KR20010053805A - A process for producing amino acid or aminoalcohol with t-Butoxycarbonyl group - Google Patents

A process for producing amino acid or aminoalcohol with t-Butoxycarbonyl group Download PDF

Info

Publication number
KR20010053805A
KR20010053805A KR1019990054318A KR19990054318A KR20010053805A KR 20010053805 A KR20010053805 A KR 20010053805A KR 1019990054318 A KR1019990054318 A KR 1019990054318A KR 19990054318 A KR19990054318 A KR 19990054318A KR 20010053805 A KR20010053805 A KR 20010053805A
Authority
KR
South Korea
Prior art keywords
organic solvent
amino acid
reaction
butyl chloroformate
butyl
Prior art date
Application number
KR1019990054318A
Other languages
Korean (ko)
Inventor
김근식
서승기
채기병
김영중
Original Assignee
조달호
한국화인케미칼주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조달호, 한국화인케미칼주식회사 filed Critical 조달호
Priority to KR1019990054318A priority Critical patent/KR20010053805A/en
Priority to PCT/KR2000/001371 priority patent/WO2001040163A1/en
Publication of KR20010053805A publication Critical patent/KR20010053805A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/08Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: Provided is a process for producing t-butoxy carbonylated amino acid or amino alcohol by reacting an amino acid or an amino alcohol compound thereof with t-butyl chloroformate in an aqueous organic solvent. CONSTITUTION: The process comprises the steps of: reacting a phosgene with an alkali metal t-butoxide at a temperature of -10 to -25deg.C; removing the excess phosgene by a reduced pressure distillation to obtain the t-butyl chloroformate solution: reacting the t-butyl chloroformate solution with the amino acid or the amino alcohol compound thereof at a temperature of -30 to 10deg.C in an organic solvent or the aqueous organic solvent, wherein the aqueous organic solvent comprises water and the organic solvent in the ratio of 1:9 to 9:1.

Description

t-부톡시카보닐화된 아미노산 또는 아미노알콜의 제조방법 {A process for producing amino acid or aminoalcohol with t-Butoxycarbonyl group}Process for producing amino acid or aminoalcohol with t-Butoxycarbonyl group

본 발명은 아미노산 또는 이의 아미노알콜 화합물을 t-부톡시카보닐(BOC)로 보호하는 방법에 관한 것이다. 보다 자세하게는, 본 발명은 아미노산 또는 이의 아미노알콜 화합물을 t-부틸 클로로포메이트와 반응시켜 아민기가 BOC로 보호된 화합물을 고수율로 제조하는 방법에 관한 것이다.The present invention relates to a method for protecting an amino acid or aminoalcohol compound thereof with t-butoxycarbonyl (BOC). More specifically, the present invention relates to a method for producing a compound having an amine group protected with BOC in high yield by reacting an amino acid or an aminoalcohol compound thereof with t-butyl chloroformate.

1957년 몇몇 연구팀에 의해 카르보벤족시기 대신에 사용될 수 있는 BOC 보호기가 개발되었다. 예를 들면, 카피노는 BOC기를 일반적인 아미노 보호기로서 도입하였고(Carpino, L.A. J. Am. Chem. Soc. 1957, 79, 98). 맥케이 등은 펩타이드 합성시 아미노산을 보호하기 위해 BOC의 사용을 제시하였다(MacKay, et al., J. Am. Chem. Soc. 1957, 79, 4686 and J. Am. Chem. Soc. 1957, 79, 6180). BOC기는 약산성 조건하에서 카르보벤족시기에 비하여 보다 쉽게 제거되고 카르보벤족시기는 촉매적 수소화에 의해 제거되는데 반하여 BOC기는 제거되지 않고 매우 안정하다는 이점이 있다. 지금까지 많은 BOC화제가 개발되었고 예들 들면 t-부틸 클로로포메이트, 디-t-부틸 디카보네이트, t-부틸옥시카보닐 이미다졸, t-부틸옥시 카보닐옥시숙시닉이미드 등이 포함된다.In 1957, several teams developed a BOC protector that could be used instead of the Carbovenian period. For example, Capino introduced the BOC group as a general amino protecting group (Carpino, L.A. J. Am. Chem. Soc. 1957, 79, 98). McKay et al. Suggested the use of BOCs to protect amino acids in peptide synthesis (MacKay, et al., J. Am. Chem. Soc. 1957, 79, 4686 and J. Am. Chem. Soc. 1957, 79, 6180). The BOC group is more easily removed than the carbobenzone group under weakly acidic conditions, and the carbobenzone group is removed by catalytic hydrogenation, whereas the BOC group is not removed but is very stable. Many BOC agents have been developed so far and include, for example, t-butyl chloroformate, di-t-butyl dicarbonate, t-butyloxycarbonyl imidazole, t-butyloxy carbonyloxysuccinimide and the like.

이들 BOC화제 가운데 t-부틸 클로로포메이트는 10℃의 온도에서 분해되고 극히 쉽게 가수분해되어 수분, 온도 등에 매우 불안정한 것으로 알려져 왔으며 이에 따라 공업적으로 사용하는 것은 불가능한 것으로 여겨져 왔었다.Among these BOC agents, t-butyl chloroformate has been known to decompose at a temperature of 10 ° C. and hydrolyze so easily that it is very unstable in moisture, temperature and the like, and thus it has been considered impossible to use industrially.

찹핀 등은 나트륨 부톡사이드와 포스겐을 -60℃에서 반응시켜 t-부틸 클로로포메이트를 생성한 후 이를 약 20%의 수율로 분리한 다음 분리된 t-부틸 클로로포메이트를 아민 화합물과 무수 유기용매 중에서 반응시켜 BOC화된 아민 화합물을 제조하는 방법을 제시하였다(A. R. Choppin and J. W. Rogers, J. Am. Chem. Soc. 1948, 70, 2967). 따라서, 찹핀의 방법은 BOC화된 아민을 얻는데 있어 수율이 극히 낮을 뿐만 아니라 반응 조건을 조절하는데 매우 어려운 단점이 있다.Choppin and the like reacted with sodium butoxide and phosgene at -60 ° C to produce t-butyl chloroformate, which was then separated in a yield of about 20%, and the separated t-butyl chloroformate was separated from an amine compound and an organic solvent. A method for preparing a BOCylated amine compound by reacting in water has been proposed (AR Choppin and JW Rogers, J. Am. Chem. Soc. 1948, 70, 2967). Therefore, the method of choppin has the disadvantage that the yield is extremely low in obtaining the BOCylated amine and is very difficult to control the reaction conditions.

t-부틸 클로로포메이트는 종래의 다른 BOC화제에 비하여 저가이기 때문에 상기의 단점을 해결한다면 상업적으로 매우 유리하게 사용될 수 있을 것이다. 본 발명자들은 반응분석장치(React IR Spectroscopy)를 이용하여 실험을 한 결과 예상치 않게 t-부틸 클로로포메이트가 저온에서 비교적 안정성을 유지하고 수층 조건에서도 반응을 한다는 사실을 발견하였다.Since t-butyl chloroformate is inexpensive compared to other conventional BOC agents, it may be used commercially very advantageously if the above disadvantages are solved. The inventors of the present invention using React IR Spectroscopy unexpectedly found that t-butyl chloroformate remained relatively stable at low temperatures and reacted in aqueous conditions.

한편, t-부틸 클로로포메이트는 일반적으로 용매에 포스겐을 희석시키고 저온으로 냉각시킨 후 알칼리 금속 t-부톡사이드를 천천히 첨가하여 반응시킨 다음 반응이 종료된 후 여과하여 무기물질을 제거하고 감압증류하여 용매를 제거한 다음 순수하게 분리하여 제조한다. 그러나, t-부틸 클로로포메이트를 순수하게 분리 정제하는 과정에서 많은 손실이 일어나 BOC화된 아민 화합물을 제조하는데 전체적으로 수율이 떨어지는 문제가 야기된다. 본 발명자들은 이러한 문제점을 개선하고자 연구하던 중 t-부틸 클로로포메이트를 순수하게 분리하지 않고 반응이 종료된 후 과량의 포스겐을 감압증류하여 제거한 후 아미노산 또는 이의 아미노알콜 화합물과 바로 반응시킴으로써 현저히 증가된 고수율로 BOC화된 아미노산 또는 아미노알콜 화합물을 제조할 수 있었다.Meanwhile, t-butyl chloroformate is generally diluted with phosgene in a solvent, cooled to low temperature, and reacted by slowly adding alkali metal t-butoxide, followed by filtration to remove inorganic substances and distillation under reduced pressure. The solvent is removed and then purified to prepare. However, in the process of purely separating and purifying t-butyl chloroformate, a lot of losses occur, which causes a problem that overall yield decreases in preparing the BOCylated amine compound. The inventors of the present invention have been remarkably increased by directly reacting with an amino acid or an aminoalcohol compound thereof after removing the excess phosgene by distillation under reduced pressure after terminating the reaction without purely separating t-butyl chloroformate. A high yield of BOCylated amino acids or aminoalcohol compounds could be prepared.

본 발명은 아미노산 또는 이의 아미노알콜과 t-부틸 클로로포메이트를 수성 유기용매 중에서 반응시킴을 특징으로 하여 t-부톡시카보닐화된 아미노산을 제조하는 방법을 제공한다. 이 반응은 -30℃ 내지 10℃의 온도하에서 실시할 수 있다.The present invention provides a method for preparing t-butoxycarbonylated amino acids, characterized in that an amino acid or aminoalcohol thereof and t-butyl chloroformate are reacted in an aqueous organic solvent. This reaction can be carried out at a temperature of -30 ° C to 10 ° C.

본 발명에서 사용된 아미노산의 예로는 글라이신, 페닐글라이신, 알라닌, 페닐알라닌, 발린, 루이신, 이소루이신, 세린, 트레오닌, 시스테인, 시스틴, 메티오닌, 아르기닌, 아스파트산, 글루탐산, 하이드록시글루탐산, 프롤린, 하이드록시프롤린, 티로신, 트립토판 및 히스티딘이 포함된다. 본 발명에 따른 아미노산은 L 및 D 형태를 모두 포함한다.Examples of amino acids used in the present invention include glycine, phenylglycine, alanine, phenylalanine, valine, leucine, isoleucine, serine, threonine, cysteine, cystine, methionine, arginine, aspartic acid, glutamic acid, hydroxyglutamic acid, proline , Hydroxyproline, tyrosine, tryptophan and histidine. Amino acids according to the present invention include both L and D forms.

본 발명에 따른 아미노산 또는 아미노알콜 화합물과 t-부틸 클로로포메이트의 반응에 사용된 수성 유기용매에서 물과 혼합되는 유기용매의 예로는 노르말 헥산, 펜탄, 부탄, 헵탄 등의 지방족 탄화수소, 테트라하이드로퓨란, 디에틸 에테르, 디부틸 에테르, 디메톡시 에탄 등의 지방족 에테르, 벤젠, 톨루엔 등의 방향족 탄화수소 등을 들 수 있다. 이들 유기용매와 물과의 혼합비는 일반적으로 물에 대한유기용매의 비율이 클수록 수율이 높아지기는 하나 유기용매의 비용을 고려할 때 대체로 1:9 내지 9:1의 비율로 사용하는 것이 바람직하다.Examples of the organic solvent mixed with water in the aqueous organic solvent used for the reaction of the amino acid or amino alcohol compound according to the present invention with t-butyl chloroformate include aliphatic hydrocarbons such as normal hexane, pentane, butane, heptane, tetrahydrofuran And aliphatic ethers such as diethyl ether, dibutyl ether and dimethoxy ethane, aromatic hydrocarbons such as benzene and toluene. In general, the mixing ratio of these organic solvents with water is higher in yield as the ratio of organic solvent to water increases, but it is preferable to use the ratio of 1: 9 to 9: 1 in consideration of the cost of the organic solvent.

또한, 본 발명은 포스겐과 알카리 금속 t-부톡사이드를 반응시키고, 반응액으로부터 과량의 포스겐을 감압증류하여 제거하여 t-부틸 클로로포메이트 용액을 수득하고, 이 t-부틸 클로로포메이트 용액을 아미노산 또는 이의 아미노알콜과 -30℃ 내지 10℃의 온도하에서 반응시킴을 특징으로 하여 t-부톡시카보닐화된 아미노산 또는 아미노알콜을 제조하는 방법을 제공한다.The present invention also reacts phosgene with alkali metal t-butoxide, and removes excess phosgene under reduced pressure from the reaction solution to obtain a t-butyl chloroformate solution. The t-butyl chloroformate solution is used as an amino acid. Or it provides a method for producing t-butoxycarbonylated amino acid or aminoalcohol characterized in that the reaction of the aminoalcohol with a temperature of -30 ℃ to 10 ℃.

포스겐은 알카리 금속 t-부톡사이드와 반응시키기 전에 냉각된 유기용매에 용해시킨다. 이때 사용되는 유기용매는 예를 들면 노르말 헥산, 펜탄, 부탄, 헵탄 등의 지방족 탄화수소, 테트라하이드로퓨란, 디에틸 에테르, 디부틸 에테르, 디메톡시 에탄 등의 지방족 에테르, 벤젠, 톨루엔 등의 방향족 탄화수소 등이 포함된다. 포스겐과의 반응에 사용되는 알카리 금속 t-부톡사이드로는 나트륨 t-부톡사이드, 칼륨 t-부톡사이드, 리튬 t-부톡사이드 등이 포함된다. 포스겐과 알카리 금속 t-부톡사이드의 반응은 일반적으로 -10℃ 이하, 바람직하게는 -20℃ 내지 -25℃에서 진행할 수 있다. 포스겐은 일반적으로 1 내지 10 당량, 바람직하게는 1.5 내지 2.5 당량 사용할 수 있다.Phosgene is dissolved in the cooled organic solvent before reacting with the alkali metal t-butoxide. The organic solvent used at this time is, for example, aliphatic hydrocarbons such as normal hexane, pentane, butane, heptane, aliphatic ethers such as tetrahydrofuran, diethyl ether, dibutyl ether, dimethoxy ethane, aromatic hydrocarbons such as benzene, toluene, etc. This includes. Alkali metal t-butoxide used in the reaction with phosgene includes sodium t-butoxide, potassium t-butoxide, lithium t-butoxide and the like. The reaction of the phosgene with the alkali metal t-butoxide may generally proceed at −10 ° C. or lower, preferably at −20 ° C. to −25 ° C. The phosgene is generally used in the amount of 1 to 10 equivalents, preferably 1.5 to 2.5 equivalents.

t-부틸 클로로포메이트 용액을 제조한 반응기와 다른 별도의 반응기에서 t-부틸 클로로포메이트 용액의 제조시 사용된 용매와 동일하거나 상이한 용매에 아미노산 또는 이의 아미노알콜을 녹이고 반응혼합물을 0℃ 이하로 냉각시킨다. 염기를 1 내지 3 당량 첨가하고 교반시킨다. 이 반응 혼합물에 앞서 제조된 t-부틸 클로로포메이트를 서서히 첨가한다. 반응온도 0 내지 10℃에서 3시간 교반시킨 후 물을 첨가하여 무기물질을 모두 녹이고 유기층과 층분리한다. 층분리된 유기층을 감압증류하여 유기용매를 제거하여 t-부틸카보닐화된 아미노산 또는 아미노알콜을 얻을 수 있다.In a reactor different from the one in which the t-butyl chloroformate solution was prepared, the amino acid or its aminoalcohol was dissolved in the same or different solvent as the solvent used to prepare the t-butyl chloroformate solution, and the reaction mixture was kept at 0 ° C or lower. Cool. 1 to 3 equivalents of base is added and stirred. To this reaction mixture is slowly added the t-butyl chloroformate prepared earlier. After stirring for 3 hours at a reaction temperature of 0 to 10 ℃, water is added to dissolve all the inorganic material and separated from the organic layer. The separated organic layer may be distilled under reduced pressure to remove the organic solvent to obtain t-butylcarbonylated amino acid or aminoalcohol.

t-부틸 클로로포메이트 용액을 아미노산 또는 이의 아미노알콜과 반응시킬 때 사용될 수 있는 염기는 무기 염기(예, NaOH, KOH, Na2CO3) 또는 유기 염기(예, TEA) 어떠한 것도 가능하다. 그러나, t-부틸 클로로포메이트 용액과 아미노산 또는 아미노알콜의 반응은 염기 없이도 이루어질 수 있다.Bases that can be used when reacting the t-butyl chloroformate solution with amino acids or aminoalcohols thereof are any of inorganic bases (eg, NaOH, KOH, Na 2 CO 3 ) or organic bases (eg, TEA). However, the reaction of t-butyl chloroformate solution with amino acids or aminoalcohols can be achieved without base.

본 발명은 하기의 실시예로 구체적으로 예시될 것이다. 그러나, 이러한 실시예는 당업자가 본 발명을 용이하게 실시할 수 있도록 보다 상세히 설명하고자 하는데 있는 것이지 본 발명의 범위를 한정하는 것으로서 이해되어서는 안될 것이다.The invention will be specifically illustrated by the following examples. However, these embodiments are intended to be described in more detail to enable those skilled in the art to easily practice the present invention, and should not be understood as limiting the scope of the present invention.

실시예 1Example 1

t-부틸 클로로포메이트의 제조Preparation of t-butyl chloroformate

500 ml의 4구 반응용기에 노말 헥산 200 ml를 넣은 후 반응기 내부 온도를 -20℃까지 냉각하였다. 포스겐 30 g(1.5 당량)을 빠르게 첨가하고 나트륨 t-부톡사이드 20 g을 1시간 동안 천천히 첨가하였다. 그런 후 반응물을 내부온도 -25℃ 내지 -20℃에서 1시간 정도 교반하였다. 과량의 포스겐을 감압증류하여 제거하고 흰색의 슬러리로서 t-부틸 클로로포메이트 용액을 수득하였다. 이 용액은 다음 반응인 아민과의 반응에 그대로 사용하였다.After putting 200 ml of normal hexane into a 500 ml four-necked reaction vessel, the reactor internal temperature was cooled to -20 ° C. 30 g (1.5 equiv) of phosgene was added quickly and 20 g of sodium t-butoxide was added slowly over 1 hour. Then the reaction was stirred at -25 ° C to -20 ° C for about 1 hour. Excess phosgene was removed by distillation under reduced pressure to give a t-butyl chloroformate solution as a white slurry. This solution was used as it is for reaction with amine which is the next reaction.

실시예 2Example 2

t-부틸 클로로포메이트의 제조Preparation of t-butyl chloroformate

유기용매로서 테트라하이드로퓨란을 사용하고 실시예 1과 동일한 공정을 수행하여 t-부틸 클로로포메이트를 수득하였다.Tetrabutylfuran was used as the organic solvent and the same process as in Example 1 was carried out to obtain t-butyl chloroformate.

실시예 3Example 3

t-부틸 클로로포메이트의 제조Preparation of t-butyl chloroformate

유기용매로서 톨루엔을 사용하고 실시예 1과 동일한 공정을 수행하여 t-부틸 클로로포메이트를 수득하였다.Toluene was used as the organic solvent and the same process as in Example 1 was carried out to obtain t-butyl chloroformate.

실시예 4Example 4

t-부틸 클로로포메이트의 제조Preparation of t-butyl chloroformate

유기용매로서 디메톡시에탄을 사용하고 실시예 1과 동일한 공정을 수행하여 t-부틸 클로로포메이트를 수득하였다.Dimethoxyethane was used as an organic solvent and the same process as in Example 1 was carried out to obtain t-butyl chloroformate.

실시예 5Example 5

t-부틸 카바메이트의 제조Preparation of t-butyl carbamate

500 ml 4구 반응용기에 25% 암모니아 수용액 50 ml를 넣고 반응기 내부 온도를 0℃로 냉각하였다. 실시예 1에서 얻은 t-부틸 클로로포메이트를 천천히 투입하였다. 투입 완료 후 1시간 정도 교반하고 유기용액층과 수용액층을 분리하였다. 분리된 유기용액층을 감압증류하여 유기용매를 제거하여 흰색의 고체로서 t-부틸 카바메이트를 수율 50%로 얻었다. 융점: 106℃ 내지 108℃.50 ml of a 25% aqueous ammonia solution was added to a 500 ml four-neck reaction vessel, and the temperature inside the reactor was cooled to 0 ° C. T-butyl chloroformate obtained in Example 1 was slowly added. After completion of the addition, the mixture was stirred for about 1 hour, and the organic solution layer and the aqueous solution layer were separated. The separated organic solution layer was distilled under reduced pressure to remove the organic solvent, thereby obtaining t-butyl carbamate as a white solid in a yield of 50%. Melting point: 106 ° C to 108 ° C.

1H NMR(300㎒, DMSO-d6) δ 1.45(9H, s, t-부틸) 4.70(2H, s, -NH2), IR(nujol) 3445, 3330, 3259, 3202, 3012, 2954, 1681, 1607, 1461, 1448 1392, 1379 cm-1 1 H NMR (300 MHz, DMSO-d 6 ) δ 1.45 (9H, s, t-butyl) 4.70 (2H, s, -NH 2 ), IR (nujol) 3445, 3330, 3259, 3202, 3012, 2954, 1681, 1607, 1461, 1448 1392, 1379 cm -1

실시예 6Example 6

t-부틸 N-페닐 카바메이트의 제조Preparation of t-butyl N-phenyl carbamate

500 ml 4구 반응용기에 테트라하이드로퓨란 100 ml와 아닐린 2 당량(38.7 g)을 넣고 반응기 내부온도를 0℃까지 냉각하였다. 실시예 2에서 수득한 t-부틸 클로로포메이트를 반응 혼합물에 천천히 투입하였다. 투입 완료 후 1시간 정도 교반하고 물 100 ml를 첨가하고 교반하였다. 반응용액을 층분리한 후 유기용액층을 감압증류하여 유기용매를 제거하여 담황색의 고체를 수득하였다. 이 고체를 재결정하여 순수한 t-부틸 N-페닐 카바메이트를 수율 80%로 얻었다. 융점: 136℃100 ml of tetrahydrofuran and 2 equivalents (38.7 g) were added to a 500 ml four-neck reaction vessel, and the reactor internal temperature was cooled to 0 ° C. The t-butyl chloroformate obtained in Example 2 was slowly charged into the reaction mixture. After the addition was completed, the mixture was stirred for about 1 hour, and 100 ml of water was added thereto, followed by stirring. The reaction solution was separated and the organic solution layer was distilled under reduced pressure to remove the organic solvent to give a pale yellow solid. This solid was recrystallized to obtain pure t-butyl N-phenyl carbamate in 80% yield. Melting point: 136 ℃

1H NMR(300㎒, DMSO-d6) δ1.45(9H, s, t-부틸), 6.946(1H, t, 방향족), 7.267(2H, q, 방향족), 7.46(m, 2H, 방향족), IR(nujol) 3313, 2929, 2858, 2596, 2013, 1690, 1649, 1460cm-1 1 H NMR (300 MHz, DMSO-d 6 ) δ 1.45 (9H, s, t-butyl), 6.946 (1H, t, aromatic), 7.267 (2H, q, aromatic), 7.46 (m, 2H, aromatic ), IR (nujol) 3313, 2929, 2858, 2596, 2013, 1690, 1649, 1460 cm -1

실시예 7Example 7

2-시아노-1-(N-t-부톡시카보닐)에틸아미노아세트산 에틸에스테르의 제조Preparation of 2-cyano-1- (N-t-butoxycarbonyl) ethylaminoacetic acid ethyl ester

500 ml 4구 반응용기에 톨루엔 100 ml와 (2-시아노에틸아미노)아세트산 0.5 당량(16.5 g)을 넣고 반응기 내부 온도를 0℃까지 냉각하였다. 실시예 3에서 수득 t-부틸 클로로포메이트를 천천히 반응혼합물에 첨가하였다. 투입 완료 후 4시간 정도 교반하였다. 박층 크로마토그래피를 이용하여 반응이 종료됨을 확인하고 반응용액에 물 100 ml를 첨가한 후 층분리를 하였다. 층분리된 유기용매층을 감압증류하여 톨루엔을 제거하여 황색 오일의 표제화합물을 수율 80%로 얻었다.100 ml of toluene and 0.5 equivalent (16.5 g) of (2-cyanoethylamino) acetic acid were added to a 500 ml four-neck reaction vessel, and the temperature inside the reactor was cooled to 0 ° C. The t-butyl chloroformate obtained in Example 3 was slowly added to the reaction mixture. After the addition was completed, the mixture was stirred for about 4 hours. It was confirmed that the reaction was completed by thin layer chromatography, and 100 ml of water was added to the reaction solution, followed by layer separation. The separated organic solvent layer was distilled under reduced pressure to remove toluene to give the title compound as a yellow oil in 80% yield.

1H NMR(300㎒, CDCl3) δ 1.5(9H, s, t-butyl), 4.2(2H, q), 3.48(2H, s), 2.96(2H, t), 2.54(2H, t), 1.3(3H, t) IR(neat) 2975, 2939, 2248, 1741, 1695, 1497, 1395, 1370cm-1 1 H NMR (300 MHz, CDCl 3 ) δ 1.5 (9H, s, t-butyl), 4.2 (2H, q), 3.48 (2H, s), 2.96 (2H, t), 2.54 (2H, t), 1.3 (3H, t) IR (neat) 2975, 2939, 2248, 1741, 1695, 1497, 1395, 1370 cm -1

실시예 8Example 8

4-(N-t-부톡시카보닐)아미노메틸렌-1-(N-t-부톡시카보닐)피롤리딘-3-온의 제조Preparation of 4- (N-t-butoxycarbonyl) aminomethylene-1- (N-t-butoxycarbonyl) pyrrolidin-3-one

500 ml 4구 반응용기에 4-아미노메틸렌-1-(N-t-부톡시카보닐)피롤리딘-3-온 0.7 당량(25 g)을 넣고 디메톡시 에탄 100 ml와 물 35 ml에 녹였다. 반응기 내부온도를 0℃로 냉각하고 수산화칼륨 1 당량(13.7 g)을 첨가하였다. 실시예 4에서 수득한 t-부틸 클로로포메이트를 반응 혼합물에 천천히 첨가하였다. 투입 완료 후 30분 정도 교반하고 HPLC를 이용하여 반응이 종료되었음을 확인하고 10% 염산 130 ml를 첨가하였다. 층분리하여 유기용액층을 다시 반응용기에 넣고 IPA와 물로 결정화하여 순수한 표제화합물을 60%의 수율로 얻었다. 융점: 158℃ 내지 162℃0.7 equivalent (25 g) of 4-aminomethylene-1- (N-t-butoxycarbonyl) pyrrolidin-3-one was added to a 500 ml four-necked reaction vessel, which was dissolved in 100 ml of dimethoxyethane and 35 ml of water. The reactor internal temperature was cooled to 0 ° C. and 1 equivalent of potassium hydroxide (13.7 g) was added. The t-butyl chloroformate obtained in Example 4 was slowly added to the reaction mixture. After the addition was completed, the mixture was stirred for about 30 minutes, and the reaction was confirmed by using HPLC, and 130 ml of 10% hydrochloric acid was added. The layers were separated and the organic solution layer was put back into the reaction vessel and crystallized with IPA and water to obtain the pure title compound in a yield of 60%. Melting Point: 158 ° C to 162 ° C

1H NMR(300㎒, CDCl3) δ 1.5(18H, s, t-부틸), 4.24(1H, s, =CH-N), 4.30(2H, s, -CH2-), 4.32(2H, s, -CH2-), IR(nujol) 3252, 3175, 2914, 1731, 1720, 1697,1608cm-1 1 H NMR (300 MHz, CDCl 3 ) δ 1.5 (18H, s, t-butyl), 4.24 (1H, s, = CH-N), 4.30 (2H, s, -CH 2- ), 4.32 (2H, s, -CH 2- ), IR (nujol) 3252, 3175, 2914, 1731, 1720, 1697,1608 cm -1

실시예 9Example 9

t-부틸 카바제이트의 제조Preparation of t-butyl carbazate

4구 500 ml 반응기에 80% 하이드라진 11.3 ml(1 당량)을 넣고 THF 100 ml를 넣었다. 반응기 내부 온도를 0℃까지 냉각하고 실시예 2에서 합성한 t-부틸 클로로포메이트를 천천히 투입하였다. 투입이 종료 된 후 3시간 정도 교반하였다. 반응이 종료된 후 물 100 ml를 첨가하고 층분리를 하여 유기용매층을 따로 받아내었다. 유기용액층을 감압증류하여 유기용매를 제거하여 노랑색의 오일을 수득하였다. 이 오일을 노르말 헥산으로 결정화하여 순수한 표제화합물을 70%의 수율로 얻었다. 융점: 38℃ 내지 40℃11.3 ml (1 equivalent) of 80% hydrazine was added to a four-neck 500 ml reactor, and 100 ml of THF was added thereto. The reactor internal temperature was cooled to 0 ° C., and t-butyl chloroformate synthesized in Example 2 was slowly added thereto. After the addition was completed, the mixture was stirred for about 3 hours. After the reaction was completed, 100 ml of water was added and the layers were separated to obtain an organic solvent layer. The organic solution layer was distilled under reduced pressure to remove the organic solvent to give a yellow oil. This oil was crystallized from normal hexane to give the pure title compound in 70% yield. Melting Point: 38 ℃ to 40 ℃

1H NMR(300㎒, CDCl3) 1.5(9H, s, t-butyl) δ IR(nujol) 3371, 3327, 3217, 3014, 2934, 1692, 1617, 1608cm-1 1 H NMR (300MHz, CDCl 3 ) 1.5 (9H, s, t-butyl) δ IR (nujol) 3371, 3327, 3217, 3014, 2934, 1692, 1617, 1608 cm -1

실시예 10Example 10

N-(t-부톡시카보닐)-L-알라닌의 제조Preparation of N- (t-butoxycarbonyl) -L-alanine

500 ml 4구 반응기에 L-알라닌 15 g(0.168 mole)을 넣고 물 100 ml 와 유기용매 100 ml을 넣었다. 반응기 내부의 온도를 0℃로 냉각하고 가성소다 13.5 g(2 당량)을 넣었다. 실시예 1에서 합성한 t-부톡시 클로로포메이트를 천천히 첨가하였다. 4시간 동안 반응용액을 교반하고 층분리하였다. 수층을 다시 반응기에 넣고35% 염산을 사용하여 pH를 1 내지 2로 조절하였다. 반응 혼합물에 에틸 아세테이트 200 ml를 넣고 추출하였다. 반응액을 층분리하고 유기용매를 황산마그네슘으로 건조하고 감압증류하여 유기용매를 제거하여 노랑색의 오일을 수득하였다. 이 오일에 노르말 헥산을 첨가하여 결정화하여 순수한 표제화합물을 70%의 수율로 얻었다. 융점: 80 내지 82℃15 g (0.168 mole) of L-alanine was added to a 500 ml four-necked reactor, and 100 ml of water and 100 ml of organic solvent were added thereto. The temperature inside the reactor was cooled to 0 ° C. and 13.5 g (2 equivalents) of caustic soda was added. T-butoxy chloroformate synthesized in Example 1 was slowly added. The reaction solution was stirred for 4 hours and the layers were separated. The aqueous layer was placed back into the reactor and the pH was adjusted to 1-2 with 35% hydrochloric acid. 200 ml of ethyl acetate was added to the reaction mixture and extracted. The reaction solution was separated and the organic solvent was dried over magnesium sulfate and distilled under reduced pressure to remove the organic solvent to obtain a yellow oil. The oil was crystallized by adding normal hexane to give the title compound in 70% yield. Melting point: 80-82 ° C

1H NMR(300㎒, CDCl3) δ 1.42(3H, s, methyl), 1.5(9H, s, t-butyl) IR(nujol) 3380, 1736.5, 1690, 1525 cm-1 1 H NMR (300MHz, CDCl 3 ) δ 1.42 (3H, s, methyl), 1.5 (9H, s, t-butyl) IR (nujol) 3380, 1736.5, 1690, 1525 cm -1

실시예 11Example 11

N-(t-부톡시카보닐)-L-페닐알라닌의 제조Preparation of N- (t-butoxycarbonyl) -L-phenylalanine

500 ml 4구 반응기에 L-페닐알라닌 28 g(0.168 mole)을 넣고 물 100 ml 와 유기용매 100 ml을 넣었다. 반응기 내부의 온도를 0℃로 냉각하고 가성소다 13.5 g(2 당량)을 넣었다. 실시예 1에서 합성한 t-부톡시 클로로포메이트를 천천히 첨가하였다. 4시간 동안 반응용액을 교반하고 층분리하였다. 수층을 다시 반응기에 넣고 35% 염산을 사용하여 pH를 1 내지 2로 조절하였다. 반응 혼합물에 에틸 아세테이트 200 ml를 넣고 추출하였다. 반응액을 층분리하고 유기용매를 황산마그네슘으로 건조하고 감압증류하여 유기용매를 제거하여 노랑색의 오일을 수득하였다. 이 오일에 노르말 헥산을 첨가하여 결정화하여 순수한 표제화합물을 80%의 수율로 얻었다. 융점: 86 내지 88℃Into a 500 ml four-necked reactor, 28 g (0.168 mole) of L-phenylalanine was added, followed by 100 ml of water and 100 ml of an organic solvent. The temperature inside the reactor was cooled to 0 ° C. and 13.5 g (2 equivalents) of caustic soda was added. T-butoxy chloroformate synthesized in Example 1 was slowly added. The reaction solution was stirred for 4 hours and the layers were separated. The aqueous layer was placed back into the reactor and the pH was adjusted to 1-2 with 35% hydrochloric acid. 200 ml of ethyl acetate was added to the reaction mixture and extracted. The reaction solution was separated and the organic solvent was dried over magnesium sulfate and distilled under reduced pressure to remove the organic solvent to obtain a yellow oil. The oil was crystallized by adding normal hexane to give the pure title compound in 80% yield. Melting point: 86-88 ° C

1H NMR(300㎒, CDCl3) δ1.281(s, t-butyl), 1417(s, t-butyl), 2.908, 3.083, 3.19, 4.398, 4.622, 4.99, 6.59, 7.29 ∼ 7.19, 11.2 IR(nujol) 3315, 3101, 3091, 1712, 1649, 1606cm-1 1 H NMR (300MHz, CDCl 3 ) δ1.281 (s, t-butyl), 1417 (s, t-butyl), 2.908, 3.083, 3.19, 4.398, 4.622, 4.99, 6.59, 7.29 to 7.19, 11.2 IR (nujol) 3315, 3101, 3091, 1712, 1649, 1606 cm -1

실시예 12Example 12

N-(t-부톡시카보닐)-이미다졸의 제조Preparation of N- (t-butoxycarbonyl) -imidazole

500 ml 반응기에 이미다졸 11.5 g(0.168 mole)을 넣고 테트라하이드로퓨란 100 ml를 넣었다. 트리에틸아민 17 g(0.168 mole)을 첨가하였다. 반응기 내부온도를 0℃까지 냉각하고 실시예 2에서 합성한 t-부틸 클로로포메이트를 천천히 첨가하였다. 4시간동안 반응 혼합물을 교반하고 반응이 종료된 후 여과하였다. 유기용매를 감압증류하여 제거한 후 노르말 헥산으로 결정화하여 순수한 표제화합물을 수율 80%로 얻었다. 융점: 147 내지 150℃11.5 g (0.168 mole) of imidazole was added to a 500 ml reactor, and 100 ml of tetrahydrofuran was added thereto. 17 g (0.168 mole) of triethylamine were added. The reactor internal temperature was cooled to 0 ° C. and t-butyl chloroformate synthesized in Example 2 was slowly added. The reaction mixture was stirred for 4 hours and filtered after the reaction was complete. The organic solvent was removed by distillation under reduced pressure and crystallized with normal hexane to obtain the pure title compound in 80% yield. Melting point: 147-150 ° C.

본 발명의 방법은 아미노산 또는 이의 아미노알콜을 BOC화하기 위해 저가의 t-부틸 클로로포메이트를 사용하고 반응조건을 용이하게 조절하면서 BOC화된 아미노산 또는 아미노알콜을 고수율로 제공하므로 상업적으로 매우 유리하다.The method of the present invention is commercially advantageous because it uses a low-cost t-butyl chloroformate to BOC the amino acid or aminoalcohol thereof and provides a high yield of the BOCylated amino acid or aminoalcohol while easily controlling the reaction conditions. .

Claims (9)

아미노산 또는 이의 아미노알콜 화합물과 t-부틸 클로로포메이트를 수성 유기용매 중에서 반응시킴을 특징으로 하여 t-부톡시카보닐화된 아미노산 또는 아미노알콜 화합물을 제조하는 방법.A method of preparing a t-butoxycarbonylated amino acid or aminoalcohol compound, characterized by reacting an amino acid or an aminoalcohol compound thereof with t-butyl chloroformate in an aqueous organic solvent. 제 1 항에 있어서, 수성 유기용매에서 물과 유기용매의 혼합비가 1:9 내지 9:1인 방법.The process of claim 1 wherein the mixing ratio of water and organic solvent in an aqueous organic solvent is from 1: 9 to 9: 1. 제 1 또는 2 항에 있어서, 반응을 -30℃ 내지 10℃의 온도하에서 수행함을 특징으로 하는 방법.3. Process according to claim 1 or 2, characterized in that the reaction is carried out at a temperature of -30 ° C to 10 ° C. 포스겐과 알카리 금속 t-부톡사이드를 반응시키고, 반응액으로부터 과량의 포스겐을 감압증류하여 제거하여 t-부틸 클로로포메이트 용액을 수득하고, 이 t-부틸 클로로포메이트 용액을 아미노산 또는 이의 아미노알콜 화합물과 반응시킴을 특징으로 하여 t-부톡시카보닐화된 아미노산 또는 아미노알콜 화합물을 제조하는 방법.The phosgene is reacted with an alkali metal t-butoxide, and excess phosgene is removed by distillation under reduced pressure from the reaction solution to obtain a t-butyl chloroformate solution, and the t-butyl chloroformate solution is used as an amino acid or an aminoalcohol compound thereof. Reacting with to produce a t-butoxycarbonylated amino acid or aminoalcohol compound. 제 4 항에 있어서, 포스겐과 알카리 금속 t-부톡사이드의 반응을 -10℃ 내지 -25℃에서 수행함을 특징으로 하는 방법.The method of claim 4, wherein the reaction of the phosgene with the alkali metal t-butoxide is carried out at -10 ° C to -25 ° C. 제 4 또는 5 항에 있어서, t-부틸 클로로포메이트와 아미노산 또는 아미노알콜 화합물과의 반응을 수성 유기용매 중에서 수행함을 특징으로 하는 방법.A process according to claim 4 or 5, characterized in that the reaction of t-butyl chloroformate with an amino acid or aminoalcohol compound is carried out in an aqueous organic solvent. 제 6 항에 있어서, 반응을 -30℃ 내지 10℃의 온도하에서 수행함을 특징으로 하는 방법.7. The process of claim 6, wherein the reaction is carried out at a temperature of -30 ° C to 10 ° C. 제 6 항에 있어서, 수성 유기용매에서 물과 유기용매의 혼합비가 1:9 내지 9:1인 방법.The method of claim 6, wherein the mixing ratio of water and organic solvent in the aqueous organic solvent is 1: 9 to 9: 1. 제 6 항에 있어서, 반응을 염기의 존재하에서 수행함을 특징으로 하는 방법.The method of claim 6, wherein the reaction is carried out in the presence of a base.
KR1019990054318A 1999-12-01 1999-12-01 A process for producing amino acid or aminoalcohol with t-Butoxycarbonyl group KR20010053805A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1019990054318A KR20010053805A (en) 1999-12-01 1999-12-01 A process for producing amino acid or aminoalcohol with t-Butoxycarbonyl group
PCT/KR2000/001371 WO2001040163A1 (en) 1999-12-01 2000-11-28 A PROCESS FOR PRODUCING AMINE COMPOUND WITH t-BUTOXYCARBONYL GROUP

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990054318A KR20010053805A (en) 1999-12-01 1999-12-01 A process for producing amino acid or aminoalcohol with t-Butoxycarbonyl group

Publications (1)

Publication Number Publication Date
KR20010053805A true KR20010053805A (en) 2001-07-02

Family

ID=19623081

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990054318A KR20010053805A (en) 1999-12-01 1999-12-01 A process for producing amino acid or aminoalcohol with t-Butoxycarbonyl group

Country Status (1)

Country Link
KR (1) KR20010053805A (en)

Similar Documents

Publication Publication Date Title
KR970002229B1 (en) Urethane-protected amino acid-n-carboxy anhydrides
EP0098865B1 (en) Peptide synthesis and amino acid blocking agents
JP4149668B2 (en) Process for producing β-halogeno-α-aminocarboxylic acid, phenylcysteine derivative and its intermediate
US6087530A (en) Process for preparing β-amino-α-hydroxy acid derivatives
US20140081026A1 (en) Process for the production of sitagliptin
CA2261628C (en) Process for preparing 3-pyrroline-2-carboxylic acid derivatives
JP2801500B2 (en) Method for producing N-alkoxycarbonyl amino acid
US6639094B2 (en) Process for producing α-aminoketone derivatives
KR20010053805A (en) A process for producing amino acid or aminoalcohol with t-Butoxycarbonyl group
KR20010053806A (en) A process for producing cyclicamine with t-Butoxycarbonyl group
KR20010053804A (en) A process for producing amine with t-Butoxycarbonyl group
US5252747A (en) Chiral quinolone intermediates
US5939554A (en) Diarylaminopropanediol and diarylmethyl-oxazolidinone compounds
US4508657A (en) Peptide synthesis and amino acid blocking agents
CS249538B2 (en) Method of amino-or iminocarboxylicc acid's amini-or iminogroup blocking
US3445447A (en) Tert-amyloxycarbonyl derivatives of amino acids
WO2001040163A1 (en) A PROCESS FOR PRODUCING AMINE COMPOUND WITH t-BUTOXYCARBONYL GROUP
US3933783A (en) Formation of peptide bonds in the presence of isonitriles
EP1078919B1 (en) Synthesis of alpha-amino-alpha',alpha'-dihaloketones and process for the preparation of beta)-amino acid derivatives by the use of the same
EP1298127A1 (en) Amino acid-n-carboxy anhydrides hvaing substituent at nitrogen
US3984417A (en) Method of producing active amino acid esters
JP2735778B2 (en) Method for producing N-alkoxycarbonyl amino acid
EP0670305B1 (en) Process for producing 3-amino-2-hydroxy-1-propanol derivative
JP3107666B2 (en) Method for producing urethane compound
JPH0533946B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application