JP5388809B2 - Hydrostatic gas bearing spindle - Google Patents

Hydrostatic gas bearing spindle Download PDF

Info

Publication number
JP5388809B2
JP5388809B2 JP2009259803A JP2009259803A JP5388809B2 JP 5388809 B2 JP5388809 B2 JP 5388809B2 JP 2009259803 A JP2009259803 A JP 2009259803A JP 2009259803 A JP2009259803 A JP 2009259803A JP 5388809 B2 JP5388809 B2 JP 5388809B2
Authority
JP
Japan
Prior art keywords
main shaft
motor
gas bearing
main
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009259803A
Other languages
Japanese (ja)
Other versions
JP2011106502A (en
Inventor
照悦 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2009259803A priority Critical patent/JP5388809B2/en
Publication of JP2011106502A publication Critical patent/JP2011106502A/en
Application granted granted Critical
Publication of JP5388809B2 publication Critical patent/JP5388809B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

この発明は、磁気ディスクや光ディスク等の製造工程,検査工程等で使用される高精度な静圧気体軸受スピンドルに関する。   The present invention relates to a high-precision hydrostatic gas bearing spindle used in the manufacturing process, inspection process and the like of magnetic disks and optical disks.

静圧気体軸受スピンドルは、主軸を静圧気体軸受により非接触で支持するため、回転精度が高く、精密加工機や精密検査装置のワークスピンドルまたは工具スピンドルなどに使用される。このようなスピンドルでは外乱の侵入を防ぎ制御性を高めるために、ベルト等を使用せず主軸にモータのロータを直接取り付けて駆動する場合が多い。
特に、磁気ディスクや光ディスク等の製造工程,検査工程等の用途ではディスクの記録密度を向上させるため、データ信号を高密度に書き込む必要があり、ディスクと記録ユニットまたは再生ヘッド等との高い位置決め精度や、スピンドルの高い回転精度が要求される。このような用途に使用される静圧気体軸受スピンドルでは、モータロータに永久磁石を使用した同期型サーボモータとロータリーエンコーダを主軸に直接取り付けて、フィードバック制御を行うことが多い。例えば、上記同期型サーボモータとして、コア付きサーボモータとコアレスサーボモータを使用した静圧気体軸受スピンドルが知られている(特許文献1)。
The hydrostatic gas bearing spindle supports the main shaft in a non-contact manner by the hydrostatic gas bearing, and therefore has high rotational accuracy and is used for a work spindle or a tool spindle of a precision processing machine or a precision inspection apparatus. In such a spindle, in order to prevent intrusion of disturbance and improve controllability, the motor rotor is often directly attached to the main shaft without using a belt or the like.
Especially in applications such as manufacturing and inspection processes for magnetic disks and optical disks, it is necessary to write data signals at high density in order to improve the recording density of the disk, and high positioning accuracy between the disk and the recording unit or reproducing head, etc. In addition, high rotational accuracy of the spindle is required. In a static pressure gas bearing spindle used for such applications, feedback control is often performed by directly attaching a synchronous servo motor using a permanent magnet to a motor rotor and a rotary encoder to a main shaft. For example, as the synchronous servo motor, hydrostatic gas bearing spindle using servo motors and coreless servo motor with cores are known (Patent Document 1).

特開2006−84279号公報JP 2006-84279 A

上記静圧気体軸受スピンドルを用いたディスク原盤製造装置においては、スピンドルの主軸上端に取り付けた回転テーブル上にディスク原盤を搭載する。そして、このディス原盤を回転させた状態で、原盤表面に塗布されたレジストに、収束された電子ビームまたは集光されたレーザービームを照射しつつ、回転テーブルの主面に平行に前記ビームを相対移動させることで、記録情報をディスク原盤上に露光または描画する。   In the disk master manufacturing apparatus using the static pressure gas bearing spindle, the disk master is mounted on a rotary table attached to the spindle main end. Then, with the disc master rotated, the resist applied to the master surface is irradiated with a converged electron beam or a focused laser beam, and the beam is relatively parallel to the main surface of the rotary table. By moving, the recorded information is exposed or drawn on the disc master.

しかし、このようなディスク原盤製造装置においては、スピンドルのモータ等で発生した熱が主軸を通じてディスク原盤に伝わると、上記レジストの反応速度の不安定や反応むらの原因となる。また、熱によって主軸が膨張すると、上記ビームの照射部と原盤表面との間に相対的な位置変化が発生する。その結果、高精度な情報の記録が阻害される。
このような理由から、上記したディスク原盤製造装置に使用される静圧気体軸受スピンドルには、高い回転精度に加えて、熱の発生や熱の伝達を低減することが求められている。
However, in such a disk master manufacturing apparatus, when the heat generated by the spindle motor or the like is transmitted to the disk master through the main shaft, the reaction speed of the resist becomes unstable and uneven reaction occurs. Further, when the main shaft expands due to heat, a relative position change occurs between the beam irradiation portion and the master surface. As a result, recording of highly accurate information is hindered.
For this reason, the static pressure gas bearing spindle used in the disk master manufacturing apparatus described above is required to reduce heat generation and heat transfer in addition to high rotational accuracy.

この発明の目的は、熱の発生や熱の伝達を効果的に低減できる静圧気体軸受スピンドルを提供することである。   An object of the present invention is to provide a hydrostatic gas bearing spindle capable of effectively reducing heat generation and heat transfer.

この発明の第1の構成にかかる静圧気体軸受スピンドルは、主軸を回転自在に支持する静圧気体軸受と、前記主軸にモータロータを固定してなり主軸を回転駆動するモータとを備え、前記主軸の一端部を被回転体を取り付けるための被回転体設置部とした静圧気体軸受スピンドルにおいて、前記主軸の被回転体設置部の材料として、前記主軸の前記被回転体設置部を除く主軸本体部よりも熱伝導率の低いセラミックスを用いたことを特徴とする。この場合のセラミックスとしては、セラミックスの中でも熱伝導率の低い材質が好ましく、例えばジルコニアセラミックスが好適である。
この構成によると、被回転体として振れ精度測定装置のターゲット部材や回転テーブルが取り付けられる主軸の被回転体設置部の材料として、主軸の被回転体設置部を除く主軸本体部よりも熱伝導率の低いセラミックスを用いているので、主軸側で発生する熱が被回転体設置部を介して被回転体に伝導するのを効果的に低減できる。主軸の被回転体設置部のみを熱伝導率の低いセラミックスとするため、主軸本体部の材質は、金属材料など、加工性、コスト、その他に主軸として要求される各種の要求に応じて自由に選定することができる。
ジルコニアセラミックスは、セラミックスの中でも熱伝導率が低く、主軸側で発生する熱が被回転体に伝導することをより効果的に低減することができる。ジルコニアセラミックスは、この他に高強度、耐食性等の機能を有する点からも、被回転体設置部の材料として優れる。
この静圧気体軸受スピンドルを例えばディスク原盤製造装置に用いる場合、前記被回転体設置部にディスク原盤を搭載する回転テーブルを被回転体として取り付けるが、主軸で発生する熱がディス原盤に伝達されるのを低減できるので、熱に起因するレジストの反応速度の不安定や反応むら、主軸の熱膨張に起因するビームの照射部と原盤表面との間の相対的位置変化を抑え、高精度な情報の記録が可能となる。
A hydrostatic gas bearing spindle according to a first configuration of the present invention includes a hydrostatic gas bearing that rotatably supports a main shaft, and a motor that rotates a main shaft by fixing a motor rotor to the main shaft. A hydrostatic gas bearing spindle in which one end portion of the main shaft is a rotating body installing portion for attaching the rotating body, and a main body of the spindle excluding the rotating body setting portion of the main shaft as a material of the rotating body setting portion of the main shaft It is characterized by using ceramics having a lower thermal conductivity than the part. As the ceramic in this case, a material having low thermal conductivity is preferable among ceramics, and for example, zirconia ceramics is preferable.
According to this configuration, as the material of the rotating body installation part of the main shaft to which the target member of the runout accuracy measuring device or the rotary table is attached as the rotated body, the thermal conductivity is higher than that of the main body of the spindle excluding the rotating body installation part of the main shaft. Therefore, it is possible to effectively reduce the heat generated on the main shaft side from being conducted to the rotated body through the rotated body installation portion. Since only the rotating body installation part of the spindle is made of ceramics with low thermal conductivity, the material of the spindle body can be freely selected according to various requirements required for the spindle, such as metal materials, workability, cost, etc. Can be selected.
Zirconia ceramics have low thermal conductivity among ceramics, and can more effectively reduce the heat generated on the main shaft side from being conducted to the rotating body. In addition, zirconia ceramics is excellent as a material for the rotating body installation portion because it has functions such as high strength and corrosion resistance.
When this static pressure gas bearing spindle is used in, for example, a disk master manufacturing apparatus, a rotary table on which the disk master is mounted is attached to the rotating body installation portion as a rotated body, but heat generated by the main shaft is transmitted to the disk master. This reduces the relative position change between the irradiated part of the beam and the master surface due to thermal expansion of the spindle, and highly accurate information. Can be recorded.

記主軸の前記被回転体設置部を除く主軸本体部が金属製であり、被回転体設置部の中心に軸方向に貫通する貫通孔を設け、前記主軸本体部と前記被回転体設置部に取り付けられる金属製被回転体とを前記貫通孔に配線した導電線で電気的に接続したものである。
この静圧気体軸受スピンドルを用いたディスク原盤製造装置では、主軸の回転振れ精度を測定する振れ精度測定装置による測定結果と、ロータリエンコーダによる主軸の回転位置検出結果とを、回転テーブル上のディスク原盤にビームを照射するビーム照射部の回転精度演算装置に取り込み、ディスク原盤を高精度に露光できるように、露光時にディスク原盤表面上の電子ビーム収束スポット位置を制御修正する。あるいは、ビーム収束スポット位置を制御修正せずに、精度保証等のために、回転精度だけを測定する場合もある。これらの場合には、振れ精度測定装置のターゲット部材が主軸の被回転体設置部に取り付けられ、また通常測定精度や取り付けの容易さの点から、振れ精度測定装置として静電容量式の変位センサーが使用される。
この静電容量式変位センサーによって測定する場合には、その測定原理上、ターゲット部材における交流電流成分のアースを取る必要があり、ターゲット部材とグラウンド間を直接接地するか、ターゲット部材とグラウンド間に所要の面積において微小なギャップを介して対峙する部分を設け、静電容量の大きなコンデンサー部を形成してアースを取る。
この静圧気体軸受スピンドルでは、主軸の被回転体設置部の材料として被回転体設置部を除く主軸本体部よりも熱伝導率の低いセラミックスを用いているものの、上記構成のアース経路により、振れ精度測定装置のターゲット部材のアースを確実に取ることができる。
Before SL is made of metal the spindle body portion excluding the driven rotating body installation portion of the spindle, a through hole penetrating in the axial direction around the driven rotating body installation section, wherein the main shaft main body and the driven rotating body installation section Are electrically connected to a metal rotating body attached to the through hole by a conductive wire wired in the through hole .
In the disk master production apparatus using this hydrostatic gas bearing spindle, the measurement result by the runout accuracy measuring device that measures the rotational runout precision of the spindle and the rotation position detection result of the spindle by the rotary encoder are used as the disk master on the rotary table. The position of the electron beam converging spot on the surface of the disk master is controlled and corrected so that the disk master can be exposed with high precision so that the disk master can be exposed with high precision. Alternatively, there is a case where only the rotational accuracy is measured for accuracy assurance or the like without controlling and correcting the beam convergence spot position. In these cases, the target member of the shake accuracy measuring device is attached to the rotating body installation portion of the main shaft, and the capacitance type displacement sensor is used as the shake accuracy measuring device in terms of normal measurement accuracy and ease of installation. Is used.
When measuring with this capacitance type displacement sensor, it is necessary to ground the AC current component in the target member due to the measurement principle. Either ground directly between the target member and ground, or between the target member and ground. In a required area, a portion facing each other through a minute gap is provided, and a capacitor portion having a large capacitance is formed and grounded.
In this hydrostatic gas bearing spindle, although ceramics having a lower thermal conductivity than the main body of the spindle excluding the rotating body installation part is used as the material of the rotating body installation part of the main shaft, the vibration is caused by the ground path having the above configuration. The target member of the accuracy measuring device can be reliably grounded.

