JP5388665B2 - Thermoplastic resin composition and molded article thereof - Google Patents

Thermoplastic resin composition and molded article thereof Download PDF

Info

Publication number
JP5388665B2
JP5388665B2 JP2009098156A JP2009098156A JP5388665B2 JP 5388665 B2 JP5388665 B2 JP 5388665B2 JP 2009098156 A JP2009098156 A JP 2009098156A JP 2009098156 A JP2009098156 A JP 2009098156A JP 5388665 B2 JP5388665 B2 JP 5388665B2
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin composition
volume
molded
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009098156A
Other languages
Japanese (ja)
Other versions
JP2010248342A (en
Inventor
邦彦 小西
裕一 下木場
宏志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2009098156A priority Critical patent/JP5388665B2/en
Publication of JP2010248342A publication Critical patent/JP2010248342A/en
Application granted granted Critical
Publication of JP5388665B2 publication Critical patent/JP5388665B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、放熱性に優れた熱可塑性樹脂組成物及びその成形体に関するものである。 The present invention relates to a thermoplastic resin composition excellent in heat dissipation and a molded body thereof.

発熱性電子部品の高密度化、高集積化により発熱量が増大し、電子部品の温度上昇を極力抑えるため、発生した熱を効率良く放熱する要求が益々高まっている。また、携帯用パソコンなどの電子機器は小型化、薄型化、軽量化が進み、これらに用いられる部材、筐体も良放熱性のものが要求されている。更にLEDを利用した照明機器の部材、筐体も高放熱性が必要とされている。従来、それらに用いられる部材の放熱性を向上させる方法として、例えば、部材をアルミニウム等の金属製にする方法や、部材表面に高熱伝導率塗料を塗布する方法、高熱伝導性フィラーとして酸化アルミニウム粉末を樹脂やゴムに高濃度で配合する方法等が提案されている(特許文献1、2、3参照)。更に、高熱伝導性フィラーとして特定の酸化アルミニウム粉末を樹脂に配合し、射出成形可能な熱可塑性樹脂とする技術も提案されている(特許文献4参照)。 The amount of heat generation is increased by increasing the density and integration of the heat-generating electronic components, and in order to suppress the temperature rise of the electronic components as much as possible, there is an increasing demand for efficiently radiating the generated heat. In addition, electronic devices such as portable personal computers are becoming smaller, thinner, and lighter, and members and casings used for these devices are required to have good heat dissipation. Furthermore, high heat dissipation is also required for members and casings of lighting equipment using LEDs. Conventionally, as a method for improving the heat dissipation of members used in them, for example, a method of making a member made of metal such as aluminum, a method of applying a high thermal conductivity paint on the surface of a member, aluminum oxide powder as a high thermal conductivity filler The method etc. which mix | blend this with resin and rubber | gum by high concentration are proposed (refer patent document 1, 2, 3). Furthermore, a technique has been proposed in which a specific aluminum oxide powder is blended with a resin as a high thermal conductive filler to form a thermoplastic resin that can be injection-molded (see Patent Document 4).

特開昭64−24859号JP-A 64-24859 特開2006−057005号JP 2006-050705 A 特開2005−281612号JP-A-2005-281612 特開2006−117814号JP 2006-117814 A

本発明は、新規な熱可塑性樹脂組成物及びその成形体を提供することを課題とする。 An object of the present invention is to provide a novel thermoplastic resin composition and a molded body thereof.

すなわち、本発明は、(1)(I)熱可塑性樹脂30体積%と(II)平均粒径3〜50μm、充填量50〜65体積%の球状アルミナと(III)充填量5〜20体積%の水酸化マグネシウムを、セラミックコートを施したスクリューの押出機で混練することにより得られる色相の明度(L)が90以上で且つ、熱伝導率が1.5W/mK〜5W/mKであることを特徴とする熱可塑性樹脂組成物、(2)更に白色系着色剤を配合することを特徴とする(1)記載の熱可塑性樹脂組成物、(3)白色系着色剤が酸化チタン、酸化亜鉛、及び沈降性硫酸バリウムの少なくとも1種であることを特徴とする(2)に記載の熱可塑性樹脂組成物、(4)(1)〜(3)のいずれか1項に記載の熱可塑性樹脂組成物からなる放熱部材である。
That is, the present invention comprises (1) (I) 30% by volume of thermoplastic resin, (II) spherical alumina having an average particle size of 3 to 50 μm, and a filling amount of 50 to 65 % by volume, and (III) a filling amount of 5 to 20% by volume The lightness (L * ) of the hue obtained by kneading the magnesium hydroxide with a ceramic-coated screw extruder is 90 or more and the thermal conductivity is 1.5 W / mK to 5 W / mK. (2) The thermoplastic resin composition according to (1), further comprising a white colorant, (3) The white colorant is titanium oxide, The thermoplastic resin composition according to (2) , which is at least one of zinc oxide and precipitated barium sulfate, (4) The heat according to any one of (1) to (3) It is a heat radiating member which consists of a plastic resin composition.

