygen (aerobic) or cells cultured under hypoxia (hypoxia), GPU-172 incorporated into the cells was compared and evaluated by measuring fluorescence intensity. That is, a certain number of human fetal kidney cells (HEK293) were seeded on chamber slides under normoxic or anaerobic culture devices. The cells were cultured at 37 ° C. for 24 hours under normal oxygen or hypoxia (oxygen concentration 0.02%). Then, GPU-172 was added to each and cultured for 2 hours. In the case of hypoxia, the cells were cultured while maintaining a low oxygen state. After removing the medium, the wells were washed several times with PBS. Using the IVIS 200 imaging system (Xenogen), the fluorescence intensity in the near infrared region was measured and compared.

なお、GPU-172の濃度は、0.1-100μg/mL(7.7×10-8M-7.7×10-5M)に調製し添加した。
また、励起光は、640nmを選択し、得られた蛍光強度を20nmバンドパスにより測定、比較した。結果は、図4及び図5に示した。
The concentration of GPU-172 was adjusted to 0.1-100 μg / mL (7.7 × 10 −8 M-7.7 × 10 −5 M) and added.
Moreover, 640 nm was selected as excitation light, and the obtained fluorescence intensity was measured and compared by a 20 nm band pass. The results are shown in FIG. 4 and FIG.

図4及び図5より、760nmにおいて最も強い蛍光強度が得られ、濃度依存性がみられた。GPU-172の濃度が100μg/mLでは、低酸素(hypoxia)において最も強い蛍光強度が得られたが、常酸素(aerobic)においては強い蛍光が観察され、低酸素(hypoxia)認識性は低く、濃度が高すぎる結果であった。低酸素(hypoxia)と常酸素(aerobic)の比、H/Aは10μg/mLが最大であった。   4 and 5, the strongest fluorescence intensity was obtained at 760 nm, and concentration dependence was observed. When the GPU-172 concentration was 100 μg / mL, the strongest fluorescence intensity was obtained in hypoxia, but strong fluorescence was observed in aerobic, and hypoxia recognition was low. The result was too high. The ratio of hypoxia to aerobic, H / A was the maximum at 10 μg / mL.

本発明は、医薬の分野、特に診断薬の分野において利用ができる。   The present invention can be used in the field of medicine, particularly in the field of diagnostic agents.

Claims (5)

近赤外蛍光色素と、低酸素領域で還元的代謝により活性化されて求核性の生体分子と結合する低酸素結合部位と、リンカー結合とからなることを特徴とする低酸素領域イメージング用近赤外蛍光プローブ。   A near-infrared fluorescent dye characterized by comprising a near-infrared fluorescent dye, a hypoxic binding site that is activated by reductive metabolism in the hypoxic region and binds to a nucleophilic biomolecule, and a linker bond. Infrared fluorescent probe. 近赤外蛍光色素が、シアニン系色素又はBODIPY系色素であることを特徴とする請求項1に記載の低酸素領域イメージング用近赤外蛍光プローブ。   The near-infrared fluorescent probe for low oxygen region imaging according to claim 1, wherein the near-infrared fluorescent dye is a cyanine dye or a BODIPY dye. 低酸素結合部位が、ベンゼン、イミダゾール、トリアゾールのニトロ芳香環を含むユニットであることを特徴とする請求項1又は請求項2に記載の低酸素領域イメージング用近赤外蛍光プローブ。   The near-infrared fluorescent probe for low-oxygen region imaging according to claim 1 or 2, wherein the low-oxygen binding site is a unit containing a nitro aromatic ring of benzene, imidazole, or triazole. リンカー結合が、ポリエーテル、トリアゾール、アミド、チオアミド、エステル、チオエステル、カルバメート、アミン、スルフィド、エーテル、アルキル基のいずれか又はそれらの組み合わせによる官能基を有する鎖状ユニットであることを特徴とする請求項1〜請求項3のいずれかに記載の低酸素領域イメージング用近赤外蛍光プローブ。   The linker bond is a chain unit having a functional group of any one of polyether, triazole, amide, thioamide, ester, thioester, carbamate, amine, sulfide, ether, alkyl group, or a combination thereof. The near-infrared fluorescent probe for low oxygen region imaging in any one of Claims 1-3. 請求項1〜請求項4のいずれかに記載の低酸素領域イメージング用近赤外蛍光プローブを用いることを特徴とする低酸素領域のイメージング方法。   An imaging method for a hypoxic region, wherein the near-infrared fluorescent probe for hypoxic region imaging according to any one of claims 1 to 4 is used.
JP2009050992A 2009-03-04 2009-03-04 Near-infrared fluorescent probe for imaging low-oxygen region Pending JP2010203966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009050992A JP2010203966A (en) 2009-03-04 2009-03-04 Near-infrared fluorescent probe for imaging low-oxygen region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009050992A JP2010203966A (en) 2009-03-04 2009-03-04 Near-infrared fluorescent probe for imaging low-oxygen region

Publications (1)

Publication Number Publication Date
JP2010203966A true JP2010203966A (en) 2010-09-16

Family

ID=42965588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009050992A Pending JP2010203966A (en) 2009-03-04 2009-03-04 Near-infrared fluorescent probe for imaging low-oxygen region

Country Status (1)

Country Link
JP (1) JP2010203966A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147554A (en) * 2012-01-18 2013-08-01 Mitsubishi Rayon Co Ltd Luminescent thermoplastic resin composition and method for producing the same
CN103897691A (en) * 2014-04-17 2014-07-02 中国药科大学 Bioassay probe for early diagnosis of bacterial infection
CN104403663A (en) * 2014-12-11 2015-03-11 华东理工大学 Fluorescent probe for detecting endogenous H2S, as well as preparation method and application of fluorescent probe
JP2015232140A (en) * 2015-08-25 2015-12-24 三菱レイヨン株式会社 Light emitting thermoplastic resin composition
US10076578B2 (en) 2014-10-01 2018-09-18 Vanderbilt University Probes for imaging of hypoxia

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013147554A (en) * 2012-01-18 2013-08-01 Mitsubishi Rayon Co Ltd Luminescent thermoplastic resin composition and method for producing the same
CN103897691A (en) * 2014-04-17 2014-07-02 中国药科大学 Bioassay probe for early diagnosis of bacterial infection
CN103897691B (en) * 2014-04-17 2015-10-21 中国药科大学 The In vivo detection probe of bacteriological infection early diagnosis
US10076578B2 (en) 2014-10-01 2018-09-18 Vanderbilt University Probes for imaging of hypoxia
CN104403663A (en) * 2014-12-11 2015-03-11 华东理工大学 Fluorescent probe for detecting endogenous H2S, as well as preparation method and application of fluorescent probe
JP2015232140A (en) * 2015-08-25 2015-12-24 三菱レイヨン株式会社 Light emitting thermoplastic resin composition

Similar Documents

Publication Publication Date Title
US9408924B2 (en) Bioconjugates of cyanine dyes
US9801960B2 (en) Probe for a biological specimen and labelling method and screening method using the probe
CN114249717B (en) Near-infrared fluorescent probe for specific targeting tumor and synthetic method and application thereof
WO2019067180A1 (en) Nir to swir fluorescent compounds for imaging and detection
Zhou et al. Targeting tumor hypoxia: a third generation 2-nitroimidazole-indocyanine dye-conjugate with improved fluorescent yield
JP2015155442A (en) Compounds and biological materials and uses thereof
JP2010203966A (en) Near-infrared fluorescent probe for imaging low-oxygen region
US8916137B2 (en) Monofunctional carbocyanine dyes for in vivo and in vitro imaging
CN111205277A (en) Use of organic small molecule fluorescent compounds in phototherapy
Zhang et al. Structure-inherent near-infrared fluorescent probe mediates apoptosis imaging and targeted drug delivery in vivo
CN109796444B (en) Near-infrared dual-fluorescence probe compound, preparation method and application
Patel et al. Impact of Substituents in Tumor Uptake and Fluorescence Imaging Ability of Near‐Infrared Cyanine‐like Dyes
Park et al. Rapid and selective targeting of heterogeneous pancreatic neuroendocrine tumors
CN114249696B (en) Luminol compound, preparation method and application thereof, and pharmaceutical composition
Abuteen et al. Synthesis of a 4-nitroimidazole indocyanine dye-conjugate and imaging of tumor hypoxia in BALB/c tumor-bearing female mice
WO2020189721A1 (en) Reagent for fluorescence imaging of lipid droplets in cell and tissue
JP2012509300A (en) Dye conjugate imaging agent
CN115605459A (en) Novel fluorescent compounds for marking tumor tissue
EP3464293B1 (en) Molecular probes for detection and imaging of pancreatic cancer
WO2022163807A1 (en) Photoacoustic imaging agent
JP2021520424A (en) Azasianin pigment and its use
KR102034113B1 (en) Renal clearable tumor-specific fluorophores and their imaging methods
WO2024081635A2 (en) Targeted quinocyanine dyes for the intraoperative delineation of cancer margins
JP2005120026A (en) Near infrared fluorescent contrast medium
JP2005170812A (en) Fluorescent contrast medium and fluorescent contrasting method