この発明における他の構成にかかる静圧気体軸受スピンドルは、前記第1の構成において、前記主軸の前記被回転体設置部を除く主軸本体部の材料がアルミナセラミックスであり、主軸の被回転体設置部および前記主軸本体部の中心に互いに連通し軸方向に貫通する貫通孔を設けると共に、主軸の被回転体設置部と軸方向反対側の端部に前記モータの金属製回転軸を前記貫通孔と同軸に設け、このモータ回転軸と前記被回転体設置部に取り付けられる金属製被回転体とを前記貫通孔に配線した導電線で電気的に接続したことを特徴とする。
この構成の場合、主軸の被回転体設置部の材料としてジルコニアセラミックスを、主軸本体部の材料として金属に比べて熱膨張係数の小さいアルミナセラミックスを用いているので、主軸の被回転体設置部と主軸本体部との接合部で、熱膨張係数の差に起因して生じる熱変形を防止できる。また、主軸の被回転体設置部の材料としてジルコニアセラミックスを、主軸本体部の材料としてアルミナセラミックスを用いていても、この被回転体設置部に取り付けられるターゲット部材などの金属製被回転体が、前記貫通孔に配線した導電線でモータ回転軸に電気低的に接続されるので、被回転体を外部に容易にアースできる。
Such hydrostatic gas bearing spindle to other configurations in this inventions, Oite the first configuration, the material of the main shaft body portion, except for the driven rotating body installation section of the main shaft is alumina ceramics, the main shaft A through-hole that communicates with each other in the axial direction is provided at the center of the rotating body installation portion and the main spindle main body, and the metal rotation shaft of the motor is provided at the end of the main shaft opposite to the rotated body installation portion. It is provided coaxially with the through hole, and the motor rotating shaft and a metal rotating body attached to the rotating body installation portion are electrically connected by a conductive wire wired in the through hole .
In the case of this configuration, zirconia ceramics is used as the material of the rotating body installation portion of the main shaft, and alumina ceramics having a smaller coefficient of thermal expansion than metal is used as the material of the main body of the main shaft. Thermal deformation caused by the difference in thermal expansion coefficient can be prevented at the joint with the main spindle body. Further, even if zirconia ceramics is used as the material of the rotating body installation portion of the main shaft and alumina ceramics is used as the material of the main body of the main shaft, a metal rotating body such as a target member attached to the rotating body installation portion is Since the conductive wire wired in the through hole is electrically connected to the motor rotating shaft, the rotating body can be easily grounded to the outside.

この発明におけるさらに他の構成にかかる静圧気体軸受スピンドルは、前記第1の構成において、前記主軸の前記被回転体設置部を除く主軸本体部の材料がアルミナセラミックスであり、主軸の被回転体設置部および前記主軸本体部の中心に互いに連通し軸方向に貫通する貫通孔を設けると共に、主軸の被回転体設置部と軸方向反対側の端部に前記モータの金属製回転軸を前記貫通孔と同軸に設け、主軸本体部の貫通孔の内周面およびモータ回転軸に接する端面に導電性のメッキ層を形成し、このメッキ層と前記被回転体設置部に取り付けられる金属製被回転体とを被回転体設置部の貫通孔に配線した導電線で電気的に接続したことを特徴とする。
この構成の場合、主軸の被回転体設置部の材料としてジルコニアセラミックスを、主軸本体部の材料としてアルミナセラミックスを用いていても、この被回転体設置部に取り付けられるターゲット部材などの金属製被回転体が、主軸の被回転体設置部の貫通孔に配線した導電線、主軸本体部の貫通孔内周面およびモータ回転軸に接する端面に形成した導電性メッキ層を介してモータ回転軸に電気的に接続されるので、被回転体を外部に容易にアースできる。
Hydrostatic gas bearing spindle according to still another configuration of this inventions is Oite the first configuration, the material of the main shaft body portion, except for the driven rotating body installation section of the main shaft is alumina ceramics, the main shaft A through-hole that communicates with each other in the axial direction is provided at the center of the rotating body installation portion and the main spindle main body, and the metal rotating shaft of the motor is disposed at the end of the main shaft opposite to the rotating body installation portion. Is formed coaxially with the through-hole, and a conductive plating layer is formed on the inner peripheral surface of the through-hole of the main shaft main body portion and the end surface in contact with the motor rotation shaft, and the metal that is attached to the plating layer and the rotating body installation portion The rotating body is electrically connected by a conductive wire wired in a through hole of the rotating body installation portion .
In the case of this configuration, even if zirconia ceramics is used as the material for the rotating body installation portion of the main shaft and alumina ceramics is used as the material for the main body of the main shaft, the metal rotation of the target member or the like attached to the rotating body installation portion The body is electrically connected to the motor rotating shaft through conductive wires wired in the through hole of the rotating body installation portion of the main shaft, the inner peripheral surface of the through hole of the main shaft main body portion and the end surface contacting the motor rotating shaft. Therefore, the rotated body can be easily grounded to the outside.

この発明において、前記モータの金属製回転軸に導電性材料からなる円板を固定すると共に、この円板の表面に微小隙間を介して対向する平面を有する導電性アース部材を、静圧気体軸受スピンドルのハウジングに固定された導電性保持部材で保持しても良い。
この構成の場合、円板と導電性アース部材間の微小隙間で形成されるコンデンサーの作用によって、交流電流の成分が、モータ回転軸から円板、導電性アース部材、導電性保持部材を介してハウジングに電気的に接続 されるので、主軸の被回転体設置部に取り付けられるターゲット部材などの金属製被回転体を確実に外部にアースできる。
In the present invention, a disk made of a conductive material is fixed to the metal rotating shaft of the motor, and a conductive grounding member having a flat surface facing the surface of the disk through a minute gap is formed as a static pressure gas bearing. You may hold | maintain with the electroconductive holding member fixed to the housing of the spindle.
In this configuration, an alternating current component is passed from the motor rotating shaft through the disk, the conductive grounding member, and the conductive holding member by the action of the capacitor formed by the minute gap between the disk and the conductive grounding member. Since it is electrically connected to the housing, a metal rotating body such as a target member attached to the rotating body installation portion of the main shaft can be reliably grounded to the outside.

この発明において、前記モータの金属製回転軸に導電性材料からなる円板を固定すると共に、この円板の表面に接触する導電性繊維状部材を有する導電性アース部材を、静圧気体軸受スピンドルのハウジングに固定された導電性保持部材で保持しても良い。前記導電性繊維状部材の繊維状とは、単に繊維のように細いだけでなく、その多数の繊維が空間を介して存在する形態を言う。
この構成の場合、円板と導電性アース部材とが導電性繊維状部材を介して緩く接触するので、放電によらず両部材間を通電でき、主軸の被回転体設置部に取り付けられるターゲット部材などの金属製被回転体を確実に外部にアースできる。また、導電性繊維状部材の存在が主軸の回転を阻害することもない。
According to the present invention, a conductive earth member having a conductive fibrous member fixed to a disk made of a conductive material on the metal rotating shaft of the motor and having a conductive fibrous member in contact with the surface of the disk is provided as a static pressure gas bearing spindle. It may be held by a conductive holding member fixed to the housing. The fibrous form of the conductive fibrous member refers to a form in which a large number of fibers exist not only as thin as fibers but also through spaces.
In this configuration, since the disk and the conductive ground member are loosely contacted via the conductive fibrous member, the target member can be energized between the two members regardless of discharge and attached to the rotating body installation portion of the main shaft. The metal rotating body such as can be reliably grounded to the outside. Further, the presence of the conductive fibrous member does not hinder the rotation of the main shaft.

参考提案例の構成にかかる静圧気体軸受スピンドルは、主軸を回転自在に支持する静圧気体軸受と、前記主軸を回転駆動するコア付きモータとを備える静圧気体軸受スピンドルにおいて、前記コア付きモータが、前記主軸の一端部に固定したモータロータと、このモータロータの外周側に配置されモータロータと所定の隙間を介して対峙するモータコアと、このモータコアに巻回された励磁コイルと、静圧気体軸受スピンドルのハウジングに設けられ前記モータロータ、モータコアおよび励磁コイルを覆い、かつ前記モータコアを保持するモータケースとを有し、前記モータケースの壁に前記モータコアの周囲を囲む冷却水通路と、この冷却水通路に外部から冷却水を供給する給水口と、冷却水通路の冷却水を外部に排水する排水口とを設けると共に、外部から導いた圧縮空気を低温の冷気に変換する低温圧縮空気発生装置と、前記モータケースに開口し前記低温圧縮空気発生装置で発生した冷気を前記励磁コイルに向けてモータケース内に流入させる冷気給気口と、前記モータケースに開口し流入した前記冷気を前記励磁コイルを経てモータケース外に排気させる冷気排気口とを設けたことを特徴とする。
この構成によると、モータケースに、モータコアの周囲を囲む冷却水通路を設け、この冷却水通路に外部から冷却水を供給するようにしているので、モータケース、モータコア、および励磁コイルの冷却が可能となり、コア付きモータでの発熱を低減できる。また、超低温空気発生器で発生した冷気を励磁コイルに向けて流すようにしているので、コア付きモータでの発熱をさらに低減できる。このように、コア付きモータでの発熱を低減することにより、主軸の熱膨張を微小化できる。この静圧気体軸受スピンドルが用いられるディスク原盤製造装置では、熱によって主軸が熱膨張すると、ビーム照射部とディスク原盤表面との相対的な位置変化が発生し、高精度な情報の記録が阻害されるが、上記したようにコア付きモータでの発熱を低減できることから、熱に起因する情報記録の精度低下を防止することができる。
The static pressure gas bearing spindle according to the configuration of the reference proposal example is a static pressure gas bearing spindle including a static pressure gas bearing that rotatably supports a main shaft and a motor with a core that rotationally drives the main shaft. A motor rotor fixed to one end of the main shaft, a motor core disposed on the outer periphery of the motor rotor and facing the motor rotor via a predetermined gap, an excitation coil wound around the motor core, and a hydrostatic gas bearing spindle A motor case that covers the motor rotor, the motor core, and the exciting coil and that holds the motor core, a cooling water passage that surrounds the periphery of the motor core on the wall of the motor case, and the cooling water passage A water supply port for supplying cooling water from the outside and a drain port for draining the cooling water in the cooling water passage to the outside are provided. In addition, a low-temperature compressed air generator that converts compressed air introduced from the outside into low-temperature cold air, and the cold air that opens in the motor case and that is generated by the low-temperature compressed air generator flows into the motor case toward the excitation coil. And a cool air exhaust port for exhausting the cool air that has opened and flowed into the motor case to the outside of the motor case through the excitation coil.
According to this configuration, the motor case is provided with a cooling water passage that surrounds the periphery of the motor core, and cooling water is supplied to the cooling water passage from the outside, so that the motor case, the motor core, and the excitation coil can be cooled. Thus, heat generation in the cored motor can be reduced. Further, since the cool air generated by the ultra-low temperature air generator is caused to flow toward the exciting coil, the heat generation in the cored motor can be further reduced. Thus, the thermal expansion of the spindle can be miniaturized by reducing the heat generated by the cored motor. In a disk master production apparatus using this hydrostatic gas bearing spindle, when the main shaft is thermally expanded due to heat, a relative position change occurs between the beam irradiation unit and the disk master surface, and recording of high-precision information is hindered. However, since the heat generation in the motor with the core can be reduced as described above, it is possible to prevent a decrease in the accuracy of information recording due to heat.

参考提案例の他の構成にかかる静圧気体軸受スピンドルは、主軸を回転自在に支持する静圧気体軸受と、前記主軸を回転駆動するコアレスモータとを備える静圧気体軸受スピンドルにおいて、前記コアレスモータが、前記主軸の一端部に固定したモータロータと、前記主軸の一端部に固定されて前記モータロータの外周側に配置されモータロータと所定の間隔を介して対峙するロータヨークと、このロータヨークおよび前記モータロータの間にこれら両部材と非接触となるように配置した励磁コイルと、静圧気体軸受スピンドルのハウジングに設けられ前記モータロータ、ロータヨーク、および励磁コイルを覆い、かつ前記励磁コイルを保持するモータケースとを有し、外部から導いた圧縮空気を超低温の冷気に変換する超低温空気発生器と、前記モータケースに開口し前記超低温空気発生器で発生した冷気を前記モータロータに向けてモータケース内に流入させる冷気給気口と、前記モータケースに開口し流入した前記冷気を前記励磁コイルの内周側から外周側を経てモータケース外に排気させる冷気排気口とを設けたことを特徴とする。
この構成によると、超低温空気発生器で発生した冷気をモータケースの冷気給気口からモータロータに向けてモータケース内に流入させ、流入した冷気をモータロータの回転による遠心力で励磁コイルを経てモータケースの冷気排気口からモータケース外に排気させるようにしているので、超低温空気発生器で発生した噴出圧力の低い冷気であっても、
モータロータ、励磁コイルおよびロータヨークを空冷でき、コアレスモータでの発熱を低減できる。この静圧気体軸受スピンドルが用いられるディスク原盤製造装置では、熱によって主軸が熱膨張すると、ビーム照射部とディスク原盤表面との相対的な位置変化が発生し、高精度な情報の記録が阻害されるが、上記したようにコアレスモータでの発熱を低減できることから、熱に起因する情報記録の精度低下を防止することができる。
The static pressure gas bearing spindle according to another configuration of the reference proposal example is a static pressure gas bearing spindle including a static pressure gas bearing that rotatably supports the main shaft and a coreless motor that rotationally drives the main shaft. A motor rotor fixed to one end portion of the main shaft, a rotor yoke fixed to one end portion of the main shaft and disposed on the outer peripheral side of the motor rotor, and facing the motor rotor via a predetermined interval, and between the rotor yoke and the motor rotor And an excitation coil disposed so as to be in non-contact with both members, and a motor case provided in a housing of a static pressure gas bearing spindle, covering the motor rotor, rotor yoke, and excitation coil, and holding the excitation coil. And an ultra-low temperature air generator that converts compressed air introduced from outside into ultra-low temperature cold air, A cold air supply port that opens into the motor case and causes the cool air generated by the ultra-low temperature air generator to flow into the motor case toward the motor rotor, and the cold air that opens and flows into the motor case flows into the inner periphery of the excitation coil. A cool air exhaust port for exhausting the motor case from the side through the outer peripheral side is provided.
According to this configuration, the cool air generated by the ultra-low temperature air generator flows into the motor case from the cool air supply port of the motor case toward the motor rotor, and the inflowed cool air passes through the excitation coil by the centrifugal force generated by the rotation of the motor rotor. Because it is exhausted out of the motor case from the cold air exhaust port, even cold air with low jet pressure generated by the ultra low temperature air generator,
The motor rotor, exciting coil, and rotor yoke can be air-cooled, and heat generation in the coreless motor can be reduced. In a disk master production apparatus using this hydrostatic gas bearing spindle, when the main shaft is thermally expanded due to heat, a relative position change occurs between the beam irradiation unit and the disk master surface, and recording of high-precision information is hindered. However, since the heat generation in the coreless motor can be reduced as described above, it is possible to prevent a decrease in the accuracy of information recording due to heat.

参考提案例のさらに他の構成にかかる静圧気体軸受スピンドルは、主軸を回転自在に支持する静圧気体軸受と、前記主軸を回転駆動するコアレスモータとを備える静圧気体軸受スピンドルにおいて、前記コアレスモータが、前記主軸の一端部に固定したモータロータと、前記主軸の一端部に固定されて前記モータロータの外周側に配置されモータロータと所定の間隔を介して対峙するロータヨークと、このロータヨークおよび前記モータロータの間にこれら両部材と非接触となるように配置した励磁コイルと、静圧気体軸受スピンドルのハウジングに設けられ前記モータロータ、ロータヨーク、および励磁コイルを覆い、かつ前記励磁コイルを保持するモータケースとを有し、前記モータケースに保持されて、前記励磁コイル、モータロータ、およびロータヨークのいずれにも非接触の状態で励磁コイルを密閉状態に覆う非磁性でかつ電気絶縁性を有する材料からなるコイルカバー部材を設け、このコイルカバー部材で覆われる密閉空間に外部から冷却水を供給する給水口と、前記密閉空間内の冷却水を外部に排水する排水口とを前記モータケースに設けたことを特徴とする。
この構成によると、コイルカバー部材で覆った完全に密閉された空間内に冷却水が漏れることなく満たされた状態で励磁コイルが冷却されるので、励磁コイルを十分に冷却することができ、コアレスモータでの発熱を効果的に低減できる。この静圧気体軸受スピンドルが用いられるディスク原盤製造装置では、静圧気体軸受スピンドルにおけるコアレスモータでの発熱を上記したように低減できることから、熱に起因する情報記録の精度低下を防止することができる。
The static pressure gas bearing spindle according to still another configuration of the reference proposal example is a static pressure gas bearing spindle including a static pressure gas bearing that rotatably supports a main shaft and a coreless motor that rotationally drives the main shaft. A motor rotor fixed to one end portion of the main shaft; a rotor yoke fixed to one end portion of the main shaft and disposed on the outer peripheral side of the motor rotor; and facing the motor rotor via a predetermined interval; and the rotor yoke and the motor rotor An excitation coil disposed so as to be in non-contact with the two members, and a motor case provided in a housing of a static pressure gas bearing spindle, covering the motor rotor, rotor yoke, and excitation coil, and holding the excitation coil And having the excitation coil and the motor rotor held by the motor case A coil cover member made of a non-magnetic and electrically insulating material that covers the exciting coil in a sealed state in a non-contact state is provided in each of the rotor yoke and the rotor yoke, and cooling water is externally provided in the sealed space covered with the coil cover member. The motor case is provided with a water supply port for supplying water and a drain port for draining the cooling water in the sealed space to the outside.
According to this configuration, since the exciting coil is cooled in a completely sealed space covered with the coil cover member without being leaked, the exciting coil can be sufficiently cooled, and the coreless Heat generated by the motor can be effectively reduced. In the disk master manufacturing apparatus using this hydrostatic gas bearing spindle, the heat generation by the coreless motor in the hydrostatic gas bearing spindle can be reduced as described above, so that it is possible to prevent deterioration in information recording accuracy due to heat. .

記コイルカバー部材の材料がセラミックスであっても良い。また、前記冷却水がフッ素系不活性液体であっても良い。 Material before Symbol coil cover member may be a ceramic. The cooling water may be a fluorinated inert liquid.

記励磁コイルにペルチエ素子を貼り付け、このペルチエ素子を外部から制御することにより励磁コイルを冷却するものとしても良い。 Before SL paste Peltier element to the exciting coil, it may be intended to cool the exciting coil by controlling the Peltier element from the outside.

圧気体軸受スピンドルのハウジングの壁にこのハウジングを冷却する冷却水通路と、この冷却水通路に外部から冷却水を供給する給水口と、冷却水通路の冷却水を外部に排水する排水口とを設けると共に、その排水口と前記モータケースの給水口とを連通させる通水チュ−ブを設け、前記冷却水通路の冷却水を励磁コイルの冷却に兼用するものとしても良い。
この構成の場合、励磁コイルの水冷系とは別に、ハウジングの水冷系を設け、これらの両水冷系を通水チューブで連通させることにより、冷却水をハウジングの冷却と励磁コイルの冷却に兼用するようにしているので、静圧気体軸受スピンドルの移動に伴って引きずられる通水チューブの本数を少なくしてスピンドルの移動時における速度むらへの悪影響を抑えつつ、主軸の熱変形を効果的に低減できる。
A cooling water passage for cooling the housing to the wall of the housing of the hydrostatic gas bearing spindle, a water supply port for supplying cooling water to the cooling water passage from the outside, and a drainage port for draining the cooling water in the cooling water passage to the outside It is also possible to provide a water passage tube that communicates the drain port with the water supply port of the motor case, and the cooling water in the cooling water passage is also used for cooling the exciting coil.
In this configuration, a water cooling system for the housing is provided in addition to the water cooling system for the excitation coil, and both water cooling systems are communicated with each other by a water tube so that the cooling water is used for both cooling the housing and the excitation coil. As a result, the number of water flow tubes that are dragged with the movement of the hydrostatic gas bearing spindle is reduced, and the adverse effects on speed fluctuations during the movement of the spindle are suppressed, and thermal deformation of the spindle is effectively reduced. it can.

記いずかの静圧気体軸受スピンドルにおいて、ディスク原盤の表面に塗布されたレジストに電子ビームまたはレーザービームを照射して記録情報を露光または描画するディスク原盤製造装置における静圧気体軸受スピンドルであって、前記被回転体が、前記ディスク原盤を搭載する回転テーブルであっても良い。
このようにディスク原盤製造装置に適用した場合、主軸で発生する熱がディス原盤に伝達されるのを低減できるので、熱に起因するレジストの反応速度の不安定や反応むら、主軸の熱膨張に起因するビームの照射部と原盤表面との間の相対的位置変化を抑え、高精度な情報の記録が可能となる。
In hydrostatic gas bearing spindle before Symbol Izuka, in hydrostatic gas bearing spindle in the disk mastering apparatus for exposing or rendering the recorded information by irradiating an electron beam or a laser beam to the resist applied on the surface of the disc master And the said to-be-rotated body may be a turntable which mounts the said disc original disc.
In this way, when applied to a disc master production device, the heat generated by the spindle can be reduced from being transferred to the disc master, so that the resist reaction speed instability and unevenness due to heat can be reduced, resulting in thermal expansion of the spindle. It is possible to suppress the relative position change between the beam irradiation portion and the master disk surface, and to record information with high accuracy.

この発明の静圧気体軸受スピンドルは、主軸を回転自在に支持する静圧気体軸受と、前記主軸にモータロータを固定してなり主軸を回転駆動するモータとを備え、前記主軸の一端部を被回転体を取り付けるための被回転体設置部とした静圧気体軸受スピンドルにおいて、前記主軸の被回転体設置部の材料として、前記主軸の前記被回転体設置部を除く主軸本体部よりも熱伝導率の低いセラミックスを用い(第1の構成)、前記主軸の前記被回転体設置部を除く主軸本体部が金属製であり、被回転体設置部の中心に軸方向に貫通する貫通孔を設け、前記主軸本体部と前記被回転体設置部に取り付けられる金属製被回転体とを前記貫通孔に配線した導電線で電気的に接続したため、主軸での熱伝導を効果的に低減でき、この静圧気体軸受スピンドルを例えばディスク原盤製造装置に用いた場合、高精度な情報の記録が可能となる
この発明における他の発明の静圧気体軸受スピンドルは、前記第1の構成において、前記主軸の前記被回転体設置部を除く主軸本体部の材料がアルミナセラミックスであり、主軸の被回転体設置部および前記主軸本体部の中心に互いに連通し軸方向に貫通する貫通孔を設けると共に、主軸の被回転体設置部と軸方向反対側の端部に前記モータの金属製回転軸を前記貫通孔と同軸に設け、このモータ回転軸と前記被回転体設置部に取り付けられる金属製被回転体とを前記貫通孔に配線した導電線で電気的に接続したため、主軸での熱伝導を効果的に低減でき、この静圧気体軸受スピンドルを例えばディスク原盤製造装置に用いた場合、高精度な情報の記録が可能となる。
この発明におけるさらに他の発明の静圧気体軸受スピンドルは、前記第1の構成において、前記主軸の前記被回転体設置部を除く主軸本体部の材料がアルミナセラミックスであり、主軸の被回転体設置部および前記主軸本体部の中心に互いに連通し軸方向に貫通する貫通孔を設けると共に、主軸の被回転体設置部と軸方向反対側の端部に前記モータの金属製回転軸を前記貫通孔と同軸に設け、主軸本体部の貫通孔の内周面およびモータ回転軸に接する端面に導電性のメッキ層を形成し、このメッキ層と前記被回転体設置部に取り付けられる金属製被回転体とを被回転体設置部の貫通孔に配線した導電線で電気的に接続したため、主軸での熱伝導を効果的に低減でき、この静圧気体軸受スピンドルを例えばディスク原盤製造装置に用いた場合、高精度な情報の記録が可能となる。
A hydrostatic gas bearing spindle of the present invention includes a hydrostatic gas bearing that rotatably supports a main shaft, and a motor that rotates a main shaft by fixing a motor rotor to the main shaft, and rotates one end portion of the main shaft. In a static pressure gas bearing spindle as a rotating body installation part for mounting a body, the material of the rotating body installation part of the main shaft has a higher thermal conductivity than the main body of the spindle excluding the rotating body installation part of the main shaft. use physician the lower ceramics (first configuration), the said main shaft is made of the main shaft body portion, except the driven rotating body installation part is a metal, provided with a through hole penetrating in the axial direction center of the rotary member installation portion Since the main shaft body and the metal rotating body attached to the rotating body installation portion are electrically connected with the conductive wire wired in the through hole , the heat conduction in the main shaft can be effectively reduced, This static pressure gas bearing spindle When used in, for example, a disk mastering device, it becomes possible to record accurate information.
According to another aspect of the present invention, there is provided a static pressure gas bearing spindle according to the first configuration, wherein the material of the main body of the main shaft excluding the rotating body setting portion of the main shaft is alumina ceramics, and the rotating body setting portion of the main shaft And a through-hole that communicates with each other in the axial direction at the center of the main spindle body, and the metal rotary shaft of the motor is connected to the through-hole at the end opposite to the rotating body installation portion of the main spindle. Provided coaxially, this motor rotating shaft and the metal rotating body attached to the rotating body installation part are electrically connected by a conductive wire wired in the through hole, effectively reducing heat conduction in the main shaft In addition, when this static pressure gas bearing spindle is used in, for example, a disk master production apparatus, it is possible to record information with high accuracy.
According to still another aspect of the present invention, in the static pressure gas bearing spindle, in the first configuration, the material of the main body of the main shaft excluding the rotating body mounting portion of the main shaft is alumina ceramics, and the rotating body of the main shaft is installed. And a through-hole that communicates with each other in the axial direction at the center of the main shaft portion and the main shaft main body portion, and the metal rotation shaft of the motor is disposed at the end of the main shaft opposite to the rotating body installation portion. A metal rotating body that is provided coaxially with the inner peripheral surface of the through hole of the main shaft main body and an end surface that is in contact with the motor rotating shaft, and is attached to the plating layer and the rotating body installation portion. Is electrically connected by a conductive wire wired in the through-hole of the rotating body installation portion, so that heat conduction in the main shaft can be effectively reduced. For example, when this static pressure gas bearing spindle is used in a disk master production apparatus , Recording of accurate information becomes possible.

この発明の第1の実施形態に係る静圧気体軸受スピンドルの断面図である。It is sectional drawing of the static pressure gas bearing spindle which concerns on 1st Embodiment of this invention. この発明の他の実施形態に係る静圧気体軸受スピンドルの断面図である。It is sectional drawing of the static pressure gas bearing spindle which concerns on other embodiment of this invention. 同静圧気体軸受スピンドルの変形例を示す部分断面図である。It is a fragmentary sectional view showing the modification of the same static pressure gas bearing spindle. この発明のさらに他の実施形態に係る静圧気体軸受スピンドルの断面図である。It is sectional drawing of the static pressure gas bearing spindle which concerns on other embodiment of this invention. 参考提案例に係る静圧気体軸受スピンドルの断面図である。It is sectional drawing of the static pressure gas bearing spindle which concerns on a reference proposal example . 他の参考提案例に係る静圧気体軸受スピンドルの断面図である。It is sectional drawing of the static pressure gas bearing spindle which concerns on the other reference proposal example . らに他の参考提案例に係る静圧気体軸受スピンドルの断面図である。It is a cross-sectional view of a hydrostatic gas bearing spindle according to other references proposed example of et. 同静圧気体軸受スピンドルの変形例を示す部分断面図である。It is a fragmentary sectional view showing the modification of the same static pressure gas bearing spindle. らに他の参考提案例に係る静圧気体軸受スピンドルの断面図である。It is a cross-sectional view of a hydrostatic gas bearing spindle according to other references proposed example of et.

この発明の第1の実施形態を図1と共に説明する。この静圧気体軸受スピンドルAは、ハウジング2内において、主軸1を静圧気体軸受3により非接触で支持し、モータ6によって主軸1を回転駆動するものである。ここでは、静圧気体軸受スピンドルAがディスク原盤製造装置の一部として構成される。静圧気体軸受3は、ハウジング2の内周部を構成するスリーブ5a,5bに設けられている。静圧気体軸受3は、静圧気体ジャーナル軸受3aおよび静圧気体スラスト軸受3bからなる。これら静圧気体ジャーナル3aおよび静圧気体スラスト軸受3bは、それぞれハウジング2のスリーブ5a,5bと主軸1との間の半径方向および軸方向の軸受隙間(数μm〜十数μm)にハウジング2内のノズル4a,4b,4c,4dから圧縮気体を噴出することにより、非接触で主軸1を支持するものである。主軸1は上部の外周にフランジ1baを有していて、静圧気体スラスト軸受3bは、このフランジ1baの両面の軸受空間に圧縮気体を噴出するものとされている。各ノズル4a,4b,4c,4dは、前記ハウジング2およびスリーブ5a,5bに形成された給気路11を介して外部の圧縮気体供給源(図示せず)に接続されている。ハウジング2は、主軸1の前記フランジ1baを含む上部側を覆う上部ハウジング2aと、主軸1の前記フランジ1baより下部側を覆う下部ハウジング2bとでなる。上部ハウジング2aの内周部となる一方のスリーブ5aが主軸フランジ1baの上面に対向して配置され、下部ハウジング2bの内周部となる他方のスリーブ5bが主軸フランジ1baの下面およびフランジ1baより下側の主軸外周面に対向して配置される。   A first embodiment of the present invention will be described with reference to FIG. The static pressure gas bearing spindle A is configured to support the main shaft 1 in a housing 2 in a non-contact manner by a static pressure gas bearing 3 and to rotate the main shaft 1 by a motor 6. Here, the static pressure gas bearing spindle A is configured as a part of the disk master manufacturing apparatus. The static pressure gas bearing 3 is provided on sleeves 5 a and 5 b that constitute the inner periphery of the housing 2. The static pressure gas bearing 3 includes a static pressure gas journal bearing 3a and a static pressure gas thrust bearing 3b. The hydrostatic gas journal 3a and the hydrostatic gas thrust bearing 3b are arranged in the housing 2 in the radial and axial bearing gaps (several μm to several tens of μm) between the sleeves 5a and 5b of the housing 2 and the main shaft 1, respectively. The main shaft 1 is supported in a non-contact manner by ejecting compressed gas from the nozzles 4a, 4b, 4c and 4d. The main shaft 1 has a flange 1ba on the outer periphery of the upper portion, and the hydrostatic gas thrust bearing 3b is configured to eject compressed gas into bearing spaces on both sides of the flange 1ba. Each nozzle 4a, 4b, 4c, 4d is connected to an external compressed gas supply source (not shown) via an air supply path 11 formed in the housing 2 and the sleeves 5a, 5b. The housing 2 includes an upper housing 2a that covers an upper side including the flange 1ba of the main shaft 1, and a lower housing 2b that covers a lower side from the flange 1ba of the main shaft 1. One sleeve 5a serving as the inner peripheral portion of the upper housing 2a is disposed to face the upper surface of the main shaft flange 1ba, and the other sleeve 5b serving as the inner peripheral portion of the lower housing 2b is provided below the lower surface of the main shaft flange 1ba and the flange 1ba. It is arranged to face the outer peripheral surface of the main spindle on the side.

モータ6は、前記主軸1の下端にこれと同軸に設けられた金属製の回転軸7と、この回転軸7に設けられた永久磁石からなるモータロータ8と、このモータロータ8の外周側に配置されたモータステータ9と、これらモータロータ8およびモータステータ9を覆うモータケース10等により構成されたコア付きの同期型サーボモータとされている。モータケース10は前記下部ハウジング2bの下端に固定される。モータステータ9は、モータケース10に支持されてモータロータ8の外周側にこれと所定隙間を隔てて配置されるモータコア9aと、このモータコア9aに巻回された励磁コイル9bとでなる。   The motor 6 is disposed at the lower end of the main shaft 1 coaxially with a metal rotating shaft 7, a motor rotor 8 made of a permanent magnet provided on the rotating shaft 7, and an outer peripheral side of the motor rotor 8. The motor stator 9 and a synchronous servo motor with a core constituted by the motor rotor 8 and the motor case 10 covering the motor stator 9 are provided. The motor case 10 is fixed to the lower end of the lower housing 2b. The motor stator 9 includes a motor core 9a supported by the motor case 10 and arranged on the outer peripheral side of the motor rotor 8 with a predetermined gap therebetween, and an excitation coil 9b wound around the motor core 9a.

モータ回転軸7の先端部にはロータリエンコーダ12の回転板(図示せず)が取り付けられ、モータケース10の下端にはロータリエンコーダ12のヘッド部(図示せず)が取り付けられる。このロータリエンコーダ12から出力される回転位置信号を、モータ6の駆動部(図示せず)にフィードバックすることにより、静圧気体軸受スピンドルAの回転むらや回転変動が低減される。   A rotary plate (not shown) of the rotary encoder 12 is attached to the tip of the motor rotating shaft 7, and a head part (not shown) of the rotary encoder 12 is attached to the lower end of the motor case 10. The rotational position signal output from the rotary encoder 12 is fed back to the drive unit (not shown) of the motor 6 to reduce the rotational unevenness and rotational fluctuation of the static pressure gas bearing spindle A.

主軸1の上端部は上部ハウジング2aよりも上方に突出して、振れ精度測定装置13のターゲット部材13bおよび回転テーブル14を設置するための被回転体設置部1aを構成している。つまり、被回転体である前記ターゲット部材13bや回転テーブル14が被回転体設置部1aにこれと同軸に取り付けられて、主軸1と共に回転駆動される。振れ精度測定装置13は、前記ターゲット部材13bのほか、このターゲット部材13bをターゲットとして主軸1の回転振れ精度を検出する静電容量式変位計13aを有し、この変位計13aが上部ハウジング2aの上端にターゲット部材13bと径方向に対峙して設置される。これにより、主軸1の回転時には、振れ精度測定装置13によって主軸1における被回転体設置部1aの回転精度を測定できる。振れ精度測定装置13のターゲット部材13bは金属製部材であり、ここではこのターゲット部材13bが主軸1の被回転体設置部1aに直接取り付けられる。回転テーブル14はディスクを搭載する被回転体であって、これも金属製部材からなり、ここでは前記ターゲット部材13bの上に設置される。ターゲット部材13bが取り付けられない場合には、被回転体設置部1aに回転テーブル14が直接取り付けられる。   The upper end portion of the main shaft 1 projects upward from the upper housing 2a, and constitutes a rotated body installation portion 1a for installing the target member 13b and the rotary table 14 of the runout accuracy measuring device 13. That is, the target member 13b and the rotary table 14 which are the rotating bodies are attached to the rotating body installing portion 1a coaxially therewith and are driven to rotate together with the main shaft 1. In addition to the target member 13b, the shake accuracy measuring device 13 includes a capacitance displacement meter 13a that detects the rotational shake accuracy of the main shaft 1 using the target member 13b as a target. The displacement meter 13a is provided on the upper housing 2a. It is installed at the upper end so as to face the target member 13b in the radial direction. Thereby, at the time of rotation of the main shaft 1, the rotation accuracy of the rotating body installation portion 1 a on the main shaft 1 can be measured by the shake accuracy measuring device 13. The target member 13 b of the runout accuracy measuring device 13 is a metal member, and here, the target member 13 b is directly attached to the rotated body installation portion 1 a of the main shaft 1. The turntable 14 is a body to be rotated on which a disk is mounted, which is also made of a metal member, and is here installed on the target member 13b. When the target member 13b is not attached, the turntable 14 is directly attached to the rotated body installation portion 1a.

主軸1の被回転体設置部1aの材料は、主軸1の前記被回転体設置部1aを除く主軸本体部1bよりも熱伝導率が低いセラミックスが用いられる。この実施形態ではジルコニアセラミックスが用いられている。ジルコニアセラミックスは熱伝導率が約3W(m.k)と低い。これに対して、主軸本体部1bは金属製とされている。被回転体設置部1aの材料として用いるジルコニアセラミックスは、純粋なジルコニアに限らず、安定化材等となる各種の混ぜ物、例えば酸化マグネシウム(MgO)や、酸化カルシウム(CaO)、酸化イットリウム(Y2 O3 )等の希土類酸化物等を添加したものであっても良い。ジルコニアは、酸化ジルコニウム(ZrO2 )のことである。   As the material of the rotating body setting portion 1a of the main shaft 1, ceramics having a lower thermal conductivity than the main shaft main body portion 1b excluding the rotating body setting portion 1a of the main shaft 1 is used. In this embodiment, zirconia ceramics is used. Zirconia ceramics have a low thermal conductivity of about 3 W (mk). On the other hand, the main spindle body 1b is made of metal. The zirconia ceramics used as the material of the rotating body installation portion 1a is not limited to pure zirconia, but various mixtures that serve as stabilizers, such as magnesium oxide (MgO), calcium oxide (CaO), yttrium oxide (Y2). It may be added with rare earth oxides such as O3). Zirconia is zirconium oxide (ZrO2).

被回転体設置部1aの中心には軸方向に貫通する貫通孔15が設けられ、この貫通孔15内に配線した導電線16を介して、共に金属製であるターゲット部材13bと主軸本体部1bとが電気的に接続されている。これにより、主軸1の被回転体設置部1aの材料としてジルコニアセラミックスを用いていても、この被回転体設置部1aに取り付けられるターゲット部材13bを、導電線16、金属製主軸本体1b、およびハウジング2を介して外部にアースできる。なお、このアース経路において、金属製主軸本体1bとハウジング2のスリーブ5a,5bの間の軸受隙間は数μm〜十数μmであるため、静電容量の大きなコンデンサーを形成し、交流電流成分を容易にアースできる。   A through hole 15 penetrating in the axial direction is provided at the center of the rotating body installation portion 1a, and the target member 13b and the main spindle main body portion 1b, both of which are made of metal, are connected through the conductive wires 16 wired in the through hole 15. And are electrically connected. As a result, even if zirconia ceramics is used as the material of the rotating body setting portion 1a of the main shaft 1, the target member 13b attached to the rotating member setting portion 1a is replaced with the conductive wire 16, the metal main shaft body 1b, and the housing. 2 can be grounded to the outside. In this ground path, since the bearing gap between the metal main spindle body 1b and the sleeves 5a, 5b of the housing 2 is several μm to several tens μm, a capacitor having a large capacitance is formed, and an alternating current component is generated. Can be easily grounded.

この静圧気体軸受スピンドルを用いたディスク原盤製造装置では、振れ精度測定装置13による検出結果と、ロータリエンコーダ12による回転位置検出結果とを、回転テーブル14上のディスク原盤にビームを照射するビーム照射部の回転精度演算装置(図示せず)に取り込み、ディスク原盤を高精度に露光できるように、露光時にディスク原盤表面上の電子ビーム収束スポット位置を制御修正する。あるいは、ビーム収束スポット位置を制御修正せずに、精度保証等のために、回転精度だけを測定する場合もある。これらの場合には、振れ精度測定装置13として静電容量式変位計を使用しているため、このターゲット部材13bのアースを取る必要がある。
この静圧気体軸受スピンドルAでは、主軸1の被回転体設置部1aの材料としてジルコニアセラミックスを用いているものの、上記したアース経路の構成により、振れ精度測定装置13のターゲット部材13bのアースを確実に取ることができる。
In the disk master manufacturing apparatus using the static pressure gas bearing spindle, the beam irradiation is performed to irradiate the disk master on the rotary table 14 with the detection result by the runout accuracy measuring device 13 and the rotation position detection result by the rotary encoder 12. The position of the electron beam convergence spot on the surface of the disk master is controlled and corrected during exposure so that the disk master can be exposed with high accuracy. Alternatively, there is a case where only the rotational accuracy is measured for accuracy assurance or the like without controlling and correcting the beam convergence spot position. In these cases, since a capacitive displacement meter is used as the shake accuracy measuring device 13, it is necessary to ground the target member 13b.
In the static pressure gas bearing spindle A, although zirconia ceramics is used as the material of the rotating body installation portion 1a of the main shaft 1, the grounding of the target member 13b of the runout accuracy measuring device 13 is ensured by the configuration of the grounding path described above. Can be taken to.

このように、この静圧気体軸受スピンドルAでは、被回転体として振れ精度測定装置13のターゲット部材13bや回転テーブル14が取り付けられる主軸1の被回転体設置部1aの材料として、熱伝導率の低いジルコニアセラミックスを用いているので、主軸1側で発生する熱が回転テーブル14からこれに搭載されるディスク原盤に伝導するのを防止できる。これにより、ディスク原盤の表面に塗布されたレジストの反応速度が熱で不安定になったり反応むらが生じるのを防止でき、高い精度で記録情報を露光または描画できる。このジルコニアセラミックス製の被回転体設置部1aは、主軸1の主軸本体1bとは別に設けられて主軸本体1bに取付けられているため、主軸本体1bには、鋼材や他の金属材等の主軸1として適した材料を用いることができる。   As described above, in the static pressure gas bearing spindle A, as a material of the rotating body installation portion 1a of the main shaft 1 to which the target member 13b of the runout accuracy measuring device 13 and the rotary table 14 are attached as the rotating body, Since low zirconia ceramics are used, it is possible to prevent the heat generated on the main shaft 1 side from being conducted from the rotary table 14 to the disk master mounted thereon. As a result, it is possible to prevent the reaction speed of the resist applied to the surface of the disk master from becoming unstable due to heat or causing unevenness of the reaction, and the recorded information can be exposed or drawn with high accuracy. Since the zirconia ceramic-made rotated body setting portion 1a is provided separately from the main spindle body 1b of the main spindle 1 and is attached to the main spindle main body 1b, the main spindle main body 1b has a main spindle made of steel or other metal material. A material suitable as 1 can be used.

図2は、この発明の他の実施形態を示す。この静圧気体軸受スピンドルAは、図1の実施形態において、主軸本体部1bを金属製とする代わりに、その材料としてアルミナセラミックスを用いている。また、被回転体設置部1aだけでなく主軸本体部1bの中心にも、被回転体設置部1aと同様に軸方向に貫通する貫通孔17を、被回転体設置部1aの貫通孔15と互いに連通するように設けている。主軸本体部1bの下端にこれと同軸に金属製のモータ回転軸7を設けることは図1の実施形態の場合と同様である。そして、これら両貫通孔15,17内に配線した導電線16を介して、共に金属製であるターゲット部材13bとモータ回転軸7とが電気的に接続されている。さらに、モータ回転軸7の先端部には導電性材料かならる円板18を固定すると共に、この円板18の表面に微小隙間を介して対向する平面を有する導電性アース部材19を、モータケース10の下端に固定されたL字状の導電性保持部材20で保持している。つまり、導電性保持部材20は、モータケース10を介してハウジング2に固定されている。円板18は金属製とされる。   FIG. 2 shows another embodiment of the present invention. In the embodiment of FIG. 1, the hydrostatic gas bearing spindle A uses alumina ceramics as its material instead of making the main body 1b of metal. Further, in the center of the main spindle body 1b as well as the rotated body setting portion 1a, a through hole 17 penetrating in the axial direction is formed in the center of the main spindle body 1b with the through hole 15 of the rotated body setting portion 1a. They are provided so as to communicate with each other. Providing a metal motor rotating shaft 7 coaxially with the lower end of the main spindle body 1b is the same as in the embodiment of FIG. The target member 13b made of metal and the motor rotating shaft 7 are electrically connected to each other through the conductive wires 16 wired in the through holes 15 and 17. Further, a disc 18 made of a conductive material is fixed to the tip of the motor rotating shaft 7, and a conductive grounding member 19 having a flat surface facing the surface of the disc 18 with a minute gap is provided to the motor. The case 10 is held by an L-shaped conductive holding member 20 fixed to the lower end of the case 10. That is, the conductive holding member 20 is fixed to the housing 2 via the motor case 10. The disc 18 is made of metal.

これにより、主軸1の被回転体設置部1aの材料としてジルコニアセラミックスを、主軸本体部1bの材料としてアルミナセラミックスを用いていても、この被回転体設置部1aに取り付けられるターゲット部材13bを、導電線16、モータ回転軸7、円板18、導電性アース部材19、導電性保持部材20、モータケース10、およびハウジング2を介して外部にアースできる。導電性保持部材20における水平部分である前記導電性アース部材支持部20aの前記円板18と対向する表面には、円板状とした導電性アース部材19を昇降可能に収容する円形の凹部20bが円板18と同心に形成されている。また、導電性アース部材支持部20aには、その円形の凹部20bに貫通する3つのねじ孔21が、円形凹部20bの周方向に等配して設けられ、これらのねじ孔21に螺合したセットねじ22の上に導電性アース部材19がセットされる。さらに、導電性アース部材支持部20aには、前記凹部20bの中心位置に貫通するねじ挿通孔23が設けられ、導電性アース部材19には前記ねじ挿通孔23に対向する中心部にねじ孔24が設けられる。導電性アース部材19は、導電性アース部材支持部20aの下側からそのねじ挿通孔23に挿通したボルト25を、導電性アース部材19のねじ孔24に螺合させることにより、前記凹部20b内に固定される。これにより、前記セットねじ22およびボルト25を用いて、導電性アース部材19を円板18と平行で、これら両部材間の隙間が数μm〜十数μmの最適隙間となるように高さ調整可能となる。この場合の最適隙間は、円板18と導電性アース部材19との間で静電容量の大きいコンデンサーが形成され、容易に交流電流のアースを取る事が出来る隙間である。その他の構成は、図1の実施形態の場合と同様である。   Thus, even if zirconia ceramics is used as the material of the rotating body installation portion 1a of the main shaft 1 and alumina ceramics is used as the material of the main body 1b, the target member 13b attached to the rotating body installation portion 1a is electrically conductive. The wire 16, the motor rotation shaft 7, the disk 18, the conductive ground member 19, the conductive holding member 20, the motor case 10, and the housing 2 can be grounded to the outside. On the surface of the conductive grounding member supporting portion 20a, which is a horizontal portion of the conductive holding member 20, facing the disk 18, a circular recess 20b for accommodating the disk-shaped conductive grounding member 19 so as to be movable up and down. Is formed concentrically with the disk 18. Further, the conductive grounding member support portion 20a is provided with three screw holes 21 penetrating through the circular recess 20b and arranged in the circumferential direction of the circular recess 20b, and screwed into these screw holes 21. The conductive ground member 19 is set on the set screw 22. Further, the conductive grounding member support portion 20a is provided with a screw insertion hole 23 penetrating through the central position of the recess 20b, and the conductive grounding member 19 is provided with a screw hole 24 in the central portion facing the screw insertion hole 23. Is provided. The conductive grounding member 19 is screwed into the screw hole 24 of the conductive grounding member 19 by screwing a bolt 25 inserted into the screw insertion hole 23 from below the conductive grounding member support 20a. Fixed to. Thus, the height of the conductive grounding member 19 is adjusted using the set screw 22 and the bolt 25 so that the conductive grounding member 19 is parallel to the circular plate 18 and the gap between the two members becomes an optimum gap of several μm to several tens of μm. It becomes possible. In this case, the optimum gap is a gap in which a capacitor having a large capacitance is formed between the disk 18 and the conductive earth member 19 so that an AC current can be easily grounded. Other configurations are the same as those in the embodiment of FIG.

特に、この実施形態では、主軸1における被回転体設置部1aの材料をジルコニアセラミックスとし、被回転体設置部1aを除く主軸本体部1bの材料を金属に比べて熱膨張係数の小さいアルミナセラミックスとしているので、被回転体設置部1aと主軸本体部1bとの接合部において熱膨張係数の差に起因する熱変形が生じるのを防止できる。この静圧気体軸受スピンドルAが用いられるディスク原盤製造装置では、主軸1が熱変形すると、ビーム照射部とディスク原盤表面との間に相対的な位置変化が発生し、高精度な情報の記録が阻害されるが、上記したように主軸1の熱変形を防止できることから、熱変形に起因する情報記録の精度低下を防止することができる。   In particular, in this embodiment, the material of the rotating body setting portion 1a in the main shaft 1 is made of zirconia ceramics, and the material of the main shaft main body portion 1b excluding the rotating body setting portion 1a is made of alumina ceramic having a smaller thermal expansion coefficient than that of metal. Therefore, it is possible to prevent the occurrence of thermal deformation due to the difference in thermal expansion coefficient at the joint portion between the rotating body installation portion 1a and the main shaft main body portion 1b. In the disk master manufacturing apparatus using the static pressure gas bearing spindle A, when the main shaft 1 is thermally deformed, a relative position change occurs between the beam irradiation unit and the disk master surface, and high-precision information recording is performed. Although it is obstructed, it is possible to prevent thermal deformation of the main shaft 1 as described above, and therefore it is possible to prevent a decrease in the accuracy of information recording due to thermal deformation.

図3は、前記円板18と導電性アース部材19の間のアース経路の他の構成例を示す。この構成例では、導電性アース部材19の円板18と対向する表面に、円板18の表面に緩く接触する導電性繊維状部材19aをブラシ状に設けている。この場合には、円板18と導電性アース部材19とが導電性繊維状部材19aを介して電気的に接続されるので、直接通電できる。また、導電性繊維状部材19aは円板18の表面に緩く接触するので、主軸1の回転を阻害することもない。   FIG. 3 shows another configuration example of the ground path between the disk 18 and the conductive ground member 19. In this configuration example, a conductive fibrous member 19 a that loosely contacts the surface of the disk 18 is provided in a brush shape on the surface of the conductive ground member 19 that faces the disk 18. In this case, since the disk 18 and the conductive ground member 19 are electrically connected via the conductive fibrous member 19a, it can be directly energized. Further, since the conductive fibrous member 19a is loosely in contact with the surface of the disk 18, the rotation of the main shaft 1 is not hindered.

図4は、この発明のさらに他の実施形態を示す。この静圧気体軸受スピンドルAは、図2の実施形態において、主軸本体部1bの貫通孔17の内周面、およびモータ回転軸7に接する主軸本体部1bの下端面に導電性のメッキ層26a,26bを形成し、主軸1の被回転体設置部1aに取り付けられる金属製のターゲット部材13bと前記メッキ層26a,26bとを、被回転体設置部1aの貫通孔15内に配線した導電線16で電気的に接続している。メッキ層26a,26bは、導電性を有する無電解ニッケルメッキまたは金メッキの単一層であっても、これらを積層した複数層のものであっても良い。ここでは、主軸本体部1bの貫通孔17に導電性中継部材27を嵌合させ、この導電性中継部材27を介して導電線16をメッキ層26aに接続しているが、中継部材27を省略して導電線16を直接メッキ層26aに接続しても良い。その他の構成は図2の実施形態の場合と同様である。   FIG. 4 shows still another embodiment of the present invention. In the embodiment shown in FIG. 2, the hydrostatic gas bearing spindle A has a conductive plating layer 26a on the inner peripheral surface of the through hole 17 of the main spindle body 1b and the lower end face of the main spindle main body 1b in contact with the motor rotating shaft 7. , 26b, and a conductive wire in which a metal target member 13b attached to the rotating body installation portion 1a of the main shaft 1 and the plated layers 26a, 26b are wired in the through hole 15 of the rotating body installation portion 1a. 16 is electrically connected. The plating layers 26a and 26b may be a single layer of electroless nickel plating or gold plating having conductivity, or a plurality of layers in which these are laminated. Here, the conductive relay member 27 is fitted into the through hole 17 of the main spindle body 1b, and the conductive wire 16 is connected to the plating layer 26a via the conductive relay member 27, but the relay member 27 is omitted. Then, the conductive wire 16 may be directly connected to the plated layer 26a. Other configurations are the same as those in the embodiment of FIG.

これにより、主軸1の被回転体設置部1aの材料としてジルコニアセラミックスを、主軸本体部1bの材料としてアルミナセラミックスを用いていても、この被回転体設置部1aに取り付けられるターゲット部材13bを、導電線16、導電性中継部材27、メッキ層26a,26b、モータ回転軸7、円板18、導電性アース部材19、導電性保持部材20、モータケース10、およびハウジング2を介して外部にアースできる。また、主軸本体部1bの長い貫通孔17に配線する導電線が不要になり、主軸1の組み付けが簡単になる。
なお、上記各実施形態ではモータ6がコア付きの場合につき説明したが、モータ6がコアレスの場合であっても同様に適用できる。
Thus, even if zirconia ceramics is used as the material of the rotating body installation portion 1a of the main shaft 1 and alumina ceramics is used as the material of the main body 1b, the target member 13b attached to the rotating body installation portion 1a is electrically conductive. The wire 16, the conductive relay member 27, the plated layers 26 a and 26 b, the motor rotating shaft 7, the disk 18, the conductive ground member 19, the conductive holding member 20, the motor case 10, and the housing 2 can be grounded to the outside. . Moreover, the conductive wire wired in the long through-hole 17 of the main spindle body 1b is not necessary, and the assembly of the main spindle 1 is simplified.
In each of the above embodiments, the case where the motor 6 has a core has been described. However, the present invention can be similarly applied even when the motor 6 is coreless.

図5は、参考提案例を示す。この静圧気体軸受スピンドルAでは、図1の実施形態において、前記モータケース10の周壁10aの外周側に外壁10bを設け二重壁とし、これら両壁の間にモータコア9aの周囲を囲む冷却水通路28を形成している。また、モータケース10の外壁10bには、外部から前記冷却水通路28に冷却水を供給する給水口29と、冷却水通路28の冷却水を外部に排水する排水口30とを設けている。さらに、外部から導いた圧縮空気を0℃以下の低温の冷気に変換する低温圧縮空気発生装置31を設けると共に、モータケース10の周壁10aの下端には、低温圧縮空気発生装置31で発生した冷気をモータステータ9の励磁コイル9bに向けてモータケース10内に流入させる冷気給気口32を設け、モータケース10の周壁10aと外壁10bが重なる部分に、流入した冷気を励磁コイル9bを経てモータケース10の外に排気させる冷気排気口33を設けている。その他の構成は図1の実施形態の場合と同様である。 FIG. 5 shows a reference proposal example . In this hydrostatic gas bearing spindle A, in the embodiment of FIG. 1, an outer wall 10b is provided on the outer peripheral side of the peripheral wall 10a of the motor case 10 to form a double wall, and the cooling water surrounding the periphery of the motor core 9a between these two walls. A passage 28 is formed. The outer wall 10b of the motor case 10 is provided with a water supply port 29 for supplying cooling water to the cooling water passage 28 from the outside and a drain port 30 for draining the cooling water of the cooling water passage 28 to the outside. Further, a low-temperature compressed air generator 31 that converts compressed air introduced from outside into low-temperature cold air of 0 ° C. or less is provided, and cold air generated by the low-temperature compressed air generator 31 is provided at the lower end of the peripheral wall 10 a of the motor case 10. Is provided in the motor case 10 so as to flow toward the excitation coil 9b of the motor stator 9, and the cold air that has flowed into the portion where the peripheral wall 10a and the outer wall 10b of the motor case 10 overlap each other passes through the excitation coil 9b. A cold air exhaust port 33 for exhausting outside the case 10 is provided. Other configurations are the same as those in the embodiment of FIG.

この静圧気体軸受スピンドルAでは、モータケース10に、モータコア9aの周囲を囲む冷却水通路28を設け、この冷却水通路28に外部から冷却水を供給するようにしているので、モータケース10、モータコア9aおよび励磁コイル9bの冷却が可能となり、モータ6での発熱を低減できる。また、低温圧縮空気発生装置31で発生した冷気をモータケース10の冷気給気口32から励磁コイル9bに向けてモータケース10内に流入させ、流入した冷気を励磁コイル9bを経てモータケース10の冷気排気口33からモータケース10外に排気させるようにしているので、モータコア9aをその内外から同時に冷却でき、モータ6での発熱を極めて小さなものに低減できる。すなわち、モータ6がコア付きモータの場合、コア9aがモータケース10に接触し、モータケース10を水冷すれば、コア9a及び励磁コイル9bが冷却できるため、この冷却と、低温圧縮空気発生装置31からの低温の圧縮空気を吹き付け、モータロータ8も冷却し、両者を併用して冷却効果を高めた構成としている。
このように、モータ6での発熱を低減することにより、主軸1の熱膨張を微小化できる。この静圧気体軸受スピンドルAが用いられるディスク原盤製造装置では、熱によって主軸1が熱膨張すると、ビーム照射部とディスク原盤表面との相対的な位置変化が発生し、高精度な情報の記録が阻害されるが、上記したようにモータ6での発熱を極めて小さなものに低減できることから、熱に起因する情報記録の精度低下を防止することができる。
In the static pressure gas bearing spindle A, the motor case 10 is provided with a cooling water passage 28 surrounding the motor core 9a, and cooling water is supplied to the cooling water passage 28 from the outside. The motor core 9a and the exciting coil 9b can be cooled, and the heat generation in the motor 6 can be reduced. Further, the cool air generated by the low-temperature compressed air generator 31 is caused to flow into the motor case 10 from the cool air supply port 32 of the motor case 10 toward the excitation coil 9b, and the inflowed cool air is passed through the excitation coil 9b to the motor case 10. Since the air is exhausted out of the motor case 10 through the cold air outlet 33, the motor core 9a can be simultaneously cooled from the inside and outside, and the heat generated by the motor 6 can be reduced to a very small value. That is, when the motor 6 is a motor with a core, the core 9a comes into contact with the motor case 10 and if the motor case 10 is cooled with water, the core 9a and the exciting coil 9b can be cooled. The motor rotor 8 is also cooled by blowing low-temperature compressed air from the above, and both are used in combination to enhance the cooling effect.
Thus, by reducing the heat generation in the motor 6, the thermal expansion of the main shaft 1 can be miniaturized. In the disk master manufacturing apparatus using the static pressure gas bearing spindle A, when the spindle 1 is thermally expanded by heat, a relative position change between the beam irradiation unit and the disk master surface occurs, and high-precision information recording is performed. Although it is obstructed, since the heat generation in the motor 6 can be reduced to a very small value as described above, it is possible to prevent a decrease in the accuracy of information recording due to heat.

図6は、他の参考提案例を示す。この静圧気体軸受スピンドルAでは、図1の実施形態において、モータ6を、コア付きの同期型サーボモータに代えて、コアレスの同期型サーボモータとしている。すなわち、この場合のコアレスモータ6は、主軸1の下端部に一体に形成されるモータ回転軸1bdと、このモータ回転軸1bdに固定される永久磁石からなるモータロータ8と、このモータロータ8の外周側に配置されモータロータ8と所定の間隔を介して対峙するロータヨーク34と、励磁コイル35と、モータケース10とを有する。ロータヨーク34は、主軸1における前記モータ回転軸1bdの基部に一体形成されたフランジ状のヨーク支持部1bcに固定される。励磁コイル35は、ロータヨーク34とモータロータ8の間に、これら両部材と非接触となるように配置される。モータケース10は、下部ハウジング2bの下端に固定されて、モータロータ8、ロータヨーク34および励磁コイル35を覆い、かつ励磁コイル35を樹脂等のコイルベース36を介して保持する。 FIG. 6 shows another reference proposal example . In this static pressure gas bearing spindle A, in the embodiment of FIG. 1, the motor 6 is a coreless synchronous servomotor instead of a synchronous servomotor with a core. That is, the coreless motor 6 in this case includes a motor rotation shaft 1bd formed integrally with the lower end portion of the main shaft 1, a motor rotor 8 made of a permanent magnet fixed to the motor rotation shaft 1bd, and an outer peripheral side of the motor rotor 8. And a rotor yoke 34 facing the motor rotor 8 with a predetermined interval, an excitation coil 35, and a motor case 10. The rotor yoke 34 is fixed to a flange-like yoke support portion 1bc formed integrally with the base portion of the motor rotation shaft 1bd in the main shaft 1. The exciting coil 35 is disposed between the rotor yoke 34 and the motor rotor 8 so as not to contact these two members. The motor case 10 is fixed to the lower end of the lower housing 2b, covers the motor rotor 8, the rotor yoke 34, and the exciting coil 35, and holds the exciting coil 35 via a coil base 36 such as resin.

また、外部から導いた圧縮空気を−30〜−40℃程度の超低温の冷気に変換する超低温空気発生器44を設けると共に、モータケース10の下端には、超低温空気発生器44で発生した冷気をモータロータ8の下端の主軸1の近傍に向けてモータケース10内に流入させる冷気給気口32を設け、モータケース10の周壁に、流入した冷気を励磁コイル35の内周側から外周側を経てモータケース10の外に排気させる冷気排気口33を設けている。ここでは、図1の実施形態の場合のように、主軸1の被回転体設置部1aに取り付ける振れ精度測定装置13のターゲット部材13bや回転テーブル14を図示していないが、その他の構成は図1の実施形態の場合と同様である。   In addition, an ultra-low temperature air generator 44 that converts compressed air introduced from outside into ultra-low temperature cool air of about −30 to −40 ° C. is provided, and at the lower end of the motor case 10, the cool air generated by the ultra-low temperature air generator 44 is provided. A cool air supply port 32 is provided to flow into the motor case 10 toward the vicinity of the main shaft 1 at the lower end of the motor rotor 8, and the inflowing cool air is passed through the outer peripheral side from the inner peripheral side of the excitation coil 35 to the peripheral wall of the motor case 10. A cold air exhaust port 33 for exhausting the motor case 10 is provided. Here, as in the case of the embodiment of FIG. 1, the target member 13b and the rotary table 14 of the runout accuracy measuring device 13 attached to the rotating body installation portion 1a of the main shaft 1 are not shown, but other configurations are illustrated. This is the same as in the first embodiment.

モータ6が上記したようなコアレスモータであると、コギングトルクが小さいため主軸1の高い回転精度が得られ易いという利点がある。しかし、励磁コイル35は樹脂等のコイルベース36を介してモータケース10に保持されているのみであり、コア付きモータの場合のようにモータケース10に接した状態で配置される金属製のコア部を持たない。このため、回転中に励磁コイル35に発生した熱はコア部を経てモータケース10側に伝達できず、樹脂製のコイルベース36を通してモータケース10側へ伝達されるのみとなり、励磁コイル35を効率的に冷却できない。
この静圧気体軸受スピンドルAでは、上記したように、超低温空気発生器44で発生した冷気をモータケース10の冷気給気口32からモータロータ8に向けてモータケース10内に流入させ、流入した冷気を励磁コイル35の内周側から外周側を経てモータケース10の冷気排気口33からモータケース10外に排気させるようにしているので、励磁コイル35を空冷により効率的に冷却できる。超低温空気発生器44からの冷気は−30〜−40℃程度の超低温であるが、その装置の構造上から冷気の噴出圧力は高圧になり難い。しかし、この実施形態では、回転するモータロータ8の下端の主軸1の近傍に向けて冷気を流入させるようにしているので、流入した冷気はモータロータ8の遠心力によってその外周へと導かれ、モータロータ8の外周および励磁コイル35の内周を通り、励磁コイル35の外周およびロータヨーク34を冷却して、モータケース10の冷気排気口33へと円滑に流れて排気され、効率良くモータ6を冷却することができる。このようにモータ6がコアレスモータの場合、ロータ8の端面のモータ軸近傍に、超低温空気発生器44からの超低温の空気を吹き付けて冷却する。この構造によって、超低温空気発生器44から噴出する空気の圧力が弱くても、ロータ8の遠心力でこの冷気がロータ8の外周に導かれ、外部に排出されることにより、モータ6が冷却される。このため、例えば上記図5で示したような大型で高価な他の圧縮空気冷却装置によらず、コンパクトで安価な超低温空気発生器44で十分な冷却効果を得ることができる。
If the motor 6 is a coreless motor as described above, there is an advantage that high rotational accuracy of the main shaft 1 can be easily obtained because the cogging torque is small. However, the exciting coil 35 is only held in the motor case 10 via a coil base 36 made of resin or the like, and is made of a metal core disposed in contact with the motor case 10 as in the case of a motor with a core. Does not have a part. For this reason, the heat generated in the excitation coil 35 during rotation cannot be transmitted to the motor case 10 side through the core portion, but is only transmitted to the motor case 10 side through the resin coil base 36. Cannot be cooled.
In the static pressure gas bearing spindle A, as described above, the cold air generated by the ultra-low temperature air generator 44 is caused to flow into the motor case 10 from the cold air supply port 32 of the motor case 10 toward the motor rotor 8, and the cold air that has flowed in. Is exhausted from the cool air exhaust port 33 of the motor case 10 to the outside of the motor case 10 through the inner periphery side to the outer periphery side of the excitation coil 35, so that the excitation coil 35 can be efficiently cooled by air cooling. Although the cold air from the ultra low temperature air generator 44 is an ultra low temperature of about −30 to −40 ° C., the jet pressure of the cold air is unlikely to be high due to the structure of the apparatus. However, in this embodiment, since cold air is introduced toward the vicinity of the main shaft 1 at the lower end of the rotating motor rotor 8, the introduced cold air is guided to the outer periphery by the centrifugal force of the motor rotor 8, and the motor rotor 8. The outer periphery of the motor and the inner periphery of the exciting coil 35, the outer periphery of the exciting coil 35 and the rotor yoke 34 are cooled, and smoothly flow into the cool air exhaust port 33 of the motor case 10 to be exhausted, thereby efficiently cooling the motor 6. Can do. Thus, when the motor 6 is a coreless motor, the ultra-low temperature air from the ultra-low temperature air generator 44 is blown and cooled in the vicinity of the motor shaft on the end face of the rotor 8. With this structure, even if the pressure of the air ejected from the ultra low temperature air generator 44 is weak, the cold air is guided to the outer periphery of the rotor 8 by the centrifugal force of the rotor 8 and discharged to the outside, whereby the motor 6 is cooled. The Therefore, a sufficient cooling effect can be obtained with the compact and inexpensive ultra-low temperature air generator 44, for example, without using another large and expensive compressed air cooling device as shown in FIG.

図7は、さらに他の参考提案例を示す。この静圧気体軸受スピンドルAでは、図6の参考提案例において、コアレスモータ6の励磁コイル35をコイルカバー部材37で密閉状態に覆っている。コイルカバー部材37は非磁性でかつ電気絶縁性および耐食性を有するたとえはセラミックスなどの材料からなり、モータケース10の下端に保持される。また、モータケース10の下端には、コイルカバー部材37で覆われる密閉空間50に外部から冷却水を供給する給水口29と、前記密閉空間50の冷却水を外部に排水する排水口30とを設けている。すなわち、この参考提案例では、図6の参考提案例の場合の空冷機構に代えて、上記した水冷機構を採用している。この場合の冷却水としては、優れた電気絶縁性を有し、熱的・化学的に安定性が高く、不活性、不燃性等の性質を有するフッ素系不活性液体が望ましい。この冷却水は、図示しないが、モータ6から排出後チラーに戻し、ここで所定の温度に冷却してから、再度モータ6に供給して循環させる。 Figure 7 is showing the other references proposed examples et. In the static pressure gas bearing spindle A, the exciting coil 35 of the coreless motor 6 is covered with a coil cover member 37 in a sealed state in the reference proposal example of FIG. The coil cover member 37 is made of a material such as ceramics that is nonmagnetic and has electrical insulation and corrosion resistance, and is held at the lower end of the motor case 10. Further, at the lower end of the motor case 10, a water supply port 29 for supplying cooling water from the outside to the sealed space 50 covered with the coil cover member 37 and a drain port 30 for draining the cooling water of the sealed space 50 to the outside are provided. Provided. That is, in this reference proposal example , the above-described water cooling mechanism is adopted instead of the air cooling mechanism in the case of the reference proposal example of FIG. As the cooling water in this case, a fluorine-based inert liquid having excellent electrical insulation properties, high thermal and chemical stability, and inert and nonflammable properties is desirable. Although not shown, this cooling water is returned from the motor 6 to the chiller, cooled to a predetermined temperature, and then supplied to the motor 6 again to be circulated.

この参考提案例では、コイルカバー部材37で覆った完全に密閉された空間50内に冷却水が漏れることなく満たされた状態で励磁コイル35を冷却するので、励磁コイル35を十分に冷却することができる。 In this reference proposal example , since the exciting coil 35 is cooled in a completely sealed space 50 covered with the coil cover member 37 without being leaked, the exciting coil 35 is sufficiently cooled. Can do.

図8は、励磁コイル35の冷却機構の他の構成例を示す。この構成例では、励磁コイル35にペルチエ素子38の低温側を貼り付け、このペルチエ素子38を外部から制御することにより、励磁コイル35を冷却液とペルチエ素子38とで冷却するようにしている。これにより、励磁コイル35の冷却効果をさらに高めることができる。 Figure 8 shows another exemplary configuration of a cooling mechanism excited magnetic coil 35. In this configuration example, the excitation coil 35 is cooled with the coolant and the Peltier element 38 by attaching the low temperature side of the Peltier element 38 to the excitation coil 35 and controlling the Peltier element 38 from the outside. Thereby, the cooling effect of the exciting coil 35 can be further enhanced.

図9は、さらに他の参考提案例を示す。この静圧気体軸受スピンドルAでは、図7の参考提案例において、ハウジング2の壁にこのハウジング2を冷却する冷却水通路39A,39Bと、これら冷却水通路39A,39Bに冷却水を外部から供給する給水口40A,40Bと、これら冷却水通路39A,39Bの冷却水を外部に排水する排水口41A,41Bとを設けている。1つの冷却水通路39Aは上部ハウジング2aの上端壁に断面矩形状に設けたものであり、他の1つの冷却水通路39Bは下部ハウジング2bの周壁に断面矩形状に設けたものである。上部ハウジング2aの冷却水通路39Aに開口する排水口41Aは、第1の通水チューブ42を介して下部ハウジング2bの冷却水通路39Bに開口する給水口40Bに連通させてある。また、下部ハウジング2bの冷却水通路39Bに開口する排水口41Bは第2の通水チューブ43を介してモータケース10の下端の励磁コイル冷却用の給水口29に連通させてあり、これにより冷却水をハウジング2の冷却水通路39A,39Bから励磁コイル35を覆う密閉空間50に循環供給するようにしている。その他の構成は図7の参考提案例の場合と同様である。 Figure 9 is showing the other references proposed examples et. In the static pressure gas bearing spindle A, in the reference proposal example of FIG. 7, cooling water passages 39A and 39B for cooling the housing 2 are supplied to the wall of the housing 2, and cooling water is supplied to the cooling water passages 39A and 39B from the outside. The water supply ports 40A and 40B are provided, and the water discharge ports 41A and 41B are provided for draining the cooling water of the cooling water passages 39A and 39B to the outside. One cooling water passage 39A is provided in the upper end wall of the upper housing 2a in a rectangular shape, and the other cooling water passage 39B is provided in the peripheral wall of the lower housing 2b in a rectangular shape. The drain port 41A that opens to the cooling water passage 39A of the upper housing 2a communicates with the water supply port 40B that opens to the cooling water passage 39B of the lower housing 2b via the first water flow tube. Further, the drainage port 41B that opens to the cooling water passage 39B of the lower housing 2b is communicated with the water supply port 29 for cooling the exciting coil at the lower end of the motor case 10 through the second water flow tube 43, thereby cooling. Water is circulated and supplied from the cooling water passages 39 </ b> A and 39 </ b> B of the housing 2 to the sealed space 50 that covers the exciting coil 35. Other configurations are the same as those of the reference proposal example of FIG.

このように、この参考提案例では、励磁コイル35の水冷系とは別に、ハウジング2の水冷系を設け、これらの両水冷系を通水チューブ42,43で連通させることにより、冷却水をハウジング2の冷却と励磁コイル35の冷却に兼用するようにしているので、静圧気体軸受スピンドルAの移動に伴って引きずられる通水チューブ42,43の本数を少なくして、主軸1の熱変形を効果的に低減できる。 As described above, in this reference proposal example , the water cooling system of the housing 2 is provided separately from the water cooling system of the exciting coil 35, and these water cooling systems are made to communicate with each other through the water tubes 42 and 43, thereby supplying the cooling water to the housing. 2 and cooling of the exciting coil 35, the number of the water flow tubes 42 and 43 that are dragged with the movement of the static pressure gas bearing spindle A is reduced, so that the main shaft 1 is thermally deformed. It can be effectively reduced.

なお、この参考提案例では、冷却水通路39Aから冷却水通路39Bへ流れる冷却水、および冷却水通路39Bから励起コイル35の密閉空間50へ流れる冷却水を、通水チューブ42,43により導く構成例について示したが、これに限らず、これら通水チューブ42,43に代わる配管や流通路をハウジング2やモータケース10に設けても良い。 In this reference proposal example , the cooling water flowing from the cooling water passage 39A to the cooling water passage 39B and the cooling water flowing from the cooling water passage 39B to the sealed space 50 of the excitation coil 35 are guided by the water flow tubes 42 and 43. Although shown about the example, it is not restricted to this, You may provide piping and a flow path instead of these water flow tubes 42 and 43 in the housing 2 or the motor case 10. FIG.

また、図5や図7の参考提案例では図示しないが、これらの参考提案例においてモータ6の水冷系と併用する形で、図9の実施形態の場合と同様の冷却水通路39A,39Bをハウジング2に形成しても良い。 Although not shown in the reference proposal examples of FIG. 5 and FIG. 7, the cooling water passages 39A and 39B similar to those in the embodiment of FIG. 9 are used in the reference proposal examples in combination with the water cooling system of the motor 6. You may form in the housing 2. FIG.

また、上記した各実施形態および参考提案例では、静圧気体軸受3として多数給気型のものを用いた場合を例示したが、静圧気体軸受3として多孔質給気方式のものを用いても同様の効果を得ることができる。 In each embodiment shaped state and Reference proposed example described above, a case has been exemplified using any of the multitude air supply type as the externally pressurized gas bearing 3, those porous air supply system as the externally pressurized gas bearing 3 Even if it is used, the same effect can be obtained.

1…主軸
1a…被回転体設置部
1b…主軸本体部
2…ハウジング
3…静圧気体軸受
6…モータ
7…モータ回転軸
8…モータロータ
9a…モータコア
9b…励磁コイル
10…モータケース
13…振れ精度測定装置
13b…振れ精度測定装置のターゲット部材(被回転体)
15…被回転体設置部の貫通孔
16…導電線
17…主軸本体部の貫通孔
18…円板
19…導電性アース部材
20…導電性保持部材
26a,26b…メッキ層
28…冷却水通路
29…給水口
30…排水口
31…低温圧縮空気発生装置
32…冷気給気口
33…冷気排気口
34…ロータヨーク
35…励磁コイル
37…コイルカバー部材
38…ペルチエ素子
39A,39B…冷却水通路
40A,40B…給水口
41A,41B…排水口
42,43…通水チューブ
44…超低温空気発生器
DESCRIPTION OF SYMBOLS 1 ... Main axis | shaft 1a ... To-be-rotated body installation part 1b ... Main axis | shaft main-body part 2 ... Housing 3 ... Static pressure gas bearing 6 ... Motor 7 ... Motor rotating shaft 8 ... Motor rotor 9a ... Motor core 9b ... Excitation coil 10 ... Motor case 13 ... Runout accuracy Measuring device 13b ... Target member (rotated body) of runout accuracy measuring device
DESCRIPTION OF SYMBOLS 15 ... Through-hole 16 of to-be-rotated body installation part ... Conductive wire 17 ... Through-hole 18 of spindle main-body part ... Disk 19 ... Conductive earth member 20 ... Conductive holding member 26a, 26b ... Plating layer 28 ... Cooling water passage 29 ... Water supply port 30 ... Drain port 31 ... Low temperature compressed air generator 32 ... Cool air supply port 33 ... Cool air exhaust port 34 ... Rotor yoke 35 ... Excitation coil 37 ... Coil cover member 38 ... Peltier elements 39A, 39B ... Cooling water passage 40A, 40B ... Water supply port 41A, 41B ... Drain port 42, 43 ... Water flow tube 44 ... Ultra-low temperature air generator

Claims (6)

主軸を回転自在に支持する静圧気体軸受と、前記主軸にモータロータを固定してなり主軸を回転駆動するモータとを備え、前記主軸の一端部を被回転体を取り付けるための被回転体設置部とした静圧気体軸受スピンドルにおいて、
前記主軸の被回転体設置部の材料として、前記主軸の前記被回転体設置部を除く主軸本体部よりも熱伝導率の低いセラミックスを用い、前記主軸の前記被回転体設置部を除く主軸本体部が金属製であり、被回転体設置部の中心に軸方向に貫通する貫通孔を設け、前記主軸本体部と前記被回転体設置部に取り付けられる金属製被回転体とを前記貫通孔に配線した導電線で電気的に接続したことを特徴とする静圧気体軸受スピンドル。
A rotating body installation portion for attaching a rotating body to one end of the main shaft, comprising: a static pressure gas bearing that rotatably supports the main shaft; and a motor that rotates the main shaft by fixing a motor rotor to the main shaft. In the static pressure gas bearing spindle,
As the material of the rotary member installation portion of the spindle, have use a ceramic lower thermal conductivity than the main shaft body portion, except for the driven rotating body installation section of the main shaft, main shaft except the driven rotating body installation section of the main shaft The main body is made of metal, and a through-hole penetrating in the axial direction is provided at the center of the rotated body installation portion, and the main body and the metal rotated body attached to the rotated body installation portion are connected to the through hole. A hydrostatic gas bearing spindle characterized in that it is electrically connected by a conductive wire wired to the wire .
主軸を回転自在に支持する静圧気体軸受と、前記主軸にモータロータを固定してなり主軸を回転駆動するモータとを備え、前記主軸の一端部を被回転体を取り付けるための被回転体設置部とした静圧気体軸受スピンドルにおいて、
前記主軸の被回転体設置部の材料として、前記主軸の前記被回転体設置部を除く主軸本体部よりも熱伝導率の低いセラミックスを用い、前記主軸の前記被回転体設置部を除く主軸本体部の材料がアルミナセラミックスであり、主軸の被回転体設置部および前記主軸本体部の中心に互いに連通し軸方向に貫通する貫通孔を設けると共に、主軸の被回転体設置部と軸方向反対側の端部に前記モータの金属製回転軸を前記貫通孔と同軸に設け、このモータ回転軸と前記被回転体設置部に取り付けられる金属製被回転体とを前記貫通孔に配線した導電線で電気的に接続したことを特徴とする静圧気体軸受スピンドル。
A rotating body installation portion for attaching a rotating body to one end of the main shaft, comprising: a static pressure gas bearing that rotatably supports the main shaft; and a motor that rotates the main shaft by fixing a motor rotor to the main shaft. In the static pressure gas bearing spindle,
The main body of the main shaft excluding the rotating body installation portion of the main shaft using ceramics having a lower thermal conductivity than the main body of the main shaft excluding the main body of the rotating body as the material of the main body of the rotating body. The material of the part is alumina ceramics, and a through-hole that communicates with each other in the axial direction is provided at the center of the main body of the main body and the main body of the main shaft, and is opposite to the main body of the main body. A metal rotating shaft of the motor is provided coaxially with the through hole at the end of the motor, and a conductive wire in which the motor rotating shaft and a metal rotating body attached to the rotating body installation portion are wired to the through hole. A hydrostatic gas bearing spindle characterized by electrical connection.
主軸を回転自在に支持する静圧気体軸受と、前記主軸にモータロータを固定してなり主軸を回転駆動するモータとを備え、前記主軸の一端部を被回転体を取り付けるための被回転体設置部とした静圧気体軸受スピンドルにおいて、
前記主軸の被回転体設置部の材料として、前記主軸の前記被回転体設置部を除く主軸本体部よりも熱伝導率の低いセラミックスを用い、前記主軸の前記被回転体設置部を除く主軸本体部の材料がアルミナセラミックスであり、主軸の被回転体設置部および前記主軸本体部の中心に互いに連通し軸方向に貫通する貫通孔を設けると共に、主軸の被回転体設置部と軸方向反対側の端部に前記モータの金属製回転軸を前記貫通孔と同軸に設け、主軸本体部の貫通孔の内周面およびモータ回転軸に接する端面に導電性のメッキ層を形成し、このメッキ層と前記被回転体設置部に取り付けられる金属製被回転体とを被回転体設置部の貫通孔に配線した導電線で電気的に接続したことを特徴とする静圧気体軸受スピンドル。
A rotating body installation portion for attaching a rotating body to one end of the main shaft, comprising: a static pressure gas bearing that rotatably supports the main shaft; and a motor that rotates the main shaft by fixing a motor rotor to the main shaft. In the static pressure gas bearing spindle,
The main body of the main shaft excluding the rotating body installation portion of the main shaft using ceramics having a lower thermal conductivity than the main body of the main shaft excluding the main body of the rotating body as the material of the main body of the rotating body. The material of the part is alumina ceramics, and a through-hole that communicates with each other in the axial direction is provided at the center of the main body of the main body and the main body of the main shaft, and is opposite to the main body of the main body. The metal rotating shaft of the motor is provided coaxially with the through hole at the end of the shaft, and a conductive plating layer is formed on the inner peripheral surface of the through hole of the main spindle main body and the end surface in contact with the motor rotating shaft. A hydrostatic gas bearing spindle, wherein the rotating member installation part and a metal rotating body attached to the rotating object installation part are electrically connected by a conductive wire wired in a through hole of the rotation object installation part.
請求項2または請求項3において、前記モータの金属製回転軸に導電性材料からなる円板を固定すると共に、この円板の表面に微小隙間を介して対向する平面を有する導電性アース部材を、静圧気体軸受スピンドルのハウジングに固定された導電性保持部材で保持した静圧気体軸受スピンドル。 The conductive earth member according to claim 2 or 3 , wherein a disk made of a conductive material is fixed to a metal rotary shaft of the motor, and a conductive ground member having a flat surface facing the surface of the disk via a minute gap. A static pressure gas bearing spindle held by a conductive holding member fixed to the housing of the static pressure gas bearing spindle. 請求項2または請求項3において、前記モータの金属製回転軸に導電性材料からなる円板を固定すると共に、この円板の表面に接触する導電性繊維状部材を有する導電性アース部材を、静圧気体軸受スピンドルのハウジングに固定された導電性保持部材で保持した静圧気体軸受スピンドル。 In Claim 2 or Claim 3 , while fixing the disk which consists of a conductive material to the metal rotating shaft of the motor, the conductive grounding member which has the conductive fibrous member which contacts the surface of this disk, A hydrostatic gas bearing spindle held by a conductive holding member fixed to the housing of the hydrostatic gas bearing spindle. 請求項1ないし請求項5のいずれか1項において、前記主軸の被回転体設置部の材料がジルコニアセラミックスである静圧気体軸受スピンドル。 The hydrostatic gas bearing spindle according to any one of claims 1 to 5 , wherein a material of the rotating body installation portion of the main shaft is zirconia ceramics.
JP2009259803A 2009-11-13 2009-11-13 Hydrostatic gas bearing spindle Expired - Fee Related JP5388809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009259803A JP5388809B2 (en) 2009-11-13 2009-11-13 Hydrostatic gas bearing spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009259803A JP5388809B2 (en) 2009-11-13 2009-11-13 Hydrostatic gas bearing spindle

Publications (2)

Publication Number Publication Date
JP2011106502A JP2011106502A (en) 2011-06-02
JP5388809B2 true JP5388809B2 (en) 2014-01-15

Family

ID=44230206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009259803A Expired - Fee Related JP5388809B2 (en) 2009-11-13 2009-11-13 Hydrostatic gas bearing spindle

Country Status (1)

Country Link
JP (1) JP5388809B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107322013A (en) * 2017-08-29 2017-11-07 孙嘉骏 The noncontact driven using air motor supports rotary main shaft device
CN109113809B (en) * 2018-09-17 2023-09-19 苏州制氧机股份有限公司 Gas bearing turbine expander
CN111664759A (en) * 2020-05-13 2020-09-15 九江精密测试技术研究所 Dexterous ammunition ultrahigh-speed simulation test rotary table based on water cooling
CN112128383A (en) * 2020-08-14 2020-12-25 北京北一机床股份有限公司 Air floatation disc type rotary and axial sealing structure and method
CN114589320A (en) * 2022-02-07 2022-06-07 北京海普瑞森超精密技术有限公司 Full-cooling type gas static pressure main shaft

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001182748A (en) * 1999-12-24 2001-07-06 Ntn Corp Hydrostatic gas bearing spindle
JP2003329039A (en) * 2002-05-10 2003-11-19 Toto Ltd Ceramic member

Also Published As

Publication number Publication date
JP2011106502A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
JP5388809B2 (en) Hydrostatic gas bearing spindle
US8456050B2 (en) Disk drive device for rotating a disk
JP4767853B2 (en) Electromagnetic bearing device and vacuum pump
JP2010193698A (en) Spindle motor
JP2007006692A (en) Motor unit equipped with spindle motor for recording disk drive, and recording disk driving device equipped with the same
US20120113546A1 (en) Motor unit and disk drive apparatus
JP2006269005A (en) Magnetic disk device
JP2006053973A (en) Magnetic head slider and magnetic disk device
KR100853595B1 (en) Disk apparatus
JP5687453B2 (en) Hydrostatic gas bearing spindle
JP2003209962A (en) Linear motor and stage device
JP4124977B2 (en) Rotating device
EP1056171B1 (en) Discharge-pumped excimer laser device
JP2011208724A (en) Static pressure journal bearing spindle
US8407899B2 (en) Fluid dynamic bearing, method of manufacturing fluid dynamic bearing, rotating device, and disk drive device
JP4811780B2 (en) Linear motor, machine tool and measuring instrument
JP2009024771A (en) Bearing unit, motor fitted with this bearing unit and disk driving device
JP2015152080A (en) Rotary equipment
JP2005235300A (en) Closed type recording disk drive unit, clamp, spacer, and spindle motor for recording disk drive unit
JP2000263375A (en) Spindle device
US20240105220A1 (en) Disk device with column attached to base and cover
JP2002005164A (en) Spindle device
JP2013127830A (en) Disk drive device
JP2009159701A (en) Spindle motor and disk drive unit
JP2005133737A (en) Bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

R150 Certificate of patent or registration of utility model

Ref document number: 5388809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees