JP5389930B2 - Pseudoproline dipeptide - Google Patents

Pseudoproline dipeptide Download PDF

Info

Publication number
JP5389930B2
JP5389930B2 JP2011529526A JP2011529526A JP5389930B2 JP 5389930 B2 JP5389930 B2 JP 5389930B2 JP 2011529526 A JP2011529526 A JP 2011529526A JP 2011529526 A JP2011529526 A JP 2011529526A JP 5389930 B2 JP5389930 B2 JP 5389930B2
Authority
JP
Japan
Prior art keywords
formula
acid
process according
water
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011529526A
Other languages
Japanese (ja)
Other versions
JP2012504154A (en
Inventor
ヒルトブラント,シュテファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of JP2012504154A publication Critical patent/JP2012504154A/en
Application granted granted Critical
Publication of JP5389930B2 publication Critical patent/JP5389930B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/02General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length in solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/04Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D263/06Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hydrocarbon radicals, substituted by oxygen atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/0606Dipeptides with the first amino acid being neutral and aliphatic the side chain containing heteroatoms not provided for by C07K5/06086 - C07K5/06139, e.g. Ser, Met, Cys, Thr
    • C07K5/06069Ser-amino acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Peptides Or Proteins (AREA)

Description

本発明は、式   The present invention has the formula

Figure 0005389930

で示される化合物の新規な製造方法に関するものである。
Figure 0005389930

It is related with the novel manufacturing method of the compound shown by these.

式Iで示されるシュードプロリンジペプチドは、Ser、Thr、及びCysに対する可逆的保護基として使用することができ、ペプチド化学の分野におけるいくつかの固有の問題を克服するための多用途の手段であることが判明している[JACS 1996, 118, 9218-9227]。ペプチド配列内でΨProの存在は、分子間凝集の原因として見なされるβシート構造の破壊を招く。結果として生じる溶媒和の増加及びFmoc固相ペプチド合成のようなペプチド組み立てにおけるカップリング動態は、特に「困難な配列」を有するペプチドのための鎖延長を促進する。   The pseudoproline dipeptide of formula I can be used as a reversible protecting group for Ser, Thr, and Cys and is a versatile means to overcome some inherent problems in the field of peptide chemistry. It has been found [JACS 1996, 118, 9218-9227]. The presence of ψPro in the peptide sequence results in the destruction of the β sheet structure, which is regarded as the cause of intermolecular aggregation. The resulting increased solvation and coupling kinetics in peptide assembly, such as Fmoc solid phase peptide synthesis, facilitate chain extension, especially for peptides with “difficult sequences”.

シュードプロリンジペプチドの合成アプローチは、PCT公報である国際公開公報第2008/000641号に公開されている。式Iで示される化合物の入手は、式   A synthetic approach to pseudoproline dipeptide is disclosed in International Publication No. 2008/000641, which is a PCT publication. Obtaining the compound of formula I

Figure 0005389930

[式中、R、R、R、R、R及びRは、上記PCT公報に定義されている]で示されるアンモニウム塩中間体を経由して達成される。
Figure 0005389930

[Wherein R 1 , R 2 , R 5 , R 6 , R 7 and R 8 are defined as defined in the above PCT publication].

当技術分野で公知のアプローチの一つの主な欠点は、ジペプチドをそのアンモニウム塩中間体の単離により精製する必要があることであり、それを、閉環前に遊離させてジペプチドにしなければならない。したがって、この合成は、工業規模での応用に適さないことが判明した。   One major disadvantage of the approaches known in the art is that the dipeptide needs to be purified by isolation of its ammonium salt intermediate, which must be released to the dipeptide prior to ring closure. This synthesis was therefore found to be unsuitable for industrial scale applications.

本発明の目的は、生成物を高収量で得ることを可能にする、式Iで示されるシュードプロリンジペプチドの簡潔で技術的に実現可能な合成を提供することである。   The object of the present invention is to provide a concise and technically feasible synthesis of the pseudoproline dipeptide of formula I which makes it possible to obtain the product in high yield.

その目的は、下記に概略する方法で達成された。式   The object was achieved by the method outlined below. formula

Figure 0005389930

[式中、Rは、α−アミノ酸の側鎖であり、Rは、アミノ保護基であり、R及びRは、独立して水素(但し、R及びRの両方ともが水素ではない)又はC1−4−アルキルより選択され、Rは、水素又はメチルである]で示される化合物の製造方法であって、
a)式
Figure 0005389930

[Wherein R 1 is the side chain of the α-amino acid, R 2 is an amino protecting group, R 3 and R 4 are independently hydrogen (provided that both R 3 and R 4 are Is not hydrogen) or C 1-4 -alkyl, and R 5 is hydrogen or methyl],
a) Formula

Figure 0005389930

[式中、R及びRは上記と同義である]
で示されるアミノ酸誘導体を、セリン又はトレオニンと共に、式
Figure 0005389930

[Wherein, R 1 and R 2 are as defined above]
Together with serine or threonine, the amino acid derivative represented by

Figure 0005389930

で示されるジペプチドに変換すること(それに関して活性化剤として水溶性カルボジイミドを使用する)、及び
b)酸触媒の存在下で、式
Figure 0005389930

In which the water-soluble carbodiimide is used as an activator, and b) in the presence of an acid catalyst, the formula

Figure 0005389930

[式中、R及びRは、独立して水素又はC1−4−アルキルより選択されるが、但し、R及びRの両方ともが水素ではなく、R9a及びR9bは、独立してC1−4−アルキルである]で示される化合物と共に式IIIで示されるジペプチドの閉環を実施すること
を含む。
Figure 0005389930

[Wherein R 3 and R 4 are independently selected from hydrogen or C 1-4 -alkyl, provided that both R 3 and R 4 are not hydrogen and R 9a and R 9b are Carrying out the ring closure of the dipeptide of formula III together with a compound of the formula independently of C 1-4 -alkyl].

さらに、セリン又はトレオニンは、そのL−型又はD−型のいずれでも、ラセミ体として、又はその異性体の様々な混合物で使用できることが理解される。好ましくは、L−型が使用される。   Furthermore, it is understood that serine or threonine can be used in either its L- or D-form, as a racemate, or in various mixtures of its isomers. Preferably, L-type is used.

用語「C1−4−アルキル」は、1〜4個の炭素原子の分岐又は直鎖一価飽和脂肪族炭化水素基を表す。この用語は、さらに、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、s−ブチル及びt−ブチルのような基により例示される。 The term “C 1-4 -alkyl” represents a branched or straight-chain monovalent saturated aliphatic hydrocarbon group of 1 to 4 carbon atoms. This term is further exemplified by such radicals as methyl, ethyl, n-propyl, isopropyl, n-butyl, s-butyl and t-butyl.

置換基Rのために使用される用語「アミノ酸の側鎖」は、特にバリン、ロイシン、イソロイシン、メチオニン、フェニルアラニン、アスパラギン、グルタミン、グルタミン酸、ヒスチジン、リシン、アルギニン、アスパラギン酸、アラニン、セリン、トレオニン、チロシン、トリプトファン、システイン、グリシン、アミノイソ酪酸及びプロリンより選択されるα−アミノ酸の側鎖を表す。 The term “amino acid side chain” used for the substituent R 1 is in particular valine, leucine, isoleucine, methionine, phenylalanine, asparagine, glutamine, glutamic acid, histidine, lysine, arginine, aspartic acid, alanine, serine, threonine. Represents a side chain of an α-amino acid selected from tyrosine, tryptophan, cysteine, glycine, aminoisobutyric acid and proline.

ヒドロキシ基を担持するアミノ酸の側鎖において、そのヒドロキシ基は、下記に定義のヒドロキシ保護基によって場合により保護されている。追加的なアミノ基を担持する側鎖において、そのアミノ基は、下記に定義のアミノ保護基によって場合により保護されている。   In the side chain of an amino acid bearing a hydroxy group, the hydroxy group is optionally protected by a hydroxy protecting group as defined below. In the side chain bearing an additional amino group, the amino group is optionally protected by an amino protecting group as defined below.

は、好ましくはバリン、ロイシン、イソロイシン、フェニルアラニン、アスパラギン、グルタミン、グルタミン酸、リシン、アスパラギン酸、アラニン、セリン、トレオニン、チロシン及びトリプトファンの側鎖を表す。さらに好ましい態様では、Rは、セリン又はトレオニンの側鎖を表す。 R 1 preferably represents the side chains of valine, leucine, isoleucine, phenylalanine, asparagine, glutamine, glutamic acid, lysine, aspartic acid, alanine, serine, threonine, tyrosine and tryptophan. In a further preferred embodiment, R 1 represents a serine or threonine side chain.

用語「アミノ保護基」は、アミノ基の反応性を妨げるために慣例的に使用される任意の置換基を表す。適切なアミノ保護基は、Green T., "Protective Groups in Organic Synthesis", Chapter 7, John Wiley and Sons, Inc., 1991, 309-385に記載されている。Rの下に定義された適切なアミノ保護基は、酸性条件に耐えるべきである。好ましくは、Fmoc、Z、Moz、Troc、Teoc又はVoc、さらに好ましくはFmocが使用される。 The term “amino protecting group” refers to any substituent conventionally used to prevent the reactivity of an amino group. Suitable amino protecting groups are described in Green T., “Protective Groups in Organic Synthesis”, Chapter 7, John Wiley and Sons, Inc., 1991, 309-385. A suitable amino protecting group defined under R 2 should withstand acidic conditions. Preferably, Fmoc, Z, Moz, Troc, Teoc or Voc, more preferably Fmoc is used.

用語「ヒドロキシ保護基」は、ヒドロキシ基の反応性を妨げるために慣例的に使用される任意の置換基を表す。適切なヒドロキシ保護基は、Green T., "Protective Groups in Organic Synthesis", Chapter 1, John Wiley and Sons, Inc., 1991, 10-142に記載されている。適切なヒドロキシ保護基は、t−ブチル、ベンジル、TBDMS又はTBDPSである。好ましいヒドロキシ保護基は、t−ブチルである。   The term “hydroxy protecting group” refers to any substituent conventionally used to prevent the reactivity of a hydroxy group. Suitable hydroxy protecting groups are described in Green T., “Protective Groups in Organic Synthesis”, Chapter 1, John Wiley and Sons, Inc., 1991, 10-142. Suitable hydroxy protecting groups are t-butyl, benzyl, TBDMS or TBDPS. A preferred hydroxy protecting group is t-butyl.

明細書及び特許請求の範囲に使用される略語の意味は、下表に概略する通りである:   The meanings of the abbreviations used in the specification and the claims are as outlined in the table below:

Figure 0005389930
Figure 0005389930

工程a)
第1工程a)では、式
Step a)
In the first step a), the formula

Figure 0005389930

[式中、R及びRは、上記と同義である]
で示されるアミノ酸誘導体をセリン又はトレオニンと共に式
Figure 0005389930

[Wherein, R 1 and R 2 are as defined above]
Together with serine or threonine

Figure 0005389930

で示されるジペプチドに変換する(それに関して活性化剤として水溶性カルボジイミドを使用する)。
Figure 0005389930

(For which water-soluble carbodiimide is used as activator).

式IIで示されるアミノ酸誘導体は、通常は市販の化合物である。R及びRについての選択に従い、式IIで示される適切なアミノ酸誘導体は、Fmoc−L−Ser(tBu)−OH、又はFmoc−L−Thr(tBu)−OHである。 The amino acid derivative of formula II is usually a commercially available compound. Depending on the choice for R 1 and R 2 , a suitable amino acid derivative of formula II is Fmoc-L-Ser (tBu) —OH, or Fmoc-L-Thr (tBu) —OH.

適切な水溶性カルボジイミド活性化剤は、EDC若しくはEAC又はその塩であり、好ましくはEDCの塩酸塩である。   A suitable water soluble carbodiimide activator is EDC or EAC or a salt thereof, preferably the hydrochloride of EDC.

通常、水溶性カルボジイミド活性化剤は、HOSu又はHOBtより選択されるさらなる活性化剤と一緒に適用される。   Usually the water soluble carbodiimide activator is applied together with a further activator selected from HOSu or HOBt.

好ましい活性化剤は、EDC・HCl/HOSuである。   A preferred activator is EDC.HCl / HOSu.

式IIで示されるアミノ酸誘導体1当量に対して、EDCは、普通は1.0〜1.5当量で用いられ、HOSuは、普通は1.0〜1.5当量で用いられる。   For one equivalent of the amino acid derivative of formula II, EDC is usually used at 1.0 to 1.5 equivalents and HOSu is usually used at 1.0 to 1.5 equivalents.

通常、活性化反応は、酢酸エチル、N,N−ジメチルホルムアミド、アセトン又はテトラヒドロフラン、好ましくはテトラヒドロフラン及び/又はN,N−ジメチルホルムアミドなどの適切な有機溶媒の存在下で、−10℃〜25℃の温度で行われる。   Usually, the activation reaction is carried out in the presence of a suitable organic solvent such as ethyl acetate, N, N-dimethylformamide, acetone or tetrahydrofuran, preferably tetrahydrofuran and / or N, N-dimethylformamide at -10 ° C to 25 ° C. At a temperature of

次に、セリン又はトレオニン、好ましくはL−セリン又はL−トレオニンとのカップリングは、無機塩基の存在下で−10℃〜25℃の温度で行うことができる。   Next, the coupling with serine or threonine, preferably L-serine or L-threonine can be performed at a temperature of -10 ° C to 25 ° C in the presence of an inorganic base.

普通はカップリングは、活性化反応から得られた活性化エステル溶液をセリン又はトレオニン及び無機塩基の水性懸濁液に添加することによって実施される。   Usually the coupling is performed by adding the activated ester solution obtained from the activation reaction to an aqueous suspension of serine or threonine and an inorganic base.

適切な無機塩基は、リチウム、ナトリウム若しくはカリウムの炭酸塩などの炭酸アルカリ又は水酸化物又はその混合物である。   Suitable inorganic bases are alkali carbonates such as lithium, sodium or potassium carbonate or hydroxides or mixtures thereof.

好ましいのは、炭酸リチウム及び/又は水酸化リチウムであり、さらに好ましいのは、炭酸リチウム及び水酸化リチウムの混合物である。   Preferred is lithium carbonate and / or lithium hydroxide, and more preferred is a mixture of lithium carbonate and lithium hydroxide.

無機塩基は、通常、セリン又はトレオニンに対して化学量論比で用いられる。   Inorganic bases are usually used in a stoichiometric ratio with respect to serine or threonine.

セリン又はトレオニン:式IIに示されるアミノ酸誘導体の比は、普通は、1.5〜4.0:1、好ましくは2.0〜3.0:1の範囲で選択される。   The ratio of serine or threonine: amino acid derivative of formula II is usually selected in the range of 1.5 to 4.0: 1, preferably 2.0 to 3.0: 1.

反応混合物のpHは、7.5〜9.5の範囲に適宜維持される。   The pH of the reaction mixture is appropriately maintained in the range of 7.5 to 9.5.

変換の完了後に、反応混合物を鉱酸で酸性化する。適切な鉱酸は、硫酸水溶液又はHCl水溶液、好ましくは硫酸水溶液である。   After the conversion is complete, the reaction mixture is acidified with mineral acid. Suitable mineral acids are aqueous sulfuric acid or aqueous HCl, preferably aqueous sulfuric acid.

式IIIで示されるジペプチドは、当業者に公知の方法に従い単離することができる。本発明の好ましい態様では、式IIIで示されるジペプチドは、それを単離せずに方法工程b)に直接使用される。   The dipeptide of formula III can be isolated according to methods known to those skilled in the art. In a preferred embodiment of the invention, the dipeptide of formula III is used directly in process step b) without isolation.

工程b)
工程b)は、式
Step b)
Step b) has the formula

Figure 0005389930

[式中、R、R、R9a及びR9bは、上記と同義である]
で示される化合物と共に式IIIで示されるジペプチドの閉環を酸触媒の存在下で、実施することを必要とする。
Figure 0005389930

[Wherein R 3 , R 4 , R 9a and R 9b are as defined above]
It is necessary to carry out the ring closure of the dipeptide of the formula III together with the compound of the formula in the presence of an acid catalyst.

好ましくは、閉環は、2,2−ジメトキシプロパンと共に実施される。理想的には、式IVで示される化合物は、工程b)で得られたジペプチドに対して6.0〜16.0当量、好ましくは7.0〜12.0当量で使用される。   Preferably, ring closure is performed with 2,2-dimethoxypropane. Ideally, the compound of formula IV is used in an amount of 6.0 to 16.0 equivalents, preferably 7.0 to 12.0 equivalents, relative to the dipeptide obtained in step b).

好ましい態様では、2,2−ジメトキシプロパンを反応混合物に連続的に添加され、並行して、発生したメタノールを連続的に留去する。   In a preferred embodiment, 2,2-dimethoxypropane is continuously added to the reaction mixture, and the generated methanol is continuously distilled off in parallel.

反応温度は、普通は、15℃〜35℃、好ましくは20℃〜30℃の範囲に維持される。   The reaction temperature is usually maintained in the range of 15 ° C to 35 ° C, preferably 20 ° C to 30 ° C.

適切な酸触媒は、メタンスルホン酸、(+)カンファー−10−スルホン酸、p−トルエンスルホン酸又はp−トルエンスルホン酸ピリジニウムより選択され、メタンスルホン酸が好ましい。酸触媒は、普通は、工程b)で得られた式IIIで示されるジペプチドに対して、0.05〜0.30当量、好ましくは0.08〜0.15当量で用いられる。   Suitable acid catalysts are selected from methanesulfonic acid, (+) camphor-10-sulfonic acid, p-toluenesulfonic acid or pyridinium p-toluenesulfonate, with methanesulfonic acid being preferred. The acid catalyst is usually used in an amount of 0.05 to 0.30 equivalents, preferably 0.08 to 0.15 equivalents, relative to the dipeptide of formula III obtained in step b).

理想的には工程b)での変換に適用される有機溶媒は、実質的に水を含まない。適切な溶媒は、トルエン若しくはテトラヒドロフラン又はその混合物である。   Ideally, the organic solvent applied for the conversion in step b) is substantially free of water. A suitable solvent is toluene or tetrahydrofuran or mixtures thereof.

反応混合物の処理及び式Iで示される目的生成物の単離は、
a)pHを7.0〜9.0の範囲、好ましくは7.5〜8.5の範囲に維持しながら反応混合物を水で抽出すること
b)pHを5.5〜6.0の範囲、好ましくは5.5〜5.7の範囲に維持しながら水相を水不混和性有機溶媒で抽出すること、
c)式Iで示される目的生成物を有機相から単離すること、及び場合により
d)式Iで示される目的生成物を有機溶媒中で結晶化させること
を含む手順を適用しながら実施することができる。
Treatment of the reaction mixture and isolation of the desired product of formula I
a) extracting the reaction mixture with water while maintaining the pH in the range of 7.0 to 9.0, preferably in the range of 7.5 to 8.5 b) the pH in the range of 5.5 to 6.0 Extracting the aqueous phase with a water-immiscible organic solvent, preferably while maintaining a range of 5.5 to 5.7,
c) carried out applying a procedure comprising isolating the desired product of formula I from the organic phase and optionally d) crystallizing the desired product of formula I in an organic solvent be able to.

処理手順の工程a)におけるpH調整は、一般的な緩衝水溶液、例えば重炭酸ナトリウム水溶液を用いて起こりうるが、工程b)におけるpHは、鉱酸水溶液を使用することによって、例えば硫酸水溶液を用いて調整することができる。   The pH adjustment in step a) of the treatment procedure can take place using a common buffered aqueous solution, such as an aqueous sodium bicarbonate solution, whereas the pH in step b) can be achieved using an aqueous mineral acid solution, for example using an aqueous sulfuric acid solution. Can be adjusted.

水不混和性有機溶媒は、好ましくはトルエンである。   The water immiscible organic solvent is preferably toluene.

工程c)における単離は、普通は、有機溶媒の部分的蒸発により起こり、その後目的生成物は、トルエン、イソプロパノール及びヘプタンの混合物などの適切な有機溶媒中で結晶化させることによりさらに精製することができる。   Isolation in step c) usually occurs by partial evaporation of the organic solvent, after which the desired product is further purified by crystallization in a suitable organic solvent such as a mixture of toluene, isopropanol and heptane. Can do.

以下の実施例は、本発明を限定せずに例示するものである。   The following examples illustrate the invention without limiting it.

実施例
(S,S)−3−[3−tert−ブトキシ−2−(9H−フルオレン−9−イル−メトキシカルボニルアミノ)−プロピオニル]−2,2−ジメチル−オキサゾリジン−4−カルボン酸の合成
Synthesis of Example (S, S) -3- [3-tert-butoxy-2- (9H-fluoren-9-yl-methoxycarbonylamino) -propionyl] -2,2-dimethyl-oxazolidine-4-carboxylic acid

Figure 0005389930
Figure 0005389930

実施例1:
200mLのTHF中の16.1gのN−ヒドロキシスクシンイミド及び40.0gのFmoc−L−Ser(tBu)−OHの溶液を、80mLのDMF及び80mLのTHF中の26.0gの1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩の懸濁液に20℃で30〜60分以内に添加した。結果として得られた混合物を周囲温度で4時間撹拌し、次にそれを、240gの水中の8.75gの水酸化リチウム一水和物、6.1gの炭酸リチウム及び33.2gのL−セリンの予冷(−5℃)懸濁液に30〜45分以内に添加した。結果として得られた混合物を30分以内に室温まで温め、次に、この温度でもう1時間撹拌した。次に、その混合物を−5℃に冷却し、約150gの硫酸(20%水溶液)でpHを8.5から2.0〜2.5に調整した。その二相性混合物を室温まで温め、次に下の水層を分離した。その水層を200mLのトルエンで抽出した。合わせた有機層を150mLのトルエンで希釈し、次に150mLの水で5回洗浄した。トルエン及びTHFを用いた共沸蒸留により、有機層から水を除去した。無水(<0.05%)のトルエン/THF溶液(約500mL)を1.00gのメタンスルホン酸で処理した。その混合物に660mLのトルエン中の100gの2,2−ジメトキシプロパンの溶液を6〜10時間以内に添加した。全体の調合の間に、反応容積を一定(約600mL)に維持しながら揮発性物質を減圧下(80〜30mbar)で20〜28℃の温度で蒸発させて除いた。完全に添加した後に、その混合物を約500mLの最終容積まで濃縮し、次に1.35gのトリエチルアミンで処理した。水(50mL)を添加し、層を分離した。有機層を250gの重炭酸ナトリウム(5%水溶液)で処理した。その二相性混合物(pH約7.5)を35〜40℃に加温し、この温度で30〜45分間撹拌した。層を分離し、有機層を70gの重炭酸ナトリウム(5%水溶液)で3回抽出した。生成物を含有する水層を合わせたものを35〜40℃で360mLのトルエンで処理し、約50gの硫酸(20%水溶液)の滴加によりpHを5.5に調整した。水層を分離し、有機層を50gの水で2回洗浄した。結果として得られた有機層を周囲温度に冷却し、100mLの水で希釈した。数滴の硫酸(20%水溶液)の添加によりpHを4に調整した。下の水層を除去し、有機層を80gの水で2回洗浄した。有機層を乾燥するまで濃縮した。残渣を400mLのイソプロパノールで処理し、結果として得られた溶液を乾燥するまで濃縮した。残渣を90mLのイソプロパノール及び90mLのヘプタンで希釈し、その混合物を50℃に加温し、透明な溶液を実現した。400mLのヘプタンを3〜4時間以内に添加した。次に、その混合物を13〜16時間以内に−10℃に冷却し、結果として得られた懸濁液をこの温度で少なくとも4時間撹拌した。結晶を濾過して取り出し、80mLの予冷ヘプタンで洗浄し、40〜50℃/<30mbarで乾燥させて、無色結晶として31.6g(60%)の(S,S)−3−[3−tert−ブトキシ−2−(9H−フルオレン−9−イル−メトキシカルボニルアミノ)−プロピオニル]−2,2−ジメチル−オキサゾリジン−4−カルボン酸を得た(HPLCアッセイで99.0%(m/m))。
Example 1:
A solution of 16.1 g N-hydroxysuccinimide and 40.0 g Fmoc-L-Ser (tBu) -OH in 200 mL THF was added to 26.0 g 1- (3- To the suspension of (dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride was added at 20 ° C. within 30-60 minutes. The resulting mixture was stirred at ambient temperature for 4 hours, then it was added to 8.75 g lithium hydroxide monohydrate, 6.1 g lithium carbonate and 33.2 g L-serine in 240 g water. Was added to the precooled (−5 ° C.) suspension within 30-45 minutes. The resulting mixture was allowed to warm to room temperature within 30 minutes and then stirred at this temperature for another hour. The mixture was then cooled to −5 ° C. and the pH was adjusted from 8.5 to 2.0-2.5 with about 150 g sulfuric acid (20% aqueous solution). The biphasic mixture was warmed to room temperature and then the lower aqueous layer was separated. The aqueous layer was extracted with 200 mL toluene. The combined organic layers were diluted with 150 mL toluene and then washed 5 times with 150 mL water. Water was removed from the organic layer by azeotropic distillation with toluene and THF. Anhydrous (<0.05%) toluene / THF solution (about 500 mL) was treated with 1.00 g of methanesulfonic acid. To the mixture was added a solution of 100 g 2,2-dimethoxypropane in 660 mL toluene within 6-10 hours. During the entire formulation, volatiles were removed by evaporation at a temperature of 20-28 ° C. under reduced pressure (80-30 mbar) while maintaining a constant reaction volume (about 600 mL). After complete addition, the mixture was concentrated to a final volume of about 500 mL and then treated with 1.35 g of triethylamine. Water (50 mL) was added and the layers were separated. The organic layer was treated with 250 g sodium bicarbonate (5% aqueous solution). The biphasic mixture (pH about 7.5) was warmed to 35-40 ° C. and stirred at this temperature for 30-45 minutes. The layers were separated and the organic layer was extracted 3 times with 70 g sodium bicarbonate (5% aqueous solution). The combined aqueous layer containing the product was treated with 360 mL of toluene at 35-40 ° C. and the pH was adjusted to 5.5 by dropwise addition of about 50 g of sulfuric acid (20% aqueous solution). The aqueous layer was separated and the organic layer was washed twice with 50 g of water. The resulting organic layer was cooled to ambient temperature and diluted with 100 mL water. The pH was adjusted to 4 by the addition of a few drops of sulfuric acid (20% aqueous solution). The lower aqueous layer was removed and the organic layer was washed twice with 80 g of water. The organic layer was concentrated to dryness. The residue was treated with 400 mL isopropanol and the resulting solution was concentrated to dryness. The residue was diluted with 90 mL isopropanol and 90 mL heptane and the mixture was warmed to 50 ° C. to achieve a clear solution. 400 mL of heptane was added within 3-4 hours. The mixture was then cooled to −10 ° C. within 13-16 hours and the resulting suspension was stirred at this temperature for at least 4 hours. The crystals are filtered off, washed with 80 mL pre-cooled heptane, dried at 40-50 ° C./<30 mbar and 31.6 g (60%) of (S, S) -3- [3-tert as colorless crystals. -Butoxy-2- (9H-fluoren-9-yl-methoxycarbonylamino) -propionyl] -2,2-dimethyl-oxazolidine-4-carboxylic acid was obtained (99.0% (m / m) by HPLC assay). ).

実施例2:
200mLのTHF中の16.1gのN−ヒドロキシスクシンイミド及び40.0gのFmoc−L−Ser(tBu)−OHの溶液を、80mLのDMF及び80mLのTHF中の26.0gの1−(3−ジメチルアミノプロピル)−3−エチルカルボジイミド塩酸塩の懸濁液に20℃で30〜60分以内に添加した。結果として得られた混合物を周囲温度で4時間撹拌し、次に、それを270gの水中の8.75g水酸化リチウム一水和物、6.1gの炭酸リチウム及び33.2gのL−セリンの予冷(−5℃)懸濁液に30〜60分以内に添加した。結果として得られた混合物を30分以内に室温まで温め、次に、この温度でもう1時間撹拌した。次に、その混合物を−5℃に冷却し、137gの硫酸(20%水溶液)でpHを2.5に調整した。その二相性混合物を室温まで温め、次に下の水層を分離した。その水層を210mLのトルエンで抽出した。合わせた有機層を100mLのトルエンで希釈し、次に130mLの水で5回洗浄した。トルエン及びTHFを用いた共沸蒸留により有機層から水を除去した。次に、結果として得られたトルエン/THF溶液(約550mL)を1.00gのメタンスルホン酸で処理した。次に、その混合物に1040mLのトルエン中の134gの2,2−ジメトキシプロパンの溶液を8〜10時間以内に添加した。全体の調合の間に、反応容積を一定(約600mL)に維持しながら揮発性物質を減圧下(80〜30mbar)で25〜32℃の温度で蒸発させて除いた。完全に添加した後に、その混合物を約500mLの最終容積まで濃縮した。反応混合物を250gの重炭酸ナトリウム(5%水溶液)で処理した。その二相性混合物を35〜40℃に加温し、この温度で15分間撹拌した。層を分離し、有機層を100gの重炭酸ナトリウム(5%水溶液)で抽出した。生成物を含有する水層を合わせたものをトルエン(150mL)で洗浄した。水層を300mLのトルエンで35〜40℃で処理し、約45gの硫酸(20%水溶液)の滴加によりpHを5.7に調整した。次に水層を分離し、有機層を80gの水で3回洗浄した。結果として得られた、生成物を含有する有機層を80mLの水で処理した。硫酸(20%水溶液)を数滴加えることによりpHを4に調整した。下の水層を除去し、有機層を80gの水で2回洗浄した。有機層を約170mLの残留容積まで濃縮した。その混合物を55〜60℃に加温し、イソプロパノール(15mL)を添加した。結果として得られた透明溶液を300mLのヘプタンで55〜60℃で2〜4時間以内に処理した。結果として得られた懸濁液を10時間以内に0℃に冷却し、この温度で3時間撹拌した。結晶を濾過して取り出し、100mLの予冷したヘプタンで洗浄し、50℃/<30mbarで乾燥させ、無色結晶として33.6g(63%)の(S,S)−3−[3−tert−ブトキシ−2−(9H−フルオレン−9−イル−メトキシカルボニルアミノ)−プロピオニル]−2,2−ジメチル−オキサゾリジン−4−カルボン酸を得た(HPLCアッセイで99.4%(m/m))。
Example 2:
A solution of 16.1 g N-hydroxysuccinimide and 40.0 g Fmoc-L-Ser (tBu) -OH in 200 mL THF was added to 26.0 g 1- (3- To the suspension of (dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride was added at 20 ° C. within 30-60 minutes. The resulting mixture was stirred at ambient temperature for 4 hours, then it was added to 8.75 g lithium hydroxide monohydrate, 6.1 g lithium carbonate and 33.2 g L-serine in 270 g water. Added to pre-cooled (−5 ° C.) suspension within 30-60 minutes. The resulting mixture was allowed to warm to room temperature within 30 minutes and then stirred at this temperature for another hour. The mixture was then cooled to −5 ° C. and the pH was adjusted to 2.5 with 137 g sulfuric acid (20% aqueous solution). The biphasic mixture was warmed to room temperature and then the lower aqueous layer was separated. The aqueous layer was extracted with 210 mL toluene. The combined organic layers were diluted with 100 mL toluene and then washed 5 times with 130 mL water. Water was removed from the organic layer by azeotropic distillation with toluene and THF. The resulting toluene / THF solution (about 550 mL) was then treated with 1.00 g of methanesulfonic acid. Next, a solution of 134 g of 2,2-dimethoxypropane in 1040 mL of toluene was added to the mixture within 8-10 hours. During the entire formulation, volatiles were removed by evaporation at a temperature of 25-32 ° C. under reduced pressure (80-30 mbar) while maintaining a constant reaction volume (about 600 mL). After complete addition, the mixture was concentrated to a final volume of about 500 mL. The reaction mixture was treated with 250 g sodium bicarbonate (5% aqueous solution). The biphasic mixture was warmed to 35-40 ° C. and stirred at this temperature for 15 minutes. The layers were separated and the organic layer was extracted with 100 g sodium bicarbonate (5% aqueous solution). The combined aqueous layer containing the product was washed with toluene (150 mL). The aqueous layer was treated with 300 mL of toluene at 35-40 ° C. and the pH was adjusted to 5.7 by the dropwise addition of about 45 g of sulfuric acid (20% aqueous solution). The aqueous layer was then separated and the organic layer was washed 3 times with 80 g of water. The resulting organic layer containing the product was treated with 80 mL of water. The pH was adjusted to 4 by adding a few drops of sulfuric acid (20% aqueous solution). The lower aqueous layer was removed and the organic layer was washed twice with 80 g of water. The organic layer was concentrated to a residual volume of about 170 mL. The mixture was warmed to 55-60 ° C. and isopropanol (15 mL) was added. The resulting clear solution was treated with 300 mL heptane at 55-60 ° C. within 2-4 hours. The resulting suspension was cooled to 0 ° C. within 10 hours and stirred at this temperature for 3 hours. The crystals are filtered off, washed with 100 mL pre-cooled heptane, dried at 50 ° C./<30 mbar and 33.6 g (63%) of (S, S) -3- [3-tert-butoxy as colorless crystals. -2- (9H-fluoren-9-yl-methoxycarbonylamino) -propionyl] -2,2-dimethyl-oxazolidine-4-carboxylic acid was obtained (99.4% (m / m) by HPLC assay).

Claims (19)


Figure 0005389930

[式中、Rは、α−アミノ酸の側鎖であり、Rは、アミノ保護基であり、R及びRは、独立して水素又はC1−4−アルキルより選択され(但し、R 及びR の両方ともが水素ではない)、Rは、水素又はメチルである]で示される化合物の製造方法であって、
a)式
Figure 0005389930

[式中、R及びRは、上記と同義である]で示されるアミノ酸誘導体をセリン又はトレオニンと共に式
Figure 0005389930

で示されるジペプチドに変換すること(それに関して活性化剤として水溶性カルボジイミドを使用する)、及び
b)式
Figure 0005389930

[式中、R及びRは、独立して水素又はC1−4−アルキルより選択されるが、但し、R及びRの両方ともが水素ではなく、R9a及びR9bは、独立してC1−4−アルキルである]で示される化合物と共に式IIIで示されるジペプチドの閉環を酸触媒の存在下で実施すること
を含み、さらに、
a)pHを7.0〜9.0の範囲に維持しながら反応混合物を水で抽出すること;
b)pHを5.5〜6.0の範囲に維持しながら水相を水不混和性有機溶媒で抽出すること;
c)有機相から式Iで示される目的生成物を得ること、及び場合により
d)式Iで示される該目的生成物を有機溶媒中で結晶化させること
を含む処理手順により、式Iで示される目的化合物を得ることを特徴とする、方法。
formula
Figure 0005389930

[Wherein R 1 is a side chain of an α-amino acid, R 2 is an amino protecting group, and R 3 and R 4 are independently selected from hydrogen or C 1-4 -alkyl (provided that Wherein R 3 and R 4 are not both hydrogen) , R 5 is hydrogen or methyl],
a) Formula
Figure 0005389930

[Wherein R 1 and R 2 are as defined above] together with serine or threonine
Figure 0005389930

(In which case water-soluble carbodiimide is used as an activator) and b) the formula
Figure 0005389930

[Wherein R 3 and R 4 are independently selected from hydrogen or C 1-4 -alkyl, provided that both R 3 and R 4 are not hydrogen and R 9a and R 9b are independently C 1-4 - see including to implement the ring closure of the dipeptide of formula III in the presence of an acid catalyst with the compound represented by the alkyl is, furthermore,
a) extracting the reaction mixture with water while maintaining the pH in the range of 7.0 to 9.0;
b) extracting the aqueous phase with a water-immiscible organic solvent while maintaining the pH in the range of 5.5 to 6.0;
c) obtaining the desired product of formula I from the organic phase, and optionally
d) crystallizing the desired product of formula I in an organic solvent
A method comprising obtaining a target compound of formula I by a treatment procedure comprising :
が、バリン、ロイシン、イソロイシン、メチオニン、フェニルアラニン、アスパラギン、グルタミン、グルタミン酸、ヒスチジン、リシン、アルギニン、アスパラギン酸、アラニン、セリン、トレオニン、チロシン、トリプトファン、システイン、グリシン及びアミノイソ酪酸より選択される側鎖であることを特徴とする、請求項1記載の方法。 R 1 is, valine, leucine, isoleucine, methionine, phenylalanine, asparagine, glutamine, glutamate, histidine, lysine, arginine, aspartic acid, alanine, serine, threonine, tyrosine, tryptophan, cysteine, is selected Ri by glycine and aminoisobutyric butyric acid The method according to claim 1, wherein the method is a side chain. が、Fmoc、Z、Moz、Troc、Teoc及びVocより選択されることを特徴とする、請求項1又は2記載の方法。 3. A method according to claim 1 or 2, characterized in that R2 is selected from Fmoc, Z, Moz, Troc, Teoc and Voc. 水溶性カルボジイミドが、EDC又はその塩であることを特徴とする、請求項1〜3のいずれか一項記載の方法。 The method according to any one of claims 1 to 3 , wherein the water-soluble carbodiimide is EDC or a salt thereof. EDC又はその塩が、HOSuと一緒に用いられることを特徴とする、請求項4記載の方法。   The method according to claim 4, wherein EDC or a salt thereof is used together with HOSu. セリン又はトレオニン:式IIで示されるアミノ酸誘導体の比が、1.5〜4.0:1の範囲より選択されることを特徴とする、請求項1〜5のいずれか一項記載の方法。 6. The method according to any one of claims 1 to 5, characterized in that the ratio of serine or threonine: amino acid derivative of the formula II is selected from the range 1.5 to 4.0: 1. 工程a)における変換が、無機塩基の存在下で行われることを特徴とする、請求項1〜6のいずれか一項記載の方法。 Conversion in step a), characterized in that it is carried out in the presence of an inorganic base, any one method according to claims 1-6. 無機塩基が、アルカリ炭酸塩又はアルカリ水酸化物及びその混合物より選択されることを特徴とする、請求項7記載の方法。   8. Process according to claim 7, characterized in that the inorganic base is selected from alkali carbonates or alkali hydroxides and mixtures thereof. 工程a)における変換が、7.5〜9.5の範囲のpHで行われることを特徴とする、請求項1〜8のいずれか一項記載の方法。 9. Process according to any one of claims 1 to 8, characterized in that the conversion in step a) is carried out at a pH in the range of 7.5 to 9.5. 工程a)における変換が、−10℃〜25℃の範囲の温度で行われることを特徴とする、請求項1〜9のいずれか一項記載の方法。 The process according to any one of claims 1 to 9, characterized in that the transformation in step a) is performed at a temperature in the range of -10 ° C to 25 ° C. 反応混合物が、工程a)における変換の後に鉱酸で酸性化されることを特徴とする、請求項1〜10のいずれか一項記載の方法。 Process according to any one of claims 1 to 10, characterized in that the reaction mixture is acidified with mineral acid after the conversion in step a). 式IIIで示されるジペプチドが、単離されずに、方法工程b)において直接使用されることを特徴とする、請求項1〜11のいずれか一項記載の方法。 12. Process according to any one of claims 1 to 11, characterized in that the dipeptide of formula III is used directly in process step b) without being isolated. 工程b)において閉環に使用される式IVで示される化合物が、2,2−ジメトキシプロパンであることを特徴とする、請求項1〜12のいずれか一項記載の方法。 13. Process according to any one of claims 1 to 12, characterized in that the compound of formula IV used for ring closure in step b) is 2,2-dimethoxypropane. 2,2−ジメトキシプロパンが、反応混合物に連続的に添加され、発生したメタノールを、並行して連続的に留去することを特徴とする、請求項13記載の方法。   The process according to claim 13, characterized in that 2,2-dimethoxypropane is continuously added to the reaction mixture and the methanol generated is distilled off continuously in parallel. 工程b)における閉環のための酸触媒が、メタンスルホン酸、(+)カンファー−10−スルホン酸、p−トルエンスルホン酸、p−トルエンスルホン酸ピリジニウムより選択されることを特徴とする、請求項1〜14のいずれか一項記載の方法。 The acid catalyst for ring closure in step b) is selected from methanesulfonic acid, (+) camphor-10-sulfonic acid, p-toluenesulfonic acid, pyridinium p-toluenesulfonate. The method of any one of 1-14. 工程b)における閉環が、トルエン若しくはテトラヒドロフラン又はその混合物の存在下で実施されることを特徴とする、請求項1〜15のいずれか一項記載の方法。 The process according to any one of claims 1 to 15, characterized in that the ring closure in step b) is carried out in the presence of toluene or tetrahydrofuran or mixtures thereof. 工程b)における閉環が、15℃〜35℃の範囲の温度で行われることを特徴とする、請求項1〜16のいずれか一項記載の方法。 Step ring closure in b) is characterized in that it is carried out at a temperature in the range of 15 ° C. to 35 ° C., The method of any one of claims 1 to 16. 水不混和性有機溶媒が、トルエンであることを特徴とする、請求項記載の方法。 Water-immiscible organic solvent, characterized in that toluene, the process of claim 1. 目的生成物を、トルエン、イソプロパノール及びヘプタンの混合物から結晶化させることを特徴とする、請求項18記載の方法。   19. A process according to claim 18, characterized in that the target product is crystallized from a mixture of toluene, isopropanol and heptane.
JP2011529526A 2008-10-07 2009-09-29 Pseudoproline dipeptide Expired - Fee Related JP5389930B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08165968 2008-10-07
EP08165968.2 2008-10-07
PCT/EP2009/062568 WO2010040660A1 (en) 2008-10-07 2009-09-29 Pseudoproline dipeptides

Publications (2)

Publication Number Publication Date
JP2012504154A JP2012504154A (en) 2012-02-16
JP5389930B2 true JP5389930B2 (en) 2014-01-15

Family

ID=41202596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011529526A Expired - Fee Related JP5389930B2 (en) 2008-10-07 2009-09-29 Pseudoproline dipeptide

Country Status (12)

Country Link
US (1) US8153815B2 (en)
EP (1) EP2344516B1 (en)
JP (1) JP5389930B2 (en)
KR (1) KR101268794B1 (en)
CN (1) CN102159587B (en)
AU (1) AU2009301209B2 (en)
BR (1) BRPI0919501A2 (en)
CA (1) CA2737675C (en)
ES (1) ES2410267T3 (en)
IL (1) IL210799A (en)
MX (1) MX2011002913A (en)
WO (1) WO2010040660A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103524595A (en) * 2013-10-14 2014-01-22 苏州维泰生物技术有限公司 Method for synthesizing pseudo-dipeptide Fmoc-Gly-Thr(phiMe, Me pro)-OH by utilizing new kilogram method
CN103897024A (en) * 2014-02-28 2014-07-02 苏州维泰生物技术有限公司 Novel method for synthesizing alanine serine pseudo dipeptide module
CN106432468A (en) * 2016-11-03 2017-02-22 滨海吉尔多肽有限公司 Solid-phase synthesis method for preparing exenatide
CN107176970B (en) * 2017-07-06 2019-11-19 中国医药集团总公司四川抗菌素工业研究所 A kind of method that resin catalysis synthesizes pseudo- proline heterocycle peptide
EP3517543B1 (en) * 2018-01-30 2020-11-04 Bachem AG Manufacture of glucagon peptides
CN109836476A (en) * 2019-03-20 2019-06-04 吉尔生化(上海)有限公司 A kind of synthetic method of cysteine pseudo proline dipeptides

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790935B1 (en) * 1999-02-05 2004-09-14 Debiopharm S.A. Cyclosporin derivatives and method for the production of said derivatives
US7612209B2 (en) 2006-06-28 2009-11-03 Hoffmann-La Roche Inc. Pseudo proline dipeptides

Also Published As

Publication number Publication date
EP2344516A1 (en) 2011-07-20
KR20110061604A (en) 2011-06-09
US20100087654A1 (en) 2010-04-08
CN102159587A (en) 2011-08-17
AU2009301209A1 (en) 2010-04-15
CN102159587B (en) 2013-11-13
JP2012504154A (en) 2012-02-16
KR101268794B1 (en) 2013-05-28
CA2737675A1 (en) 2010-04-15
WO2010040660A1 (en) 2010-04-15
IL210799A0 (en) 2011-04-28
MX2011002913A (en) 2011-04-12
ES2410267T3 (en) 2013-07-01
IL210799A (en) 2015-10-29
CA2737675C (en) 2016-02-09
US8153815B2 (en) 2012-04-10
EP2344516B1 (en) 2013-03-20
AU2009301209B2 (en) 2012-11-08
BRPI0919501A2 (en) 2015-12-08

Similar Documents

Publication Publication Date Title
CA1329862C (en) Aryloxy and arylacyloxy methyl ketones as thiol protease inhibitors
JP5389930B2 (en) Pseudoproline dipeptide
EP0274453A2 (en) Collagenase inhibitor derivatives, their preparation and pharmaceutical compositions containing them
FR2460291A1 (en) NOVEL TRIPEPTIDES ACTING ON THE CENTRAL NERVOUS SYSTEM AND THEIR PREPARATION PROCESS
WO2001019849A1 (en) A process for the preparation of h-tyr-d-ala-phe(f)-phe-nh¿2?
Katakai Peptide synthesis using o-nitrophenylsulfenyl N-carboxy. alpha.-amino acid anhydrides
JP5292289B2 (en) Pseudoproline dipeptide
EP0210896B2 (en) Optically pure derivates of 4-amino-3-hydroxycarboxylic acids and process for stereospecific synthesis
EP2139910B1 (en) Method for the synthesis of peptides without solvent
US3891692A (en) N-(cyclopropylalkoxycarbonyl)amino acids
CA2592969A1 (en) New one-step synthesis of useful disubstituted amines
EP1123919A1 (en) Process for producing peptidyl aldehydes
US3445447A (en) Tert-amyloxycarbonyl derivatives of amino acids
Naik et al. Application of 2-(1h-benzotriazol-1-yl)-1, 1, 3, 3-tetramethyluronium tetrafluoroborate (tbtu) for the synthesis of acid azides
JP2013095735A (en) Method for eliminating phenoxy carbonyl group
WO2007097254A1 (en) Novel isodipeptide
JPH09255666A (en) Production of piperazinamide compound and piperazinamide derivative
KR20010053805A (en) A process for producing amino acid or aminoalcohol with t-Butoxycarbonyl group
FR2559767A1 (en) Process for the manufacture of amino acids having a protected amine function

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees