JP5389298B2 - 画像符号化装置、画像復号装置、画像符号化方法及び画像復号方法 - Google Patents

画像符号化装置、画像復号装置、画像符号化方法及び画像復号方法 Download PDF

Info

Publication number
JP5389298B2
JP5389298B2 JP2013522704A JP2013522704A JP5389298B2 JP 5389298 B2 JP5389298 B2 JP 5389298B2 JP 2013522704 A JP2013522704 A JP 2013522704A JP 2013522704 A JP2013522704 A JP 2013522704A JP 5389298 B2 JP5389298 B2 JP 5389298B2
Authority
JP
Japan
Prior art keywords
quantization parameter
image
quantization
unit
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013522704A
Other languages
English (en)
Other versions
JPWO2013001717A1 (ja
Inventor
憲道 日和佐
俊一 関口
和夫 杉本
彰 峯澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013522704A priority Critical patent/JP5389298B2/ja
Application granted granted Critical
Publication of JP5389298B2 publication Critical patent/JP5389298B2/ja
Publication of JPWO2013001717A1 publication Critical patent/JPWO2013001717A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • H04N19/463Embedding additional information in the video signal during the compression process by compressing encoding parameters before transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Description

この発明は、画像を符号化する画像符号化装置及び画像符号化方法と、画像符号化装置により符号化された画像を復号する画像復号装置及び画像復号方法とに関するものである。
図13は、例えば、以下の非特許文献1に記載されている量子化処理の様子を示している説明図である。
画像符号化方式の国際標準規格であるH.264(MPEG−4AVC)では、符号化を行うフレーム、あるいは、フィールドを16画素×16ラインの画素で構成される「マクロブロック」と呼ばれるブロックに分割し、マクロブロック毎にイントラ予測モード又はイントター予測モードで符号化を行う。
その符号化において、マクロブロック毎に変更可能な量子化パラメータQPを用いて量子化を行う。
このとき、復号側には、その量子化パラメータQPと、符号化対象のマクロブロックと隣接している左のマクロブロックの量子化パラメータとの差分を送信するようにしている。
また、図14は、16画素×16ラインに限らない任意のサイズのブロックをマクロブロックとして、マクロブロックの中を順次4分割した符号化ブロック毎にイントラ予測モード又はイントター予測モードで符号化を行い、その符号化において、符号化ブロック毎に変更可能な量子化パラメータQPにより量子化を行う場合について示すものである。
マクロブロックを4分割し、その4分割したブロックに対して、どこまで4分割を繰り返すかは任意である。それ以上4分割を行わないブロックを符号化ブロックとする。
この場合の量子化パラメータも差分を送信するが、差分を行う対象として、当該符号化ブロックと隣接している左の符号化ブロックの量子化パラメータ、または、上の符号化ブロックの量子化パラメータを選択することができる。いずれの符号化ブロックの量子化パラメータを選択しているかを示す情報についても復号側に送信する。
なお、符号化における画質制御では、量子化パラメータを急激に変化させると、隣接しているブロック間で画質差が生じるため、ある一定以上の変化をさせない(変動幅に制限を設ける)ようにする場合がある。
画像符号化方式の国際標準規格であるH.264(MPEG−4AVC)の勧告書(ITU−T Rec.H.264)
従来の画像符号化装置は以上のように構成されているので、量子化パラメータの変動幅に制限を設ければ、量子化パラメータの急激な変化に伴う隣接しているブロック間での画質差の発生を抑制することができる。しかし、量子化パラメータの変動幅に制限を設ける場合でも、変動幅に制限を設けない場合と同様のビット量で、隣接しているブロックの量子化パラメータとの差分を復号側に送信するようにしている。このため、多くのビット量を送信しなければならず、符号化効率が向上しない課題があった。
また、イントラ予測モードで符号化が行われるブロック(イントラブロック)とイントター予測モードで符号化が行われるブロック(インターブロック)とでは符号化の性質が異なるため、同一の量子化パラメータで量子化すると、両者の間で見え方(画質)が異なることがある。これを回避するために、イントラブロックとインターブロックの間で異なる量子化パラメータで量子化を行うことがあるが、1つ前の符号化ブロックの量子化パラメータとの差分、あるいは、左側又は上側の符号化ブロックの量子化パラメータとの差分を送信するため、イントラブロックの量子化パラメータにおいて、差分をとる対象のブロックがインターブロックの場合、ビット量が増えてしまう課題があった。
この発明は上記のような課題を解決するためになされたもので、量子化パラメータに関する情報の送信ビット量を削減して、符号化効率を高めることができる画像符号化装置及び画像符号化方法を得ることを目的とする。
また、この発明は、量子化パラメータに関する情報の送信ビット量が削減されていても、画像を復号することができる画像復号装置及び画像復号方法を得ることを目的とする。
この発明に係る画像符号化装置は、入力画像を構成している符号化ブロック毎に、当該符号化ブロックに対する予測処理を実施して予測画像を生成し、その符号化ブロックと予測画像の差分画像を生成する差分画像生成手段と、予め量子化パラメータの変動幅を設定し、その符号化ブロックと符号化済みブロックにおける量子化パラメータの差分が上記変動幅に収まる範囲内で、その符号化ブロックの量子化パラメータを決定する量子化パラメータ決定手段と、差分画像生成手段により生成された差分画像を直交変換し、量子化パラメータ決定手段により決定された量子化パラメータを用いて、その差分画像の変換係数を量子化する量子化手段とを設け、エントロピー符号化手段が、量子化パラメータ決定手段により設定された量子化パラメータの変動幅、量子化手段により量子化された変換係数、差分画像生成手段により予測画像が生成される際に用いられた予測画像生成用情報及び上記符号化ブロックと符号化済みブロックにおける量子化パラメータの差分をエントロピー符号化してビットストリームを生成するようにしたものである。
この発明によれば、入力画像を構成している符号化ブロック毎に、当該符号化ブロックに対する予測処理を実施して予測画像を生成し、その符号化ブロックと予測画像の差分画像を生成する差分画像生成手段と、予め量子化パラメータの変動幅を設定し、その符号化ブロックと符号化済みブロックにおける量子化パラメータの差分が上記変動幅に収まる範囲内で、その符号化ブロックの量子化パラメータを決定する量子化パラメータ決定手段と、差分画像生成手段により生成された差分画像を直交変換し、量子化パラメータ決定手段により決定された量子化パラメータを用いて、その差分画像の変換係数を量子化する量子化手段とを設け、エントロピー符号化手段が、量子化パラメータ決定手段により設定された量子化パラメータの変動幅、量子化手段により量子化された変換係数、差分画像生成手段により予測画像が生成される際に用いられた予測画像生成用情報及び上記符号化ブロックと符号化済みブロックにおける量子化パラメータの差分をエントロピー符号化してビットストリームを生成するように構成したので、量子化パラメータに関する情報の送信ビット量を削減して、符号化効率を高めることができる効果がある。
この発明の実施の形態1による画像符号化装置を示す構成図である。 この発明の実施の形態1による画像符号化装置の処理内容(画像符号化方法)を示すフローチャートである。 この発明の実施の形態1による画像復号装置を示す構成図である。 この発明の実施の形態1による画像復号装置の処理内容(画像復号方法)を示すフローチャートである。 差分dQPを送信するために必要なビット長の一例(変動幅を制限しない場合の例と、変動幅を制限する場合の例)を示す説明図である。 差分dQPがエントロピー符号化された符号語の一例を示す説明図である。 量子化パラメータの最大値MaxQPと最小値MinQPが設定された場合と設定されない場合の符号語の一例を示す説明図である。 量子化パラメータの変動幅、最大値MaxQP及び最小値MinQPが設定された場合と設定されない場合の符号語の一例を示す説明図である。 この発明の実施の形態3による画像符号化装置を示す構成図である。 この発明の実施の形態3による画像復号装置を示す構成図である。 マクロブロック内の符号化ブロックをイントラブロックとして符号化を行う一例を示す説明図である。 符号化ブロックの量子化パラメータQPとイントラ用の量子化パラメータQP_intraとの対応関係を示す変換テーブルの一例を示す説明図である。 画像符号化方式の国際標準規格であるH.264(MPEG−4AVC)の勧告書(ITU−T Rec.H.264)に記載されている量子化処理の様子を示している説明図である。 マクロブロックの中を順次4分割した符号化ブロック毎に量子化処理を行う例を示す説明図である。
以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
図1はこの発明の実施の形態1による画像符号化装置を示す構成図である。
図1では、画像符号化方式の国際標準であるH.264(MPEG−4AVC)に適用している画像符号化装置の例を示しているが、他の画像符号化方式に適用している画像符号化装置であってもよい。
図1において、符号化部1は符号化制御部2の指示の下、入力画像を構成しているマクロブロック単位、あるいは、マクロブロックよりサイズが小さいブロック単位で符号化処理を実施する。
この実施の形態1では、説明の便宜上、マクロブロック及びマクロブロックよりサイズが小さいブロックを符号化ブロックと称する。
符号化制御部2は予め量子化パラメータの変動幅を決定し、符号化ブロックの量子化パラメータと符号化済みブロックの量子化パラメータとの差分が上記変動幅に収まる範囲内で、符号化ブロックの量子化パラメータを決定するなどの処理を実施する。
符号化部1のイントラ予測部11は入力画像を構成している符号化ブロック(マクロブロック、または、マクロブロックを更に分割しているブロック)毎に最適なイントラ予測モードを選択し、そのイントラ予測モードに対応する局部復号画像(既に符号化が終了している符号化ブロックの周辺のブロックの局部復号画像)を用いて、当該符号化ブロックに対するイントラ予測処理を実施することで予測画像を生成し、その符号化ブロックと予測画像の差分画像を生成する処理を実施する。
動き探索部12は入力画像を構成している符号化ブロックとフレームメモリ23により格納されている局部復号画像を比較することで動き探索を実施して、動きベクトルを算出する処理を実施する。
動き補償予測部13は動き探索部12により算出された動きベクトルを用いて、フレームメモリ23により格納されている局部復号画像に対する動き補償予測処理を実施することで、予測画像を生成する処理を実施する。
差分器14は入力画像を構成している符号化ブロックと動き補償予測部13により生成された予測画像の差分を求めることで差分画像を生成する処理を実施する。
なお、イントラ予測部11、動き探索部12、動き補償予測部13及び差分器14から差分画像生成手段が構成されている。
イントラ/インター判定部15はイントラ予測部11により生成された予測画像と動き補償予測部13により生成された予測画像を比較して最適な予測画像を判定し、最適な予測画像を加算器21に出力するとともに、最適な予測画像を示す判定結果をスイッチ16及びエントロピー符号化部24に出力する処理を実施する。
スイッチ16はイントラ/インター判定部15から出力された判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば、イントラ予測部11により生成された差分画像を選択して直交変換部17に出力し、動き補償予測部13により生成された予測画像が最適な予測画像である旨を示していれば、差分器14により生成された差分画像を選択して直交変換部17に出力する処理を実施する。
直交変換部17はスイッチ16から出力された差分画像を直交変換して、その差分画像の変換係数を量子化部18に出力する。
量子化部18は符号化制御部2の量子化制御部32から出力された量子化パラメータを用いて、直交変換部17から出力された差分画像の変換係数を直交変換ブロック単位で量子化する処理を実施する。
なお、直交変換部17及び量子化部18から量子化手段が構成されている。
逆量子化部19は量子化部18により量子化された変換係数を逆量子化し、直交変換部17から出力された変換係数に相当する変換係数を逆直交変換部20に出力する処理を実施する。
逆直交変換部20は逆量子化部19から出力された変換係数を逆直交変換し、スイッチ16から出力された差分画像に相当する差分画像を加算器21に出力する処理を実施する。
加算器21は逆直交変換部20から出力された差分画像とイントラ/インター判定部15により選択された予測画像を加算して局部復号画像を生成し、その局部復号画像をイントラ予測部11及びデブロッキングフィルタ部22に出力する処理を実施する。
デブロッキングフィルタ部22は加算器21により生成された局部復号画像に対するデブロッキングフィルタ処理を実施して圧縮に伴う歪みを補償し、歪み補償後の局部復号画像をフレームメモリ23に格納する処理を実施する。
フレームメモリ23は歪み補償後の局部復号画像を格納する記録媒体である。
エントロピー符号化部24は符号化制御部2の量子化制御部32から出力された量子化パラメータの変動幅と、量子化部18により量子化された変換係数と、符号化ブロックと符号化済みブロックにおける量子化パラメータの差分と、イントラ/インター判定部15から出力された判定結果と、最適な予測画像の生成に用いられた予測画像生成用情報(イントラ/インター判定部15から出力された判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば、イントラ予測部11により選択されたイントラ予測モード、動き補償予測部13により生成された予測画像が最適な予測画像である旨を示していれば、動き探索部12により算出された動きベクトル)とをエントロピー符号化してビットストリームを生成する処理を実施する。なお、エントロピー符号化部24はエントロピー符号化手段を構成している。
ここでは、量子化パラメータの変動幅もエントロピー符号化しているが、量子化パラメータの変動幅はエントロピー符号化せずに、ビットストリームのヘッダなどに多重するようにしてもよい。
送信バッファ25は例えば回線などの外部の伝送手段や蓄積メディアと接続されており、エントロピー符号化部24により生成されたビットストリームを一時的に保持してから、そのビットストリームを出力する処理を実施する。
符号化制御部2の量子化パラメータ変動幅決定部31は例えばフレーム単位の入力画像における周波数成分の分布などに基づいて量子化パラメータの変動幅を決定する処理を実施する。
ここで、量子化パラメータの変動幅は、符号化ブロックの量子化パラメータが1つ前の符号化済みブロックの量子化パラメータから変更できる変移量の制限値を示すものである。
変動幅の決定方法として、例えば、フレーム全体に渡って同様の周波数成分が分布している場合には変動幅を小さくし、異なる周波数成分が多数点在している場合には、変動幅を大きくするなどの方法が考えられる。
この実施の形態1では、量子化パラメータ変動幅決定部31が入力画像から量子化パラメータの変動幅を決定するものを想定しているが、外部から量子化パラメータの変動幅を示す情報を入力して、量子化パラメータの変動幅を設定するようにしてもよい。
量子化制御部32は送信バッファ25により蓄積されているビットストリームのバッファ量や、符号化ブロック毎の目標符号量や、実際に発生しているビットストリームの符号量などから、符号化ブロックの量子化パラメータを決定する処理を実施する。
ただし、符号化ブロックの量子化パラメータと1つ前の符号化済みブロックの量子化パラメータとの差分が量子化パラメータ変動幅決定部31により設定された変動幅に収まる範囲内で、符号化ブロックの量子化パラメータを決定するようにする。
なお、量子化パラメータ変動幅決定部31及び量子化制御部32から量子化パラメータ決定手段が構成されている。
図1の例では、画像符号化装置の構成要素であるイントラ予測部11、動き探索部12、動き補償予測部13、差分器14、イントラ/インター判定部15、スイッチ16、直交変換部17、量子化部18、逆量子化部19、逆直交変換部20、加算器21、デブロッキングフィルタ部22、フレームメモリ23、エントロピー符号化部24、送信バッファ25、量子化パラメータ変動幅決定部31及び量子化制御部32のそれぞれが専用のハードウェア(例えば、CPUを実装している半導体集積回路、あるいは、ワンチップマイコンなど)で構成されているものを想定しているが、画像符号化装置の全部又は一部がコンピュータで構成されていてもよい。
画像符号化装置の全部又は一部がコンピュータで構成されている場合、イントラ予測部11、動き探索部12、動き補償予測部13、差分器14、イントラ/インター判定部15、スイッチ16、直交変換部17、量子化部18、逆量子化部19、逆直交変換部20、加算器21、デブロッキングフィルタ部22、エントロピー符号化部24、量子化パラメータ変動幅決定部31及び量子化制御部32の処理内容の全部又は一部を記述しているプログラムをコンピュータのメモリに格納し、当該コンピュータのCPUが当該メモリに格納されているプログラムを実行するようにすればよい。
図2はこの発明の実施の形態1による画像符号化装置の処理内容(画像符号化方法)を示すフローチャートである。
図3はこの発明の実施の形態1による画像復号装置を示す構成図である。
図3において、受信バッファ51は図1の画像符号化装置により生成されたビットストリームを受信して、そのビットストリームをエントロピー復号部52に出力する処理を実施する。
エントロピー復号部52は受信バッファ51から出力されたビットストリームから量子化パラメータの変動幅をエントロピー復号し、その量子化パラメータの変動幅から符号化ブロックと1つ前の符号化済みブロックにおける量子化パラメータの差分のビット長を特定して、そのビットストリームから量子化パラメータの差分をエントロピー復号するとともに、そのビットストリームから図1の画像符号化装置の量子化部18により量子化された変換係数、イントラ/インター判定部15の判定結果及び予測画像生成用情報をエントロピー復号する。
また、エントロピー復号部52は符号化ブロックと1つ前の符号化済みブロックにおける量子化パラメータの差分を逆量子化パラメータ生成部53に出力し、量子化部18により量子化された変換係数を逆量子化部54に出力し、イントラ/インター判定部15の判定結果をスイッチ58に出力する処理を実施する。
また、イントラ/インター判定部15の判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば、予測画像生成用情報であるイントラ予測モードをイントラ予測画像生成部56に出力し、イントラ/インター判定部15の判定結果が、動き補償予測部13により生成された予測画像が最適な予測画像である旨を示していれば、予測画像生成用情報である動きベクトルをインター予測画像生成部57に出力する処理を実施する。
なお、エントロピー復号部52はエントロピー復号手段を構成している。
逆量子化パラメータ生成部53はエントロピー復号部52から出力された符号化ブロックと1つ前の符号化済みブロックにおける量子化パラメータの差分から符号化ブロックの量子化パラメータを決定する処理を実施する。なお、逆量子化パラメータ生成部53は量子化パラメータ決定手段を構成している。
逆量子化部54は逆量子化パラメータ生成部53により決定された量子化パラメータを用いて、エントロピー復号部52から出力された変換係数を直交変換ブロック単位で逆量子化し、図1の画像符号化装置における直交変換部17から出力された変換係数に相当する変換係数を逆直交変換部55に出力する処理を実施する。
逆直交変換部55は逆量子化部54から出力された変換係数を逆直交変換し、図1の画像符号化装置におけるスイッチ16から出力された差分画像に相当する差分画像を加算器59に出力する処理を実施する。
なお、逆量子化部54及び逆直交変換部55から逆量子化手段が構成されている。
イントラ予測画像生成部56はエントロピー復号部52からイントラ予測モードが出力された場合、そのイントラ予測モードに対応する加算器59により生成された復号画像(既に復号が終了している符号化ブロックの周辺のブロックの復号画像)を用いて、当該符号化ブロックに対するイントラ予測処理を実施することで予測画像を生成する処理を実施する。
インター予測画像生成部57はエントロピー復号部52から動きベクトルが出力された場合、その動きベクトルを用いて、フレームメモリ61により格納されている復号画像に対する動き補償予測処理を実施することで、図1の画像符号化装置における動き補償予測部13により生成される予測画像に相当する予測画像を生成する処理を実施する。
スイッチ58はエントロピー復号部52から出力されたイントラ/インター判定部15の判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば、イントラ予測画像生成部56により生成された予測画像を加算器59に出力し、イントラ/インター判定部15の判定結果が、動き補償予測部13により生成された予測画像が最適な予測画像である旨を示していれば、インター予測画像生成部57により生成された予測画像を加算器59に出力する処理を実施する。
なお、イントラ予測画像生成部56、インター予測画像生成部57及びスイッチ58から予測画像生成手段が構成されている。
加算器59はスイッチ58から出力された予測画像と逆直交変換部55から出力された差分画像を加算して復号画像を生成し、その復号画像をイントラ予測画像生成部56及びデブロッキングフィルタ部60に出力する処理を実施する。なお、加算器59は復号画像生成手段を構成している。
デブロッキングフィルタ部60は加算器59により生成された復号画像に対するデブロッキングフィルタ処理を実施して圧縮に伴う歪みを補償し、歪み補償後の復号画像をフレームメモリ61に格納する処理を実施する。
フレームメモリ61は歪み補償後の復号画像を格納する記録媒体である。
スイッチ62はデブロッキングフィルタ部60による歪み補償後の復号画像又はフレームメモリ61により格納されている復号画像を表示順に選択して、選択した復号画像を出力する処理を実施する。
図3の例では、画像復号装置の構成要素である受信バッファ51、エントロピー復号部52、逆量子化パラメータ生成部53、逆量子化部54、逆直交変換部55、イントラ予測画像生成部56、インター予測画像生成部57、スイッチ58、加算器59、デブロッキングフィルタ部60、フレームメモリ61及びスイッチ62のそれぞれが専用のハードウェア(例えば、CPUを実装している半導体集積回路、あるいは、ワンチップマイコンなど)で構成されているものを想定しているが、画像復号装置の全部又は一部がコンピュータで構成されていてもよい。
画像復号装置の全部又は一部がコンピュータで構成されている場合、エントロピー復号部52、逆量子化パラメータ生成部53、逆量子化部54、逆直交変換部55、イントラ予測画像生成部56、インター予測画像生成部57、スイッチ58、加算器59、デブロッキングフィルタ部60及びスイッチ62の処理内容の全部又は一部を記述しているプログラムをコンピュータのメモリに格納し、当該コンピュータのCPUが当該メモリに格納されているプログラムを実行するようにすればよい。
図4はこの発明の実施の形態1による画像復号装置の処理内容(画像復号方法)を示すフローチャートである。
次に動作について説明する。
最初に、画像符号化装置の処理内容を説明する。
符号化部1のイントラ予測部11は、入力画像を構成している符号化ブロック(マクロブロック、または、マクロブロックを更に分割しているブロック)毎に最適なイントラ予測モードを選択し、そのイントラ予測モードに対応する局部復号画像(既に符号化が終了している符号化ブロックの周辺のブロックの局部復号画像)を用いて、当該符号化ブロックに対するイントラ予測処理を実施することで予測画像を生成する(図2のステップST1)。
ただし、最適なイントラ予測モードを選択して予測画像を生成する技術は、公知の技術であるため詳細な説明を省略する(例えば、H.264を参照)。
イントラ予測部11は、予測画像を生成すると、入力画像を構成している符号化ブロックと当該予測画像の差分画像を生成し、その差分画像をスイッチ16に出力する(ステップST2)。
なお、イントラ予測部11は、画像復号装置でも同じ予測画像を生成する必要があるので、その予測画像の生成に用いている予測画像生成用情報として、そのイントラ予測モードをエントロピー符号化部24に出力する。
動き探索部12は、入力画像を構成している符号化ブロックとフレームメモリ23により格納されている局部復号画像を比較することで動き探索を実施して、動きベクトルを算出する。
動きベクトルの算出処理も公知の技術であるため詳細な説明を省略する(例えば、H.264を参照)。
なお、動き探索部12は、画像復号装置でも同じ予測画像を生成する必要があるので、その予測画像の生成に用いている予測画像生成用情報として、その動きベクトルをエントロピー符号化部24に出力する。
動き補償予測部13は、動き探索部12が動きベクトルを算出すると、その動きベクトルを用いて、フレームメモリ23により格納されている局部復号画像に対する動き補償予測処理を実施することで、予測画像を生成する(ステップST3)。
動き補償予測処理についても公知の技術であるため詳細な説明を省略する(例えば、H.264を参照)。
差分器14は、動き補償予測部13が予測画像を生成すると、入力画像を構成している符号化ブロックと当該予測画像の差分を求めることで差分画像を生成し、その差分画像をスイッチ16に出力する(ステップST4)。
イントラ/インター判定部15は、イントラ予測部11及び動き補償予測部13が予測画像を生成すると、双方の予測画像を比較して最適な予測画像を判定する(ステップST5)。
最適な予測画像の判定処理として一般的に広く行われている方法は、入力画像を構成している符号化ブロックと予測画像の同一画素位置における画素の差分絶対値あるいは差分自乗値をブロック分累算した値を評価値として使用するものである。この場合、評価値が小さい方を選択する。
イントラ/インター判定部15は、最適な予測画像を判定すると、その予測画像を加算器21に出力する。また、最適な予測画像を示す判定結果をスイッチ16及びエントロピー符号化部24に出力する。
スイッチ16は、イントラ/インター判定部15から出力された判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば(ステップST5)、イントラ予測部11により生成された差分画像を選択して直交変換部17に出力する(ステップST6)。
一方、判定結果が、動き補償予測部13により生成された予測画像が最適な予測画像である旨を示していれば(ステップST5)、差分器14により生成された差分画像を選択して直交変換部17に出力する(ステップST7)。
直交変換部17は、スイッチ16から差分画像を受けると、直交変換ブロック(4×4ブロック、または、8×8ブロック)の単位で、その差分画像を直交変換して、その差分画像の変換係数を量子化部18に出力する(ステップST8)。
符号化制御部2の量子化パラメータ変動幅決定部31は、例えば、フレーム単位の入力画像における周波数成分の分布を調べ、その周波数成分の分布に応じて量子化パラメータの変動幅を決定する(ステップST9)。
変動幅の決定方法として、例えば、フレーム全体に渡って同様の周波数成分が分布している場合には変動幅を小さくし、異なる周波数成分が多数点在している場合には、変動幅を大きくする方法などが考えられる。
なお、符号化フレームの符号化前に、そのフレームの周波数成分の分布が得られない場合には、1フレーム前に求めている変動幅を使用するようにする。
ここでは、量子化パラメータ変動幅決定部31が、周波数成分の分布に応じて量子化パラメータの変動幅を決定する例を示しているが、変動幅の決定方法は、これに限るものではなく、例えば、量子化パラメータの変動幅に制限を設けずに、量子化パラメータを決定した場合の最大の変動幅を特定し、その最大の変動幅を量子化パラメータの変動幅に決定する方法なども考えられる。
符号化制御部2の量子化制御部32は、送信バッファ25により蓄積されているビットストリームのバッファ量や、符号化ブロック毎の目標符号量や、実際に発生しているビットストリームの符号量などから、符号化ブロックの量子化パラメータQPを決定する。
符号化ブロックの量子化パラメータQPを決定する処理としては、例えば、MPEG−2の検証試験で使用されたTM5と呼ばれる方法がある(例えば、テレビジョン学会誌、1995年4月号、Vol49、No4を参照)。
量子化制御部32は、符号化ブロックの量子化パラメータQPを決定すると、その量子化パラメータQPと1つ前の符号化済みブロックの量子化パラメータとの差分dQP(Delta QP)が量子化パラメータ変動幅決定部31により決定された変動幅に収まっているか否かを判定し、その変動幅に収まっていなければ、その変動幅に収まるように量子化パラメータQPに制限をかける(ステップST10)。
例えば、量子化パラメータQPが“N”、1つ前の符号化済みブロックの量子化パラメータが“N+3”で、差分dQPが“3”であるとき、量子化パラメータ変動幅決定部31により決定された変動幅が“2”であれば、その変動幅に収まるように量子化パラメータQPを“N+1”に変更する。
量子化制御部32は、符号化ブロックの量子化パラメータQP(差分が変動幅に収まっている量子化パラメータ)を量子化部18及びエントロピー符号化部24に出力する。また、量子化パラメータ変動幅決定部31により決定された変動幅をエントロピー符号化部24に出力する。
量子化部18は、直交変換部17から差分画像の変換係数を受けると、量子化制御部32から出力された量子化パラメータQPを用いて、その差分画像の変換係数を直交変換ブロック単位で量子化する(ステップST11)。
逆量子化部19は、量子化部18が差分画像の変換係数を量子化すると、その変換係数を逆量子化することで、直交変換部17から出力された変換係数に相当する変換係数を逆直交変換部20に出力する。
逆直交変換部20は、逆量子化部19から変換係数を受けると、その変換係数を逆直交変換することで、スイッチ16から出力された差分画像に相当する差分画像を加算器21に出力する。
加算器21は、逆直交変換部20から出力された差分画像とイントラ/インター判定部15により選択された予測画像を加算して局部復号画像を生成する。
加算器21は、局部復号画像を生成すると、次回のイントラ予測処理に備えるため、その局部復号画像をイントラ予測部11に出力する。また、局部復号画像をデブロッキングフィルタ部22に出力する。
デブロッキングフィルタ部22は、加算器21から局部復号画像を受けると、その局部復号画像に対するデブロッキングフィルタ処理を実施して圧縮に伴う歪みを補償し、歪み補償後の局部復号画像をフレームメモリ23に格納する。
エントロピー符号化部24は、以下の情報をエントロピー符号化してビットストリームを生成する(ステップST12)。
・量子化部18により量子化された変換係数
・イントラ/インター判定部15の判定結果
・最適な予測画像の生成に用いられた予測画像生成用情報(イントラ/インター判定部15から出力された判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば、イントラ予測部11により選択されたイントラ予測モード、動き補償予測部13により生成された予測画像が最適な予測画像である旨を示していれば、動き探索部12により算出された動きベクトル)
・符号化ブロックと1つ前の符号化済みブロックにおける量子化パラメータの差分dQP
・量子化パラメータの変動幅(量子化パラメータ変動幅は、ピクチャあるいはスライス毎に伝送するものであるため、ピクチャヘッダあるいはスライスヘッダを送信するタイミングでのみエントロピー符号化される)
ここでは、量子化パラメータの変動幅もエントロピー符号化している例を示しているが、量子化パラメータ変動幅は、ピクチャあるいはスライス毎に伝送するものであり、量子化パラメータの変動幅を送信するために必要なビット量は1フレーム当りではごく僅かであるため、エントロピー符号化せずに、ピクチャヘッダあるいはスライスヘッダに多重するようにしてもよいし、一般的な可変長符号であるゴロム符号などによりエントロピー符号化して多重するようにしてもよい。
以下、ビットストリームを生成する際に、量子化パラメータの変動幅を適用する方法を説明する。
ここでは説明の簡単化ため、符号化ブロックと1つ前の符号化済みブロックにおける量子化パラメータの差分dQPをエントロピー符号化しないで、そのまま送信するものとする。
図5に示すように、例えば、量子化パラメータQPの取り得る範囲が0〜51である場合、差分dQPの取り得る範囲は−51〜+51である。この差分dQPを送信するために必要なビット長は7ビットである。
ここで、量子化パラメータの変動幅を送信しない場合、量子化パラメータQPの変動幅を狭い範囲に限定したとしても、差分dQPを送信するために必要なビット長は7ビットである。
一方、量子化パラメータの変動幅を送信する場合、例えば、差分dQPの範囲を−5〜+5に制限すると、差分dQPを送信するために必要なビット長は4ビットであり、差分dQPの範囲を−2〜+2に制限すると、差分dQPを送信するために必要なビット長は3ビットである。
このビット量の削減は符号化ブロック単位に適用されるため、1フレーム当りの削減量は非常に大きなものとなる。
図6に示すように、量子化パラメータの差分dQPをエントロピー符号化する場合にも、量子化パラメータの変動幅を送信すれば、同じ差分dQPに短い符号語を割り当てることができるため、ビット量を削減することができる。
送信バッファ25は、エントロピー符号化部24がビットストリームを生成すると、そのビットストリームを一時的に保持してから、例えば、回線などの外部の伝送手段を介して、そのビットストリームを画像復号装置に送信する。
以上で明らかなように、この実施の形態1によれば、予め量子化パラメータの変動幅を設定し、その符号化ブロックと1つ前の符号化済みブロックにおける量子化パラメータの差分が上記変動幅に収まる範囲内で、その符号化ブロックの量子化パラメータを決定する符号化制御部2と、イントラ予測部11により生成された差分画像又は差分器14から出力された差分画像を直交変換する直交変換部17と、符号化制御部2により決定された量子化パラメータを用いて、直交変換部17から出力された差分画像の変換係数を量子化する量子化部18とを設け、エントロピー符号化部24が、符号化制御部2により設定された量子化パラメータの変動幅、量子化部18により量子化された変換係数、イントラ予測部11又は動き補償予測部13により予測画像が生成される際に用いられた予測画像生成用情報及び符号化ブロックと符号化済みブロックにおける量子化パラメータの差分dQPをエントロピー符号化してビットストリームを生成するように構成したので、量子化パラメータに関する情報の送信ビット量を削減して、符号化効率を高めることができる効果を奏する。
次に、画像復号装置の処理内容を説明する。
受信バッファ51は、図1の画像符号化装置から送信されたビットストリームを受信し、そのビットストリームをエントロピー復号部52に出力する。
エントロピー復号部52は、受信バッファ51からビットストリームを受けると、そのビットストリームをエントロピー復号する(図4のステップST21)。
エントロピー復号部52は、ビットストリームをエントロピー復号すると、ビットストリームの復号データから量子化パラメータの変動幅をエントロピー復号する。
ただし、量子化パラメータの変動幅は、上述したように、ピクチャあるいはスライス単位に送信されるので、ピクチャあるいはスライス単位にエントロピー復号する。
エントロピー復号部52は、量子化パラメータの変動幅をエントロピー復号すると、その変動幅から符号化ブロックと1つ前の符号化済みブロックにおける量子化パラメータの差分dQPのビット長を特定する。
例えば、差分dQPの範囲が−5〜+5に制限されている場合、差分dQPのビット長が4ビットであり、差分dQPの範囲が−2〜+2に制限されている場合、差分dQPのビット長が3ビットであると特定する。
エントロピー復号部52は、量子化パラメータの差分dQPのビット長を特定すると、ビットストリームの復号データに含まれている量子化パラメータの差分dQPをエントロピー復号する(ステップST22)。
また、エントロピー復号部52は、ビットストリームの復号データに含まれている図1の画像符号化装置の量子化部18により量子化された変換係数、イントラ/インター判定部15の判定結果及び予測画像生成用情報をエントロピー復号する。
なお、エントロピー復号部52は、量子化パラメータの差分dQPについては逆量子化パラメータ生成部53に出力し、量子化部18により量子化された変換係数については逆量子化部54に出力し、イントラ/インター判定部15の判定結果についてはスイッチ58に出力する。
また、イントラ/インター判定部15の判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば、予測画像生成用情報であるイントラ予測モードをイントラ予測画像生成部56に出力し、イントラ/インター判定部15の判定結果が、動き補償予測部13により生成された予測画像が最適な予測画像である旨を示していれば、予測画像生成用情報である動きベクトルをインター予測画像生成部57に出力する。
逆量子化パラメータ生成部53は、エントロピー復号部52から符号化ブロックと1つ前の符号化済みブロックにおける量子化パラメータの差分dQPを受けると、その量子化パラメータの差分dQPと、1つ前の符号化済みブロックにおける量子化パラメータ(この量子化パラメータは、逆量子化パラメータ生成部53が記憶している)とを加算することで、符号化ブロックの量子化パラメータQPを決定し、符号化ブロックの量子化パラメータQPを逆量子化部54に出力する(ステップST23)。
逆量子化部54は、逆量子化パラメータ生成部53から符号化ブロックの量子化パラメータQPを受けると、その量子化パラメータQPを用いて、エントロピー復号部52から出力された変換係数を直交変換ブロック単位で逆量子化することで、図1の画像符号化装置における直交変換部17から出力された変換係数に相当する変換係数を逆直交変換部55に出力する(ステップST24)。
逆直交変換部55は、逆量子化部54から変換係数を受けると、その変換係数を逆直交変換することで、図1の画像符号化装置におけるスイッチ16から出力された差分画像に相当する差分画像を加算器59に出力する(ステップST25)。
イントラ予測画像生成部56は、エントロピー復号部52から予測画像生成用情報としてイントラ予測モードを受けると、そのイントラ予測モードに対応する加算器59により生成された復号画像(既に復号が終了している符号化ブロックの周辺のブロックの復号画像)を用いて、イントラ予測処理を実施することで、図1の画像符号化装置におけるイントラ予測部11により生成される予測画像に相当する予測画像を生成する(ステップST26)。
インター予測画像生成部57は、エントロピー復号部52から予測画像生成用情報として動きベクトルを受けると、その動きベクトルを用いて、フレームメモリ61により格納されている復号画像に対する動き補償予測処理を実施することで、図1の画像符号化装置における動き補償予測部13により生成される予測画像に相当する予測画像を生成する(ステップST27)。
スイッチ58は、エントロピー復号部52から出力されたイントラ/インター判定部15の判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば(ステップST28)、イントラ予測画像生成部56により生成された予測画像を加算器59に出力し(ステップST29)、イントラ/インター判定部15の判定結果が、動き補償予測部13により生成された予測画像が最適な予測画像である旨を示していれば(ステップST28)、インター予測画像生成部57により生成された予測画像を加算器59に出力する(ステップST30)。
加算器59は、スイッチ58から出力された予測画像と、逆直交変換部55から出力された差分画像とを加算して復号画像を生成し、その復号画像をイントラ予測画像生成部56及びデブロッキングフィルタ部60に出力する(ステップST31)。
デブロッキングフィルタ部60は、加算器59から復号画像を受けると、その復号画像に対するデブロッキングフィルタ処理を実施して圧縮に伴う歪みを補償し、歪み補償後の復号画像をフレームメモリ61に格納する。
スイッチ62は、加算器59により生成された復号画像又はフレームメモリ61により格納されている復号画像を表示順に選択して、その選択した復号画像を出力する。
以上で明らかなように、この実施の形態1によれば、ビットストリームから量子化パラメータの変動幅をエントロピー復号し、その量子化パラメータの変動幅から符号化ブロックと符号化済みブロックにおける量子化パラメータの差分dQPのビット長を特定して、そのビットストリームから量子化パラメータの差分dQPをエントロピー復号するとともに、ビットストリームから量子化された変換係数及び予測画像が生成される際に用いられた予測画像生成用情報をエントロピー復号するエントロピー復号部52と、エントロピー復号部52によりエントロピー復号された量子化パラメータの差分dQPから符号化ブロックの量子化パラメータQPを決定する逆量子化パラメータ生成部53と、逆量子化パラメータ生成部53により決定された量子化パラメータを用いて、エントロピー復号部52によりエントロピー復号された変換係数を逆量子化する逆量子化部54と、逆量子化部54により逆量子化された変換係数を逆直交変換する逆直交変換部55と、エントロピー復号部52によりエントロピー復号された予測画像生成用情報を用いて、予測画像を生成するイントラ予測画像生成部56/インター予測画像生成部57とを設け、加算器59が、イントラ予測画像生成部56/インター予測画像生成部57により生成された予測画像と逆直交変換部55の逆直交変換結果である差分画像を加算して復号画像を生成するように構成したので、量子化パラメータに関する情報の送信ビット量が削減されていても、画像を復号することができる効果を奏する。
この実施の形態1では、符号化制御部2の量子化制御部32が、量子化パラメータの差分dQPが量子化パラメータ変動幅決定部31により設定された変動幅に収まる範囲内で、符号化ブロックの量子化パラメータQPを決定するものを示したが、量子化パラメータ変動幅決定部31により量子化パラメータの変動幅が設定されない場合、量子化パラメータの差分dQPが変動幅に収まるように符号化ブロックの量子化パラメータQPに制限をかける処理は実施しない。
エントロピー符号化部24は、量子化パラメータ変動幅決定部31により量子化パラメータの変動幅が設定されない場合、量子化パラメータの変動幅が設定されていない旨を示す情報をビットストリームに含めるようにする。
画像復号装置のエントロピー復号部52は、量子化パラメータの変動幅が設定されていない旨を示す情報がビットストリームに含まれている場合、符号化ブロックと符号化済みブロックにおける量子化パラメータの差分dQPのビット長が固定のビット長(例えば、7ビット)であると認識して、ビットストリームから量子化パラメータの差分dQPをエントロピー復号するようにする。
これにより、量子化パラメータの差分の変動幅に制限が設けられない場合も適用することができる。
この実施の形態1では、H.264をベースとする符号化に適用する例を説明したが、量子化パラメータを1つ前や周辺の符号化ブロックの量子化パラメータ、あるいは、周辺の符号化ブロックの量子化パラメータからある決められた算出方法により求めた量子化パラメータとの差分を送信する符号化方式であれば、どのようなものにも適用可能である。
実施の形態2.
上記実施の形態1では、符号化制御部2の量子化制御部32が、量子化パラメータの差分dQPが量子化パラメータ変動幅決定部31により設定された変動幅に収まる範囲内で、符号化ブロックの量子化パラメータQPを決定するものを示したが、量子化パラメータ変動幅決定部31が、量子化パラメータの変動幅を設定する代わりに、量子化パラメータの最大値MaxQPと最小値MinQPを設定し、量子化制御部32が、最大値MaxQPと最小値MinQPの範囲に収まる符号化ブロックの量子化パラメータQPを決定するようにしてもよい。
この場合、エントロピー符号化部24が、最大値MaxQPと最小値MinQPをピクチャあるいはスライス単位にヘッダに多重して送信するため(最大値MaxQPと最小値MinQPはエントロピー符号化してもよいし、エントロピー符号化しなくてもよい)、最大値MaxQPと最小値MinQPを送信するために必要なビット量は1フレーム当りではごく僅かである。
例えば、スライス単位に最大値MaxQPと最小値MinQPを多重する場合、スライスでの量子化パラメータの初期値である量子化パラメータ初期値SliceQPを多重し、最大値MaxQPと量子化パラメータ初期値SliceQPとの差分であるMaxQP−SliceQPを差分最大量子化値dMaxQPとして多重すると共に、その量子化パラメータ初期値SliceQPと最小値MinQPとの差分であるSliceQP−MinQPを差分最小量子化値dMinQPとして多重するよう構成し、差分最大量子化値dMax及び差分最小量子化値dMinQPを絶対値が小さい順に短い符号語を割り当てるようにエントロピー符号化するようにしてもよい。例えばゴロム符号などにより実現すれば、最大値MaxQPと最小値MinQPをより効率よく多重することができる。
なお、この場合も、エントロピー符号化部24は、量子化パラメータの差分dQPをエントロピー符号化してビットストリームを生成する。
量子化パラメータの最大値MaxQPと最小値MinQPを送信する場合において、例えば、1つ前の符号化ブロックの量子化パラメータをPreQPとすると、差分dQPの最小値はMinQP−PreQPとなり、差分dQPの最大値はMaxQP−PreQPとなる。
例えば、1つ前の符号化ブロックの量子化パラメータPreQPが最大値MaxQPよりも1だけ小さい場合を例に説明すると、差分dQPの最大値MaxQP−PreQPは“+1”となるため、図7に示すように、差分dQPの絶対値が小さい順に短い符号語を割り当てるように可変長符号を設計すれば、同じ差分dQPに短い符号語を割り当てることができる。
図7では、例えば、差分dQPが“−4”の場合、最大値MaxQPと最小値MinQPを設定しなければ、差分dQPの符号語が7ビットになるが、最大値MaxQPと最小値MinQPを設定すると、差分dQPの符号語が5ビットになり、ビット量が2ビット削減される。
画像復号装置のエントロピー復号部52は、ビットストリームをエントロピー復号すると、ビットストリームの復号データに含まれている量子化パラメータの最大値MaxQPと最小値MinQPをエントロピー復号する。ただし、量子化パラメータの最大値MaxQPと最小値MinQPは、上述したように、ピクチャあるいはスライス単位に送信されるので、ピクチャヘッダ又はスライスヘッダに多重されており、ピクチャあるいはスライス単位で最大値MaxQPと最小値MinQPをエントロピー復号する。
例えば、エントロピー符号化部24において、スライス単位に最大値MaxQPと最小値MinQPを多重する場合、スライスでの量子化パラメータの初期値である量子化パラメータ初期値SliceQPを多重し、最大値MaxQPと量子化パラメータ初期値SliceQPとの差分であるMaxQP−SliceQPを差分最大量子化値dMaxQPとして多重すると共に、その量子化パラメータ初期値SliceQPと最小値MinQPとの差分であるSliceQP−MinQPを差分最小量子化値dMinQPとして多重するようにし、差分最大量子化値dMax及び差分最小量子化値dMinQPを絶対値が小さい順に短い符号語を割り当てるようにエントロピー符号化するようにした場合には、エントロピー復号部52は、量子化パラメータ初期値SliceQP、差分最大量子化値dMax及び差分最小量子化値dMinQPをエントロピー復号し、その量子化パラメータ初期値SliceQPと差分最大量子化値dMaxを加算することによって最大値MaxQPを復号し、その量子化パラメータ初期値SliceQPから差分最小量子化値dMinを減算することによって最小値MinQPを復号することができる。
エントロピー復号部52は、量子化パラメータの最大値MaxQPと最小値MinQPをエントロピー復号すると、その最大値MaxQPと最小値MinQPから符号化ブロックと1つ前の符号化済みブロックにおける量子化パラメータの差分dQPのビット長を特定する。
エントロピー復号部52は、量子化パラメータの差分dQPのビット長を特定すると、ビットストリームの復号データに含まれている量子化パラメータの差分dQPをエントロピー復号する。
このように、量子化パラメータQPの値自体を制限することでも、量子化パラメータの差分dQPの変動幅を制限する場合と同様に、量子化パラメータの差分dQPの符号化効率を向上させることができる。
この実施の形態2では、量子化パラメータ変動幅決定部31が、量子化パラメータの最大値MaxQPと最小値MinQPを設定するものを示したが、量子化パラメータ変動幅決定部31が、量子化パラメータの変動幅を設定するとともに、量子化パラメータの最大値MaxQPと最小値MinQPを設定し、量子化制御部32が、量子化パラメータの差分dQPが上記変動幅に収まる範囲内であって、最大値MaxQPと最小値MinQPの範囲に収まる符号化ブロックの量子化パラメータQPを決定するようにしてもよい。
この場合、エントロピー符号化部24は、量子化パラメータ変動幅決定部31により設定された量子化パラメータの変動幅、最大値MaxQP及び最小値MinQPをピクチャあるいはスライス単位にヘッダに多重して送信する(変動幅、最大値MaxQP及び最小値MinQPはエントロピー符号化してもよいし、エントロピー符号化しなくてもよい)。
このように、量子化パラメータの差分dQPの変動幅を制限し、かつ、量子化パラメータQPの値自体を制限することで、さらに、量子化パラメータの差分dQPの符号化効率を向上させることができる。
例えば、図8に示すように、差分dQPの変動幅が“±2”で、1つ前のマクロブロックの量子化パラメータPreQPが量子化パラメータの最大値MaxQPより1だけ小さい場合、差分dQPの絶対値が小さい順に短い符号語を割り当てるように可変長符号を設計すれば、より少ないビット量で差分dQPを符号化することができる。
実施の形態3.
この実施の形態3では、イントラ符号化を行う符号化ブロックと、インター符号化を行う符号化ブロックとが混在する場合について説明する。
この実施の形態3でも、符号化ブロック毎に、量子化パラメータを変更することができるものとする。
上述したように、マクロブロックを4分割し、4分割されたブロックを更に4分割することを繰り返して符号化ブロックを生成する。マクロブロックを4分割するかどうか、4分割された各ブロックをどこまで4分割するかは任意である。4分割しない最下層のブロックを符号化ブロックとする。
図9はこの発明の実施の形態3による画像符号化装置を示す構成図であり、図において、図1と同一符号は同一又は相当部分を示すので説明を省略する。
イントラ/インター判定部41は図1のイントラ/インター判定部15と同様に、イントラ予測部11により生成された予測画像と動き補償予測部13により生成された予測画像を比較して最適な予測画像を判定し、最適な予測画像を加算器21に出力するとともに、最適な予測画像を示す判定結果をスイッチ16、量子化制御部42及びエントロピー符号化部43に出力する処理を実施する。
量子化制御部42は送信バッファ25により蓄積されているビットストリームのバッファ量や、符号化ブロック毎の目標符号量や、実際に発生しているビットストリームの符号量などから、符号化ブロックの量子化パラメータQPを決定し、イントラ/インター判定部41から出力された判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば、量子化パラメータQPに対して量子化パラメータ変換用の変移値QP_offset(変移値QP_offsetは、例えば、符号化を行うレートなどに応じて予め決めている固定値、あるいは、送信バッファ25のバッファ量などに応じて適応的に変更される変動値であり、ピクチャあるいはスライス単位に画像復号装置側に伝送される)を加算する処理を実施する。
また、量子化制御部42はイントラ/インター判定部41から出力された判定結果が、動き補償予測部13により生成された予測画像が最適な予測画像である旨を示していれば、変移値加算していない符号化ブロックの量子化パラメータQPをインター用の量子化パラメータQP_interとして量子化部18に出力し、イントラ/インター判定部41から出力された判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば、変移値加算後の符号化ブロックの量子化パラメータをイントラ用の量子化パラメータQP_intraとして量子化部18に出力する。
また、量子化制御部42は量子化パラメータ変換用の変移値QP_offsetと変移値加算していない符号化ブロックの量子化パラメータQPをエントロピー符号化部43に出力する。
なお、量子化制御部42は量子化パラメータ決定手段を構成している。
エントロピー符号化部43は量子化部18により量子化された変換係数と、符号化制御部2の量子化制御部42から出力された量子化パラメータ変換用の変移値QP_offset、量子化制御部42から出力された符号化ブロックの量子化パラメータと符号化済みブロックの量子化パラメータとの差分dQP(符号化済みブロックが符号化ブロックの左側ブロックであるのか、上側ブロックであるのかを示すフラグを含む)、イントラ/インター判定部15から出力された判定結果と、最適な予測画像の生成に用いられた予測画像生成用情報(イントラ/インター判定部15から出力された判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば、イントラ予測部11により選択されたイントラ予測モード、動き補償予測部13により生成された予測画像が最適な予測画像である旨を示していれば、動き探索部12により算出された動きベクトル)とをエントロピー符号化してビットストリームを生成する処理を実施する。
ここでは、量子化パラメータ変換用の変移値QP_offsetもエントロピー符号化しているが、量子化パラメータ変換用の変移値QP_offsetはエントロピー符号化せずに、ビットストリームのヘッダに多重するようにしてもよい。
また、ここでは、符号化ブロックの量子化パラメータQPと符号化済みブロックの量子化パラメータとの差分dQPをエントロピー符号化しているが、符号化ブロックの量子化パラメータQPをエントロピー符号化するようにしてもよい。
なお、エントロピー符号化部43はエントロピー符号化手段を構成している。
図9の例では、画像符号化装置の構成要素であるイントラ予測部11、動き探索部12、動き補償予測部13、差分器14、イントラ/インター判定部41、スイッチ16、直交変換部17、量子化部18、逆量子化部19、逆直交変換部20、加算器21、デブロッキングフィルタ部22、フレームメモリ23、エントロピー符号化部43、送信バッファ25及び量子化制御部42のそれぞれが専用のハードウェア(例えば、CPUを実装している半導体集積回路、あるいは、ワンチップマイコンなど)で構成されているものを想定しているが、画像符号化装置の全部又は一部がコンピュータで構成されていてもよい。
画像符号化装置の全部又は一部がコンピュータで構成されている場合、イントラ予測部11、動き探索部12、動き補償予測部13、差分器14、イントラ/インター判定部41、スイッチ16、直交変換部17、量子化部18、逆量子化部19、逆直交変換部20、加算器21、デブロッキングフィルタ部22、フレームメモリ23、エントロピー符号化部43、送信バッファ25及び量子化制御部42の処理内容の全部又は一部を記述しているプログラムをコンピュータのメモリに格納し、当該コンピュータのCPUが当該メモリに格納されているプログラムを実行するようにすればよい。
図10はこの発明の実施の形態3による画像復号装置を示す構成図であり、図において、図3と同一符号は同一又は相当部分を示すので説明を省略する。
エントロピー復号部71は受信バッファ51から出力されたビットストリームの復号データに含まれている量子化パラメータ変換用の変移値QP_offset、符号化ブロックの量子化パラメータと符号化済みブロックの量子化パラメータとの差分dQP(符号化済みブロックが符号化ブロックの左側ブロックであるのか、上側ブロックであるのかを示すフラグを含む)、量子化部18により量子化された変換係数、イントラ/インター判定部41の判定結果及び予測画像生成用情報をエントロピー復号する。
また、エントロピー復号部71は量子化パラメータ変換用の変移値QP_offset、量子化パラメータの差分及びイントラ/インター判定部15の判定結果を逆量子化パラメータ生成部72に出力し、量子化部18により量子化された変換係数を逆量子化部54に出力し、イントラ/インター判定部41の判定結果をスイッチ58に出力する処理を実施する。
また、イントラ/インター判定部41の判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば、予測画像生成用情報であるイントラ予測モードをイントラ予測画像生成部56に出力し、イントラ/インター判定部41の判定結果が、動き補償予測部13により生成された予測画像が最適な予測画像である旨を示していれば、予測画像生成用情報である動きベクトルをインター予測画像生成部57に出力する処理を実施する。
なお、エントロピー復号部71はエントロピー復号手段を構成している。
逆量子化パラメータ生成部72はエントロピー復号部71から出力された量子化パラメータの差分dQPと、1つ前の符号化済みブロックにおける量子化パラメータ(この量子化パラメータは、逆量子化パラメータ生成部72が記憶している)とを加算することで、符号化ブロックの量子化パラメータQPを決定する処理を実施する。
また、逆量子化パラメータ生成部72はエントロピー復号部71から出力されたイントラ/インター判定部41の判定結果が、動き補償予測部13により生成された予測画像が最適な予測画像である旨を示していれば、符号化ブロックの量子化パラメータQPをインター用の量子化パラメータQP_interとして逆量子化部54に出力し、イントラ/インター判定部41の判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば、符号化ブロックの量子化パラメータQPに対してエントロピー復号部71から出力された量子化パラメータ変換用の変移値QP_offsetを加算し、変移値加算後の量子化パラメータをイントラ用の量子化パラメータQP_intraとして逆量子化部54に出力する処理を実施する。
なお、逆量子化パラメータ生成部72は量子化パラメータ決定手段を構成している。
図10の例では、画像復号装置の構成要素である受信バッファ51、エントロピー復号部71、逆量子化パラメータ生成部72、逆量子化部54、逆直交変換部55、イントラ予測画像生成部56、インター予測画像生成部57、スイッチ58、加算器59、デブロッキングフィルタ部60、フレームメモリ61及びスイッチ62のそれぞれが専用のハードウェア(例えば、CPUを実装している半導体集積回路、あるいは、ワンチップマイコンなど)で構成されているものを想定しているが、画像復号装置の全部又は一部がコンピュータで構成されていてもよい。
画像復号装置の全部又は一部がコンピュータで構成されている場合、エントロピー復号部71、逆量子化パラメータ生成部72、逆量子化部54、逆直交変換部55、イントラ予測画像生成部56、インター予測画像生成部57、スイッチ58、加算器59、デブロッキングフィルタ部60及びスイッチ62の処理内容の全部又は一部を記述しているプログラムをコンピュータのメモリに格納し、当該コンピュータのCPUが当該メモリに格納されているプログラムを実行するようにすればよい。
次に動作について説明する。
最初に、画像符号化装置の処理内容を説明する。主に、図1の画像符号化装置と異なる部分の処理内容を説明する。
図11はマクロブロック内の符号化ブロックをイントラブロックとして符号化を行う一例を示す説明図である。
図11において、太線で示しているマクロブロック(サイズは任意)内の符号化ブロックのうち、斜線が施されている符号化ブロックがイントラ符号化を行うブロック(イントラブロック)である。
一方、斜線が施されていない白色の符号化ブロックがインター符号化を行うブロック(インターブロック)である。
イントラ/インター判定部41は、図1のイントラ/インター判定部15と同様に、イントラ予測部11により生成された予測画像(イントラブロックの予測画像)と、動き補償予測部13により生成された予測画像(インターブロックの予測画像)とを比較して、最適な予測画像を判定し、最適な予測画像を加算器21に出力する。
また、イントラ/インター判定部41は、最適な予測画像がイントラブロックの予測画像であるのか、インターブロックの予測画像であるのかを示す判定結果をスイッチ16、量子化制御部42及びエントロピー符号化部43に出力する。
量子化制御部42は、図1の量子化制御部32と同様に、送信バッファ25により蓄積されているビットストリームのバッファ量や、符号化ブロック毎の目標符号量や、実際に発生しているビットストリームの符号量などから、符号化ブロックの量子化パラメータQPを決定し、その量子化パラメータQPをエントロピー符号化部43に出力する。
また、量子化制御部42は、イントラ/インター判定部41から判定結果を受けると、その判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば、下記の式(1)に示すように、符号化ブロックの量子化パラメータQPに対して量子化パラメータ変換用の変移値QP_offsetを加算し、変移値加算後の量子化パラメータをイントラ用の量子化パラメータQP_intraとして量子化部18に出力する。
QP_intra=QP+QP_offset (1)
ただし、イントラ用の量子化パラメータQP_intraが規格で決められている規定値を超える場合、イントラ用の量子化パラメータQP_intraとして、その規定値を量子化部18に出力する。
量子化制御部42は、イントラ/インター判定部41の判定結果が、動き補償予測部13により生成された予測画像が最適な予測画像である旨を示していれば、変移値を加算していない符号化ブロックの量子化パラメータQPをインター用の量子化パラメータQP_interとして量子化部18に出力する。
QP_inter=QP (2)
量子化部18は、イントラ予測部11により生成された予測画像が最適な予測画像であれば、量子化制御部42から出力されるイントラ用の量子化パラメータQP_intraを用いて、直交変換部17から出力された差分画像の変換係数を直交変換ブロック単位で量子化し、量子化後の変換係数をエントロピー符号化部43に出力する。
一方、動き補償予測部13により生成された予測画像が最適な予測画像であれば、量子化制御部42から出力されるインター用の量子化パラメータQP_interを用いて、直交変換部17から出力された差分画像の変換係数を直交変換ブロック単位で量子化し、量子化後の変換係数をエントロピー符号化部43に出力する。
エントロピー符号化部43は、符号化制御部2の量子化制御部42から出力された量子化パラメータ変換用の変移値QP_offsetと、量子化部18により量子化された変換係数と、量子化制御部42から出力された変移値加算していない符号化ブロックの量子化パラメータと符号化済みブロックの量子化パラメータとの差分dQP(符号化済みブロックが符号化ブロックの左側ブロックであるのか、上側ブロックであるのかを示すフラグを含む)と、イントラ/インター判定部41から出力された判定結果と、最適な予測画像の生成に用いられた予測画像生成用情報(イントラ/インター判定部41から出力された判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば、イントラ予測部11により選択されたイントラ予測モード、動き補償予測部13により生成された予測画像が最適な予測画像である旨を示していれば、動き探索部12により算出された動きベクトル)とをエントロピー符号化してビットストリームを生成し、そのビットストリームを送信バッファ25に格納する。
なお、量子化パラメータ変換用の変移値QP_offsetは、ピクチャあるいはスライス毎に伝送するものであるため、ピクチャヘッダあるいはスライスヘッダを送信するタイミングでのみエントロピー符号化される。
ここでは、量子化パラメータ変換用の変移値QP_offsetもエントロピー符号化しているが、量子化パラメータ変換用の変移値QP_offsetを送信するために必要なビット量は1フレーム当りではごく僅かであるため、エントロピー符号化せずに、ピクチャヘッダあるいはスライスヘッダに多重するようにしてもよい。
また、ここでは、符号化ブロックの量子化パラメータと符号化済みブロックの量子化パラメータとの差分dQPをエントロピー符号化しているが、符号化ブロックの量子化パラメータQPをエントロピー符号化するようにしてもよい。
次に、画像復号装置の処理内容を説明する。主に、図3の画像復号装置と異なる部分の処理内容を説明する。
エントロピー復号部71は、受信バッファ51に格納されているビットストリームをエントロピー復号すると、ビットストリームの復号データに含まれている量子化パラメータ変換用の変移値QP_offsetをエントロピー復号する。ただし、量子化パラメータ変換用の変移値QP_offsetは、上述したように、ピクチャあるいはスライス単位に送信されるので、ピクチャヘッダ又はスライスヘッダに多重されており、ピクチャあるいはスライス単位でエントロピー復号する。
エントロピー復号部71は、ビットストリームの復号データに含まれている量子化パラメータの差分dQP(符号化済みブロックが符号化ブロックの左側ブロックであるのか、上側ブロックであるのかを示すフラグを含む)、量子化部18により量子化された変換係数、イントラ/インター判定部41の判定結果及び予測画像生成用情報をエントロピー復号する。
なお、エントロピー復号部71は、量子化パラメータの差分dQPと量子化パラメータ変換用の変移値QP_offsetについては逆量子化パラメータ生成部72に出力し(変移値QP_offsetは、ピクチャあるいはスライス単位で送信されるので、ピクチャあるいはスライス単位で逆量子化パラメータ生成部72に出力する)、量子化部18により量子化された変換係数については逆量子化部54に出力し、イントラ/インター判定部41の判定結果についてはスイッチ58及び逆量子化パラメータ生成部72に出力する。
また、イントラ/インター判定部41の判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば、予測画像生成用情報であるイントラ予測モードをイントラ予測画像生成部56に出力し、イントラ/インター判定部41の判定結果が、動き補償予測部13により生成された予測画像が最適な予測画像である旨を示していれば、予測画像生成用情報である動きベクトルをインター予測画像生成部57に出力する。
逆量子化パラメータ生成部72は、エントロピー復号部71から量子化パラメータの差分dQPを受けると、その量子化パラメータの差分dQPと、1つ前の符号化済みブロックにおける量子化パラメータ(この量子化パラメータは、逆量子化パラメータ生成部72が記憶している)とを加算することで、符号化ブロックの量子化パラメータQPを決定する。
エントロピー復号部71から符号化ブロックの量子化パラメータQPを受ける場合には、量子化パラメータQPを決定する処理を実施しない。
逆量子化パラメータ生成部72は、エントロピー復号部71からイントラ/インター判定部41の判定結果を受けると、その判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば、図9の量子化制御部42と同様に、符号化ブロックの量子化パラメータQPに対して量子化パラメータ変換用の変移値QP_offsetを加算し(上記の式(1)を参照)、変移値加算後の量子化パラメータをイントラ用の量子化パラメータQP_intraとして逆量子化部54に出力する。
ただし、イントラ用の量子化パラメータQP_intraが規格で決められている規定値を超える場合、イントラ用の量子化パラメータQP_intraとして、その規定値を逆量子化部54に出力する。
逆量子化パラメータ生成部72は、イントラ/インター判定部41の判定結果が、動き補償予測部13により生成された予測画像が最適な予測画像である旨を示していれば、図9の量子化制御部42と同様に、変移値を加算していない符号化ブロックの量子化パラメータQPをインター用の量子化パラメータQP_interとして逆量子化部54に出力する。
逆量子化部54は、イントラ予測部11により生成された予測画像が最適な予測画像であれば、逆量子化パラメータ生成部72から出力されるイントラ用の量子化パラメータQP_intraを用いて、エントロピー復号部71から出力された変換係数を直交変換ブロック単位で逆量子化することで、図9の画像符号化装置における直交変換部17から出力された変換係数に相当する変換係数を逆直交変換部55に出力する。
一方、動き補償予測部13により生成された予測画像が最適な予測画像であれば、逆量子化パラメータ生成部72から出力されるインター用の量子化パラメータQP_interを用いて、エントロピー復号部71から出力された変換係数を直交変換ブロック単位で逆量子化することで、図9の画像符号化装置における直交変換部17から出力された変換係数に相当する変換係数を逆直交変換部55に出力する。
以上で明らかなように、この実施の形態3によれば、イントラ符号化を行う符号化ブロックと、インター符号化を行う符号化ブロックとが混在する場合において、符号化ブロックがイントラ符号化を行うブロックであっても、インター符号化を行うブロックであっても同じ量子化パラメータの差分dQPが復号側に送信されるものであるが、量子化パラメータ変換用の変移値QP_offsetがピクチャあるいはスライス単位に復号側に送信されることで、イントラ符号化を行う符号化ブロックについてはイントラ用の量子化パラメータQP_intraを用いて、量子化部18により量子化された変換係数を逆量子化することができ、インター符号化を行う符号化ブロックについてはインター用の量子化パラメータQP_interを用いて、量子化部18により量子化された変換係数を逆量子化することができる。
このため、送信するビット量をあまり増加させることなく、最適な画質を得ることが可能になる。
実施の形態4.
上記実施の形態3では、量子化制御部42が、イントラ/インター判定部41の判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば、符号化ブロックの量子化パラメータQPに対して量子化パラメータ変換用の変移値QP_offsetを加算することで、イントラ用の量子化パラメータQP_intraを生成するものを示したが、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示している場合、符号化ブロックの量子化パラメータQPとイントラ用の量子化パラメータQP_intraとの対応関係を示す変換テーブルを参照して、その符号化ブロックの量子化パラメータQPをイントラ用の量子化パラメータQP_intraに変換するようにしてもよい。
ただし、この実施の形態4では、画像符号化装置と画像復号装置が、同じ変換テーブルを記憶している必要がある。
具体的には、以下の通りである。
図12は符号化ブロックの量子化パラメータQPとイントラ用の量子化パラメータQP_intraとの対応関係を示す変換テーブルの一例を示す説明図である。
画像符号化装置の量子化制御部42は、上記実施の形態3と同様にして、符号化ブロックの量子化パラメータQPを決定すると、イントラ/インター判定部41の判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば、図12の変換テーブルを参照して、その符号化ブロックの量子化パラメータQPをイントラ用の量子化パラメータQP_intraに変換し、イントラ用の量子化パラメータQP_intraを量子化部18に出力する。
図12では、例えば、符号化ブロックの量子化パラメータQPが“11”であれば、イントラ用の量子化パラメータQP_intraを“10”に決定し、符号化ブロックの量子化パラメータQPが“28”であれば、イントラ用の量子化パラメータQP_intraを“25”に決定する。
量子化制御部42は、イントラ/インター判定部41の判定結果が、動き補償予測部13により生成された予測画像が最適な予測画像である旨を示していれば、その符号化ブロックの量子化パラメータQPをインター用の量子化パラメータQP_interとして量子化部18に出力する。
画像復号装置の逆量子化パラメータ生成部72は、エントロピー復号部71から出力されたイントラ/インター判定部41の判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示していれば、図12の変換テーブルを参照して、その符号化ブロックの量子化パラメータQPをイントラ用の量子化パラメータQP_intraに変換し、イントラ用の量子化パラメータQP_intraを逆量子化部54に出力する。
イントラ/インター判定部41の判定結果が、動き補償予測部13により生成された予測画像が最適な予測画像である旨を示していれば、符号化ブロックの量子化パラメータQPをインター用の量子化パラメータQP_interとして逆量子化部54に出力する。
以上で明らかなように、量子化制御部42及び逆量子化パラメータ生成部72が同一の変換テーブルを参照して、符号化ブロックの量子化パラメータQPをイントラ用の量子化パラメータQP_intraに変換するようにしても、上記実施の形態3と同様に、送信するビット量をあまり増加させることなく、最適な画質を得ることが可能になる。
この実施の形態4では、量子化制御部42及び逆量子化パラメータ生成部72が同一の変換テーブルを参照して、符号化ブロックの量子化パラメータQPをイントラ用の量子化パラメータQP_intraに変換するものを示したが、その変換テーブルが示している符号化ブロックの量子化パラメータQPとイントラ用の量子化パラメータQP_intraとの対応関係が更新される場合、エントロピー符号化部43が、対応関係の更新内容を示す情報をピクチャ単位又はフレーム単位にビットストリームのヘッダに多重するようにしてもよい。
例えば、図12の変換テーブルにおいて、符号化ブロックの量子化パラメータQPとイントラ用の量子化パラメータQP_intraとの対応関係をM個ずらす場合(図12では、例えば、符号化ブロックの量子化パラメータQPの“3”は、イントラ用の量子化パラメータQP_intraの“3”に対応し、符号化ブロックの量子化パラメータQPの“8”は、イントラ用の量子化パラメータQP_intraの“7”に対応しているが、符号化ブロックの量子化パラメータQPの“3”は、イントラ用の量子化パラメータQP_intraの“5”に対応し、符号化ブロックの量子化パラメータQPの“8”は、イントラ用の量子化パラメータQP_intraの“9”に対応するように変更する場合、M=2となる)、対応関係をM個ずらす旨を示すパラメータをピクチャ単位又はフレーム単位にビットストリームのヘッダに多重する。
逆量子化パラメータ生成部72は、エントロピー復号部71がビットストリームから対応関係の更新内容を示す情報を抽出すると、その情報にしたがって変換テーブルが示している量子化パラメータの対応関係を更新する。
例えば、対応関係をM個ずらす旨を示すパラメータがビットストリームに含まれている場合、符号化ブロックの量子化パラメータQPとイントラ用の量子化パラメータQP_intraとの対応関係をM個ずらすように変更する。
M=2であれば、図12の変換テーブルにおいて、例えば、符号化ブロックの量子化パラメータQPの“3”は、イントラ用の量子化パラメータQP_intraの“5”に対応し、符号化ブロックの量子化パラメータQPの“8”は、イントラ用の量子化パラメータQP_intraの“9”に対応するように変更する。
これにより、図12の変換テーブルを必要に応じて更新することができる。
この実施の形態4では、量子化制御部42及び逆量子化パラメータ生成部72が同一の変換テーブルを参照して、符号化ブロックの量子化パラメータQPをイントラ用の量子化パラメータQP_intraに変換するものを示したが、イントラ/インター判定部41の判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示している場合でも、符号化ブロックの量子化パラメータQPをイントラ用の量子化パラメータQP_intraに変換せずに、符号化ブロックの量子化パラメータQPをイントラ用の量子化パラメータQP_intraとして出力するようにしてもよい。
この場合、エントロピー符号化部43は、図12の変換テーブルを使用しない旨を示すフラグをピクチャ単位又はフレーム単位にビットストリームのヘッダに多重するようにする。
逆量子化パラメータ生成部72は、エントロピー復号部71がビットストリームから図12の変換テーブルを使用しない旨を示すフラグを抽出すると、イントラ/インター判定部41の判定結果が、イントラ予測部11により生成された予測画像が最適な予測画像である旨を示している場合でも、符号化ブロックの量子化パラメータQPをイントラ用の量子化パラメータQP_intraに変換せずに、符号化ブロックの量子化パラメータQPをイントラ用の量子化パラメータQP_intraとして出力するようにする。
これにより、変換テーブルが適用されない場合にも適用することができる。
上記実施の形態3,4の内容は、上記実施の形態1,2の内容に適用するようにしてもよい。
なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
1 符号化部、2 符号化制御部、11 イントラ予測部(差分画像生成手段)、12 動き探索部(差分画像生成手段)、13 動き補償予測部(差分画像生成手段)、14 差分器(差分画像生成手段)、15 イントラ/インター判定部、16 スイッチ、17 直交変換部(量子化手段)、18 量子化部(量子化手段)、19 逆量子化部、20 逆直交変換部、21 加算器、22 デブロッキングフィルタ部、23 フレームメモリ、24 エントロピー符号化部(エントロピー符号化手段)、25 送信バッファ、31 量子化パラメータ変動幅決定部(量子化パラメータ決定手段)、32 量子化制御部(量子化パラメータ決定手段)、41 イントラ/インター判定部、42 量子化制御部(量子化パラメータ決定手段)、43 エントロピー符号化部(エントロピー符号化手段)、51 受信バッファ、52 エントロピー復号部(エントロピー復号手段)、53 逆量子化パラメータ生成部(量子化パラメータ決定手段)、54 逆量子化部(逆量子化手段)、55 逆直交変換部(逆量子化手段)、56 イントラ予測画像生成部(予測画像生成手段)、57 インター予測画像生成部(予測画像生成手段)、58 スイッチ(予測画像生成手段)、59 加算器(復号画像生成手段)、60 デブロッキングフィルタ部、61 フレームメモリ、62 スイッチ、71 エントロピー復号部(エントロピー復号手段)、72 逆量子化パラメータ生成部(量子化パラメータ決定手段)。

Claims (16)

  1. 入力画像を構成している符号化ブロック毎に、当該符号化ブロックに対する予測処理を実施して予測画像を生成し、上記符号化ブロックと上記予測画像の差分画像を生成する差分画像生成手段と、予め量子化パラメータの変動幅を設定し、上記符号化ブロックと符号化済みブロックにおける量子化パラメータの差分が上記変動幅に収まる範囲内で、上記符号化ブロックの量子化パラメータを決定する量子化パラメータ決定手段と、上記差分画像生成手段により生成された差分画像を直交変換し、上記量子化パラメータ決定手段により決定された量子化パラメータを用いて、上記差分画像の変換係数を量子化する量子化手段と、上記量子化パラメータ決定手段により設定された量子化パラメータの変動幅、上記量子化手段により量子化された変換係数、上記差分画像生成手段により予測画像が生成される際に用いられた予測画像生成用情報及び上記符号化ブロックと上記符号化済みブロックにおける量子化パラメータの差分をエントロピー符号化してビットストリームを生成するエントロピー符号化手段とを備えた画像符号化装置。
  2. エントロピー符号化手段は、量子化パラメータ決定手段により設定された量子化パラメータの変動幅については、ピクチャ単位又はスライス単位にビットストリームのヘッダに多重することを特徴とする請求項1記載の画像符号化装置。
  3. エントロピー符号化手段は、量子化パラメータ決定手段により量子化パラメータの変動幅が設定されない場合、量子化パラメータの変動幅が設定されていない旨を示す情報をビットストリームに含めることを特徴とする請求項1記載の画像符号化装置。
  4. 入力画像を構成している符号化ブロック毎に、当該符号化ブロックに対する予測処理を実施して予測画像を生成し、上記符号化ブロックと上記予測画像の差分画像を生成する差分画像生成手段と、予め量子化パラメータの最大値と最小値を設定し、上記最大値と上記最小値の範囲に収まる上記符号化ブロックの量子化パラメータを決定する量子化パラメータ決定手段と、上記差分画像生成手段により生成された差分画像を直交変換し、上記量子化パラメータ決定手段により決定された量子化パラメータを用いて、上記差分画像の変換係数を量子化する量子化手段と、上記量子化パラメータ決定手段により設定された量子化パラメータの最大値と最小値、上記量子化手段により量子化された変換係数、上記差分画像生成手段により予測画像が生成される際に用いられた予測画像生成用情報及び上記量子化パラメータ決定手段により決定された量子化パラメータと符号化済みブロックの量子化パラメータとの差分をエントロピー符号化してビットストリームを生成するエントロピー符号化手段とを備えた画像符号化装置。
  5. エントロピー符号化手段は、量子化パラメータ決定手段により設定された量子化パラメータの最大値と最小値については、ピクチャ単位又はスライス単位にビットストリームのヘッダに多重することを特徴とする請求項4記載の画像符号化装置。
  6. エントロピー符号化手段は、量子化パラメータ決定手段により量子化パラメータの最大値と最小値が設定されない場合、量子化パラメータの最大値と最小値が設定されていない旨を示す情報をビットストリームに含めることを特徴とする請求項4記載の画像符号化装置。
  7. 量子化パラメータ決定手段は、予め量子化パラメータの変動幅を設定するほか、上記量子化パラメータの最大値と最小値を設定し、上記符号化ブロックの量子化パラメータと符号化済みブロックの量子化パラメータとの差分が上記変動幅に収まる範囲内であって、上記最大値と上記最小値の範囲に収まる上記符号化ブロックの量子化パラメータを決定し、
    エントロピー符号化手段は、上記量子化パラメータ決定手段により設定された量子化パラメータの変動幅、最大値及び最小値をエントロピー符号化してビットストリームを生成することを特徴とする請求項1記載の画像符号化装置。
  8. 差分画像生成手段が、入力画像を構成している符号化ブロック毎に、当該符号化ブロックに対する予測処理を実施して予測画像を生成し、上記符号化ブロックと上記予測画像の差分画像を生成する差分画像生成処理ステップと、量子化パラメータ決定手段が、予め量子化パラメータの変動幅を設定し、上記符号化ブロックと符号化済みブロックにおける量子化パラメータの差分が上記変動幅に収まる範囲内で、上記符号化ブロックの量子化パラメータを決定する量子化パラメータ決定処理ステップと、量子化手段が、上記差分画像生成処理ステップで生成された差分画像を直交変換し、上記量子化パラメータ決定処理ステップで決定された量子化パラメータを用いて、上記差分画像の変換係数を量子化する量子化処理ステップと、エントロピー符号化手段が、上記量子化パラメータ決定処理ステップで設定された量子化パラメータの変動幅、上記量子化処理ステップで量子化された変換係数、上記差分画像生成処理ステップで予測画像が生成される際に用いられた予測画像生成用情報及び上記符号化ブロックと上記符号化済みブロックにおける量子化パラメータの差分をエントロピー符号化してビットストリームを生成するエントロピー符号化処理ステップとを備えた画像符号化方法。
  9. 差分画像生成手段が、入力画像を構成している符号化ブロック毎に、当該符号化ブロックに対する予測処理を実施して予測画像を生成し、上記符号化ブロックと上記予測画像の差分画像を生成する差分画像生成処理ステップと、量子化パラメータ決定手段が、予め量子化パラメータの最大値と最小値を設定し、上記最大値と上記最小値の範囲に収まる上記符号化ブロックの量子化パラメータを決定する量子化パラメータ決定処理ステップと、量子化手段が、上記差分画像生成処理ステップで生成された差分画像を直交変換し、上記量子化パラメータ決定処理ステップで決定された量子化パラメータを用いて、上記差分画像の変換係数を量子化する量子化処理ステップと、エントロピー符号化手段が、上記量子化パラメータ決定処理ステップで設定された量子化パラメータの最大値と最小値、上記量子化処理ステップで量子化された変換係数、上記差分画像生成処理ステップで予測画像が生成される際に用いられた予測画像生成用情報及び上記量子化パラメータ決定処理ステップで決定された量子化パラメータと符号化済みブロックの量子化パラメータとの差分をエントロピー符号化してビットストリームを生成するエントロピー符号化処理ステップとを備えた画像符号化方法。
  10. ビットストリームから量子化パラメータの変動幅をエントロピー復号し、上記量子化パラメータの変動幅から符号化ブロックと符号化済みブロックにおける量子化パラメータの差分のビット長を特定して、上記ビットストリームから上記量子化パラメータの差分をエントロピー復号するとともに、上記ビットストリームから量子化された変換係数及び予測画像が生成される際に用いられた予測画像生成用情報をエントロピー復号するエントロピー復号手段と、上記エントロピー復号手段によりエントロピー復号された量子化パラメータの差分から符号化ブロックの量子化パラメータを決定する量子化パラメータ決定手段と、上記量子化パラメータ決定手段により決定された量子化パラメータを用いて、上記エントロピー復号手段によりエントロピー復号された変換係数を逆量子化し、逆量子化後の変換係数を逆直交変換する逆量子化手段と、上記エントロピー復号手段によりエントロピー復号された予測画像生成用情報を用いて、予測画像を生成する予測画像生成手段と、上記予測画像生成手段により生成された予測画像と上記逆量子化手段の逆直交変換結果である差分画像を加算して復号画像を生成する復号画像生成手段とを備えた画像復号装置。
  11. エントロピー復号手段は、量子化パラメータの変動幅が設定されていない旨を示す情報がビットストリームに含まれている場合、符号化ブロックと符号化済みブロックにおける量子化パラメータの差分のビット長が固定のビット長であると認識して、上記ビットストリームから上記量子化パラメータの差分をエントロピー復号することを特徴とする請求項10記載の画像復号装置。
  12. ビットストリームから量子化パラメータの最大値と最小値をエントロピー復号し、上記量子化パラメータの最大値と最小値から符号化ブロックと符号化済みブロックにおける量子化パラメータの差分のビット長を特定して、上記ビットストリームから上記量子化パラメータの差分をエントロピー復号するとともに、上記ビットストリームから量子化された変換係数及び予測画像が生成される際に用いられた予測画像生成用情報をエントロピー復号するエントロピー復号手段と、上記エントロピー復号手段によりエントロピー復号された量子化パラメータの差分から符号化ブロックの量子化パラメータを決定する量子化パラメータ決定手段と、上記量子化パラメータ決定手段により決定された量子化パラメータを用いて、上記エントロピー復号手段によりエントロピー復号された変換係数を逆量子化し、逆量子化後の変換係数を逆直交変換する逆量子化手段と、上記エントロピー復号手段によりエントロピー復号された予測画像生成用情報を用いて、予測画像を生成する予測画像生成手段と、上記予測画像生成手段により生成された予測画像と上記逆量子化手段の逆直交変換結果である差分画像を加算して復号画像を生成する復号画像生成手段とを備えた画像復号装置。
  13. エントロピー復号手段は、量子化パラメータの最大値と最小値が設定されていない旨を示す情報がビットストリームに含まれている場合、符号化ブロックと符号化済みブロックにおける量子化パラメータの差分のビット長が固定のビット長であると認識して、上記ビットストリームから上記量子化パラメータの差分をエントロピー復号することを特徴とする請求項12記載の画像復号装置。
  14. エントロピー復号手段は、量子化パラメータの変動幅のほかに、上記量子化パラメータの最大値と最小値がビットストリームに含まれている場合、上記ビットストリームから上記変動幅、上記最大値及び上記最小値をエントロピー復号し、上記変動幅、上記最大値及び上記最小値から符号化ブロックと符号化済みブロックにおける量子化パラメータの差分のビット長を特定することを特徴とする請求項10記載の画像復号装置。
  15. エントロピー復号手段が、ビットストリームから量子化パラメータの変動幅をエントロピー復号し、上記量子化パラメータの変動幅から符号化ブロックと符号化済みブロックにおける量子化パラメータの差分のビット長を特定して、上記ビットストリームから上記量子化パラメータの差分をエントロピー復号するとともに、上記ビットストリームから量子化された変換係数及び予測画像が生成される際に用いられた予測画像生成用情報をエントロピー復号するエントロピー復号処理ステップと、量子化パラメータ決定手段が、上記エントロピー復号処理ステップでエントロピー復号された量子化パラメータの差分から符号化ブロックの量子化パラメータを決定する量子化パラメータ決定処理ステップと、逆量子化手段が、上記量子化パラメータ決定処理ステップで決定された量子化パラメータを用いて、上記エントロピー復号処理ステップでエントロピー復号された変換係数を逆量子化し、逆量子化後の変換係数を逆直交変換する逆量子化処理ステップと、予測画像生成手段が、上記エントロピー復号処理ステップでエントロピー復号された予測画像生成用情報を用いて、予測画像を生成する予測画像生成処理ステップと、復号画像生成手段が、上記予測画像生成処理ステップで生成された予測画像と上記逆量子化処理ステップでの逆直交変換結果である差分画像を加算して復号画像を生成する復号画像生成処理ステップとを備えた画像復号方法。
  16. エントロピー復号手段が、ビットストリームから量子化パラメータの最大値と最小値をエントロピー復号し、上記量子化パラメータの最大値と最小値から符号化ブロックと符号化済みブロックにおける量子化パラメータの差分のビット長を特定して、上記ビットストリームから上記量子化パラメータの差分をエントロピー復号するとともに、上記ビットストリームから量子化された変換係数及び予測画像が生成される際に用いられた予測画像生成用情報をエントロピー復号するエントロピー復号処理ステップと、量子化パラメータ決定手段が、上記エントロピー復号処理ステップでエントロピー復号された量子化パラメータの差分から符号化ブロックの量子化パラメータを決定する量子化パラメータ決定処理ステップと、逆量子化手段が、上記量子化パラメータ決定処理ステップで決定された量子化パラメータを用いて、上記エントロピー復号処理ステップでエントロピー復号された変換係数を逆量子化し、逆量子化後の変換係数を逆直交変換する逆量子化処理ステップと、予測画像生成手段が、上記エントロピー復号処理ステップでエントロピー復号された予測画像生成用情報を用いて、予測画像を生成する予測画像生成処理ステップと、復号画像生成手段が、上記予測画像生成処理ステップで生成された予測画像と上記逆量子化処理ステップでの逆直交変換結果である差分画像を加算して復号画像を生成する復号画像生成処理ステップとを備えた画像復号方法。
JP2013522704A 2011-06-30 2012-05-30 画像符号化装置、画像復号装置、画像符号化方法及び画像復号方法 Expired - Fee Related JP5389298B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013522704A JP5389298B2 (ja) 2011-06-30 2012-05-30 画像符号化装置、画像復号装置、画像符号化方法及び画像復号方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011145610 2011-06-30
JP2011145610 2011-06-30
PCT/JP2012/003556 WO2013001717A1 (ja) 2011-06-30 2012-05-30 画像符号化装置、画像復号装置、画像符号化方法及び画像復号方法
JP2013522704A JP5389298B2 (ja) 2011-06-30 2012-05-30 画像符号化装置、画像復号装置、画像符号化方法及び画像復号方法

Publications (2)

Publication Number Publication Date
JP5389298B2 true JP5389298B2 (ja) 2014-01-15
JPWO2013001717A1 JPWO2013001717A1 (ja) 2015-02-23

Family

ID=47423649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013522704A Expired - Fee Related JP5389298B2 (ja) 2011-06-30 2012-05-30 画像符号化装置、画像復号装置、画像符号化方法及び画像復号方法

Country Status (2)

Country Link
JP (1) JP5389298B2 (ja)
WO (1) WO2013001717A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6813991B2 (ja) * 2016-08-25 2021-01-13 キヤノン株式会社 画像符号化装置及びその制御方法及びプログラム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567646B2 (ja) * 2006-09-25 2010-10-20 シャープ株式会社 動画像・音声再生携帯端末、及び、動画像・音声配信端末、及び、システム
US8542730B2 (en) * 2008-02-22 2013-09-24 Qualcomm, Incorporated Fast macroblock delta QP decision
JP2011024066A (ja) * 2009-07-17 2011-02-03 Sony Corp 画像処理装置および方法
WO2011064926A1 (ja) * 2009-11-30 2011-06-03 三菱電機株式会社 画像符号化装置、画像復号装置、画像符号化方法及び画像復号方法

Also Published As

Publication number Publication date
JPWO2013001717A1 (ja) 2015-02-23
WO2013001717A1 (ja) 2013-01-03

Similar Documents

Publication Publication Date Title
KR101106086B1 (ko) 부호화 장치 및 부호화 방법
JP4927207B2 (ja) 符号化方法、復号化方法及び装置
WO2018061588A1 (ja) 画像符号化装置、画像符号化方法、及び画像符号化プログラム、並びに、画像復号装置、画像復号方法、及び画像復号プログラム
JP4146444B2 (ja) 動画像符号化の方法及び装置
JP5413191B2 (ja) 動画像符号化方法及び装置並びに動画像復号装置
KR101538362B1 (ko) 영상 복호 장치, 영상 복호 방법 및 영상 복호 프로그램을 저장한 컴퓨터 판독 가능한 저장 매체
US8090025B2 (en) Moving-picture coding apparatus, method and program, and moving-picture decoding apparatus, method and program
JP2012526426A (ja) スケーラブルビデオ符号化方法、符号器及びコンピュータプログラム
CA2909242A1 (en) Video decoding device and method in which the granularity of quantization is controlled
WO2010146772A1 (ja) 画像符号化装置、画像復号装置、画像符号化方法及び画像復号方法
KR20120028843A (ko) 계층적 영상 부호화/복호화 방법 및 장치
US20170041606A1 (en) Video encoding device and video encoding method
JP2007266749A (ja) 符号化方法
JP2011166592A (ja) 画像符号化装置及び画像復号装置
KR101086724B1 (ko) 영상의 복잡도를 이용한 h.264/avc 부호화기의 양자화 파라미터 결정 방법 및 이를 구현하는 h.264/avc 부호화기
JP5648709B2 (ja) 画像変換装置と方法及びプログラム
KR20110090841A (ko) 가중치 예측을 이용한 영상 부호화/복호화 장치 및 방법
JP6528635B2 (ja) 動画像符号化装置、動画像符号化方法及び動画像符号化用コンピュータプログラム
WO2011148887A1 (ja) 動画像配信システム、動画像送信装置、動画像配信方法および動画像配信プログラム
KR101911587B1 (ko) 적응적인 인트라 예측을 이용한 영상 부호화/복호화 장치 및 방법
JP2007266750A (ja) 符号化方法
JP4768779B2 (ja) 動画像符号化/復号化の方法及び装置
JP5389298B2 (ja) 画像符号化装置、画像復号装置、画像符号化方法及び画像復号方法
KR102020953B1 (ko) 카메라 영상의 복호화 정보 기반 영상 재 부호화 방법 및 이를 이용한 영상 재부호화 시스템
KR101893946B1 (ko) 트랜스코딩 방법 및 장치

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees