WO2018038075A1 - Insert-molded article and method for suppressing decreases in heat shock resistance of resin composition - Google Patents

Insert-molded article and method for suppressing decreases in heat shock resistance of resin composition Download PDF

Info

Publication number
WO2018038075A1
WO2018038075A1 PCT/JP2017/029860 JP2017029860W WO2018038075A1 WO 2018038075 A1 WO2018038075 A1 WO 2018038075A1 JP 2017029860 W JP2017029860 W JP 2017029860W WO 2018038075 A1 WO2018038075 A1 WO 2018038075A1
Authority
WO
WIPO (PCT)
Prior art keywords
insert
resin
colorant
aromatic polyester
polyester resin
Prior art date
Application number
PCT/JP2017/029860
Other languages
French (fr)
Japanese (ja)
Inventor
山田 真也
隆二 牛島
一也 五島
Original Assignee
ウィンテックポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウィンテックポリマー株式会社 filed Critical ウィンテックポリマー株式会社
Priority to JP2018535677A priority Critical patent/JP7215902B2/en
Priority to CN201780051869.0A priority patent/CN109641377B/en
Publication of WO2018038075A1 publication Critical patent/WO2018038075A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds

Definitions

  • the present invention relates to an insert-molded article excellent in heat shock resistance using a thermoplastic aromatic polyester resin composition containing a colorant, and a reduction in heat shock resistance of a thermoplastic aromatic polyester resin composition containing a colorant. It relates to a suppression method.
  • thermoplastic aromatic polyester resins represented by polybutylene terephthalate resin and polyethylene terephthalate resin have various properties such as electrical properties such as heat resistance, chemical resistance and tracking resistance, mechanical properties, and moldability. Are better. Therefore, a thermoplastic aromatic polyester resin composition is widely used as an engineering plastic for electronic parts such as housings or connectors of electronic devices, automobile parts, and the like. These parts are insert molding that integrally molds a metal or the like and a thermoplastic resin by filling the mold with a thermoplastic resin composition with an insert member made of metal or the like installed in the mold. It is often a product.
  • the insert changes with the temperature change during use in an environment where heating and cooling are repeated.
  • heat shock destruction that causes the molded article to break occurs.
  • Heat shock breakage occurs especially in corners (sharp corners) of insert members, locations where stress changes are large (especially thin portions), and in parts where stress is likely to concentrate, and in molds during insert molding.
  • the resin is likely to occur at a place where the strength is lower than other parts, such as a weld line that is a joint when the resin is diverted from the insert member and then circulates around the insert member and merges again.
  • thermoplastic aromatic polyester resin composition As a technique for improving the heat shock resistance of the thermoplastic aromatic polyester resin composition, there is a technique for reducing distortion by adding an elastomer to the resin composition (Patent Documents 1 to 3). JP-A-3-285945 JP 2001-234046 A International Publication No. 2009/150831 Pamphlet
  • insert molded products used as electronic parts and automobile parts are often colored black using a colorant such as carbon black.
  • a black-colored insert molded product tends to have lower heat shock resistance than a non-colored insert molded product. Therefore, the present inventors have conducted research on a method for preventing a reduction in heat shock resistance of an insert molded product colored in black or the like.
  • a colorant such as carbon black used for coloring the resin
  • a colorant having an average primary particle diameter of 25 nm or more is blended in the thermoplastic aromatic polyester resin to be colored, thereby coloring the colored thermoplastic aroma.
  • the insert-molded article according to the present invention has a resin member and an insert member, and the resin member contains a thermoplastic aromatic polyester resin A and a colorant B having an average primary particle diameter of 25 nm or more. It is an insert-molded product that includes a resin composition and has excellent heat shock resistance.
  • the content of the coloring agent B in the thermoplastic aromatic polyester resin composition is preferably 0.05% by mass or more and 5.0% by mass or less.
  • the thermoplastic aromatic polyester resin A contains a polybutylene terephthalate resin.
  • the colorant B can be configured to contain an inorganic pigment or an organic pigment. Further, the colorant B can be configured to include a black pigment, a red pigment, an orange pigment, or a white pigment.
  • the colorant B preferably contains carbon black or carbon nanotubes.
  • the average primary particle diameter of the colorant B is preferably 27 nm or more and 50 nm or less.
  • the insert member is preferably a plate-like member containing a metal, an alloy or an inorganic solid material.
  • the insert member has a main surface having a longitudinal direction and a width direction, and the ratio of the maximum value of the width to the maximum value of the thickness is 2 or more in a cross section cut along a plane perpendicular to the longitudinal direction. can do.
  • the thickness of the insert member can be 0.1 mm or more and 3 mm or less.
  • the insert member is covered with a resin member, and the thickness of the resin member in the covering portion can be 0.3 mm or more and 5 mm or less.
  • the heat shock resistance reduction inhibiting method according to the present invention is a resin composition containing a colorant, in which a colorant B having an average primary particle size of 25 nm or more is blended with a thermoplastic aromatic polyester resin A for insert molded articles. This is a heat shock resistance lowering suppression method.
  • thermoplastic aromatic polyester resin composition containing a colorant it is possible to provide an insert molded article having excellent heat shock resistance using a thermoplastic aromatic polyester resin composition containing a colorant.
  • a thermoplastic aromatic polyester resin composition containing a colorant it is possible to provide an insert-molded product in which a decrease in heat shock resistance of a resin portion containing a thermoplastic aromatic polyester resin composition is suppressed.
  • the heat shock-resistant fall suppression method of the thermoplastic aromatic polyester resin composition containing a coloring agent can be provided.
  • FIG. 1 It is a figure which shows the test piece used by the heat shock resistance test, Comprising: (A) is a perspective view, (B) is a top view. It is a figure which shows the insert member of the test piece shown in FIG. 1, Comprising: (A) is a perspective view, (B) is a top view. It is a figure which shows the test piece used by the heat shock resistance test, (A) is a top view, (B) is sectional drawing cut
  • the insert molded product of this embodiment has a resin member and an insert member.
  • the resin member and the insert member will be described in this order.
  • the resin member is formed using a thermoplastic aromatic polyester resin composition (hereinafter also referred to as “resin composition”) containing a thermoplastic aromatic polyester resin A and a colorant B having an average primary particle diameter of 25 nm or more. And containing the resin composition. Although this resin member is colored, a decrease in heat shock resistance is suppressed. Therefore, the insert molded product having this resin member is excellent in heat shock resistance.
  • resin composition a thermoplastic aromatic polyester resin composition
  • thermoplastic aromatic polyester resin A is a resin colored with a colorant.
  • the thermoplastic aromatic polyester resin A is a reaction between a dicarboxylic acid component mainly composed of a dicarboxylic acid compound and / or an ester-forming derivative thereof and a diol component mainly composed of a diol compound and / or an ester-forming derivative thereof.
  • a thermoplastic polyester resin obtained by the above-mentioned method and contains an aromatic compound in at least one of a dicarboxylic acid component or a diol component.
  • dicarboxylic acid component examples include aliphatic dicarboxylic acids (for example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecane dicarboxylic acid, dodecane dicarboxylic acid, hexadecanedicarboxylic acid, dimer, and the like.
  • aliphatic dicarboxylic acids for example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecane dicarboxylic acid, dodecane dicarboxylic acid, hexadecanedicarboxylic acid, dimer, and the like.
  • Dicarboxylic acids of about C 4-40 such as acids, preferably dicarboxylic acids of about C 4-14 ), alicyclic dicarboxylic acids (for example, hexahydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid, highmic acid, etc.) Dicarboxylic acids of about C 4-40 , preferably dicarboxylic acids of about C 8-12 ), aromatic dicarboxylic acids (eg phthalic acid, isophthalic acid, terephthalic acid, methyl isophthalic acid, methyl terephthalic acid, 2,6- Naphthalene dicarboxylic acid such as naphthalene dicarboxylic acid, 4,4 C 8-16 such as' -biphenyl dicarboxylic acid, 4,4'-diphenoxy ether dicarboxylic acid, 4,4'-dioxybenzoic acid, 4,4'-diphenylmethane dicarboxylic acid,
  • Degree dicarboxylic acid or derivatives thereof (for example, derivatives capable of forming an ester such as lower alkyl ester, aryl ester, and acid anhydride).
  • dicarboxylic acid components can be used alone or in combination of two or more.
  • Preferred dicarboxylic acid components include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and naphthalenedicarboxylic acid (particularly terephthalic acid and 2,6-naphthalenedicarboxylic acid).
  • the dicarboxylic acid component preferably contains, for example, 50 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more of aromatic dicarboxylic acid.
  • polyvalent carboxylic acids such as trimellitic acid and a pyromellitic acid, or its ester formation derivative (alcohol ester etc.) etc. as needed.
  • a polyfunctional compound such as trimellitic acid and a pyromellitic acid, or its ester formation derivative (alcohol ester etc.) etc.
  • a branched thermoplastic polyester resin can also be obtained.
  • diol component examples include aliphatic alkanediols (for example, ethylene glycol, trimethylene glycol, propylene glycol, 1,4-butanediol, 1,3-butanediol, neopentyl glycol, hexanediol, octanediol, decanediol.
  • aliphatic alkanediols for example, ethylene glycol, trimethylene glycol, propylene glycol, 1,4-butanediol, 1,3-butanediol, neopentyl glycol, hexanediol, octanediol, decanediol.
  • An aliphatic diol of about C 2-12 preferably an aliphatic diol of about C 2-10 , and the like, a polyoxyalkylene glycol (a glycol having an alkylene group of about C 2-4 and having a plurality of oxyalkylene units),
  • a polyoxyalkylene glycol a glycol having an alkylene group of about C 2-4 and having a plurality of oxyalkylene units
  • alicyclic diol for example, 1,4-cyclohexanediol, , 4-cyclohexanedimethanol, and hydrogenated bisphenol A, etc.
  • aromatic diols such as hydroquinone, resorcinol, bisphenol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis- (4- (2-hydroxyethoxy) phenyl) propane, and xylylene glycol are used in combination. May be.
  • diol components can be used alone or in combination of two or more.
  • Preferred diol components include C 2-10 alkylene glycol (linear alkylene glycol such as ethylene glycol, trimethylene glycol, propylene glycol, 1,4-butanediol) and the like.
  • the diol component preferably contains, for example, 50 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more of C 2-10 alkylene glycol.
  • a polyol such as glycerin, trimethylolpropane, trimethylolethane, pentaerythritol, or an ester-forming derivative thereof may be used in combination.
  • a branched thermoplastic polyester resin can also be obtained.
  • thermoplastic aromatic polyester resin A as a copolyester in which two or more of the above-mentioned dicarboxylic acid component and diol component are combined, and other copolymerizable monomers (hereinafter sometimes referred to as copolymerizable monomers), A copolyester in which an oxycarboxylic acid component, a lactone component and the like are combined can also be used.
  • oxycarboxylic acid examples include oxycarboxylic acids such as oxybenzoic acid, oxynaphthoic acid, hydroxyphenylacetic acid, glycolic acid, oxycaproic acid, and derivatives thereof.
  • Lactones include C 3-12 lactones such as propiolactone, butyrolactone, valerolactone, caprolactone (eg, ⁇ -caprolactone, etc.), and the like.
  • the proportion of the copolymerizable monomer can be selected, for example, from the range of about 0.01 mol% to about 30 mol%, and is usually about 1 mol% to about 30 mol%, preferably 3 mol%. It is about 25 mol% or less, more preferably about 5 mol% or more and 20 mol% or less.
  • the proportion of the homopolyester and the copolyester is such that the proportion of the copolymerizable monomer is 0.1 mol% or more and 30 mol% or less with respect to the total monomers (Preferably about 1 mol% or more and 25 mol% or less, more preferably about 5 mol% or more and about 25 mol% or less).
  • homopolyester / copolyester 99/1 to 1/99 (mass ratio) ), Preferably 95/5 to 5/95 (mass ratio), more preferably about 90/10 to 10/90 (mass ratio).
  • the preferred thermoplastic aromatic polyester resin A is a homopolyester or copolyester having an alkylene arylate unit such as alkylene terephthalate or alkylene naphthalate as a main component (eg, about 50 to 100 mol%, preferably about 75 to 100 mol%).
  • polyalkylene terephthalate eg, poly C 2-4 alkylene terephthalate such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT)), 1,4-cyclohexanedimethylene terephthalate (PCT ), polyalkylene naphthalate (e.g., polyethylene naphthalate, polypropylene naphthalate, poly C 2-4 alkylene naphthalate and polybutylene naphthalate), such Homopo Ester; main component an alkylene terephthalate and / or alkylene naphthalate unit (e.g., more than 50 mol%) includes copolyesters] containing as may be used in combination thereof singly or two or more.
  • thermoplastic aromatic polyester resin A is 80 mol% or more (particularly 90 mol% or more) of C 2-4 alkylene arylate units such as ethylene terephthalate, trimethylene terephthalate, tetramethylene terephthalate, and tetramethylene-2,6-naphthalate.
  • C 2-4 alkylene arylate units such as ethylene terephthalate, trimethylene terephthalate, tetramethylene terephthalate, and tetramethylene-2,6-naphthalate.
  • homopolyester resin or copolyester resin for example, polyethylene terephthalate resin, polytrimethylene terephthalate resin, polybutylene terephthalate resin, polytetramethylene-2,6-naphthalene dicarboxylate resin, etc.
  • polyethylene terephthalate resin and polybutylene terephthalate resin are preferable, and polybutylene terephthalate resin is particularly preferable.
  • the amount of terminal carboxyl groups of the thermoplastic aromatic polyester resin A is not particularly limited as long as the effects of the present invention are not impaired.
  • the amount of terminal carboxyl groups of the thermoplastic aromatic polyester resin A is preferably 30 meq / kg or less, and more preferably 25 meq / kg or less.
  • the intrinsic viscosity (IV) of the thermoplastic aromatic polyester resin A is not particularly limited as long as the effect of the present invention is not impaired.
  • the intrinsic viscosity of the thermoplastic aromatic polyester resin A is preferably 0.60 to 1.30 dL / g. From the viewpoint of improving moldability and heating / cooling durability, it is more preferably 0.65 to 1.20 dL / g.
  • the thermoplastic aromatic polyester resin A having an intrinsic viscosity in such a range is used, the colorant composition B is easily blended more uniformly.
  • the intrinsic viscosity can be adjusted by blending thermoplastic aromatic polyester resins A having different intrinsic viscosities.
  • thermoplastic aromatic polyester resin A having an intrinsic viscosity of 1.0 dL / g and thermoplastic aromatic polyester resin A having an intrinsic viscosity of 0.8 dL / g thermoplasticity having an intrinsic viscosity of 0.9 dL / g is obtained.
  • Aromatic polyester resin A can be prepared.
  • the intrinsic viscosity (IV) of the thermoplastic aromatic polyester resin A can be measured, for example, in o-chlorophenol at a temperature of 35 ° C.
  • the blending amount of the thermoplastic aromatic polyester resin A can be, for example, 40% by mass to 99% by mass in the total resin composition, and preferably 50% by mass to 90% by mass.
  • the thermoplastic aromatic polyester resin A exhibits its characteristics sufficiently, such as electrical characteristics such as heat resistance, chemical resistance and tracking resistance, mechanical It can be set as the resin composition excellent in various characteristics, such as a characteristic and moldability.
  • thermoplastic aromatic polyester resin A a commercially available product may be used, and a dicarboxylic acid component or a reactive derivative thereof, a diol component or a reactive derivative thereof, and a monomer that can be copolymerized as necessary are commonly used. Those prepared by copolymerization (polycondensation) by the above-mentioned methods such as transesterification and direct esterification may be used.
  • the colorant B can be selected from known colorants according to the color required for the molded product.
  • the colorant B include powdery or particulate colorants, and examples thereof include inorganic pigments, organic pigments, and dyes.
  • inorganic pigments include carbon black (eg, acetylene black, lamp black, thermal black, furnace black, channel black, ketjen black), black pigments such as carbon nanotubes, red pigments such as iron oxide red, and molybdate.
  • examples thereof include orange pigments such as orange and white pigments such as titanium oxide.
  • the organic pigment include a yellow pigment, an orange pigment, a red pigment, a blue pigment, and a green pigment. These colorants B can be used alone or in combination of two or more.
  • the colorant B may have a surface treated with an acid or the like.
  • the heat resistance according to the present embodiment is used when the inorganic pigment is used as the colorant B. The effect of suppressing shock reduction is more easily obtained.
  • the average primary particle size of the colorant B is 25 nm or more.
  • the average primary particle diameter of the colorant B is 25 nm or more.
  • the average primary particle diameter of the colorant B is preferably 25 nm or more and 50 nm or less, more preferably 27 nm or more and 40 nm or less, and particularly preferably 28 nm or more and 35 nm or less.
  • the average primary particle size of the colorant B is an arithmetic average particle size obtained by observing 1000 particles of the colorant B before being blended in the resin composition with an electron microscope.
  • the content of the colorant B in the total thermoplastic aromatic polyester resin composition is preferably 0.05% by mass or more and 5.0% by mass or less, and 0.1% by mass or more and 3.0% by mass or less. More preferably, it is more preferably 0.2% by mass or more and 1.0% by mass or less.
  • content with respect to all the resin compositions of the coloring agent B into 0.1 mass% or more and 5.0 mass% or less, it can color with sufficient brightness and chromaticity to a molded article.
  • carbon black is used as the colorant B, a thermoplastic aromatic polyester resin composition capable of forming a molded product having excellent jetness can be obtained by adjusting the content to the above.
  • the colorant B is a master batch in which a polyester resin such as a thermoplastic aromatic polyester resin A, a thermoplastic resin such as a styrene resin or an acrylic resin, or other resin such as a thermosetting resin is blended as necessary. It can also be.
  • the master batch includes various additives such as stabilizers (antioxidants, ultraviolet absorbers, heat stabilizers, etc.), flame retardants, lubricants, mold release agents, antistatic agents, dispersants, plasticizers, A nucleating agent or the like may be blended.
  • the content of the additive in this case can be, for example, more than 0% by mass and 20% by mass or less in the master batch.
  • the manufacturing method of the masterbatch containing the coloring agent B can be manufactured by kneading the base resin and the coloring agent B by an ordinary method.
  • the base resin, the colorant B and other additives can be introduced into a stirrer and mixed uniformly, and then melted and kneaded with an extruder.
  • the resulting master batch can be in various forms such as powder, pellets, strips and the like.
  • thermoplastic aromatic polyester resin composition of the present embodiment Various additives can be blended in the thermoplastic aromatic polyester resin composition of the present embodiment.
  • an elastomer can be blended for the purpose of further improving heat shock resistance.
  • elastomer examples include olefin elastomers, vinyl chloride elastomers, styrene elastomers, polyester elastomers, butadiene elastomers, urethane elastomers, polyamide elastomers, silicone elastomers, and core shell elastomers.
  • MVS methacrylate-butylene-styrene
  • EGMA ethylene glycidyl methacrylate
  • PTMG polytetramethylene glycol
  • a polyester elastomer or the like can be used.
  • the ethylene ethyl acrylate (EEA) copolymer include a
  • the blending amount of the elastomer is preferably 1% by mass or more and 30% by mass or less, and more preferably 5% by mass or more and 20% by mass or less in the thermoplastic aromatic polyester resin composition.
  • an inorganic filler can be blended for the purpose of improving the mechanical properties of the obtained molded product.
  • a fibrous filler examples include glass fiber, asbestos fiber, carbon fiber, silica fiber, alumina fiber, silica-alumina fiber, aluminum silicate fiber, zirconia fiber, potassium titanate fiber, silicon carbide fiber, whisker (silicon carbide, Inorganic fibers such as whiskers such as alumina and silicon nitride); organic fibers such as aliphatic or aromatic polyamides, aromatic polyesters, acrylic resins such as fluororesin and polyacrylonitrile, fibers formed of rayon, etc.
  • Examples of the plate-like filler include talc, mica, glass flake, and graphite.
  • Examples of the particulate filler include glass beads, glass powder, milled fiber (for example, milled glass fiber), wollastonite (wollastonite), and the like.
  • the wollastonite may be in the form of a plate, column, fiber, or the like.
  • glass fiber is preferable because it is inexpensive and easily available.
  • the average diameter of the fibrous filler is, for example, about 1 ⁇ m to 30 ⁇ m (preferably 5 ⁇ m to 20 ⁇ m, more preferably 10 to 15 ⁇ m), and the average length is, for example, 100 ⁇ m to 5 mm (preferably 300 ⁇ m to 4 mm, more preferably 500 ⁇ m). About 3.5 mm).
  • the average primary particle diameter of the plate-like or powdery filler can be, for example, about 0.1 ⁇ m to 500 ⁇ m, preferably about 1 ⁇ m to 100 ⁇ m.
  • the average diameter and the average length of the fibrous filler and the average primary particle diameter of the plate-like or granular filler are the fibrous filler, the plate-like or granular filler before being mixed in the resin composition. Is a value calculated by analyzing an image photographed by a CCD camera and calculating a weighted average. These can be calculated using, for example, a dynamic image analysis method / particle (state) analyzer PITA-3 manufactured by Seishin Corporation.
  • the aspect ratio of the plate or powder filler is not particularly limited, and can be, for example, 1 or more and 10 or less.
  • the content of the inorganic filler is preferably 10% by mass or more and 50% by mass or less, more preferably 15% by mass or more and 40% by mass or less, and still more preferably 20% by mass or more, in the total thermoplastic aromatic polyester resin composition. It can be 35 mass% or less.
  • thermoplastic aromatic polyester resin compositions include stabilizers (antioxidants, UV absorbers, thermal stabilizers, etc.), flame retardants, lubricants, mold release agents, antistatic agents, dispersants, plasticizers, cores. Agents, fluidity improvers, etc. may be added.
  • the content of the additive can be, for example, more than 0% by mass and 20% by mass or less in the total thermoplastic aromatic polyester resin composition.
  • an epoxy compound such as a bisphenol A type epoxy compound or a novolac type epoxy compound may be added to the thermoplastic aromatic polyester resin composition in order to improve hydrolysis resistance, heat shock resistance and the like. Further, if necessary, it may be used in combination with another resin (a thermoplastic resin such as a styrene resin or an acrylic resin, a thermosetting resin, or the like).
  • a thermoplastic resin such as a styrene resin or an acrylic resin, a thermosetting resin, or the like.
  • the thermoplastic aromatic polyester resin composition can achieve both sufficient colorability and heat shock resistance.
  • L * value (lightness) in the L * a * b * color system measured according to JIS Z8729: 2004 Has an excellent jetness of 25 or less (preferably 20 or less, more preferably 15 or less, particularly preferably 10 or less).
  • a cycle test in which a cycle of cooling at ⁇ 40 ° C. for 1.5 hours and then heating at 180 ° C. for 1.5 hours is repeated, the number of cycles until cracking occurs in the molded product is uncolored. The decrease with respect to the molded product can be further reduced.
  • thermoplastic aromatic polyester resin composition can be suitably used as a resin composition for colored insert molded products.
  • the colored insert-molded product made of this resin composition has sufficient colorability (lightness, saturation, or jetness), and even when used in an environment with a large temperature change, heat shock breakdown is possible. It can be prevented from occurring. In particular, in an insert-molded product using a plate-like insert member, an effect of preventing heat shock breakdown is more easily obtained.
  • Heat shock resistance is a performance that can prevent the insert molded product from being destroyed by temperature changes when the insert molded product is used in an environment with a large temperature change.
  • the impact resistance to prevent the molded product from breaking due to physical impact, toughness expressed by tensile fracture strain (elongation), etc., and the molded product deforms or resin when used at high temperature The performance is different from the heat resistance which prevents the composition from deteriorating.
  • thermoplastic aromatic polyester resin composition is not particularly limited.
  • the thermoplastic aromatic polyester resin A, the colorant B, and other compounding agents as required in various forms such as powders, pellets, strips, etc., are premixed as necessary and then put into a melt kneader.
  • the thermoplastic aromatic polyester resin A, the colorant B, and other compounding agents are blended by heating to the melting point of the thermoplastic aromatic polyester resin A or higher and melt-kneading.
  • the insert member is preferably a plate-like member made of a metal, an alloy, or an inorganic solid material. Among them, those that do not deform or melt when they come into contact with the resin during molding are preferable. For example, metals such as aluminum, magnesium, copper, and iron, alloys of the above metals such as brass, and inorganic solids such as glass and ceramics And the like.
  • the shape of the insert member is not particularly limited, and various shapes such as a rectangular column shape and a plate shape can be used.
  • the ratio of the maximum value of the width to the maximum value of the thickness is 2 or more (For example, a wiring material such as a bus bar) is preferable.
  • the thickness of the plate-like insert member is preferably 0.1 mm or more and 3 mm or less (for example, 0.5 mm or more and 2 mm or less).
  • the cross-sectional shape of a plate-shaped insert member is not specifically limited, It can be set as an ellipse, a rectangle, a polygon, etc.
  • the shape and size of the insert molded product are not particularly limited, and can be a shape according to the application.
  • the thermoplastic aromatic polyester resin composition described above is excellent in heat shock resistance while maintaining colorability. Therefore, even in a colored insert molded product having a thin portion or a weld line in a resin member, heat shock resistance Therefore, it is possible to prevent a heat shock breakdown from occurring.
  • the thickness of the resin portion covering the insert member is 0.3 mm or more and 5 mm or less (for example, 0.5 mm or more and 3 mm or less). It can be set as the insert molded product which has the thin part which is.
  • the thickness of the resin portion covering the insert member is the thickness of the resin member in the covering portion in the portion where the resin member of the insert molded product covers the insert member, and the surface of the resin member in the covering portion To the length in the direction perpendicular to the surface of the insert member immediately below.
  • FIG. 3 shows an example of an insert molded product used in the example.
  • the length T in the direction perpendicular to the surface of the insert member 22 directly below the surface of the resin member 21 in the covering portion where the resin member 21 covers the insert member 22 is It is the thickness of the resin part which coat
  • the thickness of the resin portion includes the thickness from the surface of the resin member of the insert-molded product to the insert member immediately below (outermost layer), and the thickness of the resin member layer sandwiched between the insert members.
  • any one of the thicknesses of the resin parts is within the thickness range of the resin part, it is desirable to consider heat shock resistance in the resin part. .
  • the method for producing the insert-molded product is not particularly limited.
  • the insert member is previously mounted on the mold using the above-described thermoplastic aromatic polyester resin composition and the insert member molded in a desired shape in advance.
  • the resin composition can be filled and molded by injection molding or extrusion compression molding on the outside.
  • thermoplastic aromatic polyester resin composition pellets of Examples 1 to 4 were prepared.
  • Reference Example 1 is an example of an uncolored resin composition
  • Example 1 and Comparative Examples 2 to 4 are examples in which the colorant B is added directly to the thermoplastic aromatic polyester resin A. .
  • Comparative Example 1 a master batch in which the colorant B was previously melt-kneaded so as to have a concentration of 20% by mass in the thermoplastic polyester resin A was prepared, and the master batch was added to 2.5% of the entire resin composition. It is an example in the case of adding mass% (so that the colorant B in the entire resin composition is 0.5 mass%).
  • Thermoplastic aromatic polyester resin Thermoplastic aromatic polyester resin A: Polybutylene terephthalate resin (PBT) having an intrinsic viscosity of 0.68 dL / g, manufactured by Wintech Polymer Co., Ltd. (Coloring agent) Carbon black 1: Carbon black manufactured by Wilber Ellis Co., Ltd., average primary particle size 30 nm Carbon black 2: Carbon black manufactured by Mitsubishi Chemical Co., Ltd., average primary particle size 22 nm Carbon black 3: Product manufactured by Wilbur Ellis Co., Ltd., average primary Carbon black with a particle size of 13 nm Carbon black 4: Carbon black with an average primary particle size of 13 nm (surface acid-treated product) manufactured by Wilber Ellis Co., Ltd.
  • PBT Polybutylene terephthalate resin
  • Ethylene ethyl acrylate (EEA) -based elastomer manufactured by NOF Corporation, trade name “MODIPA A5300”, 70% by mass of ethylene ethyl acrylate (EEA) as a copolymer component, random copolymer of butyl acrylate and methyl methacrylate (BA- stat-MMA) is contained at 30% by mass.
  • Heat shock resistance was evaluated in the following manner for each case using a quadrangular columnar shape, an L-shaped plate shape, or an I-shaped plate shape insert member.
  • FIGS. 1 and 2 Test specimens shown in FIGS. 1 and 2 by injection molding using the thermoplastic aromatic polyester resin composition pellets obtained in Reference Example 1, Example 1 and Comparative Examples 1 to 4 and a square columnar metal insert member. Was subjected to insert molding, and the heat shock resistance was evaluated.
  • FIG. 1 is a view showing a test piece 10 that has been insert-molded
  • FIG. 2 is a view showing an insert member 2.
  • the test piece 10 is obtained by embedding a metal quadrangular columnar insert member 2 in a quadrangular columnar resin member 1 containing a thermoplastic aromatic polyester resin composition.
  • the resin member 1 is molded using the resin composition pellets obtained as described above. Using the above pellets dried at 140 ° C.
  • a mold for test piece molding 22 mm ⁇ 22 mm ⁇ height 28 mm with a resin temperature of 260 ° C., a mold temperature of 65 ° C., an injection time of 25 seconds, and a cooling time of 10 seconds.
  • the resin part has a thickness of 1 mm as a minimum thickness in a mold that inserts an insert member having a square columnar part of at least 14 mm ⁇ 14 mm ⁇ height 24 mm inside the square columnar resin part.
  • a test piece was manufactured by insert injection molding. As shown in FIG.
  • the insert member 2 includes a quadrangular columnar upper portion 2 a, a quadrangular columnar lower portion 2 b, and a columnar constricted portion 2 c that connects both of them.
  • the lower part 2b and the narrow part 2c are embed
  • the corners of the resin member 1 and the corners of the insert member 2 are arranged so as to be located in different directions. That is, the corner portion of the insert member 2 is disposed so as to face the side surface of the resin member 1.
  • angular part of the insert member 2 and the side surface of the resin member 1 is about 1 mm.
  • the vicinity of the tip of the corner (sharp corner) of the insert member 2 is a thin portion.
  • a gate for filling the molten resin composition pellets into the mold is a 1 mm ⁇ pin gate at the center of the bottom surface (22 mm ⁇ 22 mm surface) of the resin member 1. Is provided. For this reason, the molten resin composition injected from the gate flows along the bottom surface of the resin member 1 and then fills the space in the mold along the insert member 2.
  • the thick portion where the melted resin composition is easy to flow is filled first, and the thin portion is delayed in filling, so the vicinity of the minimum thick portion on each side surface (each of the four surfaces of 22 mm ⁇ 28 mm) of the resin member 1 A weld portion is generated (near the tip of the corner portion of the insert member 2).
  • the thermal shock tester manufactured by Espec Co., Ltd.
  • the test piece 10 was repeatedly cooled at ⁇ 40 ° C. for 1.5 hours and then heated at 180 ° C. for 1.5 hours, and 20 cycles. The weld was observed every time. The number of cycles when a crack occurred in the weld was evaluated as an index of heat shock resistance. The results are shown in Tables 1 and 2.
  • FIG. 3 is a view showing the insert-molded test piece 20, (A) is a top view, (B) is a cross-sectional view taken along line BB in (A), and (C) is ( It is sectional drawing cut
  • FIG. 4 is a view showing the insert member 22.
  • the resin member 21 is molded using the resin composition pellets obtained as described above. Using the above pellets dried at 140 ° C.
  • a mold for test piece [width w 1 25 mm ⁇ L 1 with a resin temperature of 260 ° C., a mold temperature of 65 ° C., an injection time of 25 seconds, and a cooling time of 10 seconds.
  • L 5 and L 6 are 92 mm.
  • the two holes h 1 and h 2 in the vicinity of both ends of the L-shaped plate-like insert member shown in FIG. 4 are for fitting the pins in the mold to fix the insert member 22.
  • FIG. 3A the position of the side gate S 1 (width: 4 mm, thickness: 3 mm) filled with resin is indicated by a one-dot chain line.
  • the side gate S 1, the distance d 1 from the right side surface lower end portion of the resin portion 21 is positioned above to be 1 mm.
  • a weld portion is generated at the merged portion where the flowed resin wraps around the insert member 22 and the merged portion where the pin pressing the insert member 22 wraps around.
  • the obtained specimen 20 is heated at 140 ° C. for 1 hour 30 minutes using a thermal shock tester, then cooled to ⁇ 40 ° C., cooled for 1 hour 30 minutes, and further heated to 140 ° C.
  • a heat shock resistance test with one cycle, the number of cycles until cracks occurred in the molded product was measured, and the average fracture life of five samples was evaluated as heat shock resistance.
  • FIG. 5A and 5B are diagrams showing the insert-molded test piece 30, where FIG. 5A is a top view, FIG. 5B is a cross-sectional view taken along line BB in FIG. It is sectional drawing cut
  • FIG. 6 is a view showing the insert member 32.
  • the resin member 31 is molded using the resin composition pellets obtained as described above. Using the above pellets dried at 140 ° C.
  • test piece molding die [width w 11 25 mm ⁇ L 11 120 mm, the inside of the I-shaped plate-shaped resin portion of the thickness t 11 4 mm, a width w 12 20mm ⁇ L 12 150mm, thickness t 12 1.6 mm (width w 12 / thickness t 12 ratio of the section 12.
  • the test piece 30 was manufactured by insert injection molding into a mold in which the I-shaped iron plate of 5) was inserted] so that the minimum thickness of a part of the resin portion was 1.2 mm.
  • Two holes h 11 and h 12 in the vicinity of both end portions of the I-shaped insert member 32 are for fitting into the pins in the mold to fix the insert member 32.
  • the diameter d 12 of the hole h 13 is 4 mm.
  • the thickness t 13 of the resin member 31 in a range where the L 15 10 mm is set to 3 mm.
  • the position of the side gate S 11 (width: 4 mm, thickness: 3 mm) for filling the resin is indicated by a one-dot chain line, and the side gate is the left end of the lower surface of the resin member 31.
  • distance d 11 is located to the right to be a 1mm from. That is, in the resin member 21 of the test piece 20, a weld portion is generated at the merged portion where the flowed resin wraps around the insert member 22 and the merged portion where the pin pressing the insert member 22 wraps around.
  • the obtained test piece 30 was heated at 140 ° C. for 1 hour 30 minutes using a cold shock tester, then cooled to ⁇ 40 ° C., cooled for 1 hour 30 minutes, and further heated to 140 ° C. Was subjected to a heat shock resistance test with one cycle, the number of cycles until cracks occurred in the molded product was measured, and the average fracture life of five samples was evaluated as heat shock resistance.
  • the insert molded product made of the resin composition of Example 1 is a reference example in any case where the shape of the insert member is a square columnar, L-shaped or I-shaped plate.
  • the difference from the value of 1 is small, and the decrease in heat shock resistance from the uncolored product (Reference Example 1) is suppressed. Therefore, even if this insert molded product contains a colorant, it can suppress the occurrence of heat shock destruction even when used in an environment with a large temperature change.
  • the insert molded article made of the resin composition of Comparative Example 1 can suppress a decrease in heat shock resistance when a square columnar insert member is used. The heat shock resistance is further reduced.
  • the insert-molded product made of the resin composition of Comparative Examples 2, 3, and 4 has lower heat shock resistance in both cases where the shape of the insert member is a quadrangular columnar shape, or an L-shaped or I-shaped plate shape. Resulting in.

Abstract

[Problem] To address the problem of providing an insert-molded article which has exceptional heat shock resistance and in which there is used a thermoplastic aromatic polyester resin composition containing a colorant. Also, to address the problem of providing a method for suppressing decreases in the heat shock resistance of a thermoplastic aromatic polyester resin composition containing a colorant. [Solution] An insert molded article that has exceptional heat shock resistance and has a resin member and an insert member, the resin member including a thermoplastic aromatic polyester resin composition that contains a thermoplastic aromatic polyester resin A and a colorant B that has an average primary particle size of 25 nm or greater. Also, a method for suppressing decreases in the heat shock resistance of a resin composition containing a colorant, the method comprising combining a colorant B that has an average primary particle size of 25 nm or greater with a thermoplastic aromatic polyester resin A for an insert-molded article.

Description

インサート成形品及び樹脂組成物の耐ヒートショック性低下抑制方法Method for suppressing deterioration of heat shock resistance of insert molded article and resin composition
 本発明は、着色剤を含有する熱可塑性芳香族ポリエステル樹脂組成物を用いた耐ヒートショック性に優れるインサート成形品、及び着色剤を含有する熱可塑性芳香族ポリエステル樹脂組成物の耐ヒートショック性低下抑制方法に関する。 The present invention relates to an insert-molded article excellent in heat shock resistance using a thermoplastic aromatic polyester resin composition containing a colorant, and a reduction in heat shock resistance of a thermoplastic aromatic polyester resin composition containing a colorant. It relates to a suppression method.
 ポリブチレンテレフタレート樹脂やポリエチレンテレフタレート樹脂に代表される熱可塑性芳香族ポリエステル樹脂は、耐熱性、耐薬品性、耐トラッキング性等の電気的特性、機械的特性、及び成形加工性等の種々の特性に優れている。そのため、熱可塑性芳香族ポリエステル樹脂組成物は、エンジニアリングプラスチックとして、電子機器の筐体又はコネクタ等の電子部品や自動車部品等に広く利用されている。これらの部品は、金属等からなるインサート部材を金型内に設置した状態で、熱可塑性樹脂組成物を金型内に充填させることにより金属等と熱可塑性樹脂とを一体的に成形するインサート成形品である場合が多い。 Thermoplastic aromatic polyester resins represented by polybutylene terephthalate resin and polyethylene terephthalate resin have various properties such as electrical properties such as heat resistance, chemical resistance and tracking resistance, mechanical properties, and moldability. Are better. Therefore, a thermoplastic aromatic polyester resin composition is widely used as an engineering plastic for electronic parts such as housings or connectors of electronic devices, automobile parts, and the like. These parts are insert molding that integrally molds a metal or the like and a thermoplastic resin by filling the mold with a thermoplastic resin composition with an insert member made of metal or the like installed in the mold. It is often a product.
 しかし、インサート成形品を構成する金属等と熱可塑性樹脂組成物とは、温度変化による熱膨張率や収縮率が大きく異なるため、加熱及び冷却が繰り返される環境下では、使用中の温度変化でインサート成形品が破壊してしまういわゆるヒートショック破壊が起こる場合がある。ヒートショック破壊は、特に、インサート部材の角部(シャープコーナー)や、肉厚変化が大きい箇所(特に肉薄部)等、成形品の中でも応力が集中しやすい箇所や、インサート成形時に金型内で樹脂がインサート部材を起点として分流した後インサート部材の周囲を回り込んで再び合流した際の合わせ目であるウェルドラインのように、他の部位よりも強度が低くなる箇所で発生しやすい。そのため、熱可塑性芳香族ポリエステル樹脂組成物には、耐ヒートショック性が求められている。熱可塑性芳香族ポリエステル樹脂組成物の耐ヒートショック性を改善する技術として、樹脂組成物中にエラストマーを添加して歪みを緩和する技術等がある(特許文献1~3)。
特開平3-285945号公報 特開2001-234046号公報 国際公開第2009/150831号パンフレット
However, because the thermal expansion coefficient and shrinkage ratio due to temperature change are greatly different between the metal etc. constituting the insert molded product and the thermoplastic resin composition, the insert changes with the temperature change during use in an environment where heating and cooling are repeated. There is a case where so-called heat shock destruction that causes the molded article to break occurs. Heat shock breakage occurs especially in corners (sharp corners) of insert members, locations where stress changes are large (especially thin portions), and in parts where stress is likely to concentrate, and in molds during insert molding. The resin is likely to occur at a place where the strength is lower than other parts, such as a weld line that is a joint when the resin is diverted from the insert member and then circulates around the insert member and merges again. Therefore, heat shock resistance is required for the thermoplastic aromatic polyester resin composition. As a technique for improving the heat shock resistance of the thermoplastic aromatic polyester resin composition, there is a technique for reducing distortion by adding an elastomer to the resin composition (Patent Documents 1 to 3).
JP-A-3-285945 JP 2001-234046 A International Publication No. 2009/150831 Pamphlet
 ところで、電子部品や自動車部品として使用されるインサート成形品は、カーボンブラック等の着色剤を用いて黒く着色されている場合が多い。本発明者らは、黒着色されたインサート成形品は、無着色のインサート成形品に比べて耐ヒートショック性が低下する傾向にあることを見出した。そこで、本発明者らは、黒等に着色されたインサート成形品の耐ヒートショック性の低下を防ぐ方法について研究を重ねた。そして、樹脂の着色に用いるカーボンブラック等の着色剤として、平均一次粒子径が25nm以上である着色剤を、着色対象である熱可塑性芳香族ポリエステル樹脂に配合することで、着色された熱可塑性芳香族ポリエステル樹脂組成物でも、無着色品と比べた耐ヒートショック性の低下を抑制できること、特にインサート部材が平板状であるインサート成形品において高い効果が得られることを見出し、本発明を完成させるに至った。 By the way, insert molded products used as electronic parts and automobile parts are often colored black using a colorant such as carbon black. The present inventors have found that a black-colored insert molded product tends to have lower heat shock resistance than a non-colored insert molded product. Therefore, the present inventors have conducted research on a method for preventing a reduction in heat shock resistance of an insert molded product colored in black or the like. Then, as a colorant such as carbon black used for coloring the resin, a colorant having an average primary particle diameter of 25 nm or more is blended in the thermoplastic aromatic polyester resin to be colored, thereby coloring the colored thermoplastic aroma. In order to complete the present invention, it is possible to suppress degradation of heat shock resistance as compared with non-colored products even with a group polyester resin composition, in particular, that a high effect can be obtained in an insert molded product in which the insert member is flat. It came.
 本発明は、着色剤を含有する熱可塑性芳香族ポリエステル樹脂組成物を用いた耐ヒートショック性に優れるインサート成形品を提供することを課題とする。また、着色剤を含有する熱可塑性芳香族ポリエステル樹脂組成物の耐ヒートショック性低下抑制方法を提供することを課題とする。 An object of the present invention is to provide an insert-molded article having excellent heat shock resistance using a thermoplastic aromatic polyester resin composition containing a colorant. Another object of the present invention is to provide a method for suppressing the heat shock resistance of a thermoplastic aromatic polyester resin composition containing a colorant.
 本発明に係るインサート成形品は、樹脂部材とインサート部材とを有し、樹脂部材が、熱可塑性芳香族ポリエステル樹脂A及び平均一次粒子径が25nm以上の着色剤Bを含有する熱可塑性芳香族ポリエステル樹脂組成物を含む、耐ヒートショック性に優れるインサート成形品である。 The insert-molded article according to the present invention has a resin member and an insert member, and the resin member contains a thermoplastic aromatic polyester resin A and a colorant B having an average primary particle diameter of 25 nm or more. It is an insert-molded product that includes a resin composition and has excellent heat shock resistance.
 本発明において、熱可塑性芳香族ポリエステル樹脂組成物中の着色剤Bの含有量が、0.05質量%以上5.0質量%以下であることが好ましい。また、熱可塑性芳香族ポリエステル樹脂Aが、ポリブチレンテレフタレート系樹脂を含むことが好ましい。 In the present invention, the content of the coloring agent B in the thermoplastic aromatic polyester resin composition is preferably 0.05% by mass or more and 5.0% by mass or less. Moreover, it is preferable that the thermoplastic aromatic polyester resin A contains a polybutylene terephthalate resin.
 本発明において、着色剤Bは、無機顔料又は有機顔料を含むように構成することができる。また、着色剤Bは、黒色顔料、赤色顔料、橙色顔料又は白色顔料を含むように構成することができる。着色剤Bは、カーボンブラック又はカーボンナノチューブを含むことが好ましい。着色剤Bの平均一次粒子径は、27nm以上50nm以下であることが好ましい。 In the present invention, the colorant B can be configured to contain an inorganic pigment or an organic pigment. Further, the colorant B can be configured to include a black pigment, a red pigment, an orange pigment, or a white pigment. The colorant B preferably contains carbon black or carbon nanotubes. The average primary particle diameter of the colorant B is preferably 27 nm or more and 50 nm or less.
 本発明において、インサート部材が、金属、合金又は無機固体物を含む板状部材であることが好ましい。また、インサート部材が、長手方向と幅方向とを有する主面を有し、長手方向に対して直角な平面で切断した断面において、厚さの最大値に対する幅の最大値の比が2以上とすることができる。インサート部材の厚さは、0.1mm以上3mm以下とすることができる。 In the present invention, the insert member is preferably a plate-like member containing a metal, an alloy or an inorganic solid material. The insert member has a main surface having a longitudinal direction and a width direction, and the ratio of the maximum value of the width to the maximum value of the thickness is 2 or more in a cross section cut along a plane perpendicular to the longitudinal direction. can do. The thickness of the insert member can be 0.1 mm or more and 3 mm or less.
 本発明において、インサート部材の少なくとも一部が樹脂部材で被覆され、該被覆部における樹脂部材の厚さが、0.3mm以上5mm以下とすることができる。 In the present invention, at least a part of the insert member is covered with a resin member, and the thickness of the resin member in the covering portion can be 0.3 mm or more and 5 mm or less.
 本発明に係る耐ヒートショック性低下抑制方法は、インサート成形品用熱可塑性芳香族ポリエステル樹脂Aに、平均一次粒子径が25nm以上の着色剤Bを配合する、着色剤を含有する樹脂組成物の耐ヒートショック性低下抑制方法である。 The heat shock resistance reduction inhibiting method according to the present invention is a resin composition containing a colorant, in which a colorant B having an average primary particle size of 25 nm or more is blended with a thermoplastic aromatic polyester resin A for insert molded articles. This is a heat shock resistance lowering suppression method.
 本発明によれば、着色剤を含有する熱可塑性芳香族ポリエステル樹脂組成物を用いた耐ヒートショック性に優れるインサート成形品を提供することができる。特に、板状のインサート部材を用いる場合において、熱可塑性芳香族ポリエステル樹脂組成物を含む樹脂部の耐ヒートショック性の低下が抑制されたインサート成形品を提供することができる。また、着色剤を含有する熱可塑性芳香族ポリエステル樹脂組成物の耐ヒートショック性低下抑制方法を提供することができる。 According to the present invention, it is possible to provide an insert molded article having excellent heat shock resistance using a thermoplastic aromatic polyester resin composition containing a colorant. In particular, in the case of using a plate-like insert member, it is possible to provide an insert-molded product in which a decrease in heat shock resistance of a resin portion containing a thermoplastic aromatic polyester resin composition is suppressed. Moreover, the heat shock-resistant fall suppression method of the thermoplastic aromatic polyester resin composition containing a coloring agent can be provided.
耐ヒートショック性試験で用いた試験片を示す図であって、(A)は斜視図であり、(B)は上面図である。It is a figure which shows the test piece used by the heat shock resistance test, Comprising: (A) is a perspective view, (B) is a top view. 図1に示す試験片のインサート部材を示す図であって、(A)は斜視図であり、(B)は上面図である。It is a figure which shows the insert member of the test piece shown in FIG. 1, Comprising: (A) is a perspective view, (B) is a top view. 耐ヒートショック性試験で用いた試験片を示す図であって、(A)は上面図であり、(B)は(A)におけるB-B線で切断した断面図であり、(C)は(A)におけるC-C線で切断した断面図である。It is a figure which shows the test piece used by the heat shock resistance test, (A) is a top view, (B) is sectional drawing cut | disconnected by the BB line in (A), (C) is It is sectional drawing cut | disconnected by CC line in (A). 図3に示す試験片で用いたインサート部材を示す上面図である。It is a top view which shows the insert member used with the test piece shown in FIG. 耐ヒートショック性試験で用いた試験片を示す図であって、(A)は上面図であり、(B)は(A)におけるB-B線で切断した断面図であり、(C)は(A)におけるC-C線で切断した断面図である。It is a figure which shows the test piece used by the heat shock resistance test, (A) is a top view, (B) is sectional drawing cut | disconnected by the BB line in (A), (C) is It is sectional drawing cut | disconnected by CC line in (A). 図5に示す試験片で用いたインサート部材を示す上面図である。It is a top view which shows the insert member used with the test piece shown in FIG.
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。 Hereinafter, an embodiment of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within a range that does not impair the effects of the present invention.
[インサート成形品]
 本実施形態のインサート成形品は、樹脂部材とインサート部材とを有する。以下、樹脂部材、インサート部材の順に説明する。
[Insert molded product]
The insert molded product of this embodiment has a resin member and an insert member. Hereinafter, the resin member and the insert member will be described in this order.
(樹脂部材)
 樹脂部材は、熱可塑性芳香族ポリエステル樹脂A及び平均一次粒子径が25nm以上の着色剤Bを含有する熱可塑性芳香族ポリエステル樹脂組成物(以下、「樹脂組成物」ともいう。)を用いて形成され、該樹脂組成物を含む。この樹脂部材は、着色されているにも関わらず耐ヒートショック性の低下が抑制されている。そのため、この樹脂部材を有するインサート成形品は、耐ヒートショック性に優れている。
(Resin member)
The resin member is formed using a thermoplastic aromatic polyester resin composition (hereinafter also referred to as “resin composition”) containing a thermoplastic aromatic polyester resin A and a colorant B having an average primary particle diameter of 25 nm or more. And containing the resin composition. Although this resin member is colored, a decrease in heat shock resistance is suppressed. Therefore, the insert molded product having this resin member is excellent in heat shock resistance.
(熱可塑性芳香族ポリエステル樹脂A)
 熱可塑性芳香族ポリエステル樹脂Aは、着色剤により着色される樹脂である。熱可塑性芳香族ポリエステル樹脂Aは、ジカルボン酸化合物及び/又はそのエステル形成性誘導体を主成分とするジカルボン酸成分と、ジオール化合物及び/又はそのエステル形成性誘導体を主成分とするジオール成分との反応により得られる熱可塑性ポリエステル樹脂であり、ジカルボン酸成分かジオール成分の少なくとも1種に芳香族化合物を含むものである。
(Thermoplastic aromatic polyester resin A)
The thermoplastic aromatic polyester resin A is a resin colored with a colorant. The thermoplastic aromatic polyester resin A is a reaction between a dicarboxylic acid component mainly composed of a dicarboxylic acid compound and / or an ester-forming derivative thereof and a diol component mainly composed of a diol compound and / or an ester-forming derivative thereof. Is a thermoplastic polyester resin obtained by the above-mentioned method, and contains an aromatic compound in at least one of a dicarboxylic acid component or a diol component.
 ジカルボン酸成分としては、例えば、脂肪族ジカルボン酸(例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドテカンジカルボン酸、ヘキサデカンジカルボン酸、ダイマー酸等のC4-40程度のジカルボン酸、好ましくはC4-14程度のジカルボン酸)、脂環式ジカルボン酸(例えば、ヘキサヒドロフタル酸、ヘキサヒドロイソフタル酸、ヘキサヒドロテレフタル酸、ハイミック酸等のC4-40程度のジカルボン酸、好ましくはC8-12程度のジカルボン酸)、芳香族ジカルボン酸(例えば、フタル酸、イソフタル酸、テレフタル酸、メチルイソフタル酸、メチルテレフタル酸、2,6-ナフタレンジカルボン酸等のナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ジフェノキシエーテルジカルボン酸、4,4’-ジオキシ安息香酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルケトンジカルボン酸等のC8-16程度のジカルボン酸)、又はこれらの誘導体(例えば、低級アルキルエステル、アリールエステル、酸無水物等のエステル形成可能な誘導体)等が挙げられる。これらのジカルボン酸成分は、単独又は二種以上組み合わせて使用できる。好ましいジカルボン酸成分には、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸(特にテレフタル酸、2,6-ナフタレンジカルボン酸)が含まれる。ジカルボン酸成分中には、例えば、50モル%以上、好ましくは80モル%以上、さらに好ましくは90モル%以上の芳香族ジカルボン酸が含まれているのが好ましい。さらに、必要に応じて、トリメリット酸、ピロメリット酸等の多価カルボン酸又はそのエステル形成誘導体(アルコールエステル等)等を併用してもよい。このような多官能性化合物を併用すると、分岐状の熱可塑性ポリエステル樹脂を得ることもできる。 Examples of the dicarboxylic acid component include aliphatic dicarboxylic acids (for example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecane dicarboxylic acid, dodecane dicarboxylic acid, hexadecanedicarboxylic acid, dimer, and the like. Dicarboxylic acids of about C 4-40 such as acids, preferably dicarboxylic acids of about C 4-14 ), alicyclic dicarboxylic acids (for example, hexahydrophthalic acid, hexahydroisophthalic acid, hexahydroterephthalic acid, highmic acid, etc.) Dicarboxylic acids of about C 4-40 , preferably dicarboxylic acids of about C 8-12 ), aromatic dicarboxylic acids (eg phthalic acid, isophthalic acid, terephthalic acid, methyl isophthalic acid, methyl terephthalic acid, 2,6- Naphthalene dicarboxylic acid such as naphthalene dicarboxylic acid, 4,4 C 8-16 such as' -biphenyl dicarboxylic acid, 4,4'-diphenoxy ether dicarboxylic acid, 4,4'-dioxybenzoic acid, 4,4'-diphenylmethane dicarboxylic acid, 4,4'-diphenyl ketone dicarboxylic acid, etc. Degree dicarboxylic acid), or derivatives thereof (for example, derivatives capable of forming an ester such as lower alkyl ester, aryl ester, and acid anhydride). These dicarboxylic acid components can be used alone or in combination of two or more. Preferred dicarboxylic acid components include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and naphthalenedicarboxylic acid (particularly terephthalic acid and 2,6-naphthalenedicarboxylic acid). The dicarboxylic acid component preferably contains, for example, 50 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more of aromatic dicarboxylic acid. Furthermore, you may use together polyvalent carboxylic acids, such as trimellitic acid and a pyromellitic acid, or its ester formation derivative (alcohol ester etc.) etc. as needed. When such a polyfunctional compound is used in combination, a branched thermoplastic polyester resin can also be obtained.
 ジオール成分としては、例えば、脂肪族アルカンジオール(例えば、エチレングリコール、トリメチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、ネオペンチルグリコール、ヘキサンジオール、オクタンジオール、デカンジオール等のC2-12程度の脂肪族ジオール、好ましくはC2-10程度の脂肪族ジオール)、ポリオキシアルキレングリコール(C2-4程度のアルキレン基であり、複数のオキシアルキレン単位を有するグリコール、例えば、ジエチレングリコール、ジプロピレングリコール、ジテトラメチレングリコール、トリエチレングリコール、トリプロピレングリコール、ポリテトラメチレングリコール等)、脂環族ジオール(例えば、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、水素化ビスフェノールA等)等が挙げられる。また、ハイドロキノン、レゾルシノール、ビスフェノール、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス-(4-(2-ヒドロキシエトキシ)フェニル)プロパン、キシリレングリコール等の芳香族ジオールを併用してもよい。これらのジオール成分は、単独又は二種以上組み合わせて使用できる。好ましいジオール成分には、C2-10アルキレングリコール(エチレングリコール、トリメチレングリコール、プロピレングリコール、1,4-ブタンジオール等の直鎖状アルキレングリコール)等が含まれる。ジオール成分中には、例えば、50モル%以上、好ましくは80モル%以上、さらに好ましくは90モル%以上のC2-10アルキレングリコールが含まれているのが好ましい。さらに、必要に応じて、グリセリン、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトール等のポリオール又はそのエステル形成性誘導体を併用してもよい。このような多官能性化合物を併用すると、分岐状の熱可塑性ポリエステル樹脂を得ることもできる。 Examples of the diol component include aliphatic alkanediols (for example, ethylene glycol, trimethylene glycol, propylene glycol, 1,4-butanediol, 1,3-butanediol, neopentyl glycol, hexanediol, octanediol, decanediol. An aliphatic diol of about C 2-12 , preferably an aliphatic diol of about C 2-10 , and the like, a polyoxyalkylene glycol (a glycol having an alkylene group of about C 2-4 and having a plurality of oxyalkylene units), For example, diethylene glycol, dipropylene glycol, ditetramethylene glycol, triethylene glycol, tripropylene glycol, polytetramethylene glycol, etc.), alicyclic diol (for example, 1,4-cyclohexanediol, , 4-cyclohexanedimethanol, and hydrogenated bisphenol A, etc.) or the like. In addition, aromatic diols such as hydroquinone, resorcinol, bisphenol, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis- (4- (2-hydroxyethoxy) phenyl) propane, and xylylene glycol are used in combination. May be. These diol components can be used alone or in combination of two or more. Preferred diol components include C 2-10 alkylene glycol (linear alkylene glycol such as ethylene glycol, trimethylene glycol, propylene glycol, 1,4-butanediol) and the like. The diol component preferably contains, for example, 50 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more of C 2-10 alkylene glycol. Furthermore, if necessary, a polyol such as glycerin, trimethylolpropane, trimethylolethane, pentaerythritol, or an ester-forming derivative thereof may be used in combination. When such a polyfunctional compound is used in combination, a branched thermoplastic polyester resin can also be obtained.
 熱可塑性芳香族ポリエステル樹脂Aとしては、上述のジカルボン酸成分とジオール成分を2種以上組み合せたコポリエステルや、さらに他の共重合可能なモノマー(以下、共重合性モノマーという場合がある)として、オキシカルボン酸成分、ラクトン成分等を組み合わせたコポリエステルも使用できる。 As the thermoplastic aromatic polyester resin A, as a copolyester in which two or more of the above-mentioned dicarboxylic acid component and diol component are combined, and other copolymerizable monomers (hereinafter sometimes referred to as copolymerizable monomers), A copolyester in which an oxycarboxylic acid component, a lactone component and the like are combined can also be used.
 オキシカルボン酸(又はオキシカルボン酸成分又はオキシカルボン酸類)には、例えば、オキシ安息香酸、オキシナフトエ酸、ヒドロキシフェニル酢酸、グリコール酸、オキシカプロン酸等のオキシカルボン酸又はこれらの誘導体等が含まれる。ラクトンには、プロピオラクトン、ブチロラクトン、バレロラクトン、カプロラクトン(例えば、ε-カプロラクトン等)等のC3-12ラクトン等が含まれる。 Examples of the oxycarboxylic acid (or oxycarboxylic acid component or oxycarboxylic acid) include oxycarboxylic acids such as oxybenzoic acid, oxynaphthoic acid, hydroxyphenylacetic acid, glycolic acid, oxycaproic acid, and derivatives thereof. . Lactones include C 3-12 lactones such as propiolactone, butyrolactone, valerolactone, caprolactone (eg, ε-caprolactone, etc.), and the like.
 なお、コポリエステルにおいて、共重合性モノマーの割合は、例えば、0.01モル%以上30モル%以下程度の範囲から選択でき、通常、1モル%以上30モル%以下程度、好ましくは3モル%以上25モル%以下程度、更に好ましくは5モル%以上20モル%以下程度である。また、ホモポリエステルとコポリエステルとを組み合わせて使用する場合、ホモポリエステルとコポリエステルとの割合は、共重合性モノマーの割合が、全単量体に対して0.1モル%以上30モル%以下(好ましくは1モル%以上25モル%以下程度、更に好ましくは5モル%以上25モル%以下程度)となる範囲であり、通常、ホモポリエステル/コポリエステル=99/1~1/99(質量比)、好ましくは95/5~5/95(質量比)、更に好ましくは90/10~10/90(質量比)程度の範囲から選択できる。 In the copolyester, the proportion of the copolymerizable monomer can be selected, for example, from the range of about 0.01 mol% to about 30 mol%, and is usually about 1 mol% to about 30 mol%, preferably 3 mol%. It is about 25 mol% or less, more preferably about 5 mol% or more and 20 mol% or less. Further, when the homopolyester and the copolyester are used in combination, the proportion of the homopolyester and the copolyester is such that the proportion of the copolymerizable monomer is 0.1 mol% or more and 30 mol% or less with respect to the total monomers (Preferably about 1 mol% or more and 25 mol% or less, more preferably about 5 mol% or more and about 25 mol% or less). Usually, homopolyester / copolyester = 99/1 to 1/99 (mass ratio) ), Preferably 95/5 to 5/95 (mass ratio), more preferably about 90/10 to 10/90 (mass ratio).
 好ましい熱可塑性芳香族ポリエステル樹脂Aには、アルキレンテレフタレート、アルキレンナフタレート等のアルキレンアリレート単位を主成分(例えば、50~100モル%、好ましくは75~100モル%程度)とするホモポリエステル又はコポリエステル[例えば、ポリアルキレンテレフタレート(例えば、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)等のポリC2-4アルキレンテレフタレート)、1,4-シクロヘキサンジメチレンテレフタレート(PCT)、ポリアルキレンナフタレート(例えば、ポリエチレンナフタレート、ポリプロピレンナフタレート、ポリブチレンナフタレート等のポリC2-4アルキレンナフタレート)等のホモポリエステル;アルキレンテレフタレート及び/又はアルキレンナフタレート単位を主成分(例えば、50モル%以上)として含有するコポリエステル]が含まれ、これらを1種単独で又は2種以上組み合わせて使用できる。 The preferred thermoplastic aromatic polyester resin A is a homopolyester or copolyester having an alkylene arylate unit such as alkylene terephthalate or alkylene naphthalate as a main component (eg, about 50 to 100 mol%, preferably about 75 to 100 mol%). [For example, polyalkylene terephthalate (eg, poly C 2-4 alkylene terephthalate such as polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT)), 1,4-cyclohexanedimethylene terephthalate (PCT ), polyalkylene naphthalate (e.g., polyethylene naphthalate, polypropylene naphthalate, poly C 2-4 alkylene naphthalate and polybutylene naphthalate), such Homopo Ester; main component an alkylene terephthalate and / or alkylene naphthalate unit (e.g., more than 50 mol%) includes copolyesters] containing as may be used in combination thereof singly or two or more.
 特に好ましい熱可塑性芳香族ポリエステル樹脂Aは、エチレンテレフタレート、トリメチレンテレフタレート、テトラメチレンテレフタレート、テトラメチレン-2,6-ナフタレート等のC2-4アルキレンアリレート単位を80モル%以上(特に90モル%以上)含むホモポリエステル樹脂又はコポリエステル樹脂(例えば、ポリエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリテトラメチレン-2,6-ナフタレンジカルボキシレート樹脂等)である。 Particularly preferred thermoplastic aromatic polyester resin A is 80 mol% or more (particularly 90 mol% or more) of C 2-4 alkylene arylate units such as ethylene terephthalate, trimethylene terephthalate, tetramethylene terephthalate, and tetramethylene-2,6-naphthalate. ) -Containing homopolyester resin or copolyester resin (for example, polyethylene terephthalate resin, polytrimethylene terephthalate resin, polybutylene terephthalate resin, polytetramethylene-2,6-naphthalene dicarboxylate resin, etc.).
 これらの内、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂が好ましく、特にポリブチレンテレフタレート樹脂が好ましい。 Of these, polyethylene terephthalate resin and polybutylene terephthalate resin are preferable, and polybutylene terephthalate resin is particularly preferable.
 熱可塑性芳香族ポリエステル樹脂Aの末端カルボキシル基量は、本発明の効果を阻害しない限り特に限定されない。熱可塑性芳香族ポリエステル樹脂Aの末端カルボキシル基量は、30meq/kg以下が好ましく、25meq/kg以下がより好ましい。 The amount of terminal carboxyl groups of the thermoplastic aromatic polyester resin A is not particularly limited as long as the effects of the present invention are not impaired. The amount of terminal carboxyl groups of the thermoplastic aromatic polyester resin A is preferably 30 meq / kg or less, and more preferably 25 meq / kg or less.
 熱可塑性芳香族ポリエステル樹脂Aの固有粘度(IV)は、本発明の効果を阻害しない範囲で特に制限されない。熱可塑性芳香族ポリエステル樹脂Aの固有粘度は0.60~1.30dL/gであるのが好ましい。成形性や、加熱冷却耐久性の向上の観点から、さらに好ましくは0.65~1.20dL/gである。かかる範囲の固有粘度の熱可塑性芳香族ポリエステル樹脂Aを用いる場合には、着色剤組成物Bをより均一に配合しやすい。また、異なる固有粘度を有する熱可塑性芳香族ポリエステル樹脂Aをブレンドして、固有粘度を調整することもできる。例えば、固有粘度1.0dL/gの熱可塑性芳香族ポリエステル樹脂Aと固有粘度0.8dL/gの熱可塑性芳香族ポリエステル樹脂Aとをブレンドすることにより、固有粘度0.9dL/gの熱可塑性芳香族ポリエステル樹脂Aを調製することができる。熱可塑性芳香族ポリエステル樹脂Aの固有粘度(IV)は、例えば、o-クロロフェノール中で温度35℃の条件で測定することができる。 The intrinsic viscosity (IV) of the thermoplastic aromatic polyester resin A is not particularly limited as long as the effect of the present invention is not impaired. The intrinsic viscosity of the thermoplastic aromatic polyester resin A is preferably 0.60 to 1.30 dL / g. From the viewpoint of improving moldability and heating / cooling durability, it is more preferably 0.65 to 1.20 dL / g. When the thermoplastic aromatic polyester resin A having an intrinsic viscosity in such a range is used, the colorant composition B is easily blended more uniformly. Moreover, the intrinsic viscosity can be adjusted by blending thermoplastic aromatic polyester resins A having different intrinsic viscosities. For example, by blending thermoplastic aromatic polyester resin A having an intrinsic viscosity of 1.0 dL / g and thermoplastic aromatic polyester resin A having an intrinsic viscosity of 0.8 dL / g, thermoplasticity having an intrinsic viscosity of 0.9 dL / g is obtained. Aromatic polyester resin A can be prepared. The intrinsic viscosity (IV) of the thermoplastic aromatic polyester resin A can be measured, for example, in o-chlorophenol at a temperature of 35 ° C.
 熱可塑性芳香族ポリエステル樹脂Aの配合量は、例えば、全樹脂組成物中40質量%以上99質量%以下とすることができ、好ましくは、50質量%以上90質量%以下とすることができる。熱可塑性芳香族ポリエステル樹脂Aの配合量がこの範囲の場合、熱可塑性芳香族ポリエステル樹脂Aの特性を十分に発揮して、耐熱性、耐薬品性、耐トラッキング性等の電気的特性、機械的特性、及び成形加工性等の種々の特性に優れた樹脂組成物とすることができる。 The blending amount of the thermoplastic aromatic polyester resin A can be, for example, 40% by mass to 99% by mass in the total resin composition, and preferably 50% by mass to 90% by mass. When the blending amount of the thermoplastic aromatic polyester resin A is within this range, the thermoplastic aromatic polyester resin A exhibits its characteristics sufficiently, such as electrical characteristics such as heat resistance, chemical resistance and tracking resistance, mechanical It can be set as the resin composition excellent in various characteristics, such as a characteristic and moldability.
 なお、熱可塑性芳香族ポリエステル樹脂Aは、市販品を使用してもよく、ジカルボン酸成分又はその反応性誘導体と、ジオール成分又はその反応性誘導体と、必要により共重合可能なモノマーとを、慣用の方法、例えばエステル交換、直接エステル化法等により共重合(重縮合)することにより製造したものを使用してもよい。 As the thermoplastic aromatic polyester resin A, a commercially available product may be used, and a dicarboxylic acid component or a reactive derivative thereof, a diol component or a reactive derivative thereof, and a monomer that can be copolymerized as necessary are commonly used. Those prepared by copolymerization (polycondensation) by the above-mentioned methods such as transesterification and direct esterification may be used.
(着色剤B)
 着色剤Bは、成形品に求められる色に応じて公知の着色剤から選択することができる。着色剤Bとしては、粉末状又は粒子状の着色剤を挙げることができ、例えば、無機顔料や有機顔料、染料等を挙げることができる。無機顔料としては、例えば、カーボンブラック(例えば、アセチレンブラック、ランプブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック等)、カーボンナノチューブ等の黒色顔料、酸化鉄赤等の赤色顔料、モリブデートオレンジ等の橙色顔料、酸化チタン等の白色顔料等を挙げることができる。有機顔料としては、黄色顔料、橙色顔料、赤色顔料、青色顔料、緑色顔料等を挙げることができる。これらの着色剤Bは、単独で又は二種以上組み合わせて使用できる。また、着色剤Bは、表面が酸等により処理されたものでもよい。なお、着色剤Bとして有機顔料や染料を用いる場合、無機顔料に比べ、耐ヒートショック性の低下が少ない傾向にあるため、着色剤Bとして無機顔料を使用する場合において、本実施形態による耐ヒートショック性低下抑制の効果がより得られやすい。
(Colorant B)
The colorant B can be selected from known colorants according to the color required for the molded product. Examples of the colorant B include powdery or particulate colorants, and examples thereof include inorganic pigments, organic pigments, and dyes. Examples of inorganic pigments include carbon black (eg, acetylene black, lamp black, thermal black, furnace black, channel black, ketjen black), black pigments such as carbon nanotubes, red pigments such as iron oxide red, and molybdate. Examples thereof include orange pigments such as orange and white pigments such as titanium oxide. Examples of the organic pigment include a yellow pigment, an orange pigment, a red pigment, a blue pigment, and a green pigment. These colorants B can be used alone or in combination of two or more. The colorant B may have a surface treated with an acid or the like. In addition, when using an organic pigment or dye as the colorant B, since there is a tendency for the heat shock resistance to decrease less than that of the inorganic pigment, the heat resistance according to the present embodiment is used when the inorganic pigment is used as the colorant B. The effect of suppressing shock reduction is more easily obtained.
 着色剤Bの平均一次粒子径は、25nm以上である。着色剤Bの平均一次粒子径を25nm以上とすることで、インサート部材の形状が、四角柱状又は板状のいずれの場合でも、無着色品に比べた耐ヒートショック性の低下を抑制することができる。特に、無着色品に比べた耐ヒートショック性の低下を抑制することが困難な、板状のインサート部材を用いたインサート成形品においても、耐ヒートショック性の低下を抑制することができる。着色剤Bの平均一次粒子径は、好ましくは25nm以上50nm以下であり、より好ましくは27nm以上40nm以下であり、特に好ましくは28nm以上35nm以下である。着色剤Bの平均一次粒子径が50nmを超えると、熱可塑性芳香族ポリエステル樹脂組成物の機械的特性が低下するおそれがある。着色剤Bの平均一次粒子径は、樹脂組成物中に配合される前の着色剤Bについて、粒子1000個の電子顕微鏡観察により求めた算術平均粒子径である。 The average primary particle size of the colorant B is 25 nm or more. By controlling the average primary particle diameter of the colorant B to 25 nm or more, it is possible to suppress a decrease in heat shock resistance compared to a non-colored product, regardless of whether the shape of the insert member is a square pillar shape or a plate shape. it can. In particular, even in an insert molded product using a plate-like insert member in which it is difficult to suppress a decrease in heat shock resistance compared to a non-colored product, a decrease in heat shock resistance can be suppressed. The average primary particle diameter of the colorant B is preferably 25 nm or more and 50 nm or less, more preferably 27 nm or more and 40 nm or less, and particularly preferably 28 nm or more and 35 nm or less. When the average primary particle diameter of the colorant B exceeds 50 nm, the mechanical properties of the thermoplastic aromatic polyester resin composition may be deteriorated. The average primary particle size of the colorant B is an arithmetic average particle size obtained by observing 1000 particles of the colorant B before being blended in the resin composition with an electron microscope.
 全熱可塑性芳香族ポリエステル樹脂組成物中の着色剤Bの含有量は、0.05質量%以上5.0質量%以下であることが好ましく、0.1質量%以上3.0質量%以下であることがより好ましく、0.2質量%以上1.0質量%以下であることがさらに好ましい。着色剤Bの全樹脂組成物に対する含有量を0.1質量%以上5.0質量%以下とすることで、成形品に十分な明度及び色度で着色を施すことができる。着色剤Bとしてカーボンブラックを用いる場合、上記含有量とすることで、優れた漆黒度を有する成形品を形成可能な熱可塑性芳香族ポリエステル樹脂組成物とすることができる。 The content of the colorant B in the total thermoplastic aromatic polyester resin composition is preferably 0.05% by mass or more and 5.0% by mass or less, and 0.1% by mass or more and 3.0% by mass or less. More preferably, it is more preferably 0.2% by mass or more and 1.0% by mass or less. By making content with respect to all the resin compositions of the coloring agent B into 0.1 mass% or more and 5.0 mass% or less, it can color with sufficient brightness and chromaticity to a molded article. When carbon black is used as the colorant B, a thermoplastic aromatic polyester resin composition capable of forming a molded product having excellent jetness can be obtained by adjusting the content to the above.
 着色剤Bは、必要に応じて、熱可塑性芳香族ポリエステル樹脂Aなどのポリエステル系樹脂、スチレン系樹脂、アクリル系樹脂等の熱可塑性樹脂、熱硬化性樹脂等の他の樹脂を配合したマスターバッチとすることもできる。また、マスターバッチには、種々の添加剤、例えば、安定剤(酸化防止剤、紫外線吸収剤、熱安定剤等)、難燃剤、滑剤、離型剤、帯電防止剤、分散剤、可塑剤、核剤等を配合してもよい。この場合の添加物の含有量は、例えば、マスターバッチ中、0質量%を超え20質量%以下とすることができる。 The colorant B is a master batch in which a polyester resin such as a thermoplastic aromatic polyester resin A, a thermoplastic resin such as a styrene resin or an acrylic resin, or other resin such as a thermosetting resin is blended as necessary. It can also be. In addition, the master batch includes various additives such as stabilizers (antioxidants, ultraviolet absorbers, heat stabilizers, etc.), flame retardants, lubricants, mold release agents, antistatic agents, dispersants, plasticizers, A nucleating agent or the like may be blended. The content of the additive in this case can be, for example, more than 0% by mass and 20% by mass or less in the master batch.
 着色剤Bを含むマスターバッチの製造方法は、ベースとなる樹脂と着色剤Bとを通常の方法で混練して製造することができる。例えば、ベースとなる樹脂、着色剤B及びその他の添加剤を攪拌機に投入して均一に混ぜ合わせた後、押出機で溶融及び混練することにより製造することができる。得られるマスターバッチは、粉末、ペレット、細片など様々な形態とすることができる。 The manufacturing method of the masterbatch containing the coloring agent B can be manufactured by kneading the base resin and the coloring agent B by an ordinary method. For example, the base resin, the colorant B and other additives can be introduced into a stirrer and mixed uniformly, and then melted and kneaded with an extruder. The resulting master batch can be in various forms such as powder, pellets, strips and the like.
(その他の配合剤)
 本実施形態の熱可塑性芳香族ポリエステル樹脂組成物には、種々の添加物を配合することができる。例えば、耐ヒートショック性をより高める目的で、エラストマーを配合することができる。
(Other ingredients)
Various additives can be blended in the thermoplastic aromatic polyester resin composition of the present embodiment. For example, an elastomer can be blended for the purpose of further improving heat shock resistance.
 エラストマーとしては、オレフィン系エラストマー、塩化ビニル系エラストマー、スチレン系エラストマー、ポリエステル系エラストマー、ブタジエン系エラストマー、ウレタン系エラストマー、ポリアミド系エラストマー、シリコーン系エラストマー、コアシェル系エラストマーが挙げられる。具体的には、エチレンエチルアクリレート(EEA)系共重合体、メタクリル酸エステル-ブチレン-スチレン(MBS)系共重合体、エチレングリシジルメタアクリレート(EGMA)系共重合体、ポリテトラメチレングリコール(PTMG)系ポリエステルエラストマー等を使用することができる。エチレンエチルアクリレート(EEA)系共重合体としては、エチレンエチルアクリレートとブチルアクリレート及び/又はメチルメタクリレートとのグラフト共重合体等を挙げることができる。 Examples of the elastomer include olefin elastomers, vinyl chloride elastomers, styrene elastomers, polyester elastomers, butadiene elastomers, urethane elastomers, polyamide elastomers, silicone elastomers, and core shell elastomers. Specifically, ethylene ethyl acrylate (EEA) copolymer, methacrylate-butylene-styrene (MBS) copolymer, ethylene glycidyl methacrylate (EGMA) copolymer, polytetramethylene glycol (PTMG) A polyester elastomer or the like can be used. Examples of the ethylene ethyl acrylate (EEA) copolymer include a graft copolymer of ethylene ethyl acrylate and butyl acrylate and / or methyl methacrylate.
 エラストマーの配合量は、熱可塑性芳香族ポリエステル樹脂組成物中、1質量%以上30質量%以下とすることが好ましく、5質量%以上20質量%以下とすることがより好ましい。エラストマーを熱可塑性芳香族ポリエステル樹脂組成物中、1質量%以上30質量%以下配合することで、熱可塑性芳香族ポリエステル樹脂組成物の機械的特性を損なうことなく耐ヒートショック性がさらに優れた樹脂組成物とすることができる。 The blending amount of the elastomer is preferably 1% by mass or more and 30% by mass or less, and more preferably 5% by mass or more and 20% by mass or less in the thermoplastic aromatic polyester resin composition. By blending an elastomer in the thermoplastic aromatic polyester resin composition in an amount of 1% by mass to 30% by mass, a resin having further excellent heat shock resistance without impairing the mechanical properties of the thermoplastic aromatic polyester resin composition It can be a composition.
 また、得られる成形品の機械的物性を向上させる目的で、無機充填剤を配合することができる。無機充填剤としては、繊維状充填剤、板状充填剤、又は粉粒状充填剤を挙げることができる。繊維状充填剤としては、例えば、ガラス繊維、アスベスト繊維、カーボン繊維、シリカ繊維、アルミナ繊維、シリカ-アルミナ繊維、アルミニウムシリケート繊維、ジルコニア繊維、チタン酸カリウム繊維、炭化ケイ素繊維、ウィスカー(炭化ケイ素、アルミナ、窒化珪素等のウィスカー)等の無機質繊維;脂肪族又は芳香族ポリアミド、芳香族ポリエステル、フッ素樹脂、ポリアクリロニトリル等のアクリル樹脂、レーヨン等で形成された繊維等の有機質繊維を挙げることができる。板状充填剤としては、例えば、タルク、マイカ、ガラスフレーク、グラファイト等を挙げることができる。粉粒状充填剤としては、例えば、ガラスビーズ、ガラス粉、ミルドファイバー(例えば、ミルドガラスファイバー等)、ウォラストナイト(珪灰石)等を挙げることができる。なお、ウォラストナイトは、板状、柱状、繊維状等の形態であってもよい。これらの無機充填剤のうち、安価であり入手しやすいこと等から、ガラス繊維が好ましい。 Moreover, an inorganic filler can be blended for the purpose of improving the mechanical properties of the obtained molded product. As an inorganic filler, a fibrous filler, a plate-like filler, or a granular filler can be mentioned. Examples of the fibrous filler include glass fiber, asbestos fiber, carbon fiber, silica fiber, alumina fiber, silica-alumina fiber, aluminum silicate fiber, zirconia fiber, potassium titanate fiber, silicon carbide fiber, whisker (silicon carbide, Inorganic fibers such as whiskers such as alumina and silicon nitride); organic fibers such as aliphatic or aromatic polyamides, aromatic polyesters, acrylic resins such as fluororesin and polyacrylonitrile, fibers formed of rayon, etc. . Examples of the plate-like filler include talc, mica, glass flake, and graphite. Examples of the particulate filler include glass beads, glass powder, milled fiber (for example, milled glass fiber), wollastonite (wollastonite), and the like. The wollastonite may be in the form of a plate, column, fiber, or the like. Of these inorganic fillers, glass fiber is preferable because it is inexpensive and easily available.
 繊維状充填剤の平均径は、例えば、1μm~30μm(好ましくは5μm~20μm、さらに好ましくは10~15μm)程度、平均長は、例えば、100μm~5mm(好ましくは300μm~4mm、さらに好ましくは500μm~3.5mm)程度であってもよい。また、板状又は粉粒状充填剤の平均一次粒子径は、例えば、0.1μm~500μm、好ましくは1μm~100μm程度とすることができる。これらの無機充填剤は、単独で又は二種以上組み合わせて使用することができる。なお、繊維状充填剤の平均径及び平均長、並びに板状又は粉粒状充填剤の平均一次粒子径は、樹脂組成物中に配合される前の繊維状充填材、板状又は粉粒状充填剤について、CCDカメラで撮影した画像を解析し、加重平均により算出した値である。これらは例えば、株式会社セイシン企業製、動的画像解析法/粒子(状態)分析計PITA-3等を用いて算出することができる。なお、板状又は粉状充填材のアスペクト比は、特に限定されず、例えば、1以上10以下とすることができる。 The average diameter of the fibrous filler is, for example, about 1 μm to 30 μm (preferably 5 μm to 20 μm, more preferably 10 to 15 μm), and the average length is, for example, 100 μm to 5 mm (preferably 300 μm to 4 mm, more preferably 500 μm). About 3.5 mm). The average primary particle diameter of the plate-like or powdery filler can be, for example, about 0.1 μm to 500 μm, preferably about 1 μm to 100 μm. These inorganic fillers can be used alone or in combination of two or more. The average diameter and the average length of the fibrous filler and the average primary particle diameter of the plate-like or granular filler are the fibrous filler, the plate-like or granular filler before being mixed in the resin composition. Is a value calculated by analyzing an image photographed by a CCD camera and calculating a weighted average. These can be calculated using, for example, a dynamic image analysis method / particle (state) analyzer PITA-3 manufactured by Seishin Corporation. The aspect ratio of the plate or powder filler is not particularly limited, and can be, for example, 1 or more and 10 or less.
 無機充填剤の含有割合は、全熱可塑性芳香族ポリエステル樹脂組成物中、10質量%以上50質量%以下が好ましく、より好ましくは、15質量部以上40質量%以下、さらに好ましくは20質量%以上35質量%以下とすることができる。 The content of the inorganic filler is preferably 10% by mass or more and 50% by mass or less, more preferably 15% by mass or more and 40% by mass or less, and still more preferably 20% by mass or more, in the total thermoplastic aromatic polyester resin composition. It can be 35 mass% or less.
 また、熱可塑性芳香族ポリエステル樹脂組成物には、安定剤(酸化防止剤、紫外線吸収剤、熱安定剤等)、難燃剤、滑剤、離型剤、帯電防止剤、分散剤、可塑剤、核剤、流動性改良剤等を添加してもよい。この場合の添加物の含有量は、例えば、全熱可塑性芳香族ポリエステル樹脂組成物中、0質量部%を超え20質量%以下とすることができる。 In addition, thermoplastic aromatic polyester resin compositions include stabilizers (antioxidants, UV absorbers, thermal stabilizers, etc.), flame retardants, lubricants, mold release agents, antistatic agents, dispersants, plasticizers, cores. Agents, fluidity improvers, etc. may be added. In this case, the content of the additive can be, for example, more than 0% by mass and 20% by mass or less in the total thermoplastic aromatic polyester resin composition.
 また、熱可塑性芳香族ポリエステル樹脂組成物には、耐加水分解性、耐ヒートショック性等を改善するため、ビスフェノールA型エポキシ化合物、ノボラック型エポキシ化合物等のエポキシ化合物を添加してもよい。また、必要であれば、他の樹脂(スチレン系樹脂、アクリル系樹脂等の熱可塑性樹脂、熱硬化性樹脂等)と組み合わせて用いてもよい。 In addition, an epoxy compound such as a bisphenol A type epoxy compound or a novolac type epoxy compound may be added to the thermoplastic aromatic polyester resin composition in order to improve hydrolysis resistance, heat shock resistance and the like. Further, if necessary, it may be used in combination with another resin (a thermoplastic resin such as a styrene resin or an acrylic resin, a thermosetting resin, or the like).
 上記熱可塑性芳香族ポリエステル樹脂組成物は、十分な着色性と耐ヒートショック性とを両立することができる。例えば、着色剤Bとしてカーボンブラックを用いて黒着色された樹脂組成物からなる成形品において、JIS Z8729:2004に準拠して測定したL表色系におけるL値(明度)が25以下(好ましくは20以下、さらに好ましくは15以下、特に好ましくは10以下)となる優れた漆黒度を有する。併せて、-40℃にて1.5時間冷却後、180℃にて1.5時間加熱するというサイクルを繰り返すというサイクル試験において、成形品にひび割れが発生するまでのサイクル数の、無着色の成形品に対する低下を、より小さくすることができる。 The thermoplastic aromatic polyester resin composition can achieve both sufficient colorability and heat shock resistance. For example, in a molded product made of a resin composition black-colored using carbon black as the colorant B, L * value (lightness) in the L * a * b * color system measured according to JIS Z8729: 2004 Has an excellent jetness of 25 or less (preferably 20 or less, more preferably 15 or less, particularly preferably 10 or less). In addition, in a cycle test in which a cycle of cooling at −40 ° C. for 1.5 hours and then heating at 180 ° C. for 1.5 hours is repeated, the number of cycles until cracking occurs in the molded product is uncolored. The decrease with respect to the molded product can be further reduced.
 そのため、この熱可塑性芳香族ポリエステル樹脂組成物は、着色されたインサート成形品用の樹脂組成物として好適に用いることができる。この樹脂組成物からなる着色されたインサート成形品は、十分な着色性(明度、彩度、又は漆黒度)を有し、かつ、温度変化の大きい環境下で使用した場合でも、ヒートショック破壊が生じることを防ぐことができる。特に、板状インサート部材を用いたインサート成形品において、ヒートショック破壊を防ぐ効果がより得られやすい。 Therefore, this thermoplastic aromatic polyester resin composition can be suitably used as a resin composition for colored insert molded products. The colored insert-molded product made of this resin composition has sufficient colorability (lightness, saturation, or jetness), and even when used in an environment with a large temperature change, heat shock breakdown is possible. It can be prevented from occurring. In particular, in an insert-molded product using a plate-like insert member, an effect of preventing heat shock breakdown is more easily obtained.
 なお、「耐ヒートショック性」は、インサート成形品を温度変化の大きい環境下で使用した場合に、温度変化によってインサート成形品が破壊してしまうことを防ぐことができる性能であり、外部から瞬間的に物理的な衝撃が加わって成形品が破壊してしまうことを防ぐ耐衝撃性や、引張破壊歪(伸び)等で表される靱性、高い温度で使用した場合に成形品が変形又は樹脂組成物が劣化してしまうことを防ぐ耐熱性とは異なる性能である。また、耐ヒートショック性と機械的強度とに相関関係がないことが、後述する参考例1と比較例との比較から明らかである。すなわち、無着色の成形品と着色された成形品との比較において、機械的強度の差異に比べ、耐ヒートショック性については、着色された成形品で顕著に低下した。さらに、実施例と比較例の各樹脂組成物における機械的強度の低下傾向と、耐ヒートショック性の低下傾向も一致する訳ではないこと、及び板状インサート部材と四角柱状インサート部材とでも耐ヒートショック性の傾向が異なることが確認された。 “Heat shock resistance” is a performance that can prevent the insert molded product from being destroyed by temperature changes when the insert molded product is used in an environment with a large temperature change. The impact resistance to prevent the molded product from breaking due to physical impact, toughness expressed by tensile fracture strain (elongation), etc., and the molded product deforms or resin when used at high temperature The performance is different from the heat resistance which prevents the composition from deteriorating. Moreover, it is clear from the comparison with the reference example 1 mentioned later and a comparative example that there is no correlation between heat shock resistance and mechanical strength. That is, in comparison between the uncolored molded product and the colored molded product, the heat shock resistance was significantly reduced in the colored molded product compared to the difference in mechanical strength. Furthermore, the tendency of the mechanical strength in the resin compositions of Examples and Comparative Examples to be inconsistent with the tendency of heat shock resistance to decline, and the heat resistance of both the plate-like insert member and the square pillar-like insert member is not the same. It was confirmed that the shock tendency was different.
 熱可塑性芳香族ポリエステル樹脂組成物を得る方法は、特に限定されない。例えば、熱可塑性芳香族ポリエステル樹脂A、着色剤B及び必要に応じてその他の配合剤を、粉末、ペレット、細片など様々な形態で、必要に応じて予備混合した後に溶融混練機に投入する。引き続き、熱可塑性芳香族ポリエステル樹脂Aの融点以上に加熱して、溶融混練することで、熱可塑性芳香族ポリエステル樹脂A、着色剤B、及びその他の配合剤を配合する。 The method for obtaining the thermoplastic aromatic polyester resin composition is not particularly limited. For example, the thermoplastic aromatic polyester resin A, the colorant B, and other compounding agents as required, in various forms such as powders, pellets, strips, etc., are premixed as necessary and then put into a melt kneader. . Subsequently, the thermoplastic aromatic polyester resin A, the colorant B, and other compounding agents are blended by heating to the melting point of the thermoplastic aromatic polyester resin A or higher and melt-kneading.
(インサート部材)
 インサート部材は、金属、合金又は無機固体物からなる板状部材であることが好ましい。中でも、成形時に樹脂と接触したとき、変形したり溶融したりしないものが好ましく、例えば、アルミニウム、マグネシウム、銅、鉄等の金属、真鍮等の上記金属の合金、及びガラス、セラミックス等の無機固体物等を挙げることができる。
(Insert material)
The insert member is preferably a plate-like member made of a metal, an alloy, or an inorganic solid material. Among them, those that do not deform or melt when they come into contact with the resin during molding are preferable. For example, metals such as aluminum, magnesium, copper, and iron, alloys of the above metals such as brass, and inorganic solids such as glass and ceramics And the like.
 インサート部材の形状は、特に限定されず、四角柱状や板状等の種々の形状のものを用いることができる。特に、長手方向と幅方向とを有する主面を有し、板の長手方向に対して直角な平面で切断した断面において、厚さの最大値に対する幅の最大値の比が2以上であるもの(例えば、バスバー等の配線材料)が好ましい。板状のインサート部材の厚さとしては0.1mm以上3mm以下(例えば0.5mm以上2mm以下)であることが好ましい。なお、板状インサート部材の断面形状は、特に限定されず、楕円形、長方形、多角形等とすることができる。 The shape of the insert member is not particularly limited, and various shapes such as a rectangular column shape and a plate shape can be used. In particular, in a cross section having a main surface having a longitudinal direction and a width direction and cut by a plane perpendicular to the longitudinal direction of the plate, the ratio of the maximum value of the width to the maximum value of the thickness is 2 or more (For example, a wiring material such as a bus bar) is preferable. The thickness of the plate-like insert member is preferably 0.1 mm or more and 3 mm or less (for example, 0.5 mm or more and 2 mm or less). In addition, the cross-sectional shape of a plate-shaped insert member is not specifically limited, It can be set as an ellipse, a rectangle, a polygon, etc.
(インサート成形品)
 インサート成形品の形状及び大きさは、特に限定されず、用途に応じた形状とすることができる。特に、上記した熱可塑性芳香族ポリエステル樹脂組成物は、着色性を維持しつつ耐ヒートショック性に優れているので、樹脂部材に肉薄部やウェルドラインを有する着色インサート成形品でも、耐ヒートショック性に優れた成形品とすることができ、ヒートショック破壊が発生してしまうことを防ぐことができる。インサート成形品は、例えば、インサート部材の少なくとも一部が樹脂部材で被覆されている場合に、インサート部材を被覆する樹脂部の厚さが0.3mm以上5mm以下(例えば0.5mm以上3mm以下)である肉薄部分を有しているインサート成形品とすることができる。
(Insert molded product)
The shape and size of the insert molded product are not particularly limited, and can be a shape according to the application. In particular, the thermoplastic aromatic polyester resin composition described above is excellent in heat shock resistance while maintaining colorability. Therefore, even in a colored insert molded product having a thin portion or a weld line in a resin member, heat shock resistance Therefore, it is possible to prevent a heat shock breakdown from occurring. In the insert molded product, for example, when at least a part of the insert member is covered with a resin member, the thickness of the resin portion covering the insert member is 0.3 mm or more and 5 mm or less (for example, 0.5 mm or more and 3 mm or less). It can be set as the insert molded product which has the thin part which is.
 ここで、インサート部材を被覆する樹脂部の厚さとは、インサート成形品の樹脂部材がインサート部材を覆う部分において、該被覆部における樹脂部材の厚さのことであり、被覆部における樹脂部材の表面から、直下のインサート部材の面に対する垂直方向の長さを指す。例えば、図3に、実施例で用いたインサート成形品の例を示す。図3中のインサート成形品(試験片20)において、樹脂部材21がインサート部材22を覆う被覆部における樹脂部材21の表面から、直下のインサート部材22の面に対する垂直方向の長さTが、インサート部材22を被覆する樹脂部の厚さである(図3(C))。また、1つのインサート成形品中にインサート部材が、間に樹脂部材の層を挟んで複数積層されてインサートされる場合がある。その場合の樹脂部の厚さとしては、インサート成形品の樹脂部材の表面から直下の(最外層の)インサート部材までの厚さと、各インサート部材の間に挟まれた樹脂部材の層の厚さとがあり得るが、それらの樹脂部の厚さのうち、いずれか一つでも前記樹脂部の厚さの範囲内である場合には、当該樹脂部における耐ヒートショック性を考慮することが望まれる。また、樹脂部の比率が極端に高い(インサート部材が薄すぎる)場合、樹脂部の収縮によりインサート部材が変形するおそれがあり、樹脂部の比率が極端に低い(樹脂部が薄すぎる)場合、樹脂の流動性が不足して成形不良となるおそれがあるという観点から、樹脂部の厚さとインサート部材の厚さとの比は、樹脂部の厚さ:インサート部材の厚さ=1:8~8:1であることが好ましく、1:5~5:1であることがより好ましい。 Here, the thickness of the resin portion covering the insert member is the thickness of the resin member in the covering portion in the portion where the resin member of the insert molded product covers the insert member, and the surface of the resin member in the covering portion To the length in the direction perpendicular to the surface of the insert member immediately below. For example, FIG. 3 shows an example of an insert molded product used in the example. In the insert molded product (test piece 20) in FIG. 3, the length T in the direction perpendicular to the surface of the insert member 22 directly below the surface of the resin member 21 in the covering portion where the resin member 21 covers the insert member 22 is It is the thickness of the resin part which coat | covers the member 22 (FIG.3 (C)). Further, there may be a case where a plurality of insert members are inserted into one insert-molded product with a resin member layer interposed therebetween. In this case, the thickness of the resin portion includes the thickness from the surface of the resin member of the insert-molded product to the insert member immediately below (outermost layer), and the thickness of the resin member layer sandwiched between the insert members. However, if any one of the thicknesses of the resin parts is within the thickness range of the resin part, it is desirable to consider heat shock resistance in the resin part. . Moreover, when the ratio of the resin part is extremely high (the insert member is too thin), the insert member may be deformed due to shrinkage of the resin part, and when the ratio of the resin part is extremely low (the resin part is too thin), From the viewpoint that the resin fluidity may be insufficient and molding failure may occur, the ratio between the thickness of the resin portion and the thickness of the insert member is as follows: resin portion thickness: insert member thickness = 1: 8-8 Is preferably 1: 1, more preferably 1: 5 to 5: 1.
 インサート成形品の製造方法は、特に限定されず、例えば、上記した熱可塑性芳香族ポリエステル樹脂組成物と予め所望の形状に成形されたインサート部材とを用いて、金型にインサート部材を予め装着し、その外側に上記樹脂組成物を射出成形又は押出圧縮成形等により充填して複合成形して行うことができる。 The method for producing the insert-molded product is not particularly limited. For example, the insert member is previously mounted on the mold using the above-described thermoplastic aromatic polyester resin composition and the insert member molded in a desired shape in advance. The resin composition can be filled and molded by injection molding or extrusion compression molding on the outside.
 以下に実施例を示して本発明を更に具体的に説明するが、これらの実施例により本発明の解釈が限定されるものではない。 EXAMPLES The present invention will be described more specifically with reference to the following examples. However, the interpretation of the present invention is not limited by these examples.
[参考例1、実施例1、比較例1~4]
 以下に示す材料を用い、表1,2に示す含有割合で2軸押出機(日本製鋼所株式会社製、シリンダ径30mmφ)により250℃にて混錬し、参考例1、実施例1及び比較例1~4の熱可塑性芳香族ポリエステル樹脂組成物ペレットを作製した。なお、参考例1は、無着色の樹脂組成物の例であり、実施例1及び比較例2~4は、着色剤Bを、熱可塑性芳香族ポリエステル樹脂Aに直接添加した場合の例である。また、比較例1は、着色剤Bを、熱可塑性ポリエステル樹脂A中に20質量%の濃度になるようにあらかじめ溶融混練したマスターバッチを作製し、当該マスターバッチを樹脂組成物全体の2.5質量%(樹脂組成物全体中の着色剤Bが0.5質量%となるように)添加した場合の例である。
[Reference Example 1, Example 1, Comparative Examples 1 to 4]
Using the materials shown below, kneaded at 250 ° C. with a twin-screw extruder (manufactured by Nippon Steel Works, cylinder diameter 30 mmφ) at the content ratio shown in Tables 1 and 2, and Reference Example 1, Example 1 and comparison The thermoplastic aromatic polyester resin composition pellets of Examples 1 to 4 were prepared. Reference Example 1 is an example of an uncolored resin composition, and Example 1 and Comparative Examples 2 to 4 are examples in which the colorant B is added directly to the thermoplastic aromatic polyester resin A. . In Comparative Example 1, a master batch in which the colorant B was previously melt-kneaded so as to have a concentration of 20% by mass in the thermoplastic polyester resin A was prepared, and the master batch was added to 2.5% of the entire resin composition. It is an example in the case of adding mass% (so that the colorant B in the entire resin composition is 0.5 mass%).
(熱可塑性芳香族ポリエステル樹脂)
 熱可塑性芳香族ポリエステル樹脂A:ウィンテックポリマー株式会社製、固有粘度0.68dL/gのポリブチレンテレフタレート樹脂(PBT)
(着色剤)
 カーボンブラック1:ウイルバー・エリス株式会社製、平均一次粒子径30nmのカーボンブラック
 カーボンブラック2:三菱化学株式会社製、平均一次粒子径22nmのカーボンブラック
 カーボンブラック3:ウイルバー・エリス株式会社製、平均一次粒子径13nmのカーボンブラック
 カーボンブラック4:ウイルバー・エリス株式会社製、平均一次粒子径13nmのカーボンブラック(表面酸処理品)
(Thermoplastic aromatic polyester resin)
Thermoplastic aromatic polyester resin A: Polybutylene terephthalate resin (PBT) having an intrinsic viscosity of 0.68 dL / g, manufactured by Wintech Polymer Co., Ltd.
(Coloring agent)
Carbon black 1: Carbon black manufactured by Wilber Ellis Co., Ltd., average primary particle size 30 nm Carbon black 2: Carbon black manufactured by Mitsubishi Chemical Co., Ltd., average primary particle size 22 nm Carbon black 3: Product manufactured by Wilbur Ellis Co., Ltd., average primary Carbon black with a particle size of 13 nm Carbon black 4: Carbon black with an average primary particle size of 13 nm (surface acid-treated product) manufactured by Wilber Ellis Co., Ltd.
(無機充填剤)
 ガラス繊維:日本電気硝子株式会社製、商品名「ECS03T-187」、平均径13μm
(エラストマー)
 エチレンエチルアクリレート(EEA)系エラストマー:日油株式会社製、商品名「モディパーA5300」、共重合成分としてエチレンエチルアクリレート(EEA)を70質量%、ブチルアクリレートとメチルメタクリレートのランダム共重合体(BA-stat-MMA)を30質量%含む。
(Inorganic filler)
Glass fiber: manufactured by Nippon Electric Glass Co., Ltd., trade name “ECS03T-187”, average diameter 13 μm
(Elastomer)
Ethylene ethyl acrylate (EEA) -based elastomer: manufactured by NOF Corporation, trade name “MODIPA A5300”, 70% by mass of ethylene ethyl acrylate (EEA) as a copolymer component, random copolymer of butyl acrylate and methyl methacrylate (BA- stat-MMA) is contained at 30% by mass.
<評価>
[耐ヒートショック性]
 四角柱状、L字型板状、又はI字型板状のインサート部材を用いたそれぞれの場合について、以下のようにして耐ヒートショック性を評価した。
<Evaluation>
[Heat shock resistance]
The heat shock resistance was evaluated in the following manner for each case using a quadrangular columnar shape, an L-shaped plate shape, or an I-shaped plate shape insert member.
(四角柱状インサート部材を用いた場合の耐ヒートショック性)
 参考例1、実施例1及び比較例1~4で得られた熱可塑性芳香族ポリエステル樹脂組成物ペレットと、四角柱状の金属製インサート部材とを用い、射出成形により図1,2に示す試験片をインサート成形し、耐ヒートショック性を評価した。図1は、インサート成形した試験片10を示す図であり、図2は、インサート部材2を示す図である。試験片10は、図1に示すように、熱可塑性芳香族ポリエステル樹脂組成物を含む四角柱状の樹脂部材1に金属製の四角柱状のインサート部材2が埋設されたものである。樹脂部材1は、上記のようにして得られた樹脂組成物ペレットを用いて成形されたものである。140℃で3時間乾燥させた上記ペレットを用いて、樹脂温度260℃、金型温度65℃、射出時間25秒、冷却時間10秒で、試験片成形用金型(22mm×22mm×高さ28mmの四角柱状樹脂部の内部に、少なくとも14mm×14mm×高さ24mmの四角柱状の部分を有するインサート部材をインサートする金型)に、一部の樹脂部の厚さが最小肉厚として1mmとなるようにインサート射出成形して試験片を製造した。インサート部材2は、図2に示すように、四角柱状の上部2aと四角柱状の下部2bとこれらの間において両者を接続する円柱状の括れ部2cとを備えた構成とされている。インサート部材2は、下部2b及び括れ部2cが、樹脂部材1内に埋設され、上部2aが樹脂部材1の上面から露出している(図1(A)参照)。さらに、図1(B)に示すように、樹脂部材1の角部とインサート部材2の角部は、互いに異なる方向に位置するように配置されている。すなわち、インサート部材2の角部は、樹脂部材1の側面に向かうように配置されている。そして、インサート部材2の角部の先端と、樹脂部材1の側面との距離は約1mmである。樹脂部材1において、インサート部材2の角部(シャープコーナー)の先端近傍が肉薄部となっている。また、樹脂部材1の射出成形の際、溶融させた樹脂組成物ペレットを金型内に充填するためのゲートは、樹脂部材1の底面(22mm×22mmの面)の中央部に1mmφのピンゲートとして設けられている。このため、ゲートから注入された溶融状態の樹脂組成物は、樹脂部材1の底面に沿って流動した後、インサート部材2に沿って金型内の空間に充填される。このとき、溶融した樹脂組成物が流動しやすい厚肉部が先に充填され、薄肉部は充填が遅れるため、樹脂部材1の各側面(22mm×28mmの4面それぞれ)の最小肉厚部近傍(インサート部材2の角部の先端付近)にウェルド部が生じることとなる。
 上記の試験片10に対し、冷熱衝撃試験機(エスペック株式会社製)を用い、-40℃にて1.5時間冷却後、180℃にて1.5時間加熱するというサイクルを繰り返し、20サイクル毎にウェルド部を観察した。ウェルド部にクラックが発生したときのサイクル数を耐ヒートショック性の指標として評価した。結果を表1,2に示した。
(Heat shock resistance when using square pillar inserts)
Test specimens shown in FIGS. 1 and 2 by injection molding using the thermoplastic aromatic polyester resin composition pellets obtained in Reference Example 1, Example 1 and Comparative Examples 1 to 4 and a square columnar metal insert member. Was subjected to insert molding, and the heat shock resistance was evaluated. FIG. 1 is a view showing a test piece 10 that has been insert-molded, and FIG. 2 is a view showing an insert member 2. As shown in FIG. 1, the test piece 10 is obtained by embedding a metal quadrangular columnar insert member 2 in a quadrangular columnar resin member 1 containing a thermoplastic aromatic polyester resin composition. The resin member 1 is molded using the resin composition pellets obtained as described above. Using the above pellets dried at 140 ° C. for 3 hours, a mold for test piece molding (22 mm × 22 mm × height 28 mm) with a resin temperature of 260 ° C., a mold temperature of 65 ° C., an injection time of 25 seconds, and a cooling time of 10 seconds. The resin part has a thickness of 1 mm as a minimum thickness in a mold that inserts an insert member having a square columnar part of at least 14 mm × 14 mm × height 24 mm inside the square columnar resin part. Thus, a test piece was manufactured by insert injection molding. As shown in FIG. 2, the insert member 2 includes a quadrangular columnar upper portion 2 a, a quadrangular columnar lower portion 2 b, and a columnar constricted portion 2 c that connects both of them. As for the insert member 2, the lower part 2b and the narrow part 2c are embed | buried in the resin member 1, and the upper part 2a is exposed from the upper surface of the resin member 1 (refer FIG. 1 (A)). Furthermore, as shown in FIG. 1 (B), the corners of the resin member 1 and the corners of the insert member 2 are arranged so as to be located in different directions. That is, the corner portion of the insert member 2 is disposed so as to face the side surface of the resin member 1. And the distance of the front-end | tip of the corner | angular part of the insert member 2 and the side surface of the resin member 1 is about 1 mm. In the resin member 1, the vicinity of the tip of the corner (sharp corner) of the insert member 2 is a thin portion. In addition, when the resin member 1 is injection-molded, a gate for filling the molten resin composition pellets into the mold is a 1 mmφ pin gate at the center of the bottom surface (22 mm × 22 mm surface) of the resin member 1. Is provided. For this reason, the molten resin composition injected from the gate flows along the bottom surface of the resin member 1 and then fills the space in the mold along the insert member 2. At this time, the thick portion where the melted resin composition is easy to flow is filled first, and the thin portion is delayed in filling, so the vicinity of the minimum thick portion on each side surface (each of the four surfaces of 22 mm × 28 mm) of the resin member 1 A weld portion is generated (near the tip of the corner portion of the insert member 2).
Using the thermal shock tester (manufactured by Espec Co., Ltd.), the test piece 10 was repeatedly cooled at −40 ° C. for 1.5 hours and then heated at 180 ° C. for 1.5 hours, and 20 cycles. The weld was observed every time. The number of cycles when a crack occurred in the weld was evaluated as an index of heat shock resistance. The results are shown in Tables 1 and 2.
(L字型板状インサート部材を用いた場合の耐ヒートショック性)
 参考例1、実施例1及び比較例1,2,4で得られた熱可塑性芳香族ポリエステル樹脂組成物と、L字型板状の金属製インサート部材とを用い、射出成形により図3,4に示す試験片をインサート成形し、耐ヒートショック性を評価した。図3は、インサート成形した試験片20を示す図であり、(A)は上面図であり、(B)は(A)におけるB-B線で切断した断面図であり、(C)は(A)におけるC-C線で切断した断面図である。図4は、インサート部材22を示す図である。樹脂部材21は、上記のようにして得られた樹脂組成物ペレットを用いて成形されたものである。140℃で3時間乾燥させた上記ペレットを用いて、樹脂温度260℃、金型温度65℃、射出時間25秒、冷却時間10秒で、試験片成形用金型[幅w25mm×L70mm×L70mm、厚さt3.6mmのL字型板状樹脂部の内部に、幅w21mm×L90mm×L90mm、厚さt1.6mm(断面の幅w/厚さt比が13.1)のL字型鉄板をインサートする金型]に、一部の樹脂部の厚さTが最小肉厚として1mmとなるようにインサート射出成形して試験片20を製造した。図3において、L,Lは、92mmである。図4に示すL字型板状インサート部材の両端部近傍にある2つ穴h、hは、金型内のピンに嵌め込んでインサート部材22を固定するためのものである。図3に示す樹脂部材21の穴hは、金型内のピンでL字型板状インサート部材22を押さえ付けて固定し、その状態で樹脂を充填したとき、樹脂がピンを回り込んで流動したことで形成されたものである。また、図3(A)には、樹脂を充填するサイドゲートS(幅:4mm、厚さ:3mm)の位置を一点鎖線で示している。当該サイドゲートSは、樹脂部21の右側面下端部からの距離dが1mmとなる上方に位置している。すなわち、試験片20の樹脂部材21は、流動した樹脂がインサート部材22を回り込んだ合流部、及びインサート部材22を押さえ付けるピンを回り込んだ合流部にウェルド部が生じることとなる。
 得られた試験片20について、冷熱衝撃試験機を用いて、140℃にて1時間30分加熱後、-40℃に降温して1時間30分冷却し、更に、140℃に昇温する過程を1サイクルとする耐ヒートショック試験を行い、成形品にクラックが入るまでのサイクル数を測定して、5個のサンプルの平均破壊寿命を耐ヒートショック性として評価した。
(Heat shock resistance when using an L-shaped plate-like insert member)
3, 4 by injection molding using the thermoplastic aromatic polyester resin composition obtained in Reference Example 1, Example 1 and Comparative Examples 1, 2, 4 and an L-shaped plate-like metal insert member. The test piece shown in Fig. 5 was insert-molded to evaluate heat shock resistance. FIG. 3 is a view showing the insert-molded test piece 20, (A) is a top view, (B) is a cross-sectional view taken along line BB in (A), and (C) is ( It is sectional drawing cut | disconnected by CC line in A). FIG. 4 is a view showing the insert member 22. The resin member 21 is molded using the resin composition pellets obtained as described above. Using the above pellets dried at 140 ° C. for 3 hours, a mold for test piece [width w 1 25 mm × L 1 with a resin temperature of 260 ° C., a mold temperature of 65 ° C., an injection time of 25 seconds, and a cooling time of 10 seconds. Inside the L-shaped plate-shaped resin portion of 70 mm × L 2 70 mm and thickness t 1 3.6 mm, width w 2 21 mm × L 3 90 mm × L 4 90 mm, thickness t 2 1.6 mm (cross-sectional width w 2 / thickness t 2 ratio of 13.1) to insert a L-shaped iron plate] and test by insert injection molding so that the thickness T of a part of the resin part is 1 mm as the minimum thickness Piece 20 was produced. In FIG. 3, L 5 and L 6 are 92 mm. The two holes h 1 and h 2 in the vicinity of both ends of the L-shaped plate-like insert member shown in FIG. 4 are for fitting the pins in the mold to fix the insert member 22. Holes h 3 of the resin member 21 shown in FIG. 3, a pin in the mold and fixed pressing the L-shaped plate-shaped insert member 22, when filled with resin in this state, the resin flows around the pin It was formed by flowing. In FIG. 3A, the position of the side gate S 1 (width: 4 mm, thickness: 3 mm) filled with resin is indicated by a one-dot chain line. The side gate S 1, the distance d 1 from the right side surface lower end portion of the resin portion 21 is positioned above to be 1 mm. That is, in the resin member 21 of the test piece 20, a weld portion is generated at the merged portion where the flowed resin wraps around the insert member 22 and the merged portion where the pin pressing the insert member 22 wraps around.
The obtained specimen 20 is heated at 140 ° C. for 1 hour 30 minutes using a thermal shock tester, then cooled to −40 ° C., cooled for 1 hour 30 minutes, and further heated to 140 ° C. Was subjected to a heat shock resistance test with one cycle, the number of cycles until cracks occurred in the molded product was measured, and the average fracture life of five samples was evaluated as heat shock resistance.
(I字型板状インサート部材を用いた場合の耐ヒートショック性)
 参考例1、実施例1及び比較例1~4で得られた熱可塑性芳香族ポリエステル樹脂組成物と、I字型板状の金属製インサート部材とを用い、射出成形により図5,6に示す試験片をインサート成形し、耐ヒートショック性を評価した。図5は、インサート成形した試験片30を示す図であり、(A)は上面図であり、(B)は(A)におけるB-B線で切断した断面図であり、(C)は(A)におけるC-C線で切断した断面図である。図6は、インサート部材32を示す図である。樹脂部材31は、上記のようにして得られた樹脂組成物ペレットを用いて成形されたものである。140℃で3時間乾燥させた上記ペレットを用いて、樹脂温度260℃、金型温度65℃、射出時間25秒、冷却時間10秒で、試験片成形用金型[幅w1125mm×L11120mm、厚さt114mmのI字型板状樹脂部の内部に、幅w1220mm×L12150mm、厚さt121.6mm(断面の幅w12/厚さt12比が12.5)のI字型鉄板をインサートする金型]に、一部の樹脂部の最小肉厚が1.2mmとなるようにインサート射出成形し、試験片30を製造した。I字状インサート部材32の両端部近傍にある2つ穴h11,h12は金型内のピンに嵌め込んでインサート部材32を固定するためのものである。図5に示す樹脂部材31の穴h13は、金型内のピンでI字型板状インサート部材32を押さえ付けて固定し、その状態で樹脂を充填したとき、樹脂がピンを回り込んで流動したことで形成されたものである。穴h13の直径d12は4mmである。穴h13の周囲は、L1415mm、L1510mmとなる範囲で樹脂部材31の厚さt13が3mmになっている。また、図5(A)には、樹脂を充填するサイドゲートS11(幅:4mm、厚さ:3mm)の位置を一点鎖線で示しており、当該サイドゲートは樹脂部材31の下側面左端部から距離d11が1mmとなる右方に位置している。すなわち、試験片20の樹脂部材21は、流動した樹脂がインサート部材22を回り込んだ合流部、及びインサート部材22を押さえ付けるピンを回り込んだ合流部にウェルド部が生じることとなる。
 得られた試験片30について、冷熱衝撃試験機を用いて、140℃にて1時間30分加熱後、-40℃に降温して1時間30分冷却し、更に、140℃に昇温する過程を1サイクルとする耐ヒートショック試験を行い、成形品にクラックが入るまでのサイクル数を測定して、5個のサンプルの平均破壊寿命を耐ヒートショック性として評価した。
(Heat shock resistance when using an I-shaped plate-like insert member)
5 and 6 are shown by injection molding using the thermoplastic aromatic polyester resin composition obtained in Reference Example 1, Example 1 and Comparative Examples 1 to 4 and an I-shaped plate-like metal insert member. A test piece was insert-molded to evaluate heat shock resistance. 5A and 5B are diagrams showing the insert-molded test piece 30, where FIG. 5A is a top view, FIG. 5B is a cross-sectional view taken along line BB in FIG. It is sectional drawing cut | disconnected by CC line in A). FIG. 6 is a view showing the insert member 32. The resin member 31 is molded using the resin composition pellets obtained as described above. Using the above pellets dried at 140 ° C. for 3 hours, a resin temperature of 260 ° C., a mold temperature of 65 ° C., an injection time of 25 seconds, and a cooling time of 10 seconds, a test piece molding die [width w 11 25 mm × L 11 120 mm, the inside of the I-shaped plate-shaped resin portion of the thickness t 11 4 mm, a width w 12 20mm × L 12 150mm, thickness t 12 1.6 mm (width w 12 / thickness t 12 ratio of the section 12. The test piece 30 was manufactured by insert injection molding into a mold in which the I-shaped iron plate of 5) was inserted] so that the minimum thickness of a part of the resin portion was 1.2 mm. Two holes h 11 and h 12 in the vicinity of both end portions of the I-shaped insert member 32 are for fitting into the pins in the mold to fix the insert member 32. Holes h 13 of the resin member 31 shown in FIG. 5, a pin in the mold and fixed pressed the I-shaped plate-shaped insert member 32, when filled with resin in this state, the resin flows around the pin It was formed by flowing. The diameter d 12 of the hole h 13 is 4 mm. Around the hole h 13 is, L 14 15 mm, the thickness t 13 of the resin member 31 in a range where the L 15 10 mm is set to 3 mm. In FIG. 5A, the position of the side gate S 11 (width: 4 mm, thickness: 3 mm) for filling the resin is indicated by a one-dot chain line, and the side gate is the left end of the lower surface of the resin member 31. distance d 11 is located to the right to be a 1mm from. That is, in the resin member 21 of the test piece 20, a weld portion is generated at the merged portion where the flowed resin wraps around the insert member 22 and the merged portion where the pin pressing the insert member 22 wraps around.
The obtained test piece 30 was heated at 140 ° C. for 1 hour 30 minutes using a cold shock tester, then cooled to −40 ° C., cooled for 1 hour 30 minutes, and further heated to 140 ° C. Was subjected to a heat shock resistance test with one cycle, the number of cycles until cracks occurred in the molded product was measured, and the average fracture life of five samples was evaluated as heat shock resistance.
[引張強さ及び引張破断歪]
 得られたペレットを140℃で3時間乾燥後、成形温度260℃、金型温度80℃の条件で、射出成形によりISO 1Aタイプの引張試験片を作製した。得られたそれぞれの試験片についてISO527-1,2に定められている評価基準に従い評価した。評価結果を表1,2に示した。
[Tensile strength and tensile breaking strain]
The obtained pellets were dried at 140 ° C. for 3 hours, and then ISO 1A type tensile test pieces were produced by injection molding under conditions of a molding temperature of 260 ° C. and a mold temperature of 80 ° C. Each of the obtained test pieces was evaluated according to the evaluation criteria defined in ISO527-1,2. The evaluation results are shown in Tables 1 and 2.
[曲げ強さ及び曲げ弾性率]
 得られたペレットを140℃で3時間乾燥後、成形温度260℃、金型温度80℃で、射出成形し、ISO3167に準拠して80mm×10mm×4mmの曲げ試験片を作製し、ISO178に定められている評価基準に従い評価した。評価結果を表1,2に示した。
[Bending strength and flexural modulus]
The obtained pellets were dried at 140 ° C. for 3 hours, then injection-molded at a molding temperature of 260 ° C. and a mold temperature of 80 ° C. to produce a 80 mm × 10 mm × 4 mm bending test piece according to ISO 3167, and defined in ISO 178 Evaluation was conducted according to the evaluation criteria. The evaluation results are shown in Tables 1 and 2.
[シャルピー衝撃強さ]
 得られたペレットを140℃で3時間乾燥後、成形温度260℃、金型温度80℃で、射出成形し、ISO3167に準拠して80mm×10mm×4mmのノッチ付シャルピー衝撃試験片を作製し、ISO179/1eAに従い、シャルピー衝撃強さ(ノッチ付き)(kJ/m)を測定した。
[Charpy impact strength]
The obtained pellets were dried at 140 ° C. for 3 hours, then injection-molded at a molding temperature of 260 ° C. and a mold temperature of 80 ° C. to prepare a notched Charpy impact test piece of 80 mm × 10 mm × 4 mm in accordance with ISO 3167, Charpy impact strength (notched) (kJ / m 2 ) was measured according to ISO 179 / 1eA.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1,2から明らかなように、実施例1の樹脂組成物からなるインサート成形品は、インサート部材の形状が四角柱状、L字型又はI字型の板状のいずれの場合も、参考例1の値との差が小さく、無着色品(参考例1)からの耐ヒートショック性の低下が抑制されている。そのため、このインサート成形品は、着色剤を含有するにもかかわらず、温度変化が大きい環境下で使用した場合でも、ヒートショック破壊が発生することを抑制することができる。比較例1の樹脂組成物からなるインサート成形品は、四角柱状インサート部材を用いた場合の耐ヒートショック性の低下は抑制できるものの、L字型又はI字型の板状インサート部材を用いた場合は耐ヒートショック性がより低下してしまう。比較例2,3,4の樹脂組成物からなるインサート成形品は、インサート部材の形状が四角柱状の場合も、L字型又はI字型の板状の場合も、耐ヒートショック性がより低下してしまう。 As is clear from Tables 1 and 2, the insert molded product made of the resin composition of Example 1 is a reference example in any case where the shape of the insert member is a square columnar, L-shaped or I-shaped plate. The difference from the value of 1 is small, and the decrease in heat shock resistance from the uncolored product (Reference Example 1) is suppressed. Therefore, even if this insert molded product contains a colorant, it can suppress the occurrence of heat shock destruction even when used in an environment with a large temperature change. In the case of using an L-shaped or I-shaped plate-shaped insert member, the insert molded article made of the resin composition of Comparative Example 1 can suppress a decrease in heat shock resistance when a square columnar insert member is used. The heat shock resistance is further reduced. The insert-molded product made of the resin composition of Comparative Examples 2, 3, and 4 has lower heat shock resistance in both cases where the shape of the insert member is a quadrangular columnar shape, or an L-shaped or I-shaped plate shape. Resulting in.
1,21,31   樹脂部材
2,22,32   インサート部材
10,20,30  試験片
1, 21, 31 Resin member 2, 22, 32 Insert member 10, 20, 30 Test piece

Claims (12)

  1.  樹脂部材とインサート部材とを有し、
     樹脂部材が、熱可塑性芳香族ポリエステル樹脂A及び平均一次粒子径が25nm以上の着色剤Bを含有する熱可塑性芳香族ポリエステル樹脂組成物を含む、耐ヒートショック性に優れるインサート成形品。
    Having a resin member and an insert member,
    An insert-molded article excellent in heat shock resistance, wherein the resin member includes a thermoplastic aromatic polyester resin composition containing a thermoplastic aromatic polyester resin A and a colorant B having an average primary particle diameter of 25 nm or more.
  2.  熱可塑性芳香族ポリエステル樹脂組成物中の着色剤Bの含有量が、0.05質量%以上5.0質量%以下である、請求項1に記載のインサート成形品。 The insert molded article according to claim 1, wherein the content of the colorant B in the thermoplastic aromatic polyester resin composition is 0.05% by mass or more and 5.0% by mass or less.
  3.  熱可塑性芳香族ポリエステル樹脂Aが、ポリブチレンテレフタレート系樹脂を含む、請求項1又は2に記載のインサート成形品。 The insert molded article according to claim 1 or 2, wherein the thermoplastic aromatic polyester resin A contains a polybutylene terephthalate resin.
  4.  着色剤Bが、無機顔料又は有機顔料を含む、請求項1から3のいずれか一項に記載のインサート成形品。 The insert molded article according to any one of claims 1 to 3, wherein the colorant B contains an inorganic pigment or an organic pigment.
  5.  着色剤Bが、黒色顔料、赤色顔料、橙色顔料又は白色顔料を含む、請求項1から4のいずれか一項に記載のインサート成形品。 The insert molded product according to any one of claims 1 to 4, wherein the colorant B contains a black pigment, a red pigment, an orange pigment, or a white pigment.
  6.  着色剤Bが、カーボンブラック又はカーボンナノチューブを含む、請求項1から5のいずれか一項に記載のインサート成形品。 The insert molded product according to any one of claims 1 to 5, wherein the colorant B contains carbon black or carbon nanotubes.
  7.  着色剤Bの平均一次粒子径が、27nm以上50nm以下である、請求項1から6のいずれか一項に記載のインサート成形品。 The insert molded article according to any one of claims 1 to 6, wherein the average primary particle diameter of the colorant B is 27 nm or more and 50 nm or less.
  8.  インサート部材が、金属、合金又は無機固体物を含む板状部材である、請求項1から7のいずれか一項に記載のインサート成形品。 The insert molded product according to any one of claims 1 to 7, wherein the insert member is a plate-like member containing a metal, an alloy, or an inorganic solid material.
  9.  インサート部材が、長手方向と幅方向とを有する主面を有し、長手方向に対して直角な平面で切断した断面において、厚さの最大値に対する幅の最大値の比が2以上である、請求項8に記載のインサート成形品。 The insert member has a main surface having a longitudinal direction and a width direction, and in a cross section cut by a plane perpendicular to the longitudinal direction, the ratio of the maximum value of the width to the maximum value of the thickness is 2 or more. The insert molded product according to claim 8.
  10.  インサート部材の厚さが、0.1mm以上3mm以下である、請求項8又は9に記載のインサート成形品。 The insert molded product according to claim 8 or 9, wherein the thickness of the insert member is 0.1 mm or more and 3 mm or less.
  11.  インサート部材の少なくとも一部が樹脂部材で被覆され、該被覆部における樹脂部材の厚さが、0.3mm以上5mm以下である、請求項1から10のいずれか一項に記載のインサート成形品。 The insert molded product according to any one of claims 1 to 10, wherein at least a part of the insert member is covered with a resin member, and the thickness of the resin member in the covering portion is 0.3 mm or more and 5 mm or less.
  12.  インサート成形品用熱可塑性芳香族ポリエステル樹脂Aに、平均一次粒子径が25nm以上の着色剤Bを配合する、着色剤を含有する樹脂組成物の耐ヒートショック性低下抑制方法。 A method for suppressing heat shock resistance reduction of a resin composition containing a colorant, in which a colorant B having an average primary particle size of 25 nm or more is blended with the thermoplastic aromatic polyester resin A for insert molded articles.
PCT/JP2017/029860 2016-08-23 2017-08-22 Insert-molded article and method for suppressing decreases in heat shock resistance of resin composition WO2018038075A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018535677A JP7215902B2 (en) 2016-08-23 2017-08-22 Insert-molded product and method for suppressing deterioration in heat shock resistance of resin composition
CN201780051869.0A CN109641377B (en) 2016-08-23 2017-08-22 Insert molded article and method for suppressing decrease in thermal shock resistance of resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016162372 2016-08-23
JP2016-162372 2016-08-23

Publications (1)

Publication Number Publication Date
WO2018038075A1 true WO2018038075A1 (en) 2018-03-01

Family

ID=61246084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029860 WO2018038075A1 (en) 2016-08-23 2017-08-22 Insert-molded article and method for suppressing decreases in heat shock resistance of resin composition

Country Status (3)

Country Link
JP (1) JP7215902B2 (en)
CN (1) CN109641377B (en)
WO (1) WO2018038075A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454343B2 (en) 2019-07-31 2024-03-22 ポリプラスチックス株式会社 Flame retardant polybutylene terephthalate resin composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176972A (en) * 2005-12-27 2007-07-12 Mitsubishi Chemicals Corp Aromatic polycarbonate resin composition and resin molded product
JP2011079330A (en) * 2007-12-14 2011-04-21 Denso Corp Resin-metal bonded article and method for producing the same
JP2014162820A (en) * 2013-02-22 2014-09-08 Mitsubishi Engineering Plastics Corp Polybutylene terephthalate-based resin composition molded article
JP2016023291A (en) * 2014-07-24 2016-02-08 三菱エンジニアリングプラスチックス株式会社 Polyester resin composition and molded article
WO2016104083A1 (en) * 2014-12-26 2016-06-30 ウィンテックポリマー株式会社 Resin composition for insert molding, and insert-molded article
JP2016166285A (en) * 2015-03-09 2016-09-15 大日本印刷株式会社 Resin composition for insert molding, molded article, reflector, substrate with reflector for mounting optical semiconductor element, and semiconductor light-emitting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4122411B2 (en) * 2002-09-17 2008-07-23 京三電機株式会社 Insert molding material
JP4922671B2 (en) * 2006-06-15 2012-04-25 矢崎総業株式会社 Connector forming method and forming apparatus
CN102215653B (en) * 2010-04-06 2013-11-27 铂邑科技股份有限公司 Thin plastic shell with plastic binder and manufacturing method thereof
JP6051775B2 (en) * 2012-10-30 2016-12-27 株式会社カネカ Polyester resin composition
US9957388B2 (en) * 2013-01-10 2018-05-01 Mitsubishi Engineering-Plastics Corporation Polybutylene terephthalate resin composition and molded article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007176972A (en) * 2005-12-27 2007-07-12 Mitsubishi Chemicals Corp Aromatic polycarbonate resin composition and resin molded product
JP2011079330A (en) * 2007-12-14 2011-04-21 Denso Corp Resin-metal bonded article and method for producing the same
JP2014162820A (en) * 2013-02-22 2014-09-08 Mitsubishi Engineering Plastics Corp Polybutylene terephthalate-based resin composition molded article
JP2016023291A (en) * 2014-07-24 2016-02-08 三菱エンジニアリングプラスチックス株式会社 Polyester resin composition and molded article
WO2016104083A1 (en) * 2014-12-26 2016-06-30 ウィンテックポリマー株式会社 Resin composition for insert molding, and insert-molded article
JP2016166285A (en) * 2015-03-09 2016-09-15 大日本印刷株式会社 Resin composition for insert molding, molded article, reflector, substrate with reflector for mounting optical semiconductor element, and semiconductor light-emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454343B2 (en) 2019-07-31 2024-03-22 ポリプラスチックス株式会社 Flame retardant polybutylene terephthalate resin composition

Also Published As

Publication number Publication date
JP7215902B2 (en) 2023-01-31
CN109641377A (en) 2019-04-16
CN109641377B (en) 2021-11-16
JPWO2018038075A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
CN111801386B (en) Thermoplastic resin composition and molded article using the same
WO2009081574A1 (en) Mobile terminal part
JP4492522B2 (en) Resin composition for laser marking and molded product using the same
KR102296775B1 (en) Thermoplastic resin composition and molded article using the same
WO2018038072A1 (en) Method for producing thermoplastic aromatic polyester resin composition, method for producing insert-molded article, and method for inhibiting reduction in heat shock resistance
WO2018038075A1 (en) Insert-molded article and method for suppressing decreases in heat shock resistance of resin composition
JP2000265001A (en) Polybutylene terephthalate resin composition
US20230041838A1 (en) Molded article for laser welding, and agent for suppressing variation in laser transmittance of molded article for laser welding
JP6325457B2 (en) Polybutylene terephthalate resin composition
US10655007B2 (en) Polyalkylene terephthalate resin composition
KR102001484B1 (en) Thermoplastic resin composition and molded article using the same
WO2019044813A1 (en) Polybutylene terephthalate resin composition, molded article, and composite
WO2016104083A1 (en) Resin composition for insert molding, and insert-molded article
JP4657670B2 (en) Polybutylene terephthalate resin composition
WO2020218149A1 (en) Polybutylene terephthalate resin composition for laser welding
JP6097071B2 (en) Determination method of mold temperature
JPH08165409A (en) Metallic part-inserted molded product
JP7335985B2 (en) POLYESTER RESIN COMPOSITION FOR AUTOMOBILE EXTERIOR PARTS AND MOLDED PRODUCTS
JP2006272849A (en) Injection compression molding method
KR20220122126A (en) Thermoplastic resin composition and molded article using the same
JP2006306991A (en) Thermoplastic resin composition for electric and electronic component and electric contact point component
JP2009191206A (en) Polyalkylene terephthalate resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17843555

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018535677

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17843555

Country of ref document: EP

Kind code of ref document: A1