本発明によれば容易に射出成形可能な耐熱性、放熱性、色相に優れた組成物及びその成形体を提供することができる。発熱性電子部品の放熱部材、例えばLED照明筐体、電源アダプター、パソコン用部品、携帯電話用部品、自動車部品、光学式ディスプレー装置、半導体及び熱を発する部分に接触している部品などの筐体用途に好適に用いることができる。 ADVANTAGE OF THE INVENTION According to this invention, the composition excellent in the heat resistance which can be easily injection-molded, heat dissipation, and a hue, and its molded object can be provided. Heat dissipating members for heat-generating electronic parts, such as LED lighting housings, power adapters, personal computer parts, mobile phone parts, automobile parts, optical display devices, semiconductors, and parts that are in contact with heat-generating parts It can use suitably for a use.

<用語の説明>
本願明細書において、「〜」という記号は「以上」及び「以下」を意味する。例えば、「A〜B」なる記載は、A以上でありB以下であることを意味する。
<Explanation of terms>
In the present specification, the symbol “to” means “above” and “below”. For example, the description “A to B” means A or more and B or less.

以下、更に詳しく本発明について説明する。 Hereinafter, the present invention will be described in more detail.

本発明のセラミックコートは、特開平8−35075号公報に開示されるように、第1ステップでは、金属部材を300〜650℃の温度に保持し、アンモニアガスと水素ガスを用い、金属部材の表面に0.001〜2.0mA/cm2 の電流密度のグロー放電を行いイオン窒化して窒化層を形成し、この窒化層の上に第2ステップにてPVD法によりTi、Zr、Hf、V、Nb、Ta及びCrの少なくとも1種の窒化物、炭化物及び/又は炭窒化物からなる硬質被膜、あるいは前記硬質被膜の積層膜あるいは積層傾斜膜を形成するものである。 As disclosed in Japanese Patent Laid-Open No. 8-35075, the ceramic coat of the present invention, in the first step, holds the metal member at a temperature of 300 to 650 ° C., uses ammonia gas and hydrogen gas, A glow discharge with a current density of 0.001 to 2.0 mA / cm 2 is performed on the surface and ion nitrided to form a nitride layer. On the nitride layer, Ti, Zr, Hf, A hard film made of at least one nitride, carbide and / or carbonitride of V, Nb, Ta and Cr, or a laminated film or a laminated gradient film of the hard film is formed.

硬質被膜はセラミックス膜であり、従来の金属材料に比べてビッカース硬度で1500〜3000と高硬度で、かつ低摩擦係数を示すため優れた耐摩耗性を発揮する。しかし、膜厚が5μmを超える厚膜になると、セラミックスの割れや欠け等を生じるため、硬質被膜の厚さは5μm以下が好ましい。2μm未満では硬質被膜としての特性が十分に発揮されない。硬質被膜の厚さは、2〜5μmが好ましい。 The hard film is a ceramic film, and has a high Vickers hardness of 1500 to 3000 and a low friction coefficient as compared with conventional metal materials, and exhibits excellent wear resistance. However, when the film thickness exceeds 5 μm, cracks and chipping of ceramics occur, so the thickness of the hard coating is preferably 5 μm or less. When the thickness is less than 2 μm, the characteristics as a hard coating are not sufficiently exhibited. The thickness of the hard coating is preferably 2 to 5 μm.

また、基材表面に窒化層の第1層を設け、その上に第2層として硬質被膜を形成する複合処理により、基材表面での弾性変形又は塑性変形がほとんど起らない。このため、硬質被膜が破壊しない。 Further, the elastic treatment or plastic deformation on the surface of the base material hardly occurs by the composite treatment in which the first layer of the nitride layer is provided on the surface of the base material and the hard film is formed thereon as the second layer. For this reason, a hard film is not destroyed.

熱可塑性樹脂組成物の熱伝導率は、1.5W/mK〜5W/mKであることが必要であるが、好ましくは2W/mk〜5W/mKである。熱伝導率が小さいと放熱性が不十分となりやすく、熱伝導率を高めるためだけに高熱伝導率が高い無機フィラーを大量に配合すると、得られる熱可塑性樹脂組成物の射出成形性が劣る傾向となる。 The thermal conductivity of the thermoplastic resin composition is required to be 1.5 W / mK to 5 W / mK, and preferably 2 W / mk to 5 W / mK. When the thermal conductivity is small, the heat dissipation tends to be insufficient, and when a large amount of an inorganic filler having a high thermal conductivity is added only in order to increase the thermal conductivity, the injection moldability of the resulting thermoplastic resin composition tends to be inferior. Become.

熱可塑性樹脂組成物の流動性の指標であるメルトマスフローレイト(MFR)30g/10分以上であることが成形加工性の点から好ましい。 A melt mass flow rate (MFR) of 30 g / 10 min or more, which is an index of fluidity of the thermoplastic resin composition, is preferable from the viewpoint of moldability.

球形アルミナの平均球形度は、0.80〜1.0が好ましい。平均球形度が0.80未満では、熱可塑性樹脂組成物への充填するための溶融混練が困難となりやすく、得られる熱可塑性樹脂組成物の強度が低下する傾向がある。また、球状アルミナの分散性が悪くなり、得られた成形体の放熱効果が小さくなる傾向がある。 The average sphericity of the spherical alumina is preferably 0.80 to 1.0. If the average sphericity is less than 0.80, melt kneading for filling into the thermoplastic resin composition tends to be difficult, and the strength of the resulting thermoplastic resin composition tends to decrease. Further, the dispersibility of the spherical alumina is deteriorated, and the heat dissipation effect of the obtained molded product tends to be reduced.

なお、平均球形度は、実体顕微鏡(例えば、ニコン社製モデル「SMZ−10型」)、走査型電子顕微鏡等にて撮影した粒子像を画像解析装置(日本アビオニクス社製)に取り込み、以下に示す方法にて測定することができる。この方法以外にも、粒子像分析装置(例えば、シスメックス社製商品名「FPIA−1000」)にて定量的に自動計測された個々の粒子の新円度から、球形度=(新円度)により換算して求めることもできる。
すなわち、粒子像から粒子の投影面積(A)と周辺長(PM)を測定する。周辺長(PM)に対応する真円の面積を(B)とすると、その粒子の真円度はA/Bとして表示できる。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πr であるから、B=π×(PM/2π) となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM) として算出することができる。このようにして得られた任意の粒子の200個の球形度を求め、その平均値を平均球形度とした。
The average sphericity is obtained by taking a particle image photographed with a stereomicroscope (for example, model “SMZ-10 type” manufactured by Nikon Corporation), a scanning electron microscope or the like into an image analyzer (manufactured by Nippon Avionics Co., Ltd.). It can be measured by the method shown. In addition to this method, sphericity = (new circularity) from the new circularity of individual particles quantitatively automatically measured by a particle image analyzer (for example, trade name “FPIA-1000” manufactured by Sysmex Corporation). It can also be obtained by conversion according to 2 .
That is, the projected area (A) and peripheral length (PM) of the particle are measured from the particle image. When the area of a perfect circle corresponding to the peripheral length (PM) is (B), the roundness of the particle can be displayed as A / B. Therefore, assuming a perfect circle having the same circumference as the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 , and each particle Can be calculated as sphericity = A / B = A × 4π / (PM) 2 . The 200 sphericities of the arbitrary particles thus obtained were determined, and the average value was defined as the average sphericity.

球状アルミナの含有量は、50〜70体積%であり、好ましくは60〜70体積%である。含有量が50体積%より少ないと放熱性の向上効果小さくなりやすく、含有量が70体積%より多い射出成形が困難となる場合がある。 The content of spherical alumina is 50 to 70% by volume, preferably 60 to 70% by volume. If the content is less than 50% by volume, the effect of improving heat dissipation tends to be small, and injection molding having a content of more than 70% by volume may be difficult.

球状アルミナの平均粒径は、3〜50μmであり、平均粒径が3μmより小さくなると放熱性の向上効果が小さくなりやすく、平均粒径が50μmより大きくなると、セラミックコートをしていても得られる熱可塑性樹脂組成物の色相L値が著しく低下する傾向がある。平均粒径が50μmより大きいと、セラミックコートを混練時に摩耗していると推察される。 The average particle diameter of the spherical alumina is 3 to 50 μm, and if the average particle diameter is smaller than 3 μm, the effect of improving the heat dissipation tends to be small, and if the average particle diameter is larger than 50 μm, it can be obtained even with ceramic coating. There exists a tendency for the hue L value of a thermoplastic resin composition to fall remarkably. If the average particle size is larger than 50 μm, it is assumed that the ceramic coat is worn during kneading.

熱可塑性樹脂は、例えば、HIPS樹脂、ABS樹脂、AAS樹脂、SAS樹脂、SEBS樹脂、MBS樹脂、MES樹脂(メタクリル酸アルキル−エチレン・αオレフィン系ゴム−スチレン共重合体)及びACS樹脂等のゴム強化スチレン系熱可塑性樹脂、メタクリル−スチレン共重合体、メタクリル樹脂、芳香族ビニル単量体単位、不飽和ジカルボン酸イミド誘導体単位、及びこれらと共重合可能なビニル単量体単位からなるマレイミド系共重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリシクロヘキサンジメチレンテレフタレート、
ビスフェノールAや4,4’−ジヒドロキシ−ジフェニルエーテル等のビスフェノールとイソフタル酸、テレフタル酸等の2塩基酸又はその誘導体から合成される芳香族ポリエステルやp−ヒドロキシ安息香酸/ビスフェノール/テレフタル酸、p−ヒドロキシ安息香酸/6−ヒドロキシ−2−ナフタレンカルボン酸/テレフタル酸、p−ヒドロキシ安息香酸/ポリブチレンテレフタレート等の液晶性ポリエステル等の芳香族ポリエステル、ポリアミド(PA)、ポリアミド/酸変性エチレン−プロピレンゴム、ポリアミド/酸変性エチレン−プロピレンゴム/マレイミド系共重合体アロイ、ポリカーボネート、ABS/P
Cアロイ、ポリフェニレンスルフィド(PPS)、ポリエチレン、ポリプロピレン等が挙げられる。これらの中で、相溶性又は混和性がよい樹脂同士であれば、混合して用いることもできる。
Examples of the thermoplastic resin include rubbers such as HIPS resin, ABS resin, AAS resin, SAS resin, SEBS resin, MBS resin, MES resin (alkyl methacrylate-ethylene / α-olefin rubber-styrene copolymer), and ACS resin. Maleimide copolymer comprising reinforced styrene thermoplastic resin, methacryl-styrene copolymer, methacrylic resin, aromatic vinyl monomer unit, unsaturated dicarboxylic imide derivative unit, and vinyl monomer unit copolymerizable therewith. Polymer, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polycyclohexanedimethylene terephthalate,
Aromatic polyesters synthesized from bisphenols such as bisphenol A and 4,4′-dihydroxy-diphenyl ether and dibasic acids such as isophthalic acid and terephthalic acid or derivatives thereof, p-hydroxybenzoic acid / bisphenol / terephthalic acid, p-hydroxy Aromatic polyester such as benzoic acid / 6-hydroxy-2-naphthalenecarboxylic acid / terephthalic acid, liquid crystalline polyester such as p-hydroxybenzoic acid / polybutylene terephthalate, polyamide (PA), polyamide / acid-modified ethylene-propylene rubber, Polyamide / acid-modified ethylene-propylene rubber / maleimide copolymer alloy, polycarbonate, ABS / P
C alloy, polyphenylene sulfide (PPS), polyethylene, polypropylene and the like can be mentioned. Among these, resins having good compatibility or miscibility can be mixed and used.

熱可塑性樹脂組成物は、ハロゲン系難燃剤、酸化アンチモン、リン酸エステル系、水酸化マグネシウムの難燃剤等を含有させることにより難燃性を付与することができる。特に水酸化マグネシウムが好ましい。 The thermoplastic resin composition can impart flame retardancy by containing a halogen flame retardant, an antimony oxide, a phosphate ester, a magnesium hydroxide flame retardant, or the like. Magnesium hydroxide is particularly preferable.

水酸化マグネシウムの量としては、2〜20体積%が好ましい。含有量が2体積%未満では難燃性が十分でなく、含有量が20体積%超では、熱伝導率が低下する。 The amount of magnesium hydroxide is preferably 2 to 20% by volume. If the content is less than 2% by volume, the flame retardancy is not sufficient, and if the content exceeds 20% by volume, the thermal conductivity is lowered.

熱可塑性樹脂組成物は、白色系の着色剤を配合して更に色相値Lを上げることもできる。白色系の着色剤としては、酸化チタン、酸化亜鉛、沈降性バリウムが好適である。 The thermoplastic resin composition can further increase the hue value L by blending a white colorant. As the white colorant, titanium oxide, zinc oxide, and precipitated barium are preferable.

白色系の着色剤の含有量としては、0.5体積%〜5体積%が好ましい。
含有量0.5体積%未満では、配合による色相L値の改良効果が少なく、含有量5体積%超では、熱伝導率が低下する場合がある。
The content of the white colorant is preferably 0.5% by volume to 5% by volume.
If the content is less than 0.5% by volume, the effect of improving the hue L value by blending is small, and if the content exceeds 5% by volume, the thermal conductivity may decrease.

熱可塑性樹脂組成物は、放熱性、強度、成形性に影響のない範囲であれば、外部滑剤、内部滑剤、酸化防止剤、光安定剤、紫外線吸収剤、ガラス繊維、カーボン繊維等の補強材、各色着色剤等を配合することができる。無機フィラーは、シラン系及び/又はチタネート系カップリング剤などの粉体表面改質剤で表面改質して使用することも可能である。 The thermoplastic resin composition is a reinforcing material such as an external lubricant, an internal lubricant, an antioxidant, a light stabilizer, an ultraviolet absorber, glass fiber, and carbon fiber as long as it does not affect heat dissipation, strength, and moldability. Each color coloring agent can be blended. The inorganic filler can be used after being surface-modified with a powder surface modifier such as a silane-based and / or titanate-based coupling agent.

熱可塑性樹脂組成物は、通常の溶融混練装置を用いて得ることができるが、好適に使用できる溶融混練装置としては、単軸押出機、噛合形同方向回転又は噛合形異方向回転二軸押出機、非又は不完全噛合形二軸押出機等のスクリュー押出機等がある。 The thermoplastic resin composition can be obtained by using an ordinary melt-kneading apparatus. Examples of the melt-kneading apparatus that can be suitably used include a single-screw extruder, a meshing-type co-rotating or a meshing-type counter-rotating twin-screw extrusion. And screw extruders such as non- or incomplete meshing twin screw extruders.

熱可塑性樹脂組成物は、成形して筐体に用いることができるが、その成形法は、熱可塑性樹脂を成形する方法が利用できる。例えば、プレス法、押出し法、射出成形法、二色成形等挙げられるが、量産性、デザイン性を勘案すると射出成形法が好適である The thermoplastic resin composition can be molded and used for a casing. As the molding method, a method of molding a thermoplastic resin can be used. For example, a press method, an extrusion method, an injection molding method, a two-color molding method, etc. can be mentioned, but an injection molding method is preferable in consideration of mass productivity and design.

射出成形機のスクリュウをセラミックコートすることも、色相L値を向上させる観点から、好ましい。 It is also preferable to ceramic coat the screw of the injection molding machine from the viewpoint of improving the hue L value.

特に、成形時に、成形体表面を低光沢あるいはシボ面になるような金型を用いることにより、より放熱性に優れた成形体を得ることができる。 In particular, at the time of molding, it is possible to obtain a molded body having more excellent heat dissipation by using a mold having a surface with a low gloss or texture.

以下、本発明を実施例により更に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to these.

球状アルミナは、下記のものを用いた(密度3.97)。
B−1:球状アルミナ 平均粒径1μm、平均球形度0.88
B−2:球状アルミナ 平均粒径3μm、平均球形度0.88
B−3:球状アルミナ 平均粒径20μm、平均球形度0.87
B−4:球状アルミナ 平均粒径50μm、平均球形度0.89
B−5:球状アルミナ 平均粒径60μm、平均球形度0.87
尚、球状アルミナの熱伝導率(W/mK)は30であった。
The following spherical alumina was used (density 3.97).
B-1: Spherical alumina Average particle diameter 1 μm, average sphericity 0.88
B-2: Spherical alumina Average particle size 3 μm, average sphericity 0.88
B-3: Spherical alumina Average particle size 20 μm, average sphericity 0.87
B-4: Spherical alumina Average particle size 50 μm, Average sphericity 0.89
B-5: Spherical alumina Average particle size 60 μm, average sphericity 0.87
The spherical alumina had a thermal conductivity (W / mK) of 30.

熱可塑性樹脂は、下記のものを用いた。
A−1:ABS樹脂 電気化学工業社製、GR−2000(密度:1.05)
A−2:PA(ポリアミド6) 東レ社製 アミラン CM1017(密度1.14)
A−3:PC(ポリカーボネート) 三菱エンジニアリングプラスチック社製
E−2000(密度 1.20)
The following were used for the thermoplastic resin.
A-1: ABS resin, manufactured by Denki Kagaku Kogyo Co., Ltd., GR-2000 (density: 1.05)
A-2: PA (polyamide 6) Amilan CM1017 (density 1.14) manufactured by Toray Industries, Inc.
A-3: PC (polycarbonate) Mitsubishi Engineering Plastics E-2000 (density 1.20)

水酸化マグネシウムは、下記のものを用いた。
C−1:神島化学工業社製 マグシーズ N−4
The following magnesium hydroxide was used.
C-1: Magsees N-4 manufactured by Kamishima Chemical Industry Co., Ltd.

白色系着色剤は、酸化チタン、酸化亜鉛(亜鉛華)、沈降性硫酸バリウムを用いた。 As the white colorant, titanium oxide, zinc oxide (zinc white), and precipitated barium sulfate were used.

スクリュウのセラミックコートは以下のように実施した。特開平8−35075号公報の実施例1に準じて、ダルメージスクリュー(鋼材SCM435)にセラミックコートを行った。このセラミックTiN膜厚は、3〜4μmであった。 The ceramic coating of the screw was performed as follows. According to Example 1 of JP-A-8-35075, a ceramic coating was applied to a dalmage screw (steel material SCM435). The ceramic TiN film thickness was 3-4 μm.

実施例8,10,11,15、比較例1〜14及び参考例1〜11
表1〜表4に示した配合になるように、ヘンシェルミキサーに各無機フィラーと各熱可塑性樹脂を仕込み、低速回転で3分間混合した。この混合物を真空ベント付きの40mm単軸押出し機・ダルメージスクリュー(IKG製、MS40−32V)で下記設定温度及び、スクリュー回転数80〜100rpmで、溶融混練し、ペレットを得た。
熱可塑性樹脂 溶融混練時の温度設定
A−1 250〜280℃
A−2 250〜280℃
A−3 300〜330℃
このペレットを使用して、射出成形機により評価用試験片を作成し、各種物性を評価した。結果を表1〜4に示す。
[ Examples 8, 10, 11, 15, Comparative Examples 1-14 and Reference Examples 1-11 ]
Each inorganic filler and each thermoplastic resin were charged into a Henschel mixer so as to have the composition shown in Tables 1 to 4, and mixed at a low speed for 3 minutes. This mixture was melt-kneaded with a 40 mm single-screw extruder / dull image screw (manufactured by IKG, MS40-32V) with a vacuum vent at the following set temperature and a screw rotation speed of 80 to 100 rpm to obtain pellets.
Thermoplastic resin Temperature setting during melt-kneading A-1 250-280 ° C
A-2 250-280 ° C
A-3 300-330 ° C
Using these pellets, test specimens for evaluation were prepared by an injection molding machine, and various physical properties were evaluated. The results are shown in Tables 1-4.

Figure 0005388665
Figure 0005388665

Figure 0005388665
Figure 0005388665

Figure 0005388665
Figure 0005388665

Figure 0005388665
Figure 0005388665

表1、表2の実施例1〜実施例16に示すように、熱可塑性樹脂と平均粒径3〜50μm、充填量50〜70体積%の球状アルミナを、セラミックコートを施したスクリューの押出機で混練することにより得られる色相の明度(L)が90以上で且つ、熱伝導率が1.5W/mK〜5W/mKである物性バランスと色相のバランスが優れた樹脂組成物が得られる。表3、表4の比較例1〜9ではセラミックコートの無いスクリューの押出機で混練することで、色相の明度(L)が65〜72と低くなり、灰色になってしまう。特に、比較例8、9では白色顔料である酸化チタンを配合しているが、特に大きな効果は無く、色相の明度(L)は70までしか向上せず、灰色であった。
比較例11では、球状アルミナの充填量が70体積%を超えているので、放熱性は良好であるが、色相の明度(L)が56に低下し、灰色になってしまい、射出成形性も著しく低下する。比較例12では水酸化マグネシウムの配合量が5体積%未満なので、水酸化マグネシムを配合した難燃性付与効果が発現しない。比較例13では水酸化マグネシウムの配合量が20体積%を超えているため、難燃性付与効果はあるが射出成形性が著しく低下する。比較例14では、球状アルミナの平均粒径が50μmを超えているため、セラミックコートしたスクリューの押出機で混練しているにも関わらず色相の明度(L)が58に低下し、灰色になってしまう。
As shown in Examples 1 to 16 of Tables 1 and 2, a screw extruder in which a thermoplastic resin and spherical alumina having an average particle diameter of 3 to 50 μm and a filling amount of 50 to 70% by volume are coated with ceramics. A resin composition having an excellent balance of physical properties and hue, in which the lightness (L * ) of the hue obtained by kneading at 90 is 90 or more and the thermal conductivity is 1.5 W / mK to 5 W / mK is obtained. . In Comparative Examples 1 to 9 in Tables 3 and 4, the lightness (L * ) of the hue is lowered to 65 to 72 and becomes gray by kneading with a screw extruder without a ceramic coat. In particular, in Comparative Examples 8 and 9, titanium oxide, which is a white pigment, was blended, but there was no particularly great effect, and the lightness (L * ) of the hue was improved only to 70 and was gray.
In Comparative Example 11, since the filling amount of spherical alumina exceeds 70% by volume, the heat dissipation is good, but the lightness (L * ) of the hue is lowered to 56 and becomes gray, and the injection moldability. Is also significantly reduced. In Comparative Example 12, since the blending amount of magnesium hydroxide is less than 5% by volume, the flame retardancy imparting effect by blending magnesium hydroxide is not exhibited. In Comparative Example 13, since the blending amount of magnesium hydroxide exceeds 20% by volume, there is an effect of imparting flame retardancy, but the injection moldability is significantly lowered. In Comparative Example 14, since the average particle diameter of the spherical alumina exceeds 50 μm, the lightness (L * ) of the hue decreases to 58 despite being kneaded by the extruder of the ceramic-coated screw, and becomes gray. turn into.

尚、実施例で得られた熱可塑性樹脂組成物を射出成形して得られた成形体を用いた電源アダプター、パソコン用部品、携帯電話用部品、自動車部品、光学式ディスプレー装置、半導体材料、LED照明筐体を作成したところ従来製品に比較して良好な放熱性の優れた製品が得られた。 In addition, the power adapter using the molded object obtained by injection-molding the thermoplastic resin composition obtained in the Example, parts for personal computers, parts for mobile phones, automobile parts, optical display devices, semiconductor materials, LEDs When an illumination case was created, a product with better heat dissipation than the conventional product was obtained.

各種物性の評価測定法は下記の通りである。
(1)流動性:JIS K−7210に従い、メルトマスフローレイト(MFR)を測定した。
(2)衝撃強度:JIS K−7111に従い、ノッチ有りシャルピー衝撃強度を測定した。
(3)耐熱性:JIS K−7106に従い、50N荷重、ビカット軟化点を測定した。
(4)難燃性:射出成形機・東芝IS80G−2Aにより、長さ5インチ×幅1/2インチ×厚さ1/16インチの試験片を作成し、米国におけるアンダーライターズ・ラボラトリーズ(UL)で規格化されたサブジェクト94号(略称UL−94)に基づき難燃性の判定を行った。
(5)明度(L):ペレットを260℃で熱プレス成形を行い、30mm×30mm×2mmの試験片を作成した。この試験片を日本電色社製測色色差計ZE6000にてJISZ8729に準じて明度(L)を測定した。
(6)放熱性評価:次の方法に従って評価した。
射出成形機:東芝機械社製IS50EPNにより、外寸100mm×50mm×高さ15mm(2mm厚)の箱型成形品を射出成形し、得られた成形品を2個貼り合わせ、外寸100mm×50mm×高さ30mm(2mm厚)の半密閉六面体筐体(温度測定用熱電対及び発熱部電子部品への通電用リード線用に50mm×30mm面側面中央部に約8mmφの穴を開けてある)を作成した。横置き(100×50面下側)した半密閉筐体内部に発熱体としてNEC製IC素子(C2335、K34S)をハンダで取り付けたアルミニウム板(40mm×30mm×2mm)を筐体内側底部中央部壁面に密着させた。半密閉筐体温度23℃(室温23℃)から測定を開始し、IC素子に1.5W負荷で通電を行い、通電開始後から上記発熱体直近アルミニウム(以下発熱部)の温度を測定した。発熱部温度がほぼ一定化する30分後の温度を比較し、放熱性の評価とした。発熱部温度が低いほど(温度上昇が低いほど)外部への熱放出が多く、熱可塑性樹脂組成物の放熱性が優れることとなる。
(7)熱伝導率:熱伝導率測定装置(アグネ社製「ART−TC−1型」)を用い、射出成形したプレートを直径28mm、厚さ3mmの円盤状サイズに加工後、室温において温度傾斜法で測定した。
(8)射出成形性:射出成形機・東芝機械IS50EPNにより、一点ピンゲート(1mmφ)外寸100mm×50mm×15mm(2mm厚)の箱型成形品を下記設定温度で射出成形し成形性をA〜Dランク評価した。
熱可塑性樹脂 射出成形時の温度設定
A−1 250〜280℃
A−2 250〜280℃
A−3 300〜330℃
<射出成形性の評価>
A:特に問題なく容易に箱型成形品が成形可能。
B:箱型成形品に多少フラッシュ等の外観不良が見られるが成形可能。
C:箱型成形品にフラッシュ、焼け、フローマーク等の外観不良が目立つが成形可能。
D:樹脂組成物が金型に完全に充填できず射出成形により箱型成形品得られない。
(9)平均粒径
本発明の平均粒径はレーザー散乱光法による粒度測定法に基づく値であり。コールター粒度測定器(モデルLS−230;コールター社製)により測定した平均径である。

Evaluation and measurement methods for various physical properties are as follows.
(1) Fluidity: Melt mass flow rate (MFR) was measured according to JIS K-7210.
(2) Impact strength: Notched Charpy impact strength was measured according to JIS K-7111.
(3) Heat resistance: 50N load and Vicat softening point were measured according to JIS K-7106.
(4) Flame retardancy: Test pieces of length 5 inches x width 1/2 inches x thickness 1/16 inch were made by an injection molding machine Toshiba IS80G-2A, and underwriters laboratories (UL in the United States) The flame retardancy was determined on the basis of Subject No. 94 (abbreviation UL-94) standardized.
(5) Lightness (L * ): The pellets were hot press molded at 260 ° C. to prepare test pieces of 30 mm × 30 mm × 2 mm. The lightness (L * ) of this test piece was measured according to JISZ8729 with a colorimetric color difference meter ZE6000 manufactured by Nippon Denshoku.
(6) Heat dissipation evaluation: Evaluation was performed according to the following method.
Injection molding machine: A box-shaped product with an outer dimension of 100 mm x 50 mm x height 15 mm (2 mm thickness) was injection-molded by IS50EPN manufactured by Toshiba Machine Co., Ltd., and two of the obtained molded articles were bonded together to obtain an outer dimension of 100 mm x 50 mm. × Semi-enclosed hexahedron case with a height of 30mm (2mm thickness) (A hole of about 8mmφ is drilled in the center of the side of 50mm × 30mm side surface for lead wire for energizing thermocouple for temperature measurement and heating part electronic parts) It was created. An aluminum plate (40 mm x 30 mm x 2 mm) with soldered NEC IC elements (C2335, K34S) as a heating element in a semi-sealed case placed horizontally (below the 100 x 50 surface) is the center of the bottom inside the case. Adhered to the wall. The measurement was started from a semi-sealed housing temperature of 23 ° C. (room temperature of 23 ° C.), the IC element was energized with a load of 1.5 W, and the temperature of the aluminum immediately adjacent to the heating element (hereinafter referred to as the heat generating portion) was measured after the energization started. The temperature after 30 minutes when the temperature of the heat generating part became almost constant was compared to evaluate heat dissipation. The lower the temperature of the heat generating part (the lower the temperature rise), the more heat is released to the outside, and the better the heat dissipation of the thermoplastic resin composition.
(7) Thermal conductivity: Using a thermal conductivity measuring device ("ART-TC-1 type" manufactured by Agne), the injection-molded plate was processed into a disk-like size having a diameter of 28 mm and a thickness of 3 mm, and then the temperature at room temperature. Measured by the gradient method.
(8) Injection moldability: A box-shaped molded product with a single-point pin gate (1 mmφ) outer dimensions of 100 mm x 50 mm x 15 mm (2 mm thickness) is injection molded at the following set temperature using an injection molding machine / Toshiba machine IS50EPN. D rank evaluation.
Thermoplastic resin Temperature setting during injection molding
A-1 250-280 ° C
A-2 250-280 ° C
A-3 300-330 ° C
<Evaluation of injection moldability>
A: A box-shaped product can be easily molded without any particular problem.
B: Although some appearance defects such as flash are seen in the box-shaped molded product, molding is possible.
C: Although the appearance defects such as flash, burn, and flow mark are conspicuous on the box-shaped molded product, it can be molded.
D: The resin composition cannot be completely filled in the mold, and a box-shaped product cannot be obtained by injection molding.
(9) Average particle diameter The average particle diameter of the present invention is a value based on a particle size measurement method by a laser scattering light method. It is an average diameter measured by a Coulter particle size measuring device (model LS-230; manufactured by Coulter).

Claims (4)

(I)熱可塑性樹脂30体積%と(II)平均粒径3〜50μm、充填量50〜65体積%の球状アルミナと(III)充填量5〜20体積%の水酸化マグネシウムを、セラミックコートを施したスクリューの押出機で混練することにより得られる色相の明度(L)が90以上で且つ、熱伝導率が1.5W/mK〜5W/mKであることを特徴とする熱可塑性樹脂組成物。 (I) 30% by volume of a thermoplastic resin, (II) spherical alumina having an average particle size of 3 to 50 μm, a filling amount of 50 to 65 % by volume, and (III) magnesium hydroxide having a filling amount of 5 to 20% by volume , A thermoplastic resin composition characterized by having a hue lightness (L * ) of 90 or more obtained by kneading with an extruded screw extruder and a thermal conductivity of 1.5 W / mK to 5 W / mK object. 更に白色系着色剤を配合することを特徴とする請求項1記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1 , further comprising a white colorant. 白色系着色剤が酸化チタン、酸化亜鉛、及び沈降性硫酸バリウムの少なくとも1種であることを特徴とする請求項に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 2 , wherein the white colorant is at least one of titanium oxide, zinc oxide, and precipitated barium sulfate. 請求項1〜のいずれか1項に記載の熱可塑性樹脂組成物からなる放熱部材。 The heat radiating member which consists of a thermoplastic resin composition of any one of Claims 1-3 .
JP2009098156A 2009-04-14 2009-04-14 Thermoplastic resin composition and molded article thereof Expired - Fee Related JP5388665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098156A JP5388665B2 (en) 2009-04-14 2009-04-14 Thermoplastic resin composition and molded article thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098156A JP5388665B2 (en) 2009-04-14 2009-04-14 Thermoplastic resin composition and molded article thereof

Publications (2)

Publication Number Publication Date
JP2010248342A JP2010248342A (en) 2010-11-04
JP5388665B2 true JP5388665B2 (en) 2014-01-15

Family

ID=43311043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098156A Expired - Fee Related JP5388665B2 (en) 2009-04-14 2009-04-14 Thermoplastic resin composition and molded article thereof

Country Status (1)

Country Link
JP (1) JP5388665B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014501322A (en) * 2010-12-27 2014-01-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Noise attenuating composition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187026U (en) * 1984-05-21 1985-12-11 日精樹脂工業株式会社 Injection molding machine screw
JPH057435U (en) * 1991-07-12 1993-02-02 積水化学工業株式会社 Extruder for extrusion molding equipment
JP3652460B2 (en) * 1996-12-02 2005-05-25 株式会社メイト Resin composition
JPH1143610A (en) * 1997-07-28 1999-02-16 Fujikura Ltd Highly thermal conductive insulating material for cryogenic temperatures and superconductive cable
JP2000190367A (en) * 1998-12-28 2000-07-11 S D R Kk Structure of cylinder and screw having sliding surface subjected to superabrasion resistant surface treatment for resin injection molding machine, resin melt extruder or the like
JP4501526B2 (en) * 2004-05-14 2010-07-14 住友化学株式会社 High thermal conductive resin composition
JP2006117814A (en) * 2004-10-22 2006-05-11 Denki Kagaku Kogyo Kk Thermoplastic resin composition, its molded article and method for producing the same
JP2008239899A (en) * 2007-03-28 2008-10-09 Techno Polymer Co Ltd Heat-radiating resin composition and molded article containing the same
JP5224350B2 (en) * 2008-08-11 2013-07-03 古河電気工業株式会社 Non-crosslinked resin composition and thermal conductive molded article using the same and excellent in thermal performance

Also Published As

Publication number Publication date
JP2010248342A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5914935B2 (en) Liquid crystal polyester composition, method for producing liquid crystal polyester composition, and molded article
TWI579336B (en) Thermoplastic resin composition and a molded article made of such resin composition
CN100582148C (en) Resin composition for reflecting plate
JP6062579B2 (en) High thermal conductive resin molding and method for producing the same
TW200911923A (en) Polyarylene sulfide resin composition and molded product comprising the same
CN107708998A (en) metal-resin composite
JP2006328352A (en) Insulating thermally-conductive resin composition, molded product, and method for producing the same
CN110168018B (en) Liquid crystal polyester resin composition
WO2006043641A1 (en) Thermoplastic resin composition, molded body thereof and method for producing same
JP6675028B1 (en) Pellet of liquid crystal polyester resin composition and method for producing pellet of liquid crystal polyester resin composition
JP2014503658A (en) Molded thermoplastic article comprising a thermally conductive polymer
JP2008260830A (en) Heat-conductive resin composition
CN104583319B (en) Resin combination and resin-formed body
JP5388665B2 (en) Thermoplastic resin composition and molded article thereof
JP2011225648A (en) Heat radiation member for lighting
JP5962967B2 (en) Thermoplastic resin composition and molded article thereof
KR101996091B1 (en) Liquid crystalline polyester composition
JP2003012945A (en) Conductive resin composition and its manufacturing method
WO2021235277A1 (en) Thermally conductive resin composition and molded body comprising same
EP3064550B1 (en) Resin composition
JPH11148007A (en) Thermoplastic resin composition
WO2018038072A1 (en) Method for producing thermoplastic aromatic polyester resin composition, method for producing insert-molded article, and method for inhibiting reduction in heat shock resistance
TW201604272A (en) Composition for high thermal conductive materials
WO2018038075A1 (en) Insert-molded article and method for suppressing decreases in heat shock resistance of resin composition
JP2021113308A (en) Thermally conductive resin composition and molded article comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131008

LAPS Cancellation because of no payment of annual fees