JP5392100B2 - Rolling sliding member and manufacturing method thereof - Google Patents

Rolling sliding member and manufacturing method thereof Download PDF

Info

Publication number
JP5392100B2
JP5392100B2 JP2010002227A JP2010002227A JP5392100B2 JP 5392100 B2 JP5392100 B2 JP 5392100B2 JP 2010002227 A JP2010002227 A JP 2010002227A JP 2010002227 A JP2010002227 A JP 2010002227A JP 5392100 B2 JP5392100 B2 JP 5392100B2
Authority
JP
Japan
Prior art keywords
mass
rolling
rolling sliding
depth
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010002227A
Other languages
Japanese (ja)
Other versions
JP2011140993A (en
Inventor
寿人 西坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2010002227A priority Critical patent/JP5392100B2/en
Publication of JP2011140993A publication Critical patent/JP2011140993A/en
Application granted granted Critical
Publication of JP5392100B2 publication Critical patent/JP5392100B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、転がり摺動部材およびその製造方法に関する。   The present invention relates to a rolling sliding member and a manufacturing method thereof.

自動車や産業機械などに用いられている転がり軸受を長寿命化させるために、軸受の軌道輪や転動体を形成する鋼材として、焼入れ性や耐磨耗性の向上に寄与する金属を多く含む合金からなる鋼材を用いることが提案されている(特許文献1)。
前記特許文献1では、回転側軌道輪に使用する鋼材として、焼入れ性や耐磨耗性を向上させるために、合金成分としてクロム0.3〜2.0質量%、モリブデン0.1〜1.0質量%を含む軸受鋼を用いることが提案されている。
しかしながら、希少金属であるクロム、モリブデンなどが多く含まれている軸受鋼は、高価であるため、転がり軸受の製造コストが増大する。
そこで、軸受鋼よりも安価な機械構造用炭素鋼を転がり軸受の材料として用いることが検討されている。
In order to extend the life of rolling bearings used in automobiles and industrial machinery, as a steel material that forms bearing rings and rolling elements of bearings, alloys that contain many metals that contribute to improving hardenability and wear resistance It has been proposed to use a steel material made of (Patent Document 1).
In the said patent document 1, in order to improve hardenability and abrasion resistance as steel materials used for a rotation side bearing ring, 0.3-2.0 mass% of chromium, 0.1-1. It has been proposed to use bearing steel containing 0% by weight.
However, since bearing steel containing a large amount of rare metals such as chromium and molybdenum is expensive, the manufacturing cost of the rolling bearing increases.
Therefore, the use of carbon steel for mechanical structures, which is less expensive than bearing steel, as a material for rolling bearings has been studied.

特開2002−194438号公報JP 2002-194438 A

しかしながら、機械構造用炭素鋼は、軸受鋼に比べて、焼入れ性が劣っており、十分な硬さに焼入れ、硬化することができず、前記SUJ2などの軸受鋼を用いた転がり軸受と同等の寿命を確保することができない。   However, carbon steel for machine structural use is inferior in hardenability compared to bearing steel, and cannot be hardened and hardened to a sufficient hardness, and is equivalent to a rolling bearing using a bearing steel such as SUJ2. The service life cannot be secured.

本発明は、このような事情に鑑みてなされたものであり、安価な材料を用いて、従来の軸受鋼製の転がり摺動部材と同等以上の寿命を確保することができる転がり摺動部材およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and using a cheap material, a rolling sliding member capable of ensuring a life equal to or longer than that of a conventional bearing steel rolling sliding member, and It aims at providing the manufacturing method.

本発明の転がり摺動部材は、0.1〜0.5質量%の炭素と、0.1質量%〜0.4質量%のケイ素と、0質量%を超え、かつ0.9質量%以下のマンガンと、0質量%を超え、かつ0.2質量%以下のクロムとを含有し、かつ残部が鉄および不可避不純物である鋼材から得られ、相手部材との間で相対的に転がり接触もしくは滑り接触または両接触を含む接触をする転がり摺動面を有する転がり摺動部材であって、
前記転がり摺動面の表面のビッカース硬さが800以上であり、
前記転がり摺動面の表面から略10μmの深さの位置での炭素の含有量が0.6〜1.2質量%であり、
前記転がり摺動面の表面から略10μmの深さの位置での窒素の含有量が0.4〜0.9質量%であり、
これら炭素および窒素の含有量の合計が1.4質量%以上であり、
前記転がり摺動面の表面から略200μmの深さの位置には、窒化物からなる粒径0.03μm以上1μm以下の粒子を有しており、かつ表面から略200μmの深さの位置における前記粒子の面積率が5〜15%であることを特徴とする。
The rolling sliding member of the present invention is 0.1 to 0.5% by mass of carbon, 0.1 to 0.4% by mass of silicon, more than 0% by mass and 0.9% by mass or less. Of steel and a steel material containing more than 0% by mass and 0.2% by mass or less chromium and the balance being iron and inevitable impurities, and relatively rolling contact with the mating member or A rolling sliding member having a rolling sliding surface for making contact including sliding contact or both contact,
The surface of the rolling sliding surface has a Vickers hardness of 800 or more,
The carbon content at a position of a depth of about 10 μm from the surface of the rolling sliding surface is 0.6 to 1.2% by mass,
The nitrogen content at a position of a depth of about 10 μm from the surface of the rolling sliding surface is 0.4 to 0.9 mass%,
The total content of these carbon and nitrogen is 1.4% by mass or more,
The position at a depth of about 200 μm from the surface of the rolling sliding surface has particles having a particle diameter of 0.03 μm or more and 1 μm or less made of nitride, and the position at a depth of about 200 μm from the surface. The area ratio of particles is 5 to 15%.

前記構成を備えた転がり摺動部材は、前記組成を有する機械構造用炭素鋼などの安価な鋼材から得られたものであるため、安い材料コストで製造することができる。
しかも、本発明の転がり摺動部材は、転がり摺動面の表面のビッカース硬さが800以上であり、前記転がり摺動面の表面から略200μmの深さの位置には、窒化物からなる粒径0.03μm以上1μm以下の粒子を有しており、かつ表面から略200μmの深さの位置における前記粒子の面積率が5〜15%であり、前記粒子が分散して析出している。
なお、表面から略10μmの深さの位置での炭素の含有量とは、表面から深さ方向の断面において、表面から10μmの深さの位置を中心とした深さ方向に±1μmの範囲における炭素の含有量をいう。また、表面から略10μmの深さの位置での窒素の含有量とは、表面から深さ方向の断面において、表面から10μmの深さの位置を中心とした深さ方向に±1μmの範囲における窒素の含有量をいう。また、表面から略200μmの深さの位置での窒化物の観察は、表面から深さ方向の断面において、表面から200μmの深さを中心として深さ方向に±15μm、かつ深さ方向に対し垂直な方向に30μmの30μm四方の範囲を視野として観察する。また、表面から略200μmの深さの位置における窒化物からなる粒径1μm以下の粒子の面積率とは、この30μm四方の範囲の粒径0.03μm〜1μmの粒子の面積率をいう。
したがって、本発明の転がり摺動部材は、転がり摺動面の表面および当該転がり摺動部材の内部のいずれにおいても、従来の軸受鋼製の転がり摺動部材と同等以上の硬さを示し、従来の軸受鋼製の転がり摺動部材と同等以上の寿命を確保することができる。
Since the rolling sliding member provided with the said structure was obtained from cheap steel materials, such as carbon steel for machine structures which has the said composition, it can be manufactured at a cheap material cost.
In addition, the rolling sliding member of the present invention has a Vickers hardness of 800 or more on the surface of the rolling sliding surface, and is formed of a nitride particle at a depth of about 200 μm from the surface of the rolling sliding surface. It has particles having a diameter of 0.03 μm or more and 1 μm or less, and the area ratio of the particles at a depth of about 200 μm from the surface is 5 to 15%, and the particles are dispersed and precipitated.
Note that the carbon content at a depth of about 10 μm from the surface is a range of ± 1 μm in the depth direction centered at a depth of 10 μm from the surface in the cross section in the depth direction from the surface. Refers to the carbon content. In addition, the nitrogen content at a depth of about 10 μm from the surface is a range of ± 1 μm in the depth direction centered at a depth of 10 μm from the surface in the cross section in the depth direction from the surface. Refers to the nitrogen content. In addition, the observation of nitride at a depth of about 200 μm from the surface shows that the cross section in the depth direction from the surface is ± 15 μm in the depth direction centered at a depth of 200 μm from the surface and with respect to the depth direction. A 30 μm square range of 30 μm is observed in the vertical direction as a visual field. Further, the area ratio of particles having a particle diameter of 1 μm or less made of nitride at a depth of about 200 μm from the surface means the area ratio of particles having a particle diameter of 0.03 μm to 1 μm in a 30 μm square range.
Therefore, the rolling sliding member of the present invention exhibits a hardness equal to or higher than that of a conventional rolling bearing member made of bearing steel on both the surface of the rolling sliding surface and the inside of the rolling sliding member. It is possible to ensure a life equal to or longer than that of a rolling sliding member made of bearing steel.

本発明の転がり摺動部材の製造方法は、相手部材との間で相対的に転がり接触もしくは滑り接触または両接触を含む接触をする前記転がり摺動面を備えた転がり摺動部材の製造方法であって、
0.1〜0.5質量%の炭素と、0.1質量%〜0.4質量%ケイ素と、0質量%を超え、かつ0.9質量%以下のマンガンと、0質量%を超え、かつ0.2質量%以下のクロムとを含有し、かつ残部が鉄および不可避不純物である鋼材を、所定の形状に加工して、少なくとも前記転がり摺動面を形成する部分に研磨取代を有する素形材を得る前加工工程、
前記素形材に対して、カーボンポテンシャル0.9〜1.3で、残留アンモニア量が1〜1.4体積%の浸炭窒化雰囲気において、当該素形材を850〜950℃で加熱し、急冷する浸炭窒化処理を施し、中間素材を得る浸炭窒化工程、
前記浸炭窒化処理後の中間素材の少なくとも前記転がり摺動面を形成する部分に対して、当該中間素材を850〜1000℃の温度に加熱し、急冷する高周波焼入れ処理を施す高周波焼入れ工程、
高周波焼入れ工程後の中間素材を160〜200℃で焼きもどしする焼もどし工程、および
焼もどし工程後の中間素材の前記転がり摺動面を形成する部分に、研磨加工を施すことにより、前記転がり摺動面を形成し、この転がり摺動面の表面のビッカース硬さが800以上であり、前記転がり摺動面の表面から略10μmの深さの位置での炭素の含有量が0.6〜1.2質量%であり、前記転がり摺動面の表面から略10μmの深さの位置での窒素の含有量が0.4〜0.9質量%であり、これら炭素および窒素の含有量の合計が1.4質量%以上であり、前記転がり摺動面の表面から略200μmの深さの位置には、窒化物からなる粒径0.03μm以上1μm以下の粒子を有しており、かつ前記転がり摺動面の表面から略200μmの深さの位置における前記粒子の面積率が5〜15%である転がり摺動部材を得る研磨加工工程
を含むことを特徴とする。
The manufacturing method of the rolling sliding member of this invention is a manufacturing method of the rolling sliding member provided with the said rolling sliding surface which makes a contact including a rolling contact or a sliding contact, or both contacts relatively between the other members. There,
0.1 to 0.5 mass% carbon, 0.1 to 0.4 mass% silicon, more than 0 mass% and not more than 0.9 mass% manganese, more than 0 mass%, And a steel material containing 0.2% by mass or less of chromium and the balance being iron and unavoidable impurities, and having a machining allowance at least at a portion forming the rolling sliding surface. Pre-processing step to obtain the profile,
In the carbonitriding atmosphere with a carbon potential of 0.9 to 1.3 and a residual ammonia amount of 1 to 1.4% by volume, the raw material is heated at 850 to 950 ° C. and rapidly cooled. Carbonitriding process to obtain an intermediate material,
An induction hardening process for subjecting at least a portion of the intermediate material after the carbonitriding process to form the rolling sliding surface to an induction hardening process in which the intermediate material is heated to a temperature of 850 to 1000 ° C. and rapidly cooled;
The tempering step of tempering the intermediate material after the induction hardening process at 160 to 200 ° C., and polishing the portion of the intermediate material after the tempering step that forms the rolling sliding surface, thereby rolling the rolling material. A moving surface is formed, the surface of the rolling sliding surface has a Vickers hardness of 800 or more, and the carbon content at a depth of about 10 μm from the surface of the rolling sliding surface is 0.6-1 .2% by mass, the nitrogen content at a position approximately 10 μm deep from the surface of the rolling sliding surface is 0.4 to 0.9% by mass, and the total of these carbon and nitrogen contents Is 1.4% by mass or more, and has particles having a particle diameter of 0.03 μm or more and 1 μm or less made of nitride at a position approximately 200 μm deep from the surface of the rolling sliding surface, and Approximately 200 μm deep from the surface of the rolling sliding surface It includes a polishing step for obtaining a rolling sliding member having an area ratio of the particles at a position of 5 to 15%.

本発明の転がり摺動部材の製造方法では、前記鋼材を用いており、この鋼材を加工した素形材に対して、前記浸炭窒化処理を施し、かつ少なくとも転がり摺動面を形成する部分に対して、高周波焼入れ処理および研磨加工を施しているため、得られる転がり摺動部材の転がり摺動面の表面のビッカース硬さを800以上、表面から略10μmの深さの位置での炭素の含有量を0.6〜1.2質量%、転がり摺動面の表面から略10μmの深さの位置での窒素の含有量を0.4〜0.9質量%、これら炭素および窒素の含有量の合計を1.4質量%以上とし、転がり摺動面の表面から略200μmの深さの位置に、窒化物からなる粒径0.03μm以上1μm以下の粒子を存在させ、かつ転がり摺動面の表面から略200μmの深さの位置における前記粒子の面積率を5〜15%とすることができる。
したがって、本発明の転がり摺動部材の製造方法によれば、前述の優れた作用効果を奏する転がり摺動部材を得ることができる。
In the manufacturing method of the rolling sliding member of the present invention, the steel material is used, and the carbonitriding process is performed on the shaped material obtained by processing the steel material, and at least the portion that forms the rolling sliding surface. Since the induction hardening process and the polishing process are performed, the Vickers hardness of the surface of the rolling sliding surface of the obtained rolling sliding member is 800 or more, and the carbon content at a depth of about 10 μm from the surface 0.6 to 1.2% by mass, the nitrogen content at a position approximately 10 μm deep from the surface of the rolling sliding surface is 0.4 to 0.9% by mass, and the content of these carbon and nitrogen The total amount is 1.4% by mass or more, particles having a particle diameter of 0.03 μm or more and 1 μm or less made of nitride are present at a depth of about 200 μm from the surface of the rolling sliding surface, and the rolling sliding surface At a position approximately 200 μm deep from the surface The area ratio of the serial particles can be 5-15%.
Therefore, according to the method for manufacturing a rolling sliding member of the present invention, it is possible to obtain a rolling sliding member having the above-described excellent effects.

本発明の転がり摺動部材およびその製造方法によれば、コストの安い材料を用いて、従来の軸受鋼製の転がり摺動部材と同等以上の寿命を確保することができる。   According to the rolling sliding member and the manufacturing method thereof of the present invention, it is possible to ensure a life equal to or longer than that of a conventional rolling bearing member made of bearing steel using a low cost material.

本発明の一実施形態にかかる転がり摺動部材を備えた玉軸受の構造を示す概略説明図である。It is a schematic explanatory drawing which shows the structure of the ball bearing provided with the rolling sliding member concerning one Embodiment of this invention. 本発明の一実施形態に係る転がり摺動部材中の組織の構造を示す概略説明図である。It is a schematic explanatory drawing which shows the structure of the structure | tissue in the rolling sliding member which concerns on one Embodiment of this invention. 本発明の一実施形態に係る転がり摺動部材(外輪)の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the rolling sliding member (outer ring) which concerns on one Embodiment of this invention. 図3に示される製造方法の高周波焼入れ工程を示す概略説明図である。It is a schematic explanatory drawing which shows the induction hardening process of the manufacturing method shown by FIG. 実施例1における熱処理条件を示す線図である。3 is a diagram showing heat treatment conditions in Example 1. FIG. 実施例2における熱処理条件を示す線図である。It is a diagram which shows the heat processing conditions in Example 2. FIG. 実施例3における熱処理条件を示す線図である。6 is a diagram showing heat treatment conditions in Example 3. FIG. 実施例4における熱処理条件を示す線図である。It is a diagram which shows the heat processing conditions in Example 4. FIG. 比較例1における熱処理条件を示す線図である。It is a diagram which shows the heat processing conditions in the comparative example 1. 比較例2における熱処理条件を示す線図である。It is a diagram which shows the heat processing conditions in the comparative example 2. 比較例3における熱処理条件を示す線図である。It is a diagram which shows the heat processing conditions in the comparative example 3. 比較例4における熱処理条件を示す線図である。It is a diagram which shows the heat processing conditions in the comparative example 4. 比較例5における熱処理条件を示す線図である。It is a diagram which shows the heat processing conditions in the comparative example 5. 比較例6における熱処理条件を示す線図である。It is a diagram which shows the heat processing conditions in the comparative example 6.

(転がり摺動部材)
以下、添付の図面により本発明の一実施形態に係る転がり摺動部材を説明する。図1は、本発明の一実施形態に係る転がり摺動部材を備えた玉軸受の構造を示す概略説明図である。
(Rolling sliding member)
Hereinafter, a rolling sliding member according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic explanatory view showing the structure of a ball bearing provided with a rolling sliding member according to an embodiment of the present invention.

玉軸受10は、内周面に転がり摺動面としての軌道面1aを有する外輪1と、外周面に転がり摺動面としての軌道面2aを有する内輪2と、外内輪1,2の両軌道面1a,2a間に配置され、表面に転がり摺動面としての転動面を有する複数個の転動体としての玉3と、複数個の玉3を周方向に所定間隔毎に保持する保持器4とを備えている。外内輪1,2および玉3は、本実施形態に係る転がり摺動部材である。   The ball bearing 10 includes both an outer ring 1 having a raceway surface 1a as a rolling sliding surface on an inner peripheral surface, an inner ring 2 having a raceway surface 2a as a rolling sliding surface on an outer peripheral surface, and both raceways of the outer inner rings 1 and 2. A plurality of balls 3 as rolling elements, which are arranged between the surfaces 1a and 2a and have a rolling surface as a rolling sliding surface on the surface, and a cage for holding the plurality of balls 3 at predetermined intervals in the circumferential direction. 4 is provided. The outer inner rings 1 and 2 and the balls 3 are rolling sliding members according to this embodiment.

外内輪1,2および玉3は、0.1〜0.5質量%の炭素と、0.1質量%〜0.4質量%ケイ素と、0質量%を超え、かつ0.9質量%以下のマンガンと、0質量%を超え、かつ0.2質量%以下のクロムと、残部の鉄および不可避不純物とを含有する鋼材から得られたものである。かかる鋼材は、安価に入手することができるものであるため、外内輪1,2および玉3は、低コストで製造することができる。
前記鋼材としては、S25C、S35C、S45Cなどの機械構造用炭素鋼が挙げられる。
Outer inner rings 1 and 2 and ball 3 are 0.1 to 0.5% by mass of carbon, 0.1 to 0.4% by mass of silicon, more than 0% by mass and 0.9% by mass or less. This is obtained from a steel material containing manganese, more than 0 mass% and chromium of 0.2 mass% or less, and the balance iron and inevitable impurities. Since such steel materials can be obtained at low cost, the outer inner rings 1 and 2 and the balls 3 can be manufactured at low cost.
Examples of the steel material include carbon steel for mechanical structure such as S25C, S35C, and S45C.

玉軸受10では、外内輪1,2の両軌道面1a,2aおよび玉3の転動面それぞれの表面のビッカース硬さが800以上となっており、従来の軸受鋼製の転がり摺動部材と同等以上の十分な硬さを示す。   In the ball bearing 10, the Vickers hardness of each of the raceway surfaces 1a and 2a of the outer inner rings 1 and 2 and the rolling surface of the ball 3 is 800 or more, and a conventional rolling sliding member made of bearing steel is used. Shows sufficient hardness equivalent or better.

外内輪1,2の両軌道面1a,2aおよび玉3の転動面それぞれの表面から略10μmの深さの位置での炭素の含有量は、十分な硬さを確保する観点から、0.6質量%以上であり、十分な靱性を確保し、寿命を一層向上させる観点から、1.2質量%以下である。   From the viewpoint of ensuring sufficient hardness, the carbon content at a position of a depth of about 10 μm from the surfaces of both raceway surfaces 1a and 2a of the outer inner rings 1 and 2 and the rolling surfaces of the balls 3 is 0. It is 6% by mass or more, and is 1.2% by mass or less from the viewpoint of securing sufficient toughness and further improving the life.

外内輪1,2の両軌道面1a,2aおよび玉3の転動面それぞれの表面から略10μmの深さの位置での窒素の含有量は、所定の硬さを得るのに十分な量の窒化物からなる粒子を析出させる観点から、0.4質量%以上であり、焼入れの効果を十分に得る観点から、0.9質量%以下である。   The nitrogen content at a position of a depth of about 10 μm from both the raceway surfaces 1a, 2a of the outer inner rings 1, 2 and the rolling surfaces of the balls 3 is an amount sufficient to obtain a predetermined hardness. From the viewpoint of precipitating nitride particles, the content is 0.4% by mass or more, and from the viewpoint of sufficiently obtaining the quenching effect, it is 0.9% by mass or less.

炭素および窒素の含有量の合計は、所定の硬さを得るのに十分な量の窒化物からなる粒子を析出させるとともに、転がり摺動部材全体にわたってかかる粒子を略均一に分散させ、十分な硬さおよび靱性を確保する観点から、1.4質量%以上である。   The total content of carbon and nitrogen precipitates a sufficient amount of nitride particles to obtain a predetermined hardness, and distributes the particles substantially uniformly throughout the rolling sliding member so that sufficient hardness is obtained. From the viewpoint of securing the thickness and toughness, it is 1.4% by mass or more.

また、外内輪1,2の両軌道面1a,2aおよび玉3の転動面それぞれの表面から略200μmの深さの位置には、窒化物からなる粒径1μm以下の粒子が存在している。これにより、外内輪1,2および玉3では、耐磨耗性とともに十分な硬さを確保している。
前記粒子は、耐磨耗性を確保する観点から、好ましくは0.03μm以上の粒径のものを含み、十分な寿命を確保する観点から、好ましくは1μm以下の粒径のものを含む。
Further, particles having a particle diameter of 1 μm or less made of nitride exist at positions at a depth of approximately 200 μm from both the raceway surfaces 1 a and 2 a of the outer inner rings 1 and 2 and the rolling surfaces of the balls 3. . As a result, the outer inner rings 1 and 2 and the balls 3 ensure sufficient hardness as well as wear resistance.
The particles preferably have a particle size of 0.03 μm or more from the viewpoint of ensuring wear resistance, and preferably have a particle diameter of 1 μm or less from the viewpoint of ensuring a sufficient life.

そして、外内輪1,2の両軌道面1a,2aおよび玉3の転動面それぞれの表面から略200μmの深さの位置における前記粒子の面積率は、前記表面層における大きい粒径の窒化物からなる粒子の存在量を少なくして、十分な寿命を確保する観点から、5%以上であり、前記表面層における小さい粒径の窒化物からなる粒子の存在量を少なくすることにより、オーステナイト組織のマルテンサイト化をしやすくし、十分な硬さを確保する観点から、15%以下である。
これにより、外内輪1,2および玉3では、図2に示されるように、窒化物からなる粒径0.03μm以上1μm以下の粒子(窒化物粒子53)が母材50におけるオーステナイト粒界52に略均一に分散して析出した状態となっており、それぞれの内部において、十分な硬さを確保している。したがって、外内輪1,2および玉3は、優れた耐疲労性を示し、長寿命である。
And the area ratio of the said particle | grain in the position of the depth of about 200 micrometers from each surface of both the raceway surfaces 1a and 2a of the outer inner rings 1 and 2 and the rolling surface of the ball 3 is a nitride having a large particle diameter in the surface layer. From the viewpoint of ensuring a sufficient life by reducing the abundance of particles consisting of the above, the austenite structure is less than 5%, and by reducing the abundance of particles of a small particle size nitride in the surface layer From the viewpoint of facilitating the formation of martensite and securing sufficient hardness, it is 15% or less.
Thereby, in the outer inner rings 1 and 2 and the balls 3, as shown in FIG. 2, particles (nitride particles 53) made of nitride having a particle diameter of 0.03 μm to 1 μm are austenite grain boundaries 52 in the base material 50. In such a state, they are dispersed in a substantially uniform manner and are deposited, and a sufficient hardness is ensured in each of them. Therefore, the outer inner rings 1 and 2 and the balls 3 exhibit excellent fatigue resistance and have a long life.

(転がり摺動部材の製造方法)
つぎに、転がり摺動部材の製造方法の例として、前記外輪1の製造方法を説明する。図3は、本発明の一実施形態に係る外輪の製造方法の工程図である。
(Method for manufacturing rolling sliding member)
Next, a method for manufacturing the outer ring 1 will be described as an example of a method for manufacturing a rolling sliding member. FIG. 3 is a process diagram of an outer ring manufacturing method according to an embodiment of the present invention.

まず、0.1〜0.5質量%の炭素と、0.1質量%〜0.4質量%ケイ素と、0質量%を超え、かつ0.9質量%以下のマンガンと、0質量%を超え、かつ0.2質量%以下のクロムと、残部の鉄および不可避不純物とを含有する鋼材(炭素鋼)からなる外輪1の環状素材13〔図3(a)参照〕を製造し、得られた環状素材13に切削加工などを施し、所定形状に加工して、軌道面11a、端面11b、内周面11cおよび外周面11dそれぞれを形成する部分に研磨取代を有する外輪の素形材14を得る〔「前加工工程」、図3(b)参照〕。
かかる前加工工程では、安価に入手することができる前記機械構造用炭素鋼などの鋼材が用いられているため、安価なコストで外輪1を製造することができる。
First, 0.1 to 0.5 mass% carbon, 0.1 mass% to 0.4 mass% silicon, manganese exceeding 0 mass% and 0.9 mass% or less, and 0 mass% An annular material 13 (see FIG. 3 (a)) of the outer ring 1 made of a steel material (carbon steel) containing chromium exceeding 0.2% by mass and the balance iron and inevitable impurities is obtained and obtained. The annular material 13 is cut into a predetermined shape and processed into a predetermined shape, and an outer ring shaped member 14 having a grinding allowance is formed in each of the portions forming the raceway surface 11a, the end surface 11b, the inner peripheral surface 11c, and the outer peripheral surface 11d. [Refer to “Pre-processing step”, FIG. 3B].
In such a pre-processing step, since the steel material such as the carbon steel for mechanical structure that can be obtained at low cost is used, the outer ring 1 can be manufactured at a low cost.

つぎに、得られた外輪の素形材14(中間素材)を、カーボンポテンシャル0.9〜1.3で、残留アンモニア量が1〜1.4体積%の浸炭窒化雰囲気において、850〜950℃で所定時間加熱保持し、その後、所定温度に急冷する〔「浸炭窒化処理工程」、図3(c)参照〕。   Next, the outer ring shaped material 14 (intermediate material) obtained was 850 to 950 ° C. in a carbonitriding atmosphere having a carbon potential of 0.9 to 1.3 and a residual ammonia amount of 1 to 1.4% by volume. For a predetermined time, and then rapidly cooled to a predetermined temperature ["carbonitriding step", see FIG. 3 (c)].

浸炭窒化雰囲気におけるカーボンポテンシャルは、外輪1の表面における硬さを十分な硬さとする観点から、0.9以上であり、外輪1における靱性を確保する観点から、1.3以下である。   The carbon potential in the carbonitriding atmosphere is 0.9 or more from the viewpoint of obtaining sufficient hardness on the surface of the outer ring 1 and 1.3 or less from the viewpoint of ensuring toughness in the outer ring 1.

また、浸炭窒化雰囲気における残留アンモニア量は、前記窒化物からなる粒子の面積率を確保し、十分な硬さを確保する観点から、1体積%以上であり、粒径の大きい窒化物の偏在を防止し、十分な靱性を確保する観点から、1.4体積%以下である。   Further, the amount of residual ammonia in the carbonitriding atmosphere is 1% by volume or more from the viewpoint of ensuring the area ratio of the particles made of the nitride and ensuring sufficient hardness, and uneven distribution of nitrides having a large particle size. From the viewpoint of preventing and securing sufficient toughness, it is 1.4% by volume or less.

浸炭窒化雰囲気における加熱保持温度は、十分な硬化層を形成させる観点から、850℃以上であり、転がり摺動部材中への過剰な炭素の侵入を抑制して、過剰浸炭組織の発生を抑制するとともに、浸炭窒化雰囲気中のアンモニアが分解されて転がり摺動部材中へ窒素が侵入しなくなることを抑制する観点から、950℃以下である。
また、加熱保持時間は、表面層の強化に十分な浸炭深さを得る観点から、5〜10時間である。表面から少なくとも500μmの深さまでの範囲は、浸炭窒化層となっている。通常、かかる浸炭窒化層は、表面から800μm程度の深さまで形成されている。浸炭窒化層より深い位置は、浸炭窒化されていない。
The heating and holding temperature in the carbonitriding atmosphere is 850 ° C. or higher from the viewpoint of forming a sufficient hardened layer, and the excessive carbon intrusion into the rolling sliding member is suppressed to suppress the occurrence of excessive carburized structure. At the same time, the temperature is 950 ° C. or lower from the viewpoint of preventing ammonia in the carbonitriding atmosphere from being decomposed and preventing nitrogen from entering the rolling sliding member.
The heating and holding time is 5 to 10 hours from the viewpoint of obtaining a carburization depth sufficient for strengthening the surface layer. The range from the surface to a depth of at least 500 μm is a carbonitriding layer. Usually, such a carbonitrided layer is formed to a depth of about 800 μm from the surface. The position deeper than the carbonitriding layer is not carbonitrided.

急冷は、冷却油の油浴中における油冷により行われる。冷却油の油浴温度は、通常、60〜180℃であればよい。   The rapid cooling is performed by oil cooling in an oil bath of cooling oil. The oil bath temperature of the cooling oil may usually be 60 to 180 ° C.

つぎに、得られた外輪の中間素材15の軌道面11a、端面11b、内周面11cおよび外周面11dそれぞれを形成する部分に対して、当該中間素材を850〜1000℃で加熱し、急冷する高周波焼入れ処理を施す〔「高周波焼入れ工程」、図3(d)参照〕。   Next, the intermediate material is heated at 850 to 1000 ° C. and rapidly cooled with respect to the portions forming the raceway surface 11a, end surface 11b, inner peripheral surface 11c and outer peripheral surface 11d of the intermediate material 15 of the outer ring obtained. Induction hardening is performed (see “Induction hardening process”, FIG. 3D).

外輪の中間素材15に対する高周波焼入れ処理は、例えば、中間素材15の内径よりも小さい誘導加熱コイル101(図4(a)参照)、中間素材15の外径よりも大きい誘導加熱コイル102(図4(b)参照)および中間素材15の端面11bを取り囲む誘導加熱コイル103(図4(c)参照)を用いて行なうことができる。これにより、外輪の中間素材15の軌道面11a、外周面11d、端面11bそれぞれを形成する部分に対して高周波焼入れ処理を施すことができる。   For example, induction heating coil 101 (see FIG. 4A) smaller than the inner diameter of intermediate material 15 and induction heating coil 102 larger than the outer diameter of intermediate material 15 (see FIG. 4) (B)) and an induction heating coil 103 (see FIG. 4C) surrounding the end surface 11b of the intermediate material 15 can be used. Thereby, the induction hardening process can be performed on the portions forming the raceway surface 11a, the outer peripheral surface 11d, and the end surface 11b of the intermediate material 15 of the outer ring.

なお、本明細書において、高周波焼入れ処理を行なう際の加熱温度は、中間素材15の軌道面11a、外周面11d、端面11bそれぞれを形成する部分の表面から2mmまでの範囲の表面層の温度を意味する。前記加熱温度は、中間素材15への窒化物の侵入および分散を十分に行なう観点から、850℃以上であり、中間素材15の窒化物の消失を抑制する観点から、1000℃以下である。このように、中間素材15の軌道面11a、外周面11d、端面11bそれぞれを形成する部分の表面から2mmまでの範囲の表面層を蒸気温度に加熱することにより、有効硬化層深さを確保することができる。
高周波焼入れ処理を行なう際の加熱保持時間は、表面を所定温度にすることができる程度であればよく、中間素材15の大きさに応じて異なる。かかる加熱保持時間は、通常、1〜10秒間である。
In the present specification, the heating temperature at the time of induction hardening is the temperature of the surface layer in the range of 2 mm from the surface of the portion forming the raceway surface 11a, outer peripheral surface 11d, and end surface 11b of the intermediate material 15. means. The heating temperature is 850 ° C. or more from the viewpoint of sufficiently intruding and dispersing the nitride into the intermediate material 15, and 1000 ° C. or less from the viewpoint of suppressing the disappearance of the nitride of the intermediate material 15. Thus, the effective hardened layer depth is ensured by heating the surface layer in a range of 2 mm from the surface of the portion forming the raceway surface 11a, outer peripheral surface 11d, and end surface 11b of the intermediate material 15 to the steam temperature. be able to.
The heating and holding time when the induction hardening process is performed is sufficient as long as the surface can be set to a predetermined temperature, and varies depending on the size of the intermediate material 15. Such heating and holding time is usually 1 to 10 seconds.

つぎに、前記浸炭窒化処理後の中間素材15を、160〜200℃の温度で加熱保持する焼もどし処理を行う〔「焼もどし処理工程」、図3(e)参照〕。
焼もどし処理における加熱保持温度は、十分な硬さを確保する観点から、160℃以上であり、焼入れ後の靱性を回復させる観点から、200℃以下である。
また、焼もどし処理における加熱保持時間は、特に限定されないが、通常30分間以上とすることができる。
Next, the tempering process which heat-holds the intermediate raw material 15 after the said carbonitriding process at the temperature of 160-200 degreeC is performed ("tempering process process", refer FIG.3 (e)).
The heating and holding temperature in the tempering treatment is 160 ° C. or higher from the viewpoint of securing sufficient hardness, and is 200 ° C. or lower from the viewpoint of recovering toughness after quenching.
In addition, the heating and holding time in the tempering process is not particularly limited, but can usually be 30 minutes or longer.

その後、焼もどし処理工程後の外輪の中間素材15の軌道面11a、端面11b、外周面11dそれぞれを形成する部分に対して、研磨加工を施して、所定精度に仕上げる〔図3(f)参照、「研磨加工工程」〕。このようにして、目的の外輪11を得ることができる。   Thereafter, the portions forming the raceway surface 11a, the end surface 11b, and the outer peripheral surface 11d of the intermediate material 15 of the outer ring after the tempering process are polished and finished to a predetermined accuracy [see FIG. 3 (f)]. , “Polishing process”. In this way, the target outer ring 11 can be obtained.

なお、本発明の転がり摺動部材の製造方法は、内輪および転動体の製造にも採用することができる。   In addition, the manufacturing method of the rolling sliding member of this invention is employable also in manufacture of an inner ring | wheel and a rolling element.

以下、実施例により本発明をさらに詳しく説明するが、本発明は、かかる実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited only to this Example.

〔実施例1〜4および比較例1〜5〕
機械構造用炭素鋼であるS25Cを、所定形状に加工して、転がり摺動面としての軌道面を形成する部分に研磨取代を有する玉軸受(型番6206)用内外輪それぞれの素形材を製造した。つぎに、得られた素形材に、図5〜図13に示す熱処理条件で熱処理を施し、得られた熱処理後の中間素材の前記軌道面を形成する部分に研磨加工を施して、実施例1〜4および比較例1〜5の内外輪を製造した。なお、S25Cの元素組成は、炭素0.20〜0.30質量%と、ケイ素0.15〜0.40質量%、マンガン0.30〜0.60質量%、クロム0.05〜0.15質量%、残部鉄および不可避不純物である。
[Examples 1 to 4 and Comparative Examples 1 to 5]
S25C, which is carbon steel for machine structural use, is processed into a predetermined shape, and the shape material of each of the inner and outer rings for ball bearings (model number 6206) having a grinding allowance at the portion forming the raceway surface as the rolling sliding surface is manufactured. did. Next, the obtained shaped material is subjected to heat treatment under the heat treatment conditions shown in FIG. 5 to FIG. 13, and a polishing process is performed on a portion forming the raceway surface of the obtained intermediate material. The inner and outer rings of 1-4 and Comparative Examples 1-5 were manufactured. The elemental composition of S25C is as follows: carbon 0.20 to 0.30 mass%, silicon 0.15 to 0.40 mass%, manganese 0.30 to 0.60 mass%, chromium 0.05 to 0.15 Mass%, balance iron and inevitable impurities.

ここで、図5に示される熱処理条件は、素形材を、カーボンポテンシャルが1.2、残留アンモニア量が1.2体積%の浸炭窒化雰囲気中において870℃で7時間加熱した後、80℃に油冷し(浸炭窒化)、得られた中間素材に対して高周波焼入れにより900℃で10秒間加熱した後、水冷し(高周波焼入れ処理)、170℃で2時間加熱(焼もどし処理)するものである(実施例1の内外輪)。
図6に示される熱処理条件は、素形材を、カーボンポテンシャルが1.2、残留アンモニア量が1.2体積%の浸炭窒化雰囲気中において920℃で5時間加熱した後、80℃に油冷し(浸炭窒化)、得られた中間素材に対して高周波焼入れにより900℃で10秒間加熱した後、水冷し(高周波焼入れ処理)、170℃で2時間加熱(焼もどし処理)するものである(実施例2の内外輪)。
図7に示される熱処理条件は、素形材を、カーボンポテンシャルが1.2、残留アンモニア量が1.1体積%の浸炭窒化雰囲気中において930℃で7時間加熱した後、80℃に油冷し(浸炭窒化)、得られた中間素材に対して高周波焼入れにより900℃で10秒間加熱した後、水冷し(高周波焼入れ処理)、170℃で2時間加熱(焼もどし処理)するものである(実施例3の内外輪)。
図8に示される熱処理条件は、素形材を、カーボンポテンシャルが1.2、残留アンモニア量が1.4体積%の浸炭窒化雰囲気中において860℃で7時間加熱した後、80℃に油冷し(浸炭窒化)、得られた中間素材に対して高周波焼入れにより900℃で10秒間加熱した後、水冷し(高周波焼入れ処理)、170℃で2時間加熱(焼もどし処理)するものである(実施例4の内外輪)。
図9に示される熱処理条件は、素形材を、カーボンポテンシャルが1.2、残留アンモニア量が0.8体積%の浸炭窒化雰囲気中において950℃で5時間加熱した後、80℃に油冷し(浸炭窒化)、得られた中間素材に対して高周波焼入れにより900℃で10秒間加熱した後、水冷し(高周波焼入れ処理)、170℃で2時間加熱(焼もどし処理)するものである(比較例1の内外輪)。
図10に示される熱処理条件は、素形材を、カーボンポテンシャルが1.2、残留アンモニア量が1.8体積%の浸炭窒化雰囲気中において900℃で7時間加熱した後、80℃に油冷し(浸炭窒化)、得られた中間素材に対して高周波焼入れにより900℃で10秒間加熱した後、水冷し(高周波焼入れ処理)、170℃で2時間加熱(焼もどし処理)するものである(比較例2の内外輪)。
図11に示される熱処理条件は、素形材を、カーボンポテンシャルが1.2、残留アンモニア量が1.6体積%の浸炭窒化雰囲気中において900℃で5時間加熱した後、80℃に油冷し(浸炭窒化)、得られた中間素材に対して高周波焼入れにより900℃で10秒間加熱した後、水冷し(高周波焼入れ処理)、170℃で2時間加熱(焼もどし処理)するものである(比較例3の内外輪)。
図12に示される熱処理条件は、素形材を、カーボンポテンシャルが1.2、残留アンモニア量が1.7体積%の浸炭窒化雰囲気中において840℃で7時間加熱した後、80℃に油冷し(浸炭窒化)、得られた中間素材に対して高周波焼入れにより900℃で10秒間加熱した後、水冷し(高周波焼入れ処理)、170℃で2時間加熱(焼もどし処理)するものである(比較例4の内外輪)。
図13に示される熱処理条件は、素形材を、カーボンポテンシャルが1.2、残留アンモニア量が0.9体積%の浸炭窒化雰囲気中において920℃で7時間加熱した後、80℃に油冷し(浸炭窒化)、得られた中間素材に対して高周波焼入れにより900℃で10秒間加熱した後、水冷し(高周波焼入れ処理)、170℃で2時間加熱(焼もどし処理)するものである(比較例5の内外輪)。
Here, the heat treatment condition shown in FIG. 5 is that the shaped material is heated at 870 ° C. for 7 hours in a carbonitriding atmosphere having a carbon potential of 1.2 and a residual ammonia amount of 1.2% by volume, and then 80 ° C. Oil-cooled (carbonitriding), and the intermediate material obtained is heated at 900 ° C. for 10 seconds by induction quenching, then water-cooled (induction quenching treatment), and heated at 170 ° C. for 2 hours (tempering treatment). (Inner and outer rings of Example 1).
The heat treatment conditions shown in FIG. 6 are as follows: the shaped material was heated at 920 ° C. for 5 hours in a carbonitriding atmosphere having a carbon potential of 1.2 and a residual ammonia amount of 1.2% by volume, and then oil-cooled to 80 ° C. (Carbonitriding), the obtained intermediate material is heated at 900 ° C. for 10 seconds by induction quenching, then cooled with water (induction quenching treatment), and heated at 170 ° C. for 2 hours (tempering treatment) ( Inner and outer rings of Example 2).
The heat treatment conditions shown in FIG. 7 are as follows: the raw material was heated at 930 ° C. for 7 hours in a carbonitriding atmosphere having a carbon potential of 1.2 and a residual ammonia amount of 1.1% by volume, and then oil-cooled to 80 ° C. (Carbonitriding), the obtained intermediate material is heated at 900 ° C. for 10 seconds by induction quenching, then cooled with water (induction quenching treatment), and heated at 170 ° C. for 2 hours (tempering treatment) ( Inner and outer rings of Example 3).
The heat treatment conditions shown in FIG. 8 are as follows. The raw material was heated at 860 ° C. for 7 hours in a carbonitriding atmosphere having a carbon potential of 1.2 and a residual ammonia amount of 1.4% by volume, and then oil-cooled to 80 ° C. (Carbonitriding), the obtained intermediate material is heated at 900 ° C. for 10 seconds by induction quenching, then cooled with water (induction quenching treatment), and heated at 170 ° C. for 2 hours (tempering treatment) ( Inner and outer rings of Example 4).
The heat treatment condition shown in FIG. 9 is that the shaped material was heated at 950 ° C. for 5 hours in a carbonitriding atmosphere having a carbon potential of 1.2 and a residual ammonia amount of 0.8% by volume, and then oil-cooled to 80 ° C. (Carbonitriding), the obtained intermediate material is heated at 900 ° C. for 10 seconds by induction quenching, then cooled with water (induction quenching treatment), and heated at 170 ° C. for 2 hours (tempering treatment) ( Inner and outer rings of Comparative Example 1).
The heat treatment conditions shown in FIG. 10 are as follows. The shaped material was heated at 900 ° C. for 7 hours in a carbonitriding atmosphere having a carbon potential of 1.2 and a residual ammonia amount of 1.8% by volume, and then oil-cooled to 80 ° C. (Carbonitriding), the obtained intermediate material is heated at 900 ° C. for 10 seconds by induction quenching, then cooled with water (induction quenching treatment), and heated at 170 ° C. for 2 hours (tempering treatment) ( Inner and outer rings of Comparative Example 2).
The heat treatment conditions shown in FIG. 11 are as follows. The shaped material was heated at 900 ° C. for 5 hours in a carbonitriding atmosphere having a carbon potential of 1.2 and a residual ammonia amount of 1.6% by volume, and then oil-cooled to 80 ° C. (Carbonitriding), the obtained intermediate material is heated at 900 ° C. for 10 seconds by induction quenching, then cooled with water (induction quenching treatment), and heated at 170 ° C. for 2 hours (tempering treatment) ( Inner and outer rings of Comparative Example 3).
The heat treatment conditions shown in FIG. 12 are as follows. The shaped material was heated at 840 ° C. for 7 hours in a carbonitriding atmosphere having a carbon potential of 1.2 and a residual ammonia amount of 1.7% by volume, and then oil-cooled to 80 ° C. (Carbonitriding), the obtained intermediate material is heated at 900 ° C. for 10 seconds by induction quenching, then cooled with water (induction quenching treatment), and heated at 170 ° C. for 2 hours (tempering treatment) ( Inner and outer rings of Comparative Example 4).
The heat treatment conditions shown in FIG. 13 are as follows. The shaped material was heated at 920 ° C. for 7 hours in a carbonitriding atmosphere having a carbon potential of 1.2 and a residual ammonia amount of 0.9% by volume, and then oil-cooled to 80 ° C. (Carbonitriding), the obtained intermediate material is heated at 900 ° C. for 10 seconds by induction quenching, then cooled with water (induction quenching treatment), and heated at 170 ° C. for 2 hours (tempering treatment) ( Inner and outer rings of Comparative Example 5).

〔比較例6〕
軸受鋼であるSUJ2を用いて、型番6206の玉軸受の内外輪を製造するための素形材それぞれを製造した。つぎに、得られた素形材に、図14に示す熱処理条件で熱処理を施して、比較例6の内外輪を製造した。
なお、図14に示される熱処理条件は、素形材を、840℃で0.5時間加熱した後、80℃に油冷し(焼入れ)、180℃で2時間加熱(焼もどし処理)するものである。
[Comparative Example 6]
Using the SUJ2 which is a bearing steel, each of the shape members for manufacturing the inner and outer rings of the ball bearing of model number 6206 was manufactured. Next, the obtained shaped material was subjected to heat treatment under the heat treatment conditions shown in FIG. 14 to produce the inner and outer rings of Comparative Example 6.
The heat treatment conditions shown in FIG. 14 are those in which the shaped material is heated at 840 ° C. for 0.5 hour, then oil cooled to 80 ° C. (quenching), and heated at 180 ° C. for 2 hours (tempering treatment). It is.

〔試験例1〕
実施例1〜4、比較例1〜6の内輪について、軌道面の表面から50μmの深さの位置でのビッカース硬さ、軌道面の表面から略10μmの深さの位置での炭素含有量、軌道面の表面から略10μmの深さの位置での窒素含有量、軌道面の表面から略200μmの深さの位置における窒化物からなる粒径0.03μm以上1μm以下の粒子の面積率を調べた。また、実施例1〜4、比較例1〜6の各内外輪を有する玉軸受について、寿命試験を行なった。
[Test Example 1]
For the inner rings of Examples 1 to 4 and Comparative Examples 1 to 6, the Vickers hardness at a position of a depth of 50 μm from the surface of the raceway surface, the carbon content at a position of a depth of about 10 μm from the surface of the raceway surface, Investigate the nitrogen content at a depth of approximately 10 μm from the surface of the raceway surface, and the area ratio of particles having a particle size of 0.03 μm to 1 μm consisting of nitride at a depth of approximately 200 μm from the surface of the raceway surface. It was. Moreover, the life test was done about the ball bearing which has each inner / outer ring of Examples 1-4 and Comparative Examples 1-6.

表面から50μmの深さの位置でのビッカース硬さは、前記内輪を表面から深さ方向に切断した後、前記表面から50μmの深さの位置にビッカース圧子をあてて測定した。   The Vickers hardness at a depth of 50 μm from the surface was measured by cutting the inner ring in the depth direction from the surface and then applying a Vickers indenter at a depth of 50 μm from the surface.

表面から略10μmの深さの位置での炭素含有量および表面から略10μmの深さの位置での窒素含有量は、それぞれ、前記内輪を表面から深さ方向に切断した後、前記表面から10μmの深さの位置を中心とし深さ方向に±1μmの範囲における各含有量を測定することにより求めた。   The carbon content at a depth of about 10 μm from the surface and the nitrogen content at a depth of about 10 μm from the surface are respectively 10 μm from the surface after cutting the inner ring in the depth direction from the surface. It was determined by measuring each content in a range of ± 1 μm in the depth direction with the position of the depth of the center.

表面から略200μmの深さの位置での窒化物の観察は、表面から深さ方向の断面において、表面から200μmの深さを中心として深さ方向に±15μm、かつ深さ方向に対し垂直な方向に30μmの30μm四方の範囲を視野として行なった。表面から略200μmの深さの位置における窒化物からなる粒径0.03μm以上1μm以下の粒子の面積率は、800μm2の測定視野において、加速電圧:15.0kV、照射電流:2.016×10-7Aおよびスキャン倍率:3000倍の条件で、電解放出型電子プローブマイクロアナライザを用いて、窒素をマッピングし、画像処理装置で面積率を算出した。 The observation of nitride at a depth of about 200 μm from the surface is, in a cross section in the depth direction from the surface, ± 15 μm in the depth direction centered at a depth of 200 μm from the surface and perpendicular to the depth direction. The range of 30 μm square in the direction was 30 μm. The area ratio of particles having a particle size of 0.03 μm or more and 1 μm or less made of nitride at a depth of about 200 μm from the surface is an acceleration voltage of 15.0 kV and an irradiation current of 2.016 × in a measurement field of 800 μm 2. Nitrogen was mapped using a field emission electron probe microanalyzer under the conditions of 10 −7 A and scan magnification of 3000 times, and the area ratio was calculated with an image processing apparatus.

また、寿命試験は、実施例1〜4および比較例1〜6の内外輪と、JIS SUJ2からなり、比較例6と同じ熱処理を施した転動体との組み合わせを用いて、それぞれ、実施例1〜4および比較例1〜6の各玉軸受を組み立て、得られた各玉軸受について、表1に示す条件で試験した。そして、玉軸受の内輪が破損するまでの時間を測定するという試験を5回繰り返し、ワイブル分布により10%の損傷確率があると推定されるL10寿命を求めた。 In addition, the life test was carried out using Examples 1 to 4 and Comparative Examples 1 to 6 and JIS SUJ2 and the rolling elements subjected to the same heat treatment as Comparative Example 6, respectively. Each ball bearing of -4 and Comparative Examples 1-6 was assembled, and each ball bearing obtained was tested under the conditions shown in Table 1. And the test of measuring the time until the inner ring of the ball bearing was broken was repeated five times, and the L 10 life estimated to have a 10% damage probability by the Weibull distribution was obtained.

Figure 0005392100
Figure 0005392100

これらの結果を表2に示す。表2中、「炭素含有量」は、軌道面の表面から略10μmの深さの位置での炭素含有量、「窒素含有量」は、軌道面の表面から略10μmの深さの位置での窒素含有量、「窒化物からなる粒子の面積率」は、軌道面の表面から略200μmの深さの位置での窒化物からなる粒径0.03μm以上1μm以下の粒子の面積率、「ビッカース硬さ」は、軌道面の表面のビッカース硬さ、「寿命」は、L10寿命をそれぞれ示す。なお、寿命は、比較例6の玉軸受の寿命を1として、相対値として算出した。 These results are shown in Table 2. In Table 2, the “carbon content” is the carbon content at a depth of about 10 μm from the surface of the raceway surface, and the “nitrogen content” is the location at a depth of about 10 μm from the surface of the raceway surface. Nitrogen content, “area ratio of particles made of nitride” is the area ratio of particles having a particle diameter of 0.03 μm or more and 1 μm or less made of nitride at a depth of about 200 μm from the surface of the raceway surface, “Vickers” hardness "is a Vickers hardness of the surface of the raceway surface," lifetime "refers to the L 10 life, respectively. The life was calculated as a relative value with the life of the ball bearing of Comparative Example 6 as 1.

Figure 0005392100
Figure 0005392100

表2に示された結果から、実施例1〜4の内輪では、軌道面の表面から略10μmの深さの位置での炭素含有量が0.6〜1.2質量%の範囲であること、軌道面の表面から略10μmの深さの位置での窒素含有量が0.4〜0.9質量%の範囲であること、炭素および窒素の含有量の合計が1.4質量%以上であること、および軌道面の表面から略200μmの深さの位置における窒化物からなる粒径0.03μm以上1μm以下の粒子の面積率が5〜15%の範囲であることのいずれをも満たしていることがわかる。一方、比較例1〜5の内輪では、前記炭素含有量の範囲、窒素含有量の範囲、炭素および窒素の含有量の合計の範囲、面積率の範囲のいずれかを満たしていないことがわかる。   From the results shown in Table 2, in the inner rings of Examples 1 to 4, the carbon content at a depth of about 10 μm from the surface of the raceway surface is in the range of 0.6 to 1.2 mass%. The nitrogen content at a depth of about 10 μm from the surface of the raceway surface is in the range of 0.4 to 0.9 mass%, and the total content of carbon and nitrogen is 1.4 mass% or more. And that the area ratio of the particles having a particle diameter of 0.03 μm or more and 1 μm or less made of nitride at a position approximately 200 μm deep from the surface of the raceway surface is in the range of 5 to 15%. I understand that. On the other hand, it can be seen that the inner rings of Comparative Examples 1 to 5 do not satisfy any of the carbon content range, the nitrogen content range, the total carbon and nitrogen content range, or the area ratio range.

また、表2に示された結果から、実施例1〜4の内輪では、表面のビッカース硬さが800以上となっていることがわかる。これに対して、比較例1〜5の内輪では、表面から50μm深さの位置でのビッカース硬さが800未満であることがわかる。   Moreover, from the results shown in Table 2, it can be seen that the inner rings of Examples 1 to 4 have a surface Vickers hardness of 800 or more. On the other hand, in the inner rings of Comparative Examples 1 to 5, it can be seen that the Vickers hardness at a position 50 μm deep from the surface is less than 800.

さらに、表2に示された結果から、実施例1〜4の玉軸受では、比較例6の玉軸受の3倍以上の寿命を示すことがわかる。これに対して、比較例1〜5の玉軸受では、比較例6の玉軸受の1.5倍以下の寿命を示すにとどまっていることがわかる。   Furthermore, it can be seen from the results shown in Table 2 that the ball bearings of Examples 1 to 4 have a lifespan three times or more that of the ball bearing of Comparative Example 6. On the other hand, in the ball bearings of Comparative Examples 1 to 5, it can be seen that the life of the ball bearing of Comparative Example 6 is 1.5 times or less.

一般的に、転がり摺動部材を製造するための鋼材として、前記S25Cなどのように、0.1〜0.5質量%の炭素と、0.1質量%〜0.4質量%ケイ素と、0質量%を超え、かつ0.9質量%以下のマンガンと、0質量%を超え、かつ0.2質量%以下のクロムとを含有し、かつ残部が鉄および不可避不純物である安価な鋼材を用いた場合、浸炭窒化処理を行なっただけでは、残留オーステナイト量が多く、かつ焼入れ性が不足し、表面の硬さが不十分となると考えられる。
しかしながら、表2に示された結果からわかるように、鋼材として、0.1〜0.5質量%の炭素と、0.1質量%〜0.4質量%ケイ素と、0質量%を超え、かつ0.9質量%以下のマンガンと、0質量%を超え、かつ0.2質量%以下のクロムとを含有し、かつ残部が鉄および不可避不純物である安価な鋼材(S25C)を用いた場合であっても、かかる鋼材からなる素形材に対して、カーボンポテンシャル0.9〜1.3で、残留アンモニア量が1〜1.4体積%の浸炭窒化雰囲気において、850〜950℃で加熱し、急冷し(浸炭窒化処理)、浸炭処理後の中間素材に対して、高周波焼入れにより850〜1000℃の温度に当該中間素材を加熱し、急冷し(高周波焼入れ処理)、高周波焼入れ処理後の中間素材を160〜200℃で加熱し(焼きもどし処理)、焼もどし処理後の中間素材に、研磨加工を施すことにより、十分な硬さおよび寿命を示す転がり摺動部材を低コストで得ることができることがわかる。
Generally, as a steel material for producing a rolling sliding member, as in S25C, 0.1 to 0.5 mass% carbon, 0.1 mass% to 0.4 mass% silicon, An inexpensive steel material containing more than 0% by mass and not more than 0.9% by mass of manganese and more than 0% by mass and not more than 0.2% by mass of chromium, with the balance being iron and inevitable impurities When used, it is considered that the amount of retained austenite is large, the hardenability is insufficient, and the hardness of the surface becomes insufficient only by performing carbonitriding.
However, as can be seen from the results shown in Table 2, as a steel material, 0.1 to 0.5 mass% carbon, 0.1 mass% to 0.4 mass% silicon, and more than 0 mass%, When 0.9% by mass or less of manganese and 0% by mass and 0.2% by mass or less of chromium are used, and an inexpensive steel (S25C) in which the balance is iron and inevitable impurities is used. Even so, it is heated at 850 to 950 ° C. in a carbonitriding atmosphere having a carbon potential of 0.9 to 1.3 and a residual ammonia amount of 1 to 1.4% by volume with respect to such a steel shaped material. The intermediate material after the carburizing treatment is heated to a temperature of 850 to 1000 ° C. by induction hardening, rapidly cooled (induction hardening treatment), and after the induction hardening treatment. Intermediate material 160-200 In heating (tempering process), the intermediate material after tempering treatment, by performing the polishing, it is understood that it is possible to obtain in a sliding member rolling exhibit sufficient hardness and life cost.

また、前記鋼材に対して、浸炭窒化処理を行なうことにより、得られる中間素材の表面には、窒化物が析出する。ところが、この窒化物は、前記中間素材中において、偏在する傾向にあり、転がり疲労に対して弱くなっている。また、前記窒化物は、前記中間素材を高温で長時間加熱することにより、中間素材を構成する母材中に固溶化したり、中間素材の表面より放出されたりするので、窒化物の析出による効果を十分に得ることができないことがある。
しかしながら、実施例1〜4の内外輪では、製造に際して、浸炭窒化処理後の中間素材に対して、前記高周波焼入れ処理を施しているため、窒化物からなる粒子を十分に分散させることができ、転がり疲労に対して強くなっており、かつ当該中間素材の内部においても十分な硬さを確保することができる。
Moreover, nitride is deposited on the surface of the obtained intermediate material by performing carbonitriding on the steel material. However, this nitride tends to be unevenly distributed in the intermediate material and is weak against rolling fatigue. In addition, the nitride is dissolved in the base material constituting the intermediate material by being heated at a high temperature for a long time, or released from the surface of the intermediate material. The effect may not be obtained sufficiently.
However, in the inner and outer rings of Examples 1 to 4, since the induction quenching process is performed on the intermediate material after the carbonitriding process, it is possible to sufficiently disperse the nitride particles. It is strong against rolling fatigue, and sufficient hardness can be secured even inside the intermediate material.

1 外輪、1a 軌道面、2 内輪、2a 軌道面、4 保持器、10 玉軸受、
11 外輪
1 outer ring, 1a raceway surface, 2 inner ring, 2a raceway surface, 4 cage, 10 ball bearing,
11 Outer ring

Claims (3)

0.1〜0.5質量%の炭素と、0.1質量%〜0.4質量%のケイ素と、0質量%を超え、かつ0.9質量%以下のマンガンと、0質量%を超え、かつ0.2質量%以下のクロムとを含有し、かつ残部が鉄および不可避不純物である鋼材から得られ、相手部材との間で相対的に転がり接触もしくは滑り接触または両接触を含む接触をする転がり摺動面を有する転がり摺動部材であって、
前記転がり摺動面の表面のビッカース硬さが800以上であり、
前記転がり摺動面の表面から略10μmの深さの位置での炭素の含有量が0.6〜1.2質量%であり、
前記転がり摺動面の表面から略10μmの深さの位置での窒素の含有量が0.4〜0.9質量%であり、
これら炭素および窒素の含有量の合計が1.4質量%以上であり、
前記転がり摺動面の表面から略200μmの深さの位置には、窒化物からなる粒径0.03μm以上1μm以下の粒子を有しており、かつ表面から略200μmの深さの位置における前記粒子の面積率が5〜15%であることを特徴とする転がり摺動部材。
0.1 to 0.5% by mass of carbon, 0.1 to 0.4% by mass of silicon, more than 0% by mass and not more than 0.9% by mass of manganese, and more than 0% by mass And 0.2% by mass or less of chromium, and the balance is obtained from a steel material that is iron and unavoidable impurities, and is relatively rolling contact or sliding contact with a mating member or contact including both contacts. A rolling sliding member having a rolling sliding surface
The surface of the rolling sliding surface has a Vickers hardness of 800 or more,
The carbon content at a position of a depth of about 10 μm from the surface of the rolling sliding surface is 0.6 to 1.2% by mass,
The nitrogen content at a position of a depth of about 10 μm from the surface of the rolling sliding surface is 0.4 to 0.9 mass%,
The total content of these carbon and nitrogen is 1.4% by mass or more,
The position at a depth of about 200 μm from the surface of the rolling sliding surface has particles having a particle diameter of 0.03 μm or more and 1 μm or less made of nitride, and the position at a depth of about 200 μm from the surface. A rolling sliding member having an area ratio of particles of 5 to 15%.
相手部材との間で相対的に転がり接触もしくは滑り接触または両接触を含む接触をする前記転がり摺動面を備えた転がり摺動部材の製造方法であって、
0.1〜0.5質量%の炭素と、0.1質量%〜0.4質量%ケイ素と、0質量%を超え、かつ0.9質量%以下のマンガンと、0質量%を超え、かつ0.2質量%以下のクロムとを含有し、かつ残部が鉄および不可避不純物である鋼材を、所定の形状に加工して、少なくとも前記転がり摺動面を形成する部分に研磨取代を有する素形材を得る前加工工程、
前記素形材に対して、カーボンポテンシャル0.9〜1.3で、残留アンモニア量が1〜1.4体積%の浸炭窒化雰囲気において、当該素形材を850〜950℃で加熱し、急冷する浸炭窒化処理を施し、中間素材を得る浸炭窒化工程、
前記浸炭窒化処理後の中間素材の少なくとも前記転がり摺動面を形成する部分に対して、当該中間素材を850〜1000℃の温度に加熱し、急冷する高周波焼入れ処理を施す高周波焼入れ工程、
高周波焼入れ工程後の中間素材を160〜200℃で焼きもどしする焼もどし工程、および
焼もどし工程後の中間素材の前記転がり摺動面を形成する部分に、研磨加工を施すことにより、前記転がり摺動面を形成し、この転がり摺動面の表面のビッカース硬さが800以上であり、前記転がり摺動面の表面から略10μmの深さの位置での炭素の含有量が0.6〜1.2質量%であり、前記転がり摺動面の表面から略10μmの深さの位置での窒素の含有量が0.4〜0.9質量%であり、これら炭素および窒素の含有量の合計が1.4質量%以上であり、前記転がり摺動面の表面から略200μmの深さの位置には、窒化物からなる粒径0.03μm以上1μm以下の粒子を有しており、かつ前記転がり摺動面の表面から略200μmの深さの位置における前記粒子の面積率が5〜15%である転がり摺動部材を得る研磨加工工程
を含むことを特徴とする転がり摺動部材の製造方法。
A method of manufacturing a rolling sliding member provided with the rolling sliding surface that makes a contact including a rolling contact or a sliding contact or both contacts relative to a counterpart member,
0.1 to 0.5 mass% carbon, 0.1 to 0.4 mass% silicon, more than 0 mass% and not more than 0.9 mass% manganese, more than 0 mass%, And a steel material containing 0.2% by mass or less of chromium and the balance being iron and unavoidable impurities, and having a machining allowance at least at a portion forming the rolling sliding surface. Pre-processing step to obtain the profile,
In the carbonitriding atmosphere with a carbon potential of 0.9 to 1.3 and a residual ammonia amount of 1 to 1.4% by volume, the raw material is heated at 850 to 950 ° C. and rapidly cooled. Carbonitriding process to obtain an intermediate material,
An induction hardening process for subjecting at least a portion of the intermediate material after the carbonitriding process to form the rolling sliding surface to an induction hardening process in which the intermediate material is heated to a temperature of 850 to 1000 ° C. and rapidly cooled;
The tempering step of tempering the intermediate material after the induction hardening process at 160 to 200 ° C., and polishing the portion of the intermediate material after the tempering step that forms the rolling sliding surface, thereby rolling the rolling material. A moving surface is formed, the surface of the rolling sliding surface has a Vickers hardness of 800 or more, and the carbon content at a depth of about 10 μm from the surface of the rolling sliding surface is 0.6-1 .2% by mass, the nitrogen content at a position approximately 10 μm deep from the surface of the rolling sliding surface is 0.4 to 0.9% by mass, and the total of these carbon and nitrogen contents Is 1.4% by mass or more, and has particles having a particle diameter of 0.03 μm or more and 1 μm or less made of nitride at a position approximately 200 μm deep from the surface of the rolling sliding surface, and Approximately 200 μm deep from the surface of the rolling sliding surface The manufacturing method of the rolling sliding member characterized by including the grinding process process of obtaining the rolling sliding member whose area ratio of the said particle | grain in a position is 5 to 15%.
前記転がり摺動部材が、転がり軸受の内輪、外輪または転動体である請求項2に記載の転がり摺動部材の製造方法。   The method of manufacturing a rolling sliding member according to claim 2, wherein the rolling sliding member is an inner ring, an outer ring, or a rolling element of a rolling bearing.
JP2010002227A 2010-01-07 2010-01-07 Rolling sliding member and manufacturing method thereof Expired - Fee Related JP5392100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010002227A JP5392100B2 (en) 2010-01-07 2010-01-07 Rolling sliding member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010002227A JP5392100B2 (en) 2010-01-07 2010-01-07 Rolling sliding member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2011140993A JP2011140993A (en) 2011-07-21
JP5392100B2 true JP5392100B2 (en) 2014-01-22

Family

ID=44456990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010002227A Expired - Fee Related JP5392100B2 (en) 2010-01-07 2010-01-07 Rolling sliding member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5392100B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152867A (en) * 2013-02-08 2014-08-25 Ntn Corp Bearing part and rolling bearing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3326834B2 (en) * 1992-11-25 2002-09-24 日本精工株式会社 Rolling bearing
JP4026514B2 (en) * 2003-02-28 2007-12-26 株式会社ジェイテクト Rolling bearing member and method for manufacturing rolling bearing member
JP2006200627A (en) * 2005-01-20 2006-08-03 Ntn Corp Rolling bearing component and its manufacturing method, and rolling bearing
JP2007284723A (en) * 2006-04-13 2007-11-01 Ntn Corp Rolling member for automobile electrical equipment/auxiliary machinery, and rolling bearing for automobile electrical equipment/auxiliary machinery
JP5207236B2 (en) * 2008-03-24 2013-06-12 Ntn株式会社 Manufacturing method of shaft rod, manufacturing method of bearing, shaft rod and bearing
JP2009236146A (en) * 2008-03-26 2009-10-15 Ntn Corp Rolling bearing cage, rolling bearing, and rolling bearing cage manufacturing method

Also Published As

Publication number Publication date
JP2011140993A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
US9816557B2 (en) Tapered roller bearing
JP5895493B2 (en) Rolling bearing manufacturing method, induction heat treatment apparatus
JP5392099B2 (en) Rolling sliding member and manufacturing method thereof
JP5696575B2 (en) Rolling sliding member, method for manufacturing the same, and rolling bearing
JP2006200627A (en) Rolling bearing component and its manufacturing method, and rolling bearing
JP2014074212A (en) Rolling and sliding member, manufacturing method thereof, and rolling bearing
JP6725235B2 (en) Rolling sliding member, manufacturing method thereof, and rolling bearing
JP2014122378A (en) Rolling bearing
JP2009203526A (en) Rolling bearing
JP2008151236A (en) Rolling bearing
JP2019039044A (en) Rolling slide member and rolling bearing
JP5392100B2 (en) Rolling sliding member and manufacturing method thereof
JP5668283B2 (en) Manufacturing method of rolling sliding member
WO2022202922A1 (en) Track wheel and shaft
WO2018159840A1 (en) Bearing component, rolling bearing, and bearing component manufacturing method
JP2009204076A (en) Rolling bearing
JP2008232212A (en) Rolling device
JP5597976B2 (en) Bearing constituent member, method for manufacturing the same, and rolling bearing provided with the bearing constituent member
JP2009174656A (en) Rolling bearing
JP2009236259A (en) Insulating rolling bearing for electrical corrosion prevention
JP7212100B2 (en) rolling bearing
JP2005273698A (en) Self-aligning roller bearing
WO2023037846A1 (en) Machine component
WO2023058518A1 (en) Rolling component and rolling bearing
JP2009092161A (en) Rolling bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees