JP5391609B2 - Ferritic stainless steel sheet excellent in punching workability and manufacturing method thereof - Google Patents
Ferritic stainless steel sheet excellent in punching workability and manufacturing method thereof Download PDFInfo
- Publication number
- JP5391609B2 JP5391609B2 JP2008207752A JP2008207752A JP5391609B2 JP 5391609 B2 JP5391609 B2 JP 5391609B2 JP 2008207752 A JP2008207752 A JP 2008207752A JP 2008207752 A JP2008207752 A JP 2008207752A JP 5391609 B2 JP5391609 B2 JP 5391609B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- steel sheet
- stainless steel
- ferritic stainless
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 58
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000004080 punching Methods 0.000 title description 52
- 229910000859 α-Fe Inorganic materials 0.000 claims description 43
- 239000002131 composite material Substances 0.000 claims description 29
- 238000005098 hot rolling Methods 0.000 claims description 14
- 238000000137 annealing Methods 0.000 claims description 13
- 229910000831 Steel Inorganic materials 0.000 claims description 11
- 239000010959 steel Substances 0.000 claims description 11
- 238000001953 recrystallisation Methods 0.000 claims description 10
- 239000010960 cold rolled steel Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000013078 crystal Substances 0.000 description 35
- 238000000034 method Methods 0.000 description 21
- 238000010008 shearing Methods 0.000 description 14
- 230000007797 corrosion Effects 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 12
- 239000002244 precipitate Substances 0.000 description 9
- 238000005097 cold rolling Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000005096 rolling process Methods 0.000 description 8
- 229910052804 chromium Inorganic materials 0.000 description 7
- 229910052758 niobium Inorganic materials 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- -1 FeTiP Substances 0.000 description 1
- 206010070834 Sensitisation Diseases 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- JMANVNJQNLATNU-UHFFFAOYSA-N oxalonitrile Chemical compound N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000008313 sensitization Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
- C21D1/32—Soft annealing, e.g. spheroidising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0436—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0473—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
- B21B3/02—Rolling special iron alloys, e.g. stainless steel
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、打抜き加工性に優れたフェライト系ステンレス鋼板とその製造方法に関するものである。 The present invention relates to a ferritic stainless steel sheet excellent in punching workability and a method for producing the same.
フェライト系ステンレス鋼板は、耐食性に優れており、かつ加工し易いので、建築材料,輸送機器,家庭電化製品,厨房機器等の様々な用途に使用されている。これらの構造体を製造するためには、フェライト系ステンレス鋼板を所定の形状に切断し、さらに成形や接合等の加工を施す。フェライト系ステンレス鋼板の切断は、生産性の高いせん断加工が広く採用されている。 Ferritic stainless steel plates are excellent in corrosion resistance and easy to process, and are therefore used in various applications such as building materials, transportation equipment, home appliances, kitchen equipment and the like. In order to manufacture these structures, the ferritic stainless steel sheet is cut into a predetermined shape, and further processed such as forming and joining. For cutting ferritic stainless steel sheets, highly productive shearing is widely used.
せん断加工を行なうと、フェライト系ステンレス鋼板の断面に、かえりが発生する。かえりの高さが高い場合には、
(a)切り出したフェライト系ステンレス鋼板を成形装置(たとえばプレス成形機等)へ搬送する際に、かえりが障害となってトラブルが発生する、
(b)溶接する際に、接合するフェライト系ステンレス鋼板のかえりの部位に隙間が生じて溶落ちが発生する
等の問題がある。かえりは、せん断加工のみならず、図1に示すように打抜き加工によっても発生する。そのため、かえりが発生しない打抜き加工技術やせん断加工技術の開発が求められている。
When shearing is performed, burr is generated on the cross section of the ferritic stainless steel sheet. If the height of the burr is high,
(a) When the cut ferritic stainless steel sheet is conveyed to a forming apparatus (for example, a press molding machine), burr becomes an obstacle and trouble occurs.
(b) When welding, there is a problem that a gap is generated at the burr portion of the ferritic stainless steel sheet to be joined, resulting in a burn-out. The burr is generated not only by shearing but also by punching as shown in FIG. For this reason, there is a demand for the development of punching techniques and shearing techniques that do not generate burr.
打抜き加工においてもその切断面はせん断によって生じるので、打抜き加工とせん断加工は本質的に同じである。つまり、打抜き加工によるかえりの発生機構と、せん断加工によるかえりの発生機構とは同じである。
しかし従来は、打抜き加工やせん断加工におけるかえりの防止を目的とした検討は十分ではなく、鋼板の成形性を改善することによってかえりを抑制しようとする検討がなされている。
In the punching process, since the cut surface is generated by shearing, the punching process and the shearing process are essentially the same. That is, the mechanism for generating burr by punching and the mechanism for generating burr by shearing are the same.
However, in the past, studies aimed at preventing burr in punching and shearing have not been sufficient, and studies have been made to suppress burr by improving the formability of a steel sheet.
たとえば特許文献1には、熱延鋼板の成分と巻取り温度を規定することによって、再結晶を促進する技術が開示されている。この技術は、C,P,Sの含有量を低減してFeTiP,Ti4C2S2 ,TiC等の析出物を減少させて、成形性を改善するものである。しかし打抜き加工やせん断加工においては、大きいかえりが発生する。
特許文献2には、フェライト系ステンレス鋼板の成分を規定することによって、フェライトの結晶粒を粗大化する技術が開示されている。この技術は、フェライトの結晶粒を粗大化して、フェライト系ステンレス鋼板の張出し成形性を改善するものである。しかし打抜き加工やせん断加工においては、大きいかえりが発生し易い。
For example, Patent Document 1 discloses a technique for promoting recrystallization by defining the components of a hot-rolled steel sheet and the coiling temperature. This technique improves the formability by reducing the content of C, P, and S to reduce precipitates such as FeTiP, Ti 4 C 2 S 2 , and TiC. However, a large burr is generated in punching and shearing.
特許文献3には、Tiを添加する一方でTiO2 ,Al2O3の析出を抑制することによって、プレス成形性を改善する技術が開示されている。しかし打抜き加工やせん断加工においては、この技術によるフェライト系ステンレス鋼板でも、大きいかえりが発生し易い。
本発明は、かえりを発生することなく打抜き加工やせん断加工を行なうことができるフェライト系ステンレス鋼板とその製造方法を提供することを目的とする。
なお以下では、打抜き加工とせん断加工を総称して、打抜き加工と記す。
An object of this invention is to provide the ferritic stainless steel plate which can perform a punching process and a shearing process, without producing a burr, and its manufacturing method.
Hereinafter, punching and shearing are collectively referred to as punching.
発明者らは、フェライト系ステンレス鋼板の打抜き加工の際にかえりが発生する要因について鋭意検討した。その結果、
(A)フェライト系ステンレス鋼板のフェライト結晶粒の粒界にNbTi複合炭窒化物が析出すれば、打抜き加工による亀裂が伝播し易くなり、かえりを防止できる、
(B)フェライト系ステンレス鋼板のフェライト結晶粒径を20μm以下(ASTM−E112準拠)にすれば、NbTi複合炭窒化物を均一に分散できる、
(C)フェライト系ステンレス鋼板の降伏比を0.65以上とすれば、打抜き加工による加工硬化を抑制して亀裂の伝播を促進し、かえりを防止できる
という知見を得た。本発明は、これらの知見に基づいてなされたものである。
The inventors diligently studied factors that cause burr when punching a ferritic stainless steel sheet. as a result,
(A) If NbTi composite carbonitride precipitates at the grain boundaries of ferrite crystal grains of ferritic stainless steel sheet, cracks due to punching work can easily propagate, and burr can be prevented.
(B) If the ferrite crystal grain size of the ferritic stainless steel sheet is 20 μm or less (according to ASTM-E112), the NbTi composite carbonitride can be uniformly dispersed.
(C) If the yield ratio of the ferritic stainless steel sheet is 0.65 or more, it has been found that work hardening by punching can be suppressed to promote crack propagation and burr can be prevented. The present invention has been made based on these findings.
すなわち本発明は、C:0.0030〜0.012質量%,Si:0.13質量%以下,Mn:0.25質量%以下,P:0.04質量%以下,S:0.005質量%以下,Al:0.06質量%以下,N:0.0030〜0.012質量%,Cr:20.5〜23.5質量%,Cu:0.3〜0.6質量%,Ni:0.5質量%以下,Nb:0.3〜0.5質量%,Ti:0.05〜0.15質量%を含有し、残部がFeおよび不可避的不純物からなる組成と、フェライト結晶粒径が20μm以下であり、フェライト結晶粒界のNbTi複合炭窒化物に含まれるNb含有量とTi含有量の比[Nb]/[Ti]が1〜10の範囲内である組織を有する打抜き加工性に優れたフェライト系ステンレス鋼板である。なおフェライト結晶粒径は、ASTM−E112に準拠して求めたASTM公称粒径を指す。 That is, the present invention includes C: 0.0030 to 0.012 mass%, Si: 0.13 mass% or less, Mn: 0.25 mass% or less, P: 0.04 mass% or less, S: 0.005 mass% or less, Al: 0.06 mass% or less, N: Contains 0.0030 to 0.012 mass%, Cr: 20.5 to 23.5 mass%, Cu: 0.3 to 0.6 mass%, Ni: 0.5 mass% or less, Nb: 0.3 to 0.5 mass%, Ti: 0.05 to 0.15 mass%, the balance The composition consisting of Fe and inevitable impurities, the ferrite crystal grain size is 20 μm or less, and the ratio [Nb] / [Ti] of the Nb content and Ti content contained in the NbTi composite carbonitride at the ferrite grain boundary is It is a ferritic stainless steel plate having a structure in the range of 1 to 10 and excellent in punching workability. In addition, a ferrite crystal grain diameter points out the ASTM nominal particle diameter calculated | required based on ASTM-E112.
本発明のフェライト系ステンレス鋼板においては、前記した組成のNb含有量とTi含有量がNb:0.3〜0.45質量%,Ti:0.05〜0.12質量%であることが好ましい。
また本発明は、C:0.0030〜0.012質量%,Si:0.13質量%以下,Mn:0.25質量%以下,P:0.04質量%以下,S:0.005質量%以下,Al:0.06質量%以下,N:0.0030〜0.012質量%,Cr:20.5〜23.5質量%,Cu:0.3〜0.6質量%,Ni:0.5質量%以下,Nb:0.3〜0.5質量%,Ti:0.05〜0.15質量%を含有し、残部がFeおよび不可避的不純物からなる組成を有するスラブを、仕上げ温度を900℃以上かつ巻取り温度を400〜550℃として熱間圧延を行ない、得られた熱延鋼板に軟化焼鈍を施し、さらに酸洗を施し、次いで冷間圧延を行ない、得られた冷延鋼板に再結晶焼鈍を施す打抜き加工性に優れたフェライト系ステンレス鋼板の製造方法である。
In the ferritic stainless steel sheet of the present invention, it is preferable that the Nb content and Ti content of the composition described above are Nb: 0.3 to 0.45 mass%, Ti: 0.05 to 0.12 mass% .
In the present invention, C: 0.0030 to 0.012 mass%, Si: 0.13 mass% or less, Mn: 0.25 mass% or less, P: 0.04 mass% or less, S: 0.005 mass% or less, Al: 0.06 mass% or less, N: Contains 0.0030 to 0.012 mass%, Cr: 20.5 to 23.5 mass%, Cu: 0.3 to 0.6 mass%, Ni: 0.5 mass% or less, Nb: 0.3 to 0.5 mass%, Ti: 0.05 to 0.15 mass%, the balance A slab having a composition composed of Fe and inevitable impurities is hot-rolled at a finishing temperature of 900 ° C. or more and a coiling temperature of 400 to 550 ° C., and the obtained hot-rolled steel sheet is softened and annealed. And then performing cold rolling, and subjecting the obtained cold-rolled steel sheet to recrystallization annealing, a method for producing a ferritic stainless steel sheet having excellent punching workability.
本発明のフェライト系ステンレス鋼板の製造方法においては、前記したスラブの組成の
Nb含有量とTi含有量がNb:0.3〜0.5質量%,Ti:0.05〜0.15質量%であることが好ましい。また、熱間圧延に先立つスラブの加熱温度が1000℃以上であることが好ましい。
In the method for producing a ferritic stainless steel sheet according to the present invention, the composition of the slab described above is used.
The Nb content and the Ti content are preferably Nb: 0.3 to 0.5% by mass and Ti: 0.05 to 0.15% by mass . Also, it is preferable heating temperature of the slab prior to hot rolling is 1000 ° C. or higher.
本発明によれば、工業的に問題となる大きなかえりを発生させず打抜き加工が可能なフェライト系ステンレス鋼板を製造できる。 According to the present invention, it is possible to manufacture a ferritic stainless steel sheet that can be punched without causing a large burr that is industrially problematic.
まず、本発明のフェライト系ステンレス鋼板の成分の限定理由を説明する。なお既に説明した通り、打抜き加工とせん断加工を総称して、打抜き加工と記す。
C:0.0030〜0.012質量%
Cは、後述するCrと結合して、腐食に対するステンレス鋼の鋭敏化の原因になるCr炭化物を生成させる元素である。そこでTi,Nbを添加することによってNbTi複合炭窒化物としてCを固定するとともに、NbTi複合炭窒化物を分散して析出させ、打抜き加工によるかえりを防止する。C含有量が0.0030質量%未満では、この効果が得られない。一方、0.012質量%を超えると、Cr炭化物の生成を抑制できなくなり、耐食性が劣化する。また、NbTi炭窒化物量が多くなり、フェライト粒も展伸して粗大化し易くなるので、かえりが発生し易くなる。したがって、Cは0.0030〜0.012質量%の範囲内とする。好ましくは0.004〜0.010質量%である。
First, the reasons for limiting the components of the ferritic stainless steel sheet of the present invention will be described. As already described, punching and shearing are collectively referred to as punching.
C: 0.0030 to 0.012 mass%
C is an element that combines with Cr, which will be described later, to produce Cr carbide that causes sensitization of stainless steel to corrosion. Therefore, by adding Ti and Nb, C is fixed as an NbTi composite carbonitride, and the NbTi composite carbonitride is dispersed and precipitated to prevent burr due to punching. When the C content is less than 0.0030% by mass, this effect cannot be obtained. On the other hand, if it exceeds 0.012 mass%, the formation of Cr carbide cannot be suppressed, and the corrosion resistance deteriorates. Further, since the amount of NbTi carbonitride increases and the ferrite grains also expand and become easy to coarsen, burr is likely to occur. Therefore, C is in the range of 0.0030 to 0.012 mass%. Preferably it is 0.004-0.010 mass%.
Si:0.13質量%以下
Siは、固溶硬化によってフェライト系ステンレス鋼板を硬質化し、延性を劣化させる元素である。Si含有量が0.13質量%を超えると、フェライト系ステンレス鋼板の延性が著しく劣化する。したがって、Siは0.13質量%以下とする。好ましくは0.10質量%以下である。
Si: 0.13 mass% or less
Si is an element that hardens a ferritic stainless steel sheet by solid solution hardening and deteriorates ductility. When the Si content exceeds 0.13 mass%, the ductility of the ferritic stainless steel sheet is significantly deteriorated. Therefore, Si is 0.13 mass% or less. Preferably it is 0.10 mass% or less.
Mn:0.25質量%以下
Mnは、フェライト系ステンレス鋼板の耐食性を劣化させる元素である。Mn含有量が0.25質量%を超えると、耐食性の劣化に加えて、後述するSと結合して微細なMnSを生成し易くなる。MnSはフェライト結晶粒の粒界に析出し、熱間圧延や冷間圧延によってフェライト結晶粒を展伸させ、打抜き加工の際に高いかえりを発生させる。したがって、Mnは0.25質量%以下とする。好ましくは0.20質量%以下である。
Mn: 0.25 mass% or less
Mn is an element that degrades the corrosion resistance of the ferritic stainless steel sheet. When the Mn content exceeds 0.25% by mass, in addition to the deterioration of corrosion resistance, it is easy to produce fine MnS by combining with S described later. MnS precipitates at the grain boundaries of the ferrite crystal grains, expands the ferrite crystal grains by hot rolling or cold rolling, and generates high burr during punching. Therefore, Mn is 0.25% by mass or less. Preferably it is 0.20 mass% or less.
P:0.04質量%以下
Pは、固溶硬化によってフェライト系ステンレス鋼板を硬質化し、靭性を劣化させる元素である。P含有量が0.04質量%を超えると、フェライト系ステンレス鋼板の靭性が著しく劣化する。したがって、Pは0.04質量%以下とする。好ましくは0.03質量%以下である。
P: 0.04 mass% or less P is an element that hardens the ferritic stainless steel sheet by solid solution hardening and deteriorates toughness. When the P content exceeds 0.04% by mass, the toughness of the ferritic stainless steel sheet is significantly deteriorated. Therefore, P is 0.04 mass% or less. Preferably it is 0.03 mass% or less.
S:0.005質量%以下
Sは、Mnあるいは後述するTiと結合してMnS,TiSを生成し、フェライト結晶粒の等軸晶化を阻害する元素である。S含有量が0.005質量%を超えると、フェライト結晶粒が著しく展伸するので、打抜き加工の際に高いかえりが発生する。したがって、Sは0.005質量%以下とする。好ましくは0.003質量%以下である。
S: 0.005% by mass or less S is an element that binds to Mn or Ti described later to generate MnS and TiS and inhibits equiaxed crystallization of ferrite crystal grains. If the S content exceeds 0.005% by mass, the ferrite crystal grains remarkably expand, and thus high burr occurs during the punching process. Therefore, S is 0.005 mass% or less. Preferably it is 0.003 mass% or less.
Al:0.06質量%以下
Alは、フェライト系ステンレス鋼の溶製段階で脱酸剤として用いられる。Al含有量が0.06質量%を超えると、Nと結合してAlNを生成し易くなる。AlNは熱間圧延や冷間圧延によってフェライト結晶粒を展伸させ、打抜き加工の際に高いかえりを発生させる。したがって、Alは0.06質量%以下とする。ただし、Al含有量が0.01質量%未満では、溶製段階で脱酸の効果が得られない。そのため、Alは0.01〜0.06質量%の範囲内が好ましい。より好ましくは0.02〜0.06質量%である。0.02〜0.045質量%が一層好ましい。
Al: 0.06 mass% or less
Al is used as a deoxidizer in the melting stage of ferritic stainless steel. When Al content exceeds 0.06 mass%, it will combine with N and it will become easy to produce | generate AlN. AlN expands ferrite crystal grains by hot rolling or cold rolling, and generates high burr during punching. Therefore, Al is 0.06 mass% or less. However, if the Al content is less than 0.01% by mass, the deoxidation effect cannot be obtained at the melting stage. Therefore, Al is preferably within a range of 0.01 to 0.06% by mass. More preferably, it is 0.02-0.06 mass%. 0.02-0.045 mass% is still more preferable.
N:0.0030〜0.012質量%
Nは、NbTi複合炭窒化物を生成する。フェライト系ステンレス鋼板にNbTi複合炭窒化物を均一に分散させることによって、打抜き加工による亀裂が伝播し易くなり、かえりを防止できる、N含有量が0.0030質量%未満では、十分な量のNbTi複合炭窒化物が生成しない。一方、0.012質量%を超えると、Cr窒化物が析出して耐食性が劣化する。したがって、Nは0.0030〜0.012質量%の範囲内とする。好ましくは0.0040〜0.010質量%である。
N: 0.0030 to 0.012 mass%
N produces NbTi composite carbonitride. By uniformly dispersing NbTi composite carbonitride in a ferritic stainless steel sheet, cracks due to punching can be easily propagated and burr can be prevented. When the N content is less than 0.0030% by mass, a sufficient amount of NbTi composite carbon Nitride does not form. On the other hand, when it exceeds 0.012 mass%, Cr nitride precipitates and the corrosion resistance deteriorates. Therefore, N is in the range of 0.0030 to 0.012 mass%. Preferably it is 0.0040-0.010 mass%.
Cr:20.5〜23.5質量%
Crは、フェライト系ステンレス鋼板の表面に不動態皮膜を形成して耐食性を向上させる元素である。Cr含有量が20.5質量%未満では、本発明の目的とする18%Cr含有ステンレス鋼よりも優れた耐食性が得られなくなる。一方、23.5質量%を超えると、CrとNbを含む硬質相が析出し易くなり、加工性が劣化するとともに、熱間圧延の後の焼鈍(以下、軟化焼鈍という)や冷間圧延の後の焼鈍(以下、再結晶焼鈍という)における再結晶が阻害され、フェライト結晶粒が圧延方向に展伸し易くなる。フェライト結晶粒が展伸すると、打抜き加工の際に高いかえりを発生し易くなる。したがって、Crは20.5〜23.5質量%の範囲内とする。好ましくは20.5〜22.5質量%である。
Cr: 20.5-23.5 mass%
Cr is an element that improves the corrosion resistance by forming a passive film on the surface of a ferritic stainless steel sheet. When the Cr content is less than 20.5% by mass, corrosion resistance superior to the 18% Cr-containing stainless steel of the present invention cannot be obtained. On the other hand, if it exceeds 23.5% by mass, a hard phase containing Cr and Nb is likely to precipitate, workability deteriorates, and annealing after hot rolling (hereinafter referred to as soft annealing) or after cold rolling. Recrystallization in annealing (hereinafter referred to as recrystallization annealing) is hindered, and ferrite crystal grains are easily expanded in the rolling direction. When the ferrite crystal grains are expanded, high burr is likely to occur during punching. Therefore, Cr is in the range of 20.5 to 23.5 mass%. Preferably it is 20.5-22.5 mass%.
Cu:0.3〜0.6質量%
Cuは、Crを20.5質量%以上含有するフェライト系ステンレス鋼板の耐食性をさらに向上する作用を有する。Cu含有量が0.3質量%未満では、この効果は得られない。一方、0.6質量%を超えると、Sと結合してCuSを生成し易くなる。CuSは、熱間圧延や冷間圧延によってフェライト結晶粒を展伸させ、打抜き加工の際に高いかえりを発生させる。したがって、Cuは0.3〜0.6質量%の範囲内とする。好ましくは0.3〜0.5質量%である。より好ましくは0.3〜0.45質量%である。
Cu: 0.3 to 0.6% by mass
Cu has the effect of further improving the corrosion resistance of the ferritic stainless steel sheet containing 20.5% by mass or more of Cr. If the Cu content is less than 0.3% by mass, this effect cannot be obtained. On the other hand, when it exceeds 0.6 mass%, it will combine with S and it will become easy to produce CuS. CuS expands ferrite crystal grains by hot rolling or cold rolling, and generates high burr during punching. Therefore, Cu is in the range of 0.3 to 0.6 mass%. Preferably it is 0.3-0.5 mass%. More preferably, it is 0.3-0.45 mass%.
Ni:0.5質量%以下
Niは、フェライト系ステンレス鋼板の耐食性をさらに向上する作用を有する。しかしNi含有量が0.5質量%を超えると、フェライト系ステンレス鋼板が硬質化して延性の劣化を招く。したがって、Niは0.5質量%以下とする。ただし、フェライト系ステンレス鋼板の耐食性を向上する効果を得るためには、Niを0.1質量%以上含有させて、0.1〜0.5質量%とすることが好ましい。より好ましくは0.1〜0.4質量%である。
Ni: 0.5% by mass or less
Ni has the effect of further improving the corrosion resistance of the ferritic stainless steel sheet. However, if the Ni content exceeds 0.5% by mass, the ferritic stainless steel sheet becomes hard and the ductility is deteriorated. Therefore, Ni is 0.5 mass% or less. However, in order to obtain the effect of improving the corrosion resistance of the ferritic stainless steel sheet, it is preferable to contain 0.1% by mass or more of Ni to 0.1 to 0.5% by mass. More preferably, it is 0.1-0.4 mass%.
Nb:0.3〜0.5質量%
Nbは、フェライト系ステンレス鋼板にNbTi複合炭窒化物を生成させ、打抜き加工の際に亀裂を伝播し易くしてかえりを防止する作用を有する。Nb含有量が0.3質量%未満では、Cr炭窒化物が多量に析出して、フェライト系ステンレス鋼板の耐食性の劣化を招く。一方、0.5質量%を超えると、CrとNbを含有する硬質相が生成して、加工性が劣化するとともに、NbTi複合炭窒化物が生じ難くなるので、打抜き加工の際に高いかえりが発生する。したがって、Nbは0.3〜0.5質量%の範囲内とする。好ましくは0.3〜0.45質量%である。
Nb: 0.3-0.5% by mass
Nb has the effect of preventing burr by generating NbTi composite carbonitrides on a ferritic stainless steel sheet and making it easier for cracks to propagate during punching. If the Nb content is less than 0.3% by mass, a large amount of Cr carbonitride precipitates, resulting in deterioration of the corrosion resistance of the ferritic stainless steel sheet. On the other hand, if it exceeds 0.5% by mass, a hard phase containing Cr and Nb is generated, workability is deteriorated, and NbTi composite carbonitride is less likely to be generated, so that high burr occurs during punching. . Therefore, Nb is in the range of 0.3 to 0.5 mass%. Preferably it is 0.3-0.45 mass%.
Ti:0.05〜0.15質量%
Tiは、フェライト系ステンレス鋼板にNbTi複合炭窒化物を生成させ、打抜き加工の際に亀裂を伝播し易くしてかえりを防止する作用を有する。Ti含有量が0.3質量%未満では、NbTi複合炭窒化物は生成されず、Ti炭窒化物やNb炭窒化物がフェライト結晶粒内に析出する。そのため、打抜き加工の際に高いかえりが発生する。一方、0.15質量%を超えると、TiSが多量に析出するので、フェライト粒の等軸化が阻害されて、打抜き加工の際に高いかえりが発生する。したがって、Tiは0.05〜0.15質量%の範囲内とする。好ましくは0.05〜0.12質量%である。
Ti: 0.05-0.15 mass%
Ti has an effect of preventing burr by generating NbTi composite carbonitride on a ferritic stainless steel sheet and easily propagating cracks during punching. When the Ti content is less than 0.3% by mass, NbTi composite carbonitride is not generated, and Ti carbonitride and Nb carbonitride precipitate in the ferrite crystal grains. For this reason, a high burr occurs during the punching process. On the other hand, if it exceeds 0.15% by mass, a large amount of TiS is precipitated, so that equiaxed ferrite grains are hindered and high burr is generated during punching. Therefore, Ti is in the range of 0.05 to 0.15 mass%. Preferably it is 0.05-0.12 mass%.
上記した成分以外の残部は、Feおよび不可避的不純物である。不可避的不純物は可能な限り低減することが好ましい。
次に、本発明のフェライト系ステンレス鋼板の組織を説明する。
フェライト結晶粒の粒径:20μm以下
フェライト系ステンレス鋼板のフェライト結晶粒の大きさは、打抜き加工によるかえりの高さに多大な影響を及ぼす。粒径が20μmを超えると、各フェライト結晶粒の変形が大きくなり、打抜き加工の際に高いかえりが発生し易くなる。したがって、フェライト結晶粒の粒径は20μm以下とする。なおフェライト結晶粒径は、ASTM−E112に準拠して求めたASTM公称粒径を指す。
The balance other than the above components is Fe and inevitable impurities. Inevitable impurities are preferably reduced as much as possible.
Next, the structure of the ferritic stainless steel sheet of the present invention will be described.
Ferrite crystal grain size: 20 μm or less The ferrite crystal grain size of the ferritic stainless steel sheet greatly affects the height of burr by punching. When the particle diameter exceeds 20 μm, deformation of each ferrite crystal grain becomes large, and high burr is likely to occur during punching. Therefore, the grain size of the ferrite crystal grains is set to 20 μm or less. In addition, a ferrite crystal grain diameter points out the ASTM nominal particle diameter calculated | required based on ASTM-E112.
NbTi複合炭窒化物に含まれるNb含有量とTi含有量の比[Nb]/[Ti]:1〜10
打抜き加工の亀裂は、フェライト結晶粒の粒界に存在する析出物とフェライト結晶粒との界面から発生し、粒界に沿って伝播する。そこでフェライト結晶粒の粒界にNbTi複合炭窒化物を析出させ、それを起点として多数の亀裂を発生させ、さらにその亀裂を合体させることによって、容易に切断できるようにする。その結果、打抜き加工の際のかえりを防止できる。NbTi複合炭窒化物に含まれるNb含有量とTi含有量の比[Nb]/[Ti]が1未満では、打抜き時にフェライト粒界とNbTi複合炭窒化物との間の密着力が高くなり、亀裂発生が起き難くなり、かえりが高くなる。一方、10を超えると、NbTi複合炭窒化物が微細化して、やはりフェライト粒界との間に亀裂が発生し難くなる。したがって、NbTi複合炭窒化物に含まれるNb含有量とTi含有量の比[Nb]/[Ti]は1〜10の範囲内とする。
Ratio of Nb content and Ti content contained in NbTi composite carbonitride [Nb] / [Ti]: 1-10
The crack in the punching process occurs from the interface between the precipitates present at the grain boundaries of the ferrite crystal grains and the ferrite crystal grains, and propagates along the grain boundaries. Accordingly, NbTi composite carbonitride is precipitated at the grain boundaries of the ferrite crystal grains, and a large number of cracks are generated starting from the NbTi composite carbonitrides. As a result, burr at the time of punching can be prevented. When the ratio [Nb] / [Ti] of the Nb content and Ti content contained in the NbTi composite carbonitride is less than 1, the adhesion between the ferrite grain boundary and the NbTi composite carbonitride becomes high at the time of punching, Cracks are less likely to occur and the burr becomes higher. On the other hand, if it exceeds 10, the NbTi composite carbonitride becomes finer and cracks are hardly generated between the ferrite grain boundaries. Therefore, the ratio [Nb] / [Ti] of the Nb content and the Ti content contained in the NbTi composite carbonitride is in the range of 1-10.
なお、NbTi複合炭窒化物に含まれるNb含有量とTi含有量の比[Nb]/[Ti]の測定方法は、フェライト系ステンレス鋼板の厚さ方向中央部から薄膜をツインジェット法で作製し、透過型電子顕微鏡で粒界に析出したNbTi複合炭窒化物(すなわちNb炭窒化物とTi炭窒化物が原子レベルで混合された介在物、または一方の炭窒化物を析出サイトとして他方の炭窒化物が付着して析出した介在物)のNb含有量[Nb]とTi含有量[Ti]を測定し、[Nb]/[Ti]を算出する。 The ratio of Nb content to Ti content [Nb] / [Ti] in the NbTi composite carbonitride is measured by the twin jet method using a thin film from the center in the thickness direction of a ferritic stainless steel sheet. NbTi composite carbonitrides precipitated at grain boundaries with a transmission electron microscope (that is, inclusions in which Nb carbonitride and Ti carbonitride are mixed at the atomic level, or one carbonitride as the precipitation site) Nb content [Nb] and Ti content [Ti] of inclusions deposited by deposition of nitride) are measured, and [Nb] / [Ti] is calculated.
次に、本発明のフェライト系ステンレス鋼板の機械的性質を説明する。
降伏比:0.65以上
フェライト系ステンレス鋼板の降伏比が0.65未満では、打抜き加工によって加工硬化し易く、各フェライト結晶粒の変形が大きくなり、打抜き加工の際に高いかえりが発生し易くなる。本発明のフェライト系ステンレス鋼板は、降伏比が0.65以上である。
Next, the mechanical properties of the ferritic stainless steel sheet of the present invention will be described.
Yield ratio: 0.65 or more If the yield ratio of the ferritic stainless steel sheet is less than 0.65, it is easy to work and harden by punching, deformation of each ferrite crystal grain becomes large, and high burr tends to occur during punching. The ferritic stainless steel sheet of the present invention has a yield ratio of 0.65 or more.
次に、本発明のフェライト系ステンレス鋼板の製造方法を説明する。
所定の成分を有するフェライト系ステンレス鋼の溶鋼を溶製し、さらにスラブとした後、1000℃以上に加熱して熱間圧延(仕上げ温度:900℃以上,巻取り温度:400〜550℃)を行ない、熱延鋼板とする。
スラブの加熱温度:1000℃以上
スラブを加熱することによって炭化物や窒化物を一旦溶解させ、仕上げ温度と巻取り温度を規定することによって、フェライト結晶粒の粒界にNbTi複合炭窒化物を析出させる。そのため、熱間圧延に先立つスラブの加熱温度は1000℃以上とすることが好ましい。なお上限値を1250℃として、加熱温度を1000〜1250℃の範囲内とすることが、一層好ましい。その理由は、加熱温度が1250℃を超えると、スラブが変形して熱間圧延が困難になるからである。さらに好ましくは1050〜1200℃である。
Next, the manufacturing method of the ferritic stainless steel sheet of this invention is demonstrated.
After the molten ferritic stainless steel with the prescribed components is melted and made into a slab, it is heated to 1000 ° C or higher and hot rolled (finishing temperature: 900 ° C or higher, winding temperature: 400 to 550 ° C). Perform hot-rolled steel sheet.
Slab heating temperature: 1000 ° C or higher By heating the slab, carbides and nitrides are once dissolved, and by specifying the finishing temperature and coiling temperature, NbTi composite carbonitride is precipitated at the ferrite grain boundaries. . For this reason, the heating temperature of the slab prior to hot rolling is preferably 1000 ° C. or higher. It is more preferable that the upper limit is 1250 ° C. and the heating temperature is in the range of 1000 to 1250 ° C. The reason is that when the heating temperature exceeds 1250 ° C., the slab is deformed and hot rolling becomes difficult. More preferably, it is 1050-1200 degreeC.
仕上げ温度:900℃以上
仕上げ温度が900℃未満では、熱間圧延中に再結晶が妨げられるので、熱間圧延によってフェライト結晶粒が圧延方向に展伸する。そのため、フェライト系ステンレス鋼板の打抜き加工の際に高いかえりが発生し易くなる。したがって、熱間圧延の仕上げ温度は900℃以上とする。なお上限値を1050℃として、仕上げ温度を900〜1050℃の範囲内とすることが好ましい。その理由は、仕上げ温度が1050℃を超えると、スラブが圧延ロールに焼付き易くなるからである。より好ましくは920〜1000℃である。
Finishing temperature: 900 ° C. or more If the finishing temperature is less than 900 ° C., recrystallization is hindered during hot rolling, so that the ferrite crystal grains are expanded in the rolling direction by hot rolling. For this reason, high burr is likely to occur during the punching of the ferritic stainless steel sheet. Therefore, the finishing temperature of hot rolling is set to 900 ° C. or higher. It is preferable that the upper limit value is 1050 ° C. and the finishing temperature is in the range of 900 to 1050 ° C. The reason is that when the finishing temperature exceeds 1050 ° C., the slab is easily seized on the rolling roll. More preferably, it is 920-1000 degreeC.
巻取り温度:400〜550℃
熱延鋼板の巻取り温度は、フェライト結晶粒の粒界にNbTi複合炭窒化物を析出させるために重要な役割を担う。巻取り温度が400℃未満では、NbTi複合炭窒化物は析出しない。一方、550℃を超えると、NbとCrを含有する硬質相が析出して、靭性が著しく劣化する。したがって、熱延鋼板の巻取り温度は400〜550℃の範囲内とする。好ましくは430〜530℃である。巻取り温度がこの範囲内であれば、NbTi複合炭窒化物が冷延鋼板のフェライト結晶粒の粒界に析出する。
Winding temperature: 400 ~ 550 ℃
The coiling temperature of the hot-rolled steel plate plays an important role in order to precipitate NbTi composite carbonitrides at the ferrite grain boundaries. When the coiling temperature is less than 400 ° C., NbTi composite carbonitride does not precipitate. On the other hand, when it exceeds 550 ° C., a hard phase containing Nb and Cr is precipitated, and the toughness is remarkably deteriorated. Therefore, the coiling temperature of the hot-rolled steel sheet is in the range of 400 to 550 ° C. Preferably it is 430-530 degreeC. If the coiling temperature is within this range, NbTi composite carbonitride precipitates at the grain boundaries of the ferrite crystal grains of the cold-rolled steel sheet.
このようにして得られた熱延鋼板に軟化焼鈍を施し、さらに酸洗を施す。この軟化焼鈍や酸洗は、特に条件を限定せず、従来から知られている方法で操業する。軟化焼鈍の温度は900〜1100℃の範囲内、保持時間は30〜500秒の範囲内が好ましい。保持時間は30〜180秒が一層好ましい。
次いで、冷間圧延を行ない、冷延鋼板とする。得られた冷延鋼板に再結晶焼鈍を施して、フェライト系ステンレス鋼板とする。この冷間圧延や再結晶焼鈍は、特に条件を限定せず、従来から知られている方法で操業する。再結晶焼鈍の温度は900〜1100℃の範囲内、保持時間は30〜500秒の範囲内が好ましい。保持時間は30〜180秒が一層好ましい。
The hot-rolled steel sheet thus obtained is subjected to softening annealing and further pickled. This softening annealing and pickling are not particularly limited, and are operated by a conventionally known method. The softening annealing temperature is preferably in the range of 900 to 1100 ° C., and the holding time is preferably in the range of 30 to 500 seconds. The holding time is more preferably 30 to 180 seconds.
Next, cold rolling is performed to obtain a cold rolled steel sheet. The obtained cold-rolled steel sheet is subjected to recrystallization annealing to obtain a ferritic stainless steel sheet. The cold rolling and recrystallization annealing are not particularly limited, and are operated by a conventionally known method. The recrystallization annealing temperature is preferably in the range of 900 to 1100 ° C., and the holding time is preferably in the range of 30 to 500 seconds. The holding time is more preferably 30 to 180 seconds.
なお、冷延鋼板に調質圧延を施しても良い。調質圧延の圧下率は、0.5〜1.5%の範囲内が好ましい。 Note that temper rolling may be applied to the cold-rolled steel sheet. The rolling reduction of temper rolling is preferably in the range of 0.5 to 1.5%.
表1に示す成分のフェライト系ステンレス鋼を溶製し、さらにスラブとした後、熱間圧延を行ない、板厚3mmの熱延鋼板とした。熱間圧延の条件は表2に示す通りである。得られた熱延鋼板に軟化焼鈍(温度:900〜1100℃,保持時間:100〜500秒)を施し、さらに酸洗を施した。次いで冷間圧延を行ない厚さ0.8mmの冷延鋼板とした。 A ferritic stainless steel having the components shown in Table 1 was melted to form a slab, which was then hot-rolled to obtain a hot-rolled steel sheet having a thickness of 3 mm. The conditions for hot rolling are as shown in Table 2. The obtained hot-rolled steel sheet was softened and annealed (temperature: 900 to 1100 ° C., holding time: 100 to 500 seconds), and further pickled. Next, cold rolling was performed to obtain a cold-rolled steel sheet having a thickness of 0.8 mm.
得られた冷延鋼板に再結晶焼鈍(温度:900〜1100℃,保持時間:100〜500秒)を施し、さらに酸洗を施した。
このようにして製造したフェライト系ステンレス鋼板の厚さ方向中央部から薄膜をツインジェット法で作製し、透過型電子顕微鏡で粒界に析出したNbTi複合炭窒化物のNb含有量[Nb]とTi含有量[Ti]を測定し、[Nb]/[Ti]値を算出した。フェライト粒径は、圧延方向に平行な板厚断面を研磨し、組織を現出させて、光学顕微鏡で観察した。次に、実際の長さが500μmの長さの線分を写真上の縦と横に5本ずつひき、写真上の結晶粒界と線分との交点の数を数えた。線分の総長を、この交点の数で除し、これに1.13を乗じることで、ASTM公称粒径を求めた。その結果を表2に示す。なお、粒径の測定は、任意の1個の視野で行なった。
The obtained cold-rolled steel sheet was subjected to recrystallization annealing (temperature: 900 to 1100 ° C., holding time: 100 to 500 seconds), and further pickled.
The Nb content [Nb] and Ti of the NbTi composite carbonitride prepared by the twin-jet method from the central part in the thickness direction of the ferritic stainless steel plate produced in this way and precipitated at the grain boundaries with a transmission electron microscope. The content [Ti] was measured, and the [Nb] / [Ti] value was calculated. The ferrite grain size was observed with an optical microscope by polishing a plate thickness section parallel to the rolling direction to reveal the structure. Next, five line segments each having an actual length of 500 μm were drawn vertically and horizontally on the photograph, and the number of intersections between the crystal grain boundaries and the line segments on the photograph was counted. The total length of the line segment was divided by the number of intersections and multiplied by 1.13 to determine the ASTM nominal particle size. The results are shown in Table 2. In addition, the measurement of the particle size was performed with an arbitrary one field of view.
また、フェライト系ステンレス鋼板からJIS−13号B引張試験片を採取し、引張試験を行なった。その結果を表2に示す。引張試験片は、引張方向が圧延方向と平行になるように採取した。
さらに、フェライト系ステンレス鋼板から打抜き試験片(100mm×100mm)を切り出して、図1に示すようなポンチ1,板押さえ2,ダイ4を有する打抜き装置を用いて打抜き加工を行なった。図1(a)は打抜き前を示す断面図、図1(b)は打抜き後を示す断面図である。打抜き加工にて打抜き試験片3の中央に直径10mmの円形孔5を打抜いた後、かえりの高さを測定した。その結果を表2に示す。
Further, a JIS-13B tensile test piece was sampled from a ferritic stainless steel plate and subjected to a tensile test. The results are shown in Table 2. Tensile specimens were collected so that the tensile direction was parallel to the rolling direction.
Further, a punching test piece (100 mm × 100 mm) was cut out from the ferritic stainless steel plate and punched using a punching device having a punch 1, a
図2は円形孔5を設けた打抜き試験片3を示す図であり、図2(a)は平面図、図2(b)はA−A矢視の断面図である。図2(b)中のtは打抜き試験片の厚さ、hはかえりの高さを示す。表2に示すかえりの高さは、円形孔5の周囲を90°間隔で4ケ所の高さhを測定した平均値である。
FIG. 2 is a view showing a punched
表2のNo.1〜5は、C含有量を変化させた例である。本発明の範囲を満足するNo.2〜4ではかえりの高さが50μm以下であったのに対して、本発明の範囲を外れるNo.1,5では100μmを超えるかえりが発生した。
No.6〜10は、Nb含有量を変化させた例である。本発明の範囲を満足するNo.7〜9ではかえりの高さが50μm以下であった。Nb含有量が本発明の範囲より低いNo.6では、[Nb]/[Ti]値が低い上に、フェライト結晶粒の粒径が大きく、降伏比が小さい。そのため、100μmを超えるかえりが発生した。Nb含有量が本発明の範囲より高いNo.10では、フェライト結晶粒が展伸し、100μmを超えるかえりが発生した。
Nos. 1 to 5 in Table 2 are examples in which the C content was changed. In Nos. 2 to 4 that satisfy the range of the present invention, the burr height was 50 μm or less, whereas in Nos. 1 and 5 outside the range of the present invention, burr exceeding 100 μm occurred.
Nos. 6 to 10 are examples in which the Nb content was changed. In Nos. 7 to 9 satisfying the scope of the present invention, the burr height was 50 μm or less. In No. 6 in which the Nb content is lower than the range of the present invention, the [Nb] / [Ti] value is low, and the grain size of the ferrite crystal grains is large and the yield ratio is small. Therefore, burr exceeding 100 μm occurred. In No. 10 in which the Nb content is higher than the range of the present invention, ferrite crystal grains expanded and burr exceeding 100 μm occurred.
No.11〜15は、Ti含有量を変化させた例である。本発明の範囲を満足するNo.12〜14ではかえりの高さが50μm以下であった。Ti含有量が本発明の範囲より低いNo.11では、フェライト結晶粒の粒径が大きく、降伏比が小さい。NbTi複合炭窒化物の析出が少ないので、100μmを超えるかえりが発生した。Ti含有量が本発明の範囲より高いNo.15では、[Nb]/[Ti]値が低い上に、フェライト結晶粒の粒径が大きく、降伏比が小さい。そのため、100μmを超えるかえりが発生した。 Nos. 11 to 15 are examples in which the Ti content was changed. In Nos. 12 to 14 satisfying the scope of the present invention, the burr height was 50 μm or less. In No. 11 in which the Ti content is lower than the range of the present invention, the grain size of the ferrite crystal grains is large and the yield ratio is small. Since the precipitation of NbTi composite carbonitride was small, burr exceeding 100 μm occurred. In No. 15 where the Ti content is higher than the range of the present invention, the [Nb] / [Ti] value is low, and the grain size of the ferrite crystal grains is large and the yield ratio is small. Therefore, burr exceeding 100 μm occurred.
No.16〜20は、N含有量を変化させた例である。本発明の範囲を満足するNo.17〜19ではかえりの高さが50μm以下であった。N含有量が本発明の範囲より低いNo.16では、NbTi複合炭窒化物量が少なく、さらに[Nb]/[Ti]値が低いので100μmを超えるかえりが発生した。N含有量が本発明の範囲より高いNo.20では、[Nb]/[Ti]値が高い上に、フェライト結晶粒の粒径が大きく、降伏比が小さい。そのため、100μmを超えるかえりが発生した。 Nos. 16 to 20 are examples in which the N content was changed. In Nos. 17 to 19 satisfying the scope of the present invention, the burr height was 50 μm or less. In No. 16 where the N content is lower than the range of the present invention, the amount of NbTi composite carbonitride is small and the [Nb] / [Ti] value is low, so that burr exceeding 100 μm occurred. In No. 20 in which the N content is higher than the range of the present invention, the [Nb] / [Ti] value is high, and the grain size of the ferrite crystal grains is large and the yield ratio is small. Therefore, burr exceeding 100 μm occurred.
No.21〜25は、熱間圧延の条件を変化させた例である。本発明の範囲を満足するNo.23,24ではかえりの高さが50μm以下であった。仕上げ温度と巻取り温度が本発明の範囲を外れるNo.21では、[Nb]/[Ti]値が低い上に、フェライト結晶粒の粒径が大きく、降伏比が小さい。そのため、100μmを超えるかえりが発生した。巻取り温度が本発明の範囲より低いNo.22では、[Nb]/[Ti]値が低い上に、フェライト結晶粒の粒径が大きく、降伏比が小さい。そのため、100μmを超えるかえりが発生した。巻取り温度が本発明の範囲より高いNo.25では、[Nb]/[Ti]値が高い上に、フェライト結晶粒の粒径が大きく、降伏比が小さい。そのため、100μmを超えるかえりが発生した。 Nos. 21 to 25 are examples in which the hot rolling conditions were changed. In Nos. 23 and 24, which satisfy the scope of the present invention, the burr height was 50 μm or less. In No. 21, in which the finishing temperature and the coiling temperature are out of the range of the present invention, the [Nb] / [Ti] value is low, the ferrite crystal grain size is large, and the yield ratio is small. Therefore, burr exceeding 100 μm occurred. In No. 22 where the coiling temperature is lower than the range of the present invention, the [Nb] / [Ti] value is low, and the grain size of the ferrite crystal grains is large and the yield ratio is small. Therefore, burr exceeding 100 μm occurred. In No. 25 where the coiling temperature is higher than the range of the present invention, the [Nb] / [Ti] value is high, and the grain size of the ferrite crystal grains is large and the yield ratio is small. Therefore, burr exceeding 100 μm occurred.
1 ポンチ
2 板押さえ
3 打抜き試験片
4 ダイ
5 円形孔
6 鋼
t 打抜き試験片の厚さ
h かえりの高さ
1 punch 2
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008207752A JP5391609B2 (en) | 2007-08-20 | 2008-08-12 | Ferritic stainless steel sheet excellent in punching workability and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007213801 | 2007-08-20 | ||
JP2007213801 | 2007-08-20 | ||
JP2008207752A JP5391609B2 (en) | 2007-08-20 | 2008-08-12 | Ferritic stainless steel sheet excellent in punching workability and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009068104A JP2009068104A (en) | 2009-04-02 |
JP5391609B2 true JP5391609B2 (en) | 2014-01-15 |
Family
ID=40378032
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008207752A Active JP5391609B2 (en) | 2007-08-20 | 2008-08-12 | Ferritic stainless steel sheet excellent in punching workability and manufacturing method thereof |
Country Status (7)
Country | Link |
---|---|
US (1) | US20110061777A1 (en) |
EP (1) | EP2182085B1 (en) |
JP (1) | JP5391609B2 (en) |
CN (1) | CN101784686B (en) |
ES (1) | ES2651023T3 (en) |
TW (1) | TWI390049B (en) |
WO (1) | WO2009025125A1 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4831256B2 (en) * | 2010-01-28 | 2011-12-07 | Jfeスチール株式会社 | High corrosion resistance ferritic stainless hot rolled steel sheet with excellent toughness |
JP5825481B2 (en) * | 2010-11-05 | 2015-12-02 | Jfeスチール株式会社 | High-strength cold-rolled steel sheet excellent in deep drawability and bake hardenability and its manufacturing method |
EP2677055B1 (en) * | 2011-02-17 | 2020-10-07 | Nippon Steel & Sumikin Stainless Steel Corporation | High-purity ferritic stainless steel sheet having excellent oxidation resistance and high-temperature strength, and method for producing same |
EP2682490B1 (en) | 2011-03-01 | 2019-08-28 | Nippon Steel Corporation | Metal plate for laser processing |
TWI503422B (en) * | 2011-09-06 | 2015-10-11 | Nippon Steel & Sumikin Sst | Ferritic stainless steel excellent in corrosion resistance and workability |
JP6071608B2 (en) | 2012-03-09 | 2017-02-01 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel plate with excellent oxidation resistance |
JP5793459B2 (en) | 2012-03-30 | 2015-10-14 | 新日鐵住金ステンレス株式会社 | Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof |
UA111115C2 (en) | 2012-04-02 | 2016-03-25 | Ейкей Стіл Пропертіс, Інк. | cost effective ferritic stainless steel |
FI124995B (en) | 2012-11-20 | 2015-04-15 | Outokumpu Oy | Ferritic stainless steel |
JP5505575B1 (en) * | 2013-03-18 | 2014-05-28 | Jfeスチール株式会社 | Ferritic stainless steel sheet |
JP5885884B2 (en) | 2013-03-27 | 2016-03-16 | 新日鐵住金ステンレス株式会社 | Ferritic stainless hot-rolled steel sheet, manufacturing method thereof, and steel strip |
CN105960476B (en) * | 2014-02-05 | 2018-10-30 | 杰富意钢铁株式会社 | Ferrite-group stainless steel hot-roll annealing steel plate, its manufacturing method and the cold rolled annealed steel plate of ferrite-group stainless steel |
CN104087838B (en) * | 2014-07-03 | 2016-01-20 | 北京科技大学 | A kind of super-purity ferrite anti-bacteria stainless steel and manufacture method |
US20180195157A1 (en) * | 2014-09-02 | 2018-07-12 | Jfe Steel Corporation | Ferritic stainless steel sheet for urea scr casing (as amended) |
MX2018009402A (en) * | 2016-02-02 | 2018-12-19 | Nisshin Steel Co Ltd | HOT ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME, AND COLD ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME. |
CN109072378A (en) * | 2016-03-30 | 2018-12-21 | 日新制钢株式会社 | Ferrite series stainless steel plate and its manufacturing method containing Nb |
WO2020121817A1 (en) * | 2018-12-11 | 2020-06-18 | Jfeスチール株式会社 | Ferritic stainless steel sheet and method for producing same |
WO2021246208A1 (en) * | 2020-06-02 | 2021-12-09 | 日鉄ステンレス株式会社 | Ferritic stainless steel |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06220545A (en) * | 1993-01-28 | 1994-08-09 | Nippon Steel Corp | Production of cr-series stainless steel thin strip excellent in toughness |
JPH08311542A (en) * | 1995-05-12 | 1996-11-26 | Nippon Steel Corp | Production of ferritic stainless steel sheet for deep drawing excellent in ridging resistance and small in anisotropy |
JPH09263912A (en) * | 1996-03-29 | 1997-10-07 | Nisshin Steel Co Ltd | High strength double phase structure chromium stainless steel sheet for punching and its production |
JP3455047B2 (en) | 1997-01-23 | 2003-10-06 | 新日本製鐵株式会社 | Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same |
JP4347442B2 (en) * | 1998-10-29 | 2009-10-21 | 日新製鋼株式会社 | Method for producing highly corrosion-resistant stainless steel sheet for exterior building materials with excellent ability to prevent occurrence of band-like appearance unevenness |
TW480288B (en) * | 1999-12-03 | 2002-03-21 | Kawasaki Steel Co | Ferritic stainless steel plate and method |
JP3448537B2 (en) * | 2000-03-10 | 2003-09-22 | 新日本製鐵株式会社 | Ferritic stainless steel with excellent weldability |
JP3884899B2 (en) | 2000-06-30 | 2007-02-21 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel with excellent workability and corrosion resistance and low surface flaws |
JP4959061B2 (en) | 2001-02-26 | 2012-06-20 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet with excellent overhanging property and method for producing the same |
JP2002332549A (en) * | 2001-05-10 | 2002-11-22 | Nisshin Steel Co Ltd | Ferritic stainless steel strip having excellent shape fixability on forming and production method therefor |
JP2003213376A (en) * | 2002-01-15 | 2003-07-30 | Nisshin Steel Co Ltd | Ferritic stainless steel sheet having excellent secondary hole enlargementability and production method therefor |
CN1307320C (en) * | 2002-06-17 | 2007-03-28 | 杰富意钢铁株式会社 | Titanium-added ferritic stainless steel sheet and production method therefor |
JP3886933B2 (en) * | 2003-06-04 | 2007-02-28 | 日新製鋼株式会社 | Ferritic stainless steel sheet excellent in press formability and secondary workability and manufacturing method thereof |
CN1526844A (en) * | 2003-09-23 | 2004-09-08 | 束润涛 | Heat exchanger of welded freeite stainless steel pipe with very low carbon content |
JP4624808B2 (en) * | 2005-01-12 | 2011-02-02 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel sheet with excellent workability and method for producing the same |
-
2008
- 2008-06-18 WO PCT/JP2008/061498 patent/WO2009025125A1/en active Application Filing
- 2008-06-18 CN CN2008801035528A patent/CN101784686B/en active Active
- 2008-06-18 EP EP08777563.1A patent/EP2182085B1/en active Active
- 2008-06-18 US US12/673,651 patent/US20110061777A1/en not_active Abandoned
- 2008-06-18 ES ES08777563.1T patent/ES2651023T3/en active Active
- 2008-06-20 TW TW097123009A patent/TWI390049B/en active
- 2008-08-12 JP JP2008207752A patent/JP5391609B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009068104A (en) | 2009-04-02 |
CN101784686B (en) | 2011-09-21 |
US20110061777A1 (en) | 2011-03-17 |
TWI390049B (en) | 2013-03-21 |
WO2009025125A1 (en) | 2009-02-26 |
EP2182085B1 (en) | 2017-10-11 |
EP2182085A4 (en) | 2016-03-16 |
CN101784686A (en) | 2010-07-21 |
EP2182085A1 (en) | 2010-05-05 |
ES2651023T3 (en) | 2018-01-23 |
TW200918676A (en) | 2009-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5391609B2 (en) | Ferritic stainless steel sheet excellent in punching workability and manufacturing method thereof | |
JP5352793B2 (en) | High-strength hot-dip galvanized steel sheet with excellent delayed fracture resistance and method for producing the same | |
JP5793459B2 (en) | Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof | |
JP5020572B2 (en) | High strength thin steel sheet with excellent delayed fracture resistance after forming | |
WO2015147211A1 (en) | Rolled ferritic stainless-steel plate, process for producing same, and flange component | |
JP6017341B2 (en) | High strength cold-rolled steel sheet with excellent bendability | |
JP5126844B2 (en) | Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member | |
JP2006118000A (en) | Lightweight high strength steel having excellent ductility and its production method | |
WO2021149676A1 (en) | Steel sheet and method for producing same | |
EP1889937A1 (en) | High tensile steel product excellent in delayed fracture resistance and method for production thereof | |
CN103108973A (en) | High-strength hot-rolled steel sheet having superior punchability and method for producing same | |
JP4682805B2 (en) | Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof | |
JP4682806B2 (en) | Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof | |
JP5287553B2 (en) | Non-tempered high-tensile steel plate with yield strength of 885 MPa or more and method for producing the same | |
JP5262029B2 (en) | Ferritic stainless steel plate with excellent stretch flangeability | |
JP6093063B1 (en) | High-strength stainless steel material excellent in workability and its manufacturing method | |
JP2008291303A (en) | Ferrittic stainless steel sheet excellent in blanking property for water heater and production method therefor | |
JP5453747B2 (en) | Stainless cold-rolled steel sheet excellent in punching processability and manufacturing method thereof | |
JP6036615B2 (en) | Steel sheet for welded structure having excellent weldability and fatigue crack propagation resistance and method for producing the same | |
JP5076661B2 (en) | Ferritic stainless steel sheet excellent in punching workability and manufacturing method thereof | |
TWI614350B (en) | Hot rolled steel sheet | |
TWI613298B (en) | Hot rolled steel sheet | |
JP5050565B2 (en) | Ferritic stainless steel sheet and manufacturing method thereof | |
JP2007308771A (en) | Method for manufacturing high-strength steel sheet superior in shape freezability | |
JP2022167288A (en) | Thick steel plate for square steel pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130521 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130603 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20130614 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20130621 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130917 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130930 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5391609 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |