JP5388068B2 - COMPOSITE SUBSTRATE FOR LIGHT EMITTING ELEMENT FORMATION AND MANUFACTURING METHOD THEREOF - Google Patents

COMPOSITE SUBSTRATE FOR LIGHT EMITTING ELEMENT FORMATION AND MANUFACTURING METHOD THEREOF Download PDF

Info

Publication number
JP5388068B2
JP5388068B2 JP2009531310A JP2009531310A JP5388068B2 JP 5388068 B2 JP5388068 B2 JP 5388068B2 JP 2009531310 A JP2009531310 A JP 2009531310A JP 2009531310 A JP2009531310 A JP 2009531310A JP 5388068 B2 JP5388068 B2 JP 5388068B2
Authority
JP
Japan
Prior art keywords
light emitting
nitride layer
light
forming
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009531310A
Other languages
Japanese (ja)
Other versions
JPWO2009031696A1 (en
Inventor
史人 古内
秀樹 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Ube Corp
Original Assignee
Ube Industries Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Ube Industries Ltd
Priority to JP2009531310A priority Critical patent/JP5388068B2/en
Publication of JPWO2009031696A1 publication Critical patent/JPWO2009031696A1/en
Application granted granted Critical
Publication of JP5388068B2 publication Critical patent/JP5388068B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride

Description

関連出願
本件出願は、2007年9月4日付けで日本国特許庁に出願した特願2007−229263号に基づく優先権を主張する出願であり、その出願の内容はここに参照して含める。
技術分野
本発明は、ディスプレイ、照明、バックライト光源等に利用できる発光素子形成用複合基板及びその製造方法に関し、特に蛍光を発する光変換材料を用いた発光ダイオード素子用の形成用複合基板及びその製造方法に関する。
Related Application This application is an application claiming priority based on Japanese Patent Application No. 2007-229263 filed with the Japan Patent Office on September 4, 2007, the contents of which are incorporated herein by reference.
TECHNICAL FIELD The present invention relates to a composite substrate for forming a light emitting element that can be used for a display, illumination, a backlight light source, and the like, and a method for manufacturing the same, and particularly to a composite substrate for forming a light emitting diode element using a light conversion material that emits fluorescence. It relates to a manufacturing method.

近年、窒化物系化合物半導体(InAlGa1−x−yN、0≦x≦1、0≦y≦1、0≦x+y≦1)を用いた青色発光素子を発光源とする白色発光ダイオードの開発研究が盛んに行われている。白色発光ダイオードは軽量で、水銀を使用せず、長寿命であることから、今後、需要が急速に拡大することが予測されている。青色発光素子の青色光を白色光へ変換する方法として最も一般的に行なわれている方法は、例えば特開2000−208815号公報に記載されているように、青色光を発光する発光素子の前面に、青色光の一部を吸収して黄色光を発する蛍光体を含有するコーティング層と、光源の青色光とコーティング層からの黄色光を混色するためのモールド層とを設け、補色関係にある青色と黄色を混色することにより擬似的に白色を得るものである。従来、コーティング層としては、セリウムで付活されたYAG(YAl12:Ce)粉末とエポキシ樹脂の混合物が採用されている。しかし本方法ではコーティング層を塗布する際に、含まれる蛍光体粉末の分布のむら、発光ダイオード個体毎の蛍光体粉末の量のバラツキ等が生じやすく、それに起因する発光ダイオードの色むらが指摘されている。
それを回避するため、本発明者らは、PCT/JP2005/019739(WO2006/043719)において、セラミック複合酸化物からなる光変換材料基板上にInAlGa1−x−yN(0≦x≦1、0≦y≦1、0≦x+y≦1)からなる窒化物半導体層を形成し、発光層から発光される青色光を直接基板に入射し基板自身から均質な黄色蛍光を発光させることで、蛍光体粉末を含むコーティング層を用いずに発光チップのみで色むらのない均質な白色を得る方法を提案している。
In recent years, a blue light emitting element using a nitride compound semiconductor (In x Al y Ga 1-xy N, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1) is used as a white light source. Research and development of light-emitting diodes has been actively conducted. White light-emitting diodes are lightweight, do not use mercury, and have a long life, so that demand is expected to increase rapidly in the future. The most commonly used method for converting blue light of a blue light emitting element into white light is the front surface of a light emitting element that emits blue light, as described in, for example, Japanese Patent Application Laid-Open No. 2000-208815. In addition, a coating layer containing a phosphor that absorbs a part of blue light and emits yellow light and a mold layer for mixing the blue light of the light source and the yellow light from the coating layer are provided and have a complementary color relationship A pseudo white color is obtained by mixing blue and yellow. Conventionally, a mixture of YAG (Y 3 Al 5 O 12 : Ce) powder activated with cerium and an epoxy resin is employed as the coating layer. However, in this method, when the coating layer is applied, uneven distribution of the phosphor powder contained therein, variation in the amount of the phosphor powder among the individual light emitting diodes, etc. are likely to occur, and the resulting color unevenness of the light emitting diodes is pointed out. Yes.
In order to avoid this, the present inventors have disclosed In x Al y Ga 1-xy N (0 ≦ 0) on a light conversion material substrate made of a ceramic composite oxide in PCT / JP2005 / 019739 (WO 2006/043719). a nitride semiconductor layer of x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1) is formed, and blue light emitted from the light emitting layer is directly incident on the substrate to emit homogeneous yellow fluorescence from the substrate itself. Therefore, a method for obtaining a uniform white color with no color unevenness using only a light emitting chip without using a coating layer containing phosphor powder has been proposed.

しかしながら、特許文献2の実施例に示すバッファー層としてGaNを用いる方法では、Al相に優先的に窒化物半導体層が形成されやすいという問題があった。このため、Al相に優先的に形成された窒化物半導体は、Al相以外の領域で互いに孤立するため、良好な素子形成が困難となる。これを回避し、基板表面全面を窒化物半導体層で覆うためには、厚膜化が必要になる。しかし、厚膜化を行うと、その膜厚の増大にともない、基板と窒化物半導体層の格子定数と熱膨張係数の違いから、最終的に歪みが生じ、素子特性に悪影響を与える傾向が強くなる。良好な特性の素子を得るためには、窒化物半導体層が形成の初期から、基板全面に均一な層が形成していくことが重要である。これを実現するためには、Al相とガーネット型構造を有する蛍光を発する酸化物相の両相から互いに同様な窒化物半導体層を形成する工程が必要とされ、同工程を経て発光素子を作製することにより、得られる素子の特性向上が期待される。
本発明者らは、光変換材料基板に窒化物半導体層を形成する際に、窒化物半導体層成長温度と同様か、または、それ以上の高温にて、すくなくともAlを含む窒化物層を形成し、バッファー層として用いることにより、基板における蛍光体を発する酸化物相からもAl相と同様に窒化物半導体層の結晶成長を行うことが可能であることを見出し、本発明に至った。
すなわち、本発明は、光変換材料基板に、少なくともAlを含む窒化物バッファー層が形成されており、該バッファー層が光変換材料基板を全面に覆うことを特徴とする発光素子形成用複合基板に関する。
さらに、本発明において好ましい形態として、蛍光体相が少なくともY元素、Al元素、Ce元素を含むガーネット型構造であることを特徴とする発光素子形成用複合基板に関する。
さらに、本発明において好ましい形態として、前記バッファー層が、Al相のC面と蛍光体相の(112)面を同時に主面とする光変換材料基板に形成されていることを特徴とする発光素子形成用複合基板に関する。
また、光変換材料基板に、少なくともAlを含む窒化物バッファー層を形成し、該バッファー層により光変換材料基板が全面に覆われていることを特徴する発光素子形成用複合基板の製造方法に関する。
さらに好ましい形態として、前記窒化物半導体層の形成を有機金属気相反応法で行うことを特徴とする発光素子形成用複合基板の製造方法に関する。
さらに好ましい形態として、前記Alを含む窒化物バッファー層を900℃以上1400℃未満の温度で形成することを特徴とする発光素子形成用複合基板の製造方法に関する。
このように作製された発光素子形成用複合基板においては、Al相とガーネット型構造を有する蛍光体を発する酸化物相の両相から互いに同様に窒化物半導体層を形成することが可能であり、同工程を経ることにより高特性の白色発光素子を作製することができる。
このような発光層を形成する窒化物半導体層としては、InAlGa1−x−yN(0≦x≦1、0≦y≦1、0≦x+y≦1)からなる窒化物半導体層が好適である。
However, the method using GaN as the buffer layer shown in the example of Patent Document 2 has a problem that a nitride semiconductor layer is likely to be preferentially formed in the Al 2 O 3 phase. Thus, preferentially formed nitride semiconductor Al 2 O 3 phase to isolated each other in regions other than Al 2 O 3 phase, excellent device formation becomes difficult. In order to avoid this and to cover the entire surface of the substrate with the nitride semiconductor layer, it is necessary to increase the film thickness. However, when the film thickness is increased, the difference between the lattice constant and the thermal expansion coefficient of the substrate and the nitride semiconductor layer will eventually cause distortion as the film thickness increases, and the device characteristics tend to be adversely affected. Become. In order to obtain a device with good characteristics, it is important to form a uniform layer over the entire surface of the substrate from the initial stage of the formation of the nitride semiconductor layer. In order to realize this, it is necessary to form a similar nitride semiconductor layer from both the Al 2 O 3 phase and the fluorescence emitting oxide phase having a garnet structure, and light emission is performed through the same step. By producing the element, improvement in characteristics of the obtained element is expected.
When forming the nitride semiconductor layer on the light conversion material substrate, the present inventors formed a nitride layer containing at least Al at a temperature similar to or higher than the growth temperature of the nitride semiconductor layer. , It was found that by using it as a buffer layer, it is possible to perform crystal growth of the nitride semiconductor layer from the oxide phase emitting phosphors in the substrate in the same manner as the Al 2 O 3 phase, and the present invention has been achieved. .
That is, the present invention relates to a composite substrate for forming a light emitting element, wherein a nitride buffer layer containing at least Al is formed on a light conversion material substrate, and the buffer layer covers the entire surface of the light conversion material substrate. .
Furthermore, as a preferable form in the present invention, the present invention relates to a composite substrate for forming a light emitting element, characterized in that the phosphor phase has a garnet structure including at least a Y element, an Al element, and a Ce element.
Further, as a preferred embodiment in the present invention, the buffer layer is formed on a light conversion material substrate having a C 2 surface of Al 2 O 3 phase and a (112) surface of a phosphor phase as main surfaces at the same time. The present invention relates to a composite substrate for forming a light emitting element.
The present invention also relates to a method for manufacturing a composite substrate for forming a light emitting element, wherein a nitride buffer layer containing at least Al is formed on a light conversion material substrate, and the light conversion material substrate is entirely covered with the buffer layer.
As a more preferred embodiment, the present invention relates to a method for manufacturing a composite substrate for forming a light emitting element, wherein the nitride semiconductor layer is formed by a metal organic vapor phase reaction method.
As a more preferred embodiment, the present invention relates to a method for manufacturing a composite substrate for forming a light emitting element, wherein the Al-containing nitride buffer layer is formed at a temperature of 900 ° C. or higher and lower than 1400 ° C.
In the composite substrate for forming a light emitting element thus fabricated, a nitride semiconductor layer can be formed in the same manner from both the Al 2 O 3 phase and the oxide phase emitting a phosphor having a garnet structure. Thus, a high-performance white light-emitting element can be manufactured through the same process.
As a nitride semiconductor layer forming such a light emitting layer, a nitride semiconductor made of In x Al y Ga 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1) is used. A layer is preferred.

図1A及び1Bは本発明の発光素子形成用複合基板の一実施形態を示す模式的断面図である。
図2は光変換材料の組織構造の一例を示す電子顕微鏡写真である。
図3は実施例1により得られたGaN層の顕微鏡断面写真である。
図4は比較例1により得られたGaN層の顕微鏡断面写真である。
1A and 1B are schematic cross-sectional views showing an embodiment of a composite substrate for forming a light emitting device of the present invention.
FIG. 2 is an electron micrograph showing an example of the structure of the light conversion material.
FIG. 3 is a microscopic cross-sectional photograph of the GaN layer obtained in Example 1.
FIG. 4 is a microscopic cross-sectional photograph of the GaN layer obtained in Comparative Example 1.

符号の説明Explanation of symbols

図中の符号の説明
1 光変換材料基板
1a 光変換材料基板のAl結晶相
1b 光変換材料基板のYAl12:Ce結晶相
2 バッファー層
2a Alを含む窒化物層
2b GaN層
DESCRIPTION OF REFERENCE NUMERALS 1 Light conversion material substrate 1a Al 2 O 3 crystal phase of light conversion material substrate 1b Y 3 Al 5 O 12 : Ce crystal phase 2 of light conversion material substrate 2 Buffer layer 2a Nitride layer 2b containing Al GaN layer

本発明の発光素子形成用複合基板の形態として、例えば、図1Aに示されるような光変換材料基板1の表面に、その複雑に絡み合うAl相1aと蛍光体を発する酸化物相1bの結晶の違いによらず、全面にバッファー層2が形成されている。該バッファー層は少なくともAlを含む窒化物層2aを含む。また、図1Bに示されるような複合基板表面の均質性を向上させるために、Alを含む窒化物層上にGaN層2bを形成してもよい。
本発明の発光素子形成用複合基板を構成する光変換材料基板は、単一金属酸化物および複合金属酸化物から選ばれる少なくとも2つ以上の酸化物相が連続的にかつ三次元的に相互に絡み合って形成されている凝固体からなり、該凝固体中の酸化物相のうち少なくとも1つはAl結晶相であり、また、前記凝固体中の酸化物相のうち少なくとも1つは蛍光を発する金属元素酸化物を含有している。単一金属酸化物とは、1種類の金属の酸化物であり、複合金属酸化物は、2種以上の金属の酸化物である。それぞれの酸化物は、単結晶状態となって三次元的に相互に絡み合った構造をしている。このような単一金属酸化物としては、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)、酸化マグネシウム(MgO)、酸化シリコン(SiO)、酸化チタン(TiO)酸化バリウム(BaO)、酸化ベリリウム(BeO)、酸化カルシウム(CaO)、酸化クロミウム(Cr)等の他、希土類元素酸化物(La、Y、CeO、Pr11、Nd、Sm、Gd、Eu、Tb、Dy03、Ho、Er、Tm、Yb、Lu)が挙げられる。また、複合金属酸化物としては、LaAlO、CeAlO、PrAlO、NdAlO、SmAlO、EuAlO、GdAlO、DyAlO、ErAlO、YbAl、YAl12、ErAl12、TbAl12、11Al・La、11Al・Nd、3Dy・5Al、2Dy・Al、11Al・Pr、EuAl1118、2Gd・Al、11Al・Sm、YbAl12、CeAl1118、ErAl等が挙げられる。
光変換材料基板は、2種以上の酸化物相からなっているため、その組み合わせにより、様々な結晶格子間隔を選択することができる。このため、発光ダイオードの種々の半導体の格子間隔に合わせることが可能であり、結晶構造上の整合性が良く、欠陥の少ない良好な半導体層を成膜でき、半導体層内に形成された発光層から効率の良い発光を得ることができる。さらに、光変換材料基板は、蛍光体でもあるため、半導体層中の発光層からの光により均一な蛍光も発することができる。
発光ダイオード用半導体層が窒化物半導体層である場合は、光変換材料基板を構成する前記凝固体の中で、単一金属酸化物であるAl結晶を含む組み合わせが好ましい凝固体として挙げられる。上述のようにAl結晶は可視光を発する窒化物半導体層を構成する代表的なInGaNと結晶構造上整合性が良く、窒化物半導体の良好な発光層を形成することができるためである。そして、Al結晶と少なくともセリウムで付活された複合金属酸化物であるガーネット型結晶単結晶との組み合わせがさらに好ましい凝固体として挙げられる。ガーネット型結晶はA12の構造式で表され、構造式中AにはY,Tb,Sm,Gd,La,Erの群から選ばれる1種以上の元素、同じく構造式中XにはAl,Gaから選ばれる1種以上の元素が、含まれる場合が特に好ましい。この特に好ましい組み合わせからなる光変換材料は、紫から青色の光を透過しながら、その一部を吸収し、黄色の蛍光を発するためである。なかでもセリウムで付活されたYAl12との組み合わせは強い蛍光を発するため好適である。
図1A及び1Bに示した一実施形態であるAl/YAl12:Ceの光変換材料基板は、Al単結晶とYAl12:Ce単結晶から構成され、各酸化物相が連続的にかつ3次元的に相互に絡み合って形成されており、全体として2個の単結晶の相から構成されている。各相が単結晶であることは非常に重要である。単結晶でないと良質の窒化物半導体層を形成することはできない。光変換材料基板は、例えば、上記Al/YAl12:Ceの凝固体を所定厚みに切断し、表面を必要な状態に研磨し、洗浄することにより得られる。光変換材料基板の切出し方位はAlの(0001)面を主面とすることが特に好ましい。Alは窒化物系化合物半導体であるInAlGa1−x−yNと類似の結晶構造を有し、Al(0001)面とInAlGa1‐x‐yNの格子間隔は差が小さく整合性が良い。このため、Alの(0001)面を利用することで、良質な窒化物半導体層が得られ良好な発光層を形成することができる。
本発明に用いる光変換材料を構成する凝固体は、原料金属酸化物を融解後、凝固させることで作製される。例えば、所定温度に保持したルツボに仕込んだ溶融物を、冷却温度を制御しながら冷却凝結させる簡単な方法で凝固体を得ることができるが、最も好ましいのは一方向凝固法により作製されたものである。一方向凝固をおこなうことにより含まれる結晶相が単結晶状態で連続的に成長し、各相が単一の結晶方位となるためである。
本発明に用いる光変換材料は、少なくとも1つの相が蛍光を発する金属元素酸化物を含有していることを除き、本願出願人が先に特開平7−149597号公報、特開平7−187893号公報、特開平8−81257号公報、特開平8−253389号公報、特開平8−253390号公報および特開平9−67194号公報並びにこれらに対応する米国出願(米国特許第5,569,547号、同第5,484,752号、同第5,902,963号)等に開示したセラミック複合材料と同様のものであることができ、これらの出願(特許)に開示した製造方法で製造できるものである。これらの出願あるいは特許の開示内容はここに参照して含めるものである。
発光素子形成用複合基板上に形成する窒化物半導体層は、複数の窒化物系化合物半導体の層からなる。複数の窒化物系化合物半導体の層は、それぞれ、一般式、InAlGa1−x−yN(0≦x≦1、0≦y≦1、0≦x+y≦1)で表わされる窒化物系化合物により構成されることが好ましい。そして、窒化物半導体層は、少なくとも可視光を発する発光層を有する。良好な発光層を形成するためには、それぞれの層で、各機能に最適な組成に調整した複数の窒化物系化合物半導体の層を積層することが好ましい。複数の窒化物系化合物半導体の層およびこれらの層の形成方法は、例えば、Jpn.J.Appl.Phys.Vol.34(1995),L797等に開示されているように公知の技術である。具体的には、基板上に、GaNのバッファー層(厚さ30nm)、n電極が形成されるn型−GaN:Siコンタクト層(厚さ5μm)、n型−Al0.1Ga0.9N:Si層、n型−In0.05Ga0.95N:Si層、単一量子井戸構造型発光層を形成するInGaN層、p型‐Al0.1Ga0.9N:Mg障壁層、p電極が形成されるp型‐GaN:Mg層をMOCVDなどの方法により、順に積層することにより得ることができる。発光層の構造は他に、多重量子井戸構造や、ホモ構造、ヘテロ構造あるいはダブルヘテロ構造としても良い。ただし、本発明では、上記基板として本発明の発光素子形成用複合基板を用いるので、発光素子形成用複合基板上に形成する窒化物半導体層は、発光素子形成用複合基板が表面にAlを含む窒化物層を有しているので、GaNのバッファー層(厚さ30nm)は省略できる。
本発明における発光素子形成用複合基板に形成する窒化物半導体層中の発光層は可視光であることが好ましい。可視光が本発明の発光素子形成用複合基板を構成する光変換材料基板を透過する際に、波長変換された蛍光と変換前の可視光が混合されて、混合された光の波長に応じて、新たな擬似的な光を得ることができる。さらに、可視光は青色または紫色を発することが好ましい。発光色が青色または紫色である場合、発光層からの青色または紫色の光が、基板であるYAG:Ce単結晶に入射することにより、YAl12:Ce結晶から黄色蛍光が発生し、Al結晶では青色または紫色の光がそのまま透過する。これらの光が光変換材料単結晶基板内の連続的にかつ三次元的に相互に絡み合った組織により混合され、放出されるため、色むらのない均質な白色を得ることができる。このため、窒化物半導体層中の発光層は、InGa1−xN(0≦x≦1)からなることが好ましい。前記発光層を形成するInGaN層に含まれるInのモル比を変えることにより、発光波長を変化させることができる。
本発明におけるバッファー層を設けることで、その上に前記窒化物半導体層が好ましく形成できる。本発明における窒化物バッファー層を形成した発光素子形成用複合基板を用いることで、新たにバッファー層を設けることなく、前記窒化物半導体層を形成することが可能になる。また、一般に窒化物半導体層の形成は、気相成長反応で行われるので、基板の表面は均一であることが望ましい。このため、窒化物半導体層の形成と同様に、前記バッファー層の形成についても、高品質のバッファー層を得ることができる気相反応法により行うことが好ましい。特に、品質と成長速度の観点から有機金属化学気相成長法(以下、MOCVDと呼ぶ)により形成することが好ましい。MOCVDは、原料である有機金属ガスをHまたはNにより加熱した基板上に押し流し、基板表面において結晶成長を起こす方法である。前記バッファー層に関わる原料ガスとしては、Al源としてTMA(トリメチルアルミニウム)またはTEA(トリエチルアルミニウム)等、Ga源としてTMG(トリメチルガリウム)またはTEG(トリエチルガリウム)等、N源としてアンモニアまたはヒドラジン等、一般的にMOCVDにおける窒化物半導体層の形成に用いられるものを使うことができる。
本発明における窒化物バッファー層は基板表面を全面に覆っていることを特徴とする。このことにより、窒化物半導体層の形成の際に、光変換材料基板のAl相と蛍光体相との境がなく、積層構造を安定的に形成することを可能にする。また、Al相から優先的に成長を行い、均一な面を得ることも可能であるが、本発明の窒化物バッファー層が存在しないで、光変換材料基板(Al相と蛍光体相を含む複合酸化物)だけを用いて窒化物半導体層の均一面を得るためには、厚膜化が必要であり、均一面が得られても、その歪により、クラックが生じることや、基板が歪むことがあり、素子特性に悪影響を与える。しかし、本発明におけるバッファー層が形成されている複合基板を用いることで、厚膜化が不要であり、十分な薄膜化が可能になり、素子特性への影響もほとんどない。
本発明におけるバッファー層は、少なくともAlを含む窒化物層を含むことを特徴とする。具体的には、AlGa1−xN(0<x≦1)で表される窒化物層を含むことが好ましい。さらに好ましくはAlNを含むのがよい。窒化物半導体と同程度以上の形成温度となるような、900℃から1400℃の温度条件で形成することが好ましい。さらに好ましくは、1150℃から1400℃の温度条件で形成することがよい。900℃から1200℃においては、Al相と蛍光体相に成長する窒化物層を均一にすることが困難であるが、蛍光体相においても窒化物層を形成することが可能である。さらに、より高温で窒化物層を形成することにより、より容易に均一面を得ることが可能になる。また、該バッファー層は、その結晶性が該バッファー層上に形成される窒化物半導体層の素子特性に大きく影響し、より結晶性がよりよい方が好適である。Alを含む窒化物層としてAlGa1−xN(0<x≦1)の結晶性を向上させる方法は、温度条件に関わらず、窒化物半導体層の素子特性の向上へ役立てることができる。例えばMOCVDでは、より高温にすると、得られるAlGa1−xN(0<x≦1)組成においてGaが必然的に減少する。バッファー層として形成される窒化物層の品質から、Ga組成の低いものの方がよりよい。
また、前記Alを含む窒化物層の上に、横方向の結晶成長速度が速くなる条件でGaNを形成するとさらに好適である。Alを含む窒化物層の形成は、光変換材料基板におけるAl相と蛍光体相に同様に結晶核形成を行うが、Al−NはGa−Nに比べ結合エネルギーが高く、表面における移動度が小さいので、Alを含む窒化物層だけでは、Al相と蛍光体相における窒化物層のわずかな違いが結晶性と表面形態に違いとして現れることがある。GaNを成長させることで、Al相と蛍光体相に成長した窒化物結晶上でマイグレーションが起こりやすくなり、それぞれの結晶相の違いを無くすることが可能になる。横方向の結晶成長速度が速くなる条件でGaNを形成するときにSi、Ge、Se、Te等の不純物ドープによってn型化すると、上記の効果とn型−GaNコンタクト層の形成を兼ねて行うことができ好適である。GaNの横方向への結晶成長速度を上げるには、結晶成長温度、V/III比等の成長条件を変えるといった公知の方法を用いることで可能であり、その方法を選ぶものではない。また、前記Alを含む窒化物層に関して、原料ガスの供給法の制御によりマイグレーションを優位に行う方法を用いることによっても、同様の効果を得ることができる。
本発明による発光素子形成用複合基板を用いることで、窒化物半導体層をバッファー層なしで形成することができる。窒化物半導体層の形成には、一般的には気相成長法を用いる。窒化物半導体層を形成するために、加熱に際し窒素が欠損しやすい。V族原料ガスを流しながら加熱することで、窒素欠損が低減され、安定した窒化物半導体層の形成が可能になる。
また、本発明によれば、光変換材料基板を用いて、その基板上に本発明の発光素子形成用複合基板と同構造のバッファー層を形成し、それと連続して窒化物半導体層を形成することも可能である。窒化物半導体層の形成に際し、再加熱による窒素欠損がなく、同様の特性を有する発光素子を得ることが可能である。
As a form of the composite substrate for forming a light emitting element of the present invention, for example, an intricately intertwined Al 2 O 3 phase 1a and an oxide phase 1b emitting phosphors are formed on the surface of the light conversion material substrate 1 as shown in FIG. 1A. Regardless of the crystal difference, the buffer layer 2 is formed on the entire surface. The buffer layer includes a nitride layer 2a containing at least Al. Further, in order to improve the uniformity of the composite substrate surface as shown in FIG. 1B, the GaN layer 2b may be formed on the nitride layer containing Al.
In the light conversion material substrate constituting the composite substrate for forming a light emitting element of the present invention, at least two oxide phases selected from a single metal oxide and a composite metal oxide are mutually and continuously three-dimensionally. It consists of a solidified body formed intertwined, at least one of the oxide phases in the solidified body is an Al 2 O 3 crystal phase, and at least one of the oxide phases in the solidified body is It contains a metal element oxide that emits fluorescence. The single metal oxide is an oxide of one kind of metal, and the composite metal oxide is an oxide of two or more kinds of metals. Each oxide has a single crystal state and a three-dimensionally entangled structure. Examples of such a single metal oxide include aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), magnesium oxide (MgO), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ) and barium oxide (BaO). ), Beryllium oxide (BeO), calcium oxide (CaO), chromium oxide (Cr 2 O 3 ) and the like, as well as rare earth element oxides (La 2 O 3 , Y 2 O 3 , CeO 2 , Pr 6 O 11 , Nd). 2 O 3 , Sm 2 O 3 , Gd 2 O 3 , Eu 2 O 3 , Tb 4 O 7 , Dy 2 03, Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , Lu 2 O 3 ). As the composite metal oxide, LaAlO 3, CeAlO 3, PrAlO 3, NdAlO 3, SmAlO 3, EuAlO 3, GdAlO 3, DyAlO 3, ErAlO 3, Yb 4 Al 2 O 9, Y 3 Al 5 O 12, Er 3 Al 5 O 12, Tb 3 Al 5 O 12, 11Al 2 O 3 · La 2 O 3, 11Al 2 O 3 · Nd 2 O 3, 3Dy 2 O 3 · 5Al 2 O 3, 2Dy 2 O 3 · Al 2 O 3, 11Al 2 O 3 · Pr 2 O 3, EuAl 11 O 18, 2Gd 2 O 3 · Al 2 O 3, 11Al 2 O 3 · Sm 2 O 3, Yb 3 Al 5 O 12, CeAl 11 O 18 , Er 4 Al 2 O 9 and the like.
Since the light conversion material substrate is composed of two or more kinds of oxide phases, various crystal lattice spacings can be selected depending on the combination thereof. For this reason, it is possible to match the lattice spacing of various semiconductors of the light-emitting diode, it is possible to form a good semiconductor layer with good crystal structure consistency and few defects, and the light-emitting layer formed in the semiconductor layer Therefore, efficient light emission can be obtained. Furthermore, since the light conversion material substrate is also a phosphor, it can emit uniform fluorescence by light from the light emitting layer in the semiconductor layer.
When the semiconductor layer for light emitting diodes is a nitride semiconductor layer, among the solidified bodies constituting the light conversion material substrate, a combination containing an Al 2 O 3 crystal that is a single metal oxide is cited as a preferable solidified body. It is done. As described above, the Al 2 O 3 crystal has good crystal structure matching with typical InGaN constituting the nitride semiconductor layer that emits visible light, and can form a good light emitting layer of the nitride semiconductor. is there. A combination of an Al 2 O 3 crystal and a garnet-type crystal single crystal that is a composite metal oxide activated with at least cerium is further preferred as a solidified body. The garnet-type crystal is represented by a structural formula of A 3 X 5 O 12 , where A is one or more elements selected from the group of Y, Tb, Sm, Gd, La, Er, It is particularly preferable that one contains at least one element selected from Al and Ga. This is because the light conversion material composed of this particularly preferable combination absorbs part of the light conversion material while transmitting purple to blue light and emits yellow fluorescence. Among them, the combination with Y 3 Al 5 O 12 activated with cerium is suitable because it emits strong fluorescence.
The light conversion material substrate of Al 2 O 3 / Y 3 Al 5 O 12 : Ce that is one embodiment shown in FIGS. 1A and 1B is composed of an Al 2 O 3 single crystal and a Y 3 Al 5 O 12 : Ce single crystal. Each oxide phase is continuously and three-dimensionally entangled with each other, and is composed of two single crystal phases as a whole. It is very important that each phase is a single crystal. If it is not a single crystal, a good quality nitride semiconductor layer cannot be formed. The light conversion material substrate can be obtained, for example, by cutting the Al 2 O 3 / Y 3 Al 5 O 12 : Ce solidified body into a predetermined thickness, polishing the surface to a necessary state, and washing. As for the cutting direction of the light conversion material substrate, it is particularly preferable that the (0001) plane of Al 2 O 3 is the main surface. Al 2 O 3 has a crystal structure similar to In x Al y Ga 1-xy N, which is a nitride compound semiconductor, and has an Al 2 O 3 (0001) plane and In x Al y Ga 1-x-. The lattice spacing of yN has a small difference and good matching. For this reason, by using the (0001) plane of Al 2 O 3 , a good quality nitride semiconductor layer can be obtained and a good light emitting layer can be formed.
The solidified body constituting the light conversion material used in the present invention is produced by solidifying the raw metal oxide after melting. For example, it is possible to obtain a solidified body by a simple method of cooling and condensing a melt charged in a crucible held at a predetermined temperature while controlling the cooling temperature, but the most preferable one is produced by a unidirectional solidification method. It is. This is because the crystal phases contained by unidirectional solidification grow continuously in a single crystal state, and each phase has a single crystal orientation.
The light-converting material used in the present invention has previously been disclosed in Japanese Patent Application Laid-Open Nos. 7-149597 and 7-187893 by the applicant of the present application, except that at least one phase contains a metal element oxide that emits fluorescence. Publication, JP-A-8-81257, JP-A-8-253389, JP-A-8-253390, JP-A-9-67194, and corresponding US applications (US Pat. No. 5,569,547). No. 5,484,752, No. 5,902,963) and the like, and can be manufactured by the manufacturing method disclosed in these applications (patents). Is. The disclosures of these applications or patents are hereby incorporated by reference.
The nitride semiconductor layer formed on the light emitting element forming composite substrate is composed of a plurality of nitride compound semiconductor layers. The plurality of nitride compound semiconductor layers are nitrided represented by the general formula, In x Al y Ga 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1), respectively. It is preferably composed of a physical compound. The nitride semiconductor layer has at least a light emitting layer that emits visible light. In order to form a good light-emitting layer, it is preferable to stack a plurality of nitride-based compound semiconductor layers adjusted to the optimum composition for each function in each layer. A plurality of nitride compound semiconductor layers and methods for forming these layers are described in, for example, Jpn. J. et al. Appl. Phys. Vol. 34 (1995), L797 and the like. Specifically, on the substrate, a GaN buffer layer (thickness 30 nm), an n-type-GaN: Si contact layer (thickness 5 μm) on which an n-electrode is formed, and n-type-Al 0.1 Ga 0.9 N: Si layer, n-type -In 0.05 Ga 0.95 N: Si layer, InGaN layer forming a single quantum well structure type light emitting layer, p-type -Al 0.1 Ga 0.9 N: Mg barrier A p-type GaN: Mg layer on which a layer and a p-electrode are formed can be obtained by laminating sequentially by a method such as MOCVD. In addition, the structure of the light emitting layer may be a multiple quantum well structure, a homo structure, a hetero structure, or a double hetero structure. However, in the present invention, since the light emitting element forming composite substrate of the present invention is used as the substrate, the nitride semiconductor layer formed on the light emitting element forming composite substrate includes Al on the surface. Since it has a nitride layer, the GaN buffer layer (thickness 30 nm) can be omitted.
The light emitting layer in the nitride semiconductor layer formed on the light emitting element forming composite substrate in the present invention is preferably visible light. When visible light passes through the light conversion material substrate constituting the composite substrate for forming a light emitting element of the present invention, the wavelength-converted fluorescence and the visible light before conversion are mixed, and depending on the wavelength of the mixed light New pseudo light can be obtained. Furthermore, it is preferable that visible light emits blue or purple. When the emission color is blue or violet, yellow fluorescence is generated from the Y 3 Al 5 O 12 : Ce crystal when the blue or violet light from the emission layer is incident on the YAG: Ce single crystal as the substrate. In the Al 2 O 3 crystal, blue or violet light is transmitted as it is. Since these lights are mixed and emitted by the structure in which the light conversion material single crystal substrate is continuously and three-dimensionally entangled with each other, a uniform white color with no color unevenness can be obtained. For this reason, it is preferable that the light emitting layer in the nitride semiconductor layer is made of In x Ga 1-x N (0 ≦ x ≦ 1). The emission wavelength can be changed by changing the molar ratio of In contained in the InGaN layer forming the light emitting layer.
By providing the buffer layer in the present invention, the nitride semiconductor layer can be preferably formed thereon. By using the composite substrate for light emitting element formation in which the nitride buffer layer in the present invention is formed, the nitride semiconductor layer can be formed without newly providing a buffer layer. In general, since the nitride semiconductor layer is formed by vapor phase growth reaction, the surface of the substrate is preferably uniform. For this reason, as with the formation of the nitride semiconductor layer, the formation of the buffer layer is preferably performed by a gas phase reaction method capable of obtaining a high-quality buffer layer. In particular, it is preferably formed by metal organic chemical vapor deposition (hereinafter referred to as MOCVD) from the viewpoint of quality and growth rate. MOCVD is a method in which an organic metal gas as a raw material is pushed onto a substrate heated with H 2 or N 2 to cause crystal growth on the substrate surface. The source gas related to the buffer layer includes TMA (trimethylaluminum) or TEA (triethylaluminum) as an Al source, TMG (trimethylgallium) or TEG (triethylgallium) as a Ga source, ammonia or hydrazine as an N source, In general, those used for forming a nitride semiconductor layer in MOCVD can be used.
In the present invention, the nitride buffer layer covers the entire surface of the substrate. Thus, when the nitride semiconductor layer is formed, there is no boundary between the Al 2 O 3 phase and the phosphor phase of the light conversion material substrate, and it is possible to stably form a laminated structure. It is also possible to grow preferentially from the Al 2 O 3 phase and obtain a uniform surface, but without the nitride buffer layer of the present invention, the light conversion material substrate (Al 2 O 3 phase and In order to obtain a uniform surface of a nitride semiconductor layer using only a composite oxide containing a phosphor phase), it is necessary to increase the film thickness, and even if a uniform surface is obtained, cracks are generated due to the distortion. In addition, the substrate may be distorted, adversely affecting device characteristics. However, by using the composite substrate on which the buffer layer is formed in the present invention, it is not necessary to increase the film thickness, it is possible to sufficiently reduce the film thickness, and there is almost no influence on the element characteristics.
The buffer layer according to the present invention includes a nitride layer containing at least Al. Specifically, it is preferable to include a nitride layer represented by Al x Ga 1-x N (0 <x ≦ 1). More preferably, AlN is included. It is preferable to form the film under a temperature condition of 900 ° C. to 1400 ° C. so that the formation temperature is equal to or higher than that of the nitride semiconductor. More preferably, the film is formed under a temperature condition of 1150 ° C. to 1400 ° C. At 900 ° C. to 1200 ° C., it is difficult to make the nitride layer growing in the Al 2 O 3 phase and the phosphor phase uniform, but it is possible to form the nitride layer also in the phosphor phase. . Furthermore, it is possible to obtain a uniform surface more easily by forming the nitride layer at a higher temperature. Further, it is preferable that the buffer layer has better crystallinity because its crystallinity greatly affects the device characteristics of the nitride semiconductor layer formed on the buffer layer. A method for improving the crystallinity of Al x Ga 1-x N (0 <x ≦ 1) as a nitride layer containing Al can be used to improve device characteristics of the nitride semiconductor layer regardless of temperature conditions. . For example, in MOCVD, when the temperature is higher, Ga inevitably decreases in the resulting Al x Ga 1-x N (0 <x ≦ 1) composition. In view of the quality of the nitride layer formed as the buffer layer, one having a lower Ga composition is better.
Further, it is more preferable that GaN is formed on the nitride layer containing Al under the condition that the lateral crystal growth rate is increased. The formation of the nitride layer containing Al is similar to the formation of crystal nuclei in the Al 2 O 3 phase and the phosphor phase in the light conversion material substrate. Because of the low mobility, a slight difference between the Al 2 O 3 phase and the phosphor layer in the phosphor phase may appear as a difference in crystallinity and surface morphology only with the nitride layer containing Al. By growing GaN, migration is likely to occur on the nitride crystal grown in the Al 2 O 3 phase and the phosphor phase, and the difference between the crystal phases can be eliminated. When GaN is formed under the condition that the crystal growth rate in the lateral direction is increased, if n-type is formed by doping impurities such as Si, Ge, Se, Te, etc., the above effect is combined with the formation of the n-type-GaN contact layer. This is preferable. In order to increase the crystal growth rate in the lateral direction of GaN, it is possible to use known methods such as changing the growth conditions such as the crystal growth temperature and the V / III ratio, and the method is not selected. Further, the same effect can be obtained by using a method of performing migration preferentially by controlling the source gas supply method for the nitride layer containing Al.
By using the composite substrate for light emitting element formation according to the present invention, the nitride semiconductor layer can be formed without a buffer layer. In general, a vapor phase growth method is used to form the nitride semiconductor layer. In order to form the nitride semiconductor layer, nitrogen is easily lost during heating. By heating while flowing the group V source gas, nitrogen deficiency is reduced, and a stable nitride semiconductor layer can be formed.
Further, according to the present invention, a buffer layer having the same structure as the light emitting element forming composite substrate of the present invention is formed on the substrate using the light conversion material substrate, and a nitride semiconductor layer is formed continuously therewith. It is also possible. When forming the nitride semiconductor layer, it is possible to obtain a light-emitting element having no nitrogen deficiency due to reheating and having similar characteristics.

以下、具体的例を挙げ、本発明を更に詳しく説明する。
(実施例1)
α−Al粉末(純度99.99%)をAlO3/2換算で0.82モル、Y粉末(純度99.9%)をYO3/2換算で0.175モル、CeO粉末(純度99.9%)を0.005モルとなるよう秤量した。これらの粉末をエタノール中、ボールミルによって16時間湿式混合した後、エバポレーターを用いてエタノールを脱媒して原料粉末を得た。原料粉末は、真空炉中で予備溶解し一方向凝固の原料とした。
次に、この原料をそのままモリブデンルツボに仕込み、一方向凝固装置にセットし、1.33×10−3Pa(10−5Torr)の圧力下で原料を融解した。次に同一の雰囲気においてルツボを20mm/時間の速度で下降させ、Al(サファイア)相、(Y、Ce)Al12相の2つの酸化物相からなる凝固体を得た。
凝固体の凝固方向に垂直な断面組織を図2に示す。白い部分がYAl12:Ce結晶、黒い部分がAl結晶である。二つの結晶が相互に絡み合った組織を有していることが分かる。
得られた凝固体はX線回折により極点図の測定を行い、結晶軸の方向を調べ、Al結晶相のC面を主面とした基板の切り出しを行った。切り出しを行った光変換材料は、研磨、洗浄を行い、これを光変換材料基板とした。得られた光変換材料基板は再度X線回折測定を行い、基板表面とAlのC面との誤差が<±2°以内であることを確認した。
発光素子形成用複合基板のためのバッファー層の形成は一般的なMOCVD炉を用いて行った。原料ガスは、Al源としてTMA、Ga源としてTMG、Si源としてTES(テトラエチルシラン)を用いた。原料ガスはHにより反応炉内へ導入され、加熱した光変換材料基板に結晶成長を行った。
炉内にセッティングを行った光変換材料基板は、H雰囲気において昇温・加熱し、基板を清浄化した。目的とする温度に設定を変え、原料ガスを流し、Alを含む窒化物層を形成した。引き続き横方向への成長を促進する条件において4μmのGaN:Siの成長を行うことにより、目的とする発光素子形成用複合基板を作製した。
Alを含む窒化物層として、300nmのAlNを1300℃で形成し、それを用いた。電子線顕微鏡により観察した結果、図3のGaN層の断面写真に示すごとく、Al相と蛍光体相における境界は観測されず、均一なGaN表面を形成していた。基板の黒っぽい部分がAl相で、白っぽい部分がYAG相である。GaN薄膜は、Al相、YAG相の両相に成長している。その結果、表面は平滑である。図3において、1aは基板のAl相、1bはYAl12:Ce相であり、2aはAlNバッファー層、2bはGaN:Si層である。AlNバッファー層2aは基板上で横方向に連続している。
(比較例1)
光変換材料基板として実施例1と同様に作製したものを用いて、前記掲載の論文Jpn.J.Appl.Phys.Vol.34(1995),L797に従い、Alを含む窒化物層の代わりに、30nmのGaNを550℃にて形成し、続けて、実施例1と同じ条件でn型−GaN:Si層を形成した。バッファー層としてGaNを30nmの厚さに形成する理由は、上に形成するn型−GaN:Si層との格子整合を良好にするためである(下記のように、バッファーGaN層の厚さを増やしても結果は同じである)。
図4にGaN層の断面写真を示す。Al相には明らかにGaNの形成が確認できた。蛍光体相においては、Al相からの横方向の成長によってその表面の一部はGaNにより覆われていたが、蛍光体相からのGaNの成長は確認することができず、表面の平滑性が劣っていることが分かる。図4において、Al相1a上に成長したGaN層2は、バッファーGaN層(30nm)2cとn型−GaN:Si層(4μm)2dを合わせたGaN層2の全体でも、横方向に連続していなかった(したがって、バッファーGaN層2cの厚さを実施例1の300nmより厚く、例えば4μmにしても、結果は同じである)。
(実施例2、比較例2)
素子特性を調べるために、実施例1、比較例1と同様に形成したGaN:Si層の形成に、続いて、n型−Al0.1Ga0.9N:Si層、n型−In0.05Ga0.95N:Si層、単一量子井戸構造型発光層を形成するInGaN層、p型‐Al0.1Ga0.9N:Mg障壁層、p電極が形成されるp型‐GaN:Mg層を形成し、n型コンタクト層およびp型コンタクト層に電極形成を行って、発光ダイオード素子を作製した。
実施例2においては、前記発光素子形成用複合基板の作製と同様に、いずれの半導体層も均一に形成することが可能であり、全面からの発光を確認することができた。
比較例2においては、その形態から電極の形成が困難であり、十分な発光を得ることができなかった。
作製した発光ダイオード素子の外部量子効率を、実施例1を基準にして比較した結果を以下にまとめる。
(実施例3)
Alを含む窒化物層として、300nmのAl0.1Ga0.9NまたはAl0.25Ga0.75Nを1150℃で形成し、それを用いた以外、実施例1と同様にした。電子線顕微鏡により観察した結果、実施例1と同様に、Al相と蛍光体相における境界は観測されず、複合基板上に均一なGaN表面を形成していた。その様子は図3と同じである。
以上の結果により、本発明によるバッファー層を有する発光素子形成用複合基板を用いることで、光変換材料基板をより有効に活用し、良好な白色発光素子の形成が可能になることは明らかである。
Hereinafter, the present invention will be described in more detail with specific examples.
Example 1
α-Al 2 O 3 powder (purity 99.99%) is 0.82 mol in terms of AlO 3/2 , Y 2 O 3 powder (purity 99.9%) is 0.175 mol in terms of YO 3/2 , CeO 2 powder (purity 99.9%) was weighed to 0.005 mol. These powders were wet mixed in ethanol by a ball mill for 16 hours, and then ethanol was removed using an evaporator to obtain a raw material powder. The raw material powder was pre-melted in a vacuum furnace and used as a raw material for unidirectional solidification.
Next, this raw material was directly charged into a molybdenum crucible and set in a unidirectional solidification apparatus, and the raw material was melted under a pressure of 1.33 × 10 −3 Pa (10 −5 Torr). Next, the crucible was lowered at a speed of 20 mm / hour in the same atmosphere to obtain a solidified body composed of two oxide phases of Al 2 O 3 (sapphire) phase and (Y, Ce) 3 Al 5 O 12 phase. .
A cross-sectional structure perpendicular to the solidification direction of the solidified body is shown in FIG. White part is Y 3 Al 5 O 12: Ce crystals are black portions are Al 2 O 3 crystal. It can be seen that the two crystals have a structure intertwined with each other.
The obtained solidified body was subjected to pole figure measurement by X-ray diffraction, the direction of the crystal axis was examined, and the substrate was cut out with the C plane of the Al 2 O 3 crystal phase as the main surface. The light conversion material cut out was polished and washed, and this was used as a light conversion material substrate. The obtained light conversion material substrate was again subjected to X-ray diffraction measurement, and it was confirmed that the error between the substrate surface and the C plane of Al 2 O 3 was within ± 2 °.
Formation of the buffer layer for the composite substrate for light emitting element formation was performed using a general MOCVD furnace. The source gas used was TMA as the Al source, TMG as the Ga source, and TES (tetraethylsilane) as the Si source. The source gas was introduced into the reactor by H 2 and crystal growth was performed on the heated light conversion material substrate.
The light conversion material substrate set in the furnace was heated and heated in an H 2 atmosphere to clean the substrate. The setting was changed to the target temperature, the raw material gas was flowed, and a nitride layer containing Al was formed. Subsequently, a GaN: Si film having a thickness of 4 μm was grown under conditions that promoted lateral growth, thereby producing a target light emitting element forming composite substrate.
As a nitride layer containing Al, AlN of 300 nm was formed at 1300 ° C. and used. As a result of observation with an electron microscope, as shown in the cross-sectional photograph of the GaN layer in FIG. 3, the boundary between the Al 2 O 3 phase and the phosphor phase was not observed, and a uniform GaN surface was formed. The dark part of the substrate is the Al 2 O 3 phase and the whitish part is the YAG phase. The GaN thin film grows in both Al 2 O 3 phase and YAG phase. As a result, the surface is smooth. In FIG. 3, 1a is an Al 2 O 3 phase of the substrate, 1b is a Y 3 Al 5 O 12 : Ce phase, 2a is an AlN buffer layer, and 2b is a GaN: Si layer. The AlN buffer layer 2a is continuous in the lateral direction on the substrate.
(Comparative Example 1)
A light conversion material substrate prepared in the same manner as in Example 1 was used, and the article Jpn. J. et al. Appl. Phys. Vol. 34 (1995), L797, 30 nm of GaN was formed at 550 ° C. in place of the Al-containing nitride layer, and then an n-type GaN: Si layer was formed under the same conditions as in Example 1. The reason why GaN is formed to a thickness of 30 nm as the buffer layer is to improve the lattice matching with the n-type GaN: Si layer formed thereon (as described below, the thickness of the buffer GaN layer is reduced). Even if you increase it, the result is the same).
FIG. 4 shows a cross-sectional photograph of the GaN layer. The formation of GaN was clearly confirmed in the Al 2 O 3 phase. In the phosphor phase, a part of the surface was covered with GaN by lateral growth from the Al 2 O 3 phase, but the growth of GaN from the phosphor phase could not be confirmed, and the surface It can be seen that the smoothness is inferior. In FIG. 4, the GaN layer 2 grown on the Al 2 O 3 phase 1a is the lateral direction of the entire GaN layer 2 including the buffer GaN layer (30 nm) 2c and the n-type GaN: Si layer (4 μm) 2d. (Thus, even if the thickness of the buffer GaN layer 2c is larger than 300 nm of Example 1, for example, 4 μm, the result is the same).
(Example 2, comparative example 2)
To investigate the device characteristics, Example 1, GaN was formed in the same manner as Comparative Example 1: formation of the Si layer, followed by, n-type -Al 0.1 Ga 0.9 N: Si layer, n-type -In 0.05 Ga 0.95 N: Si layer, InGaN layer forming a single quantum well structure type light emitting layer, p-type-Al 0.1 Ga 0.9 N: Mg barrier layer, p on which a p electrode is formed A type-GaN: Mg layer was formed, and electrodes were formed on the n-type contact layer and the p-type contact layer to produce a light-emitting diode element.
In Example 2, similar to the production of the composite substrate for forming a light emitting element, any semiconductor layer can be formed uniformly, and light emission from the entire surface was confirmed.
In Comparative Example 2, it was difficult to form an electrode due to its form, and sufficient light emission could not be obtained.
The results of comparing the external quantum efficiencies of the manufactured light-emitting diode elements with reference to Example 1 are summarized below.
(Example 3)
As the nitride layer containing Al, 300 nm Al 0.1 Ga 0.9 N or Al 0.25 Ga 0.75 N was formed at 1150 ° C., and the same procedure as in Example 1 was used except that it was used. As a result of observation with an electron microscope, the boundary between the Al 2 O 3 phase and the phosphor phase was not observed as in Example 1, and a uniform GaN surface was formed on the composite substrate. This is the same as in FIG.
From the above results, it is clear that the use of the light emitting element forming composite substrate having the buffer layer according to the present invention makes it possible to more effectively utilize the light conversion material substrate and form a good white light emitting element. .

Claims (10)

光変換材料基板とその上に形成された窒化物層からなる、発光素子形成用の複合基板であり、該光変換材料基板はAl相と少なくとも1つの蛍光を発する酸化物相を含む少なくとも2つ以上の酸化物層が連続的かつ三次元的に相互に絡み合った組織を有し、該窒化物層は該光変換材料基板との界面の全面にAlを含む窒化物層を有し、該Alを含む 窒化物層が組成式Al Ga 1−x N(0<x≦1)で表され、かつ該Alを含む窒化物 層の上にGaN窒化物層を有することを特徴とする発光素子形成用複合基板。A composite substrate for forming a light emitting element, comprising a light conversion material substrate and a nitride layer formed thereon, and the light conversion material substrate includes an Al 2 O 3 phase and at least one oxide phase emitting fluorescence. At least two or more oxide layers have a structure continuously and three-dimensionally entangled with each other, and the nitride layer has a nitride layer containing Al on the entire surface of the interface with the light conversion material substrate. The nitride layer containing Al is represented by the composition formula Al x Ga 1-x N (0 <x ≦ 1), and has a GaN nitride layer on the nitride layer containing Al. A composite substrate for forming a light emitting element. 前記Alを含む窒化物層が組成式AlNで表されることを特徴とする、請求項1記載の  The nitride layer containing Al is represented by a composition formula AlN. 発光素子形成用複合基板。Composite substrate for light emitting element formation. 前記光変換材料基板における蛍光を発する酸化物相の1つが組成成分として少なくともY元素、Al元素、Ce元素を含むガーネット型構造を有することを特徴とする、請求項1、2のいずれか1項に記載の発光素子形成用複合基板。One of the oxide phases which fluoresce in the said light conversion material board | substrate has a garnet-type structure containing at least Y element, Al element, and Ce element as a composition component, The any one of Claim 1 or 2 characterized by the above-mentioned. emitting element for forming a composite substrate according to. 前記光変換材料基板が、Al相のc面とガーネット型構造を有する蛍光体を発する酸化物相の(112)面を同時に主面とすることを特徴とする、請求項3に記載の発光素子形成用複合基板。4. The light conversion material substrate according to claim 3 , wherein the c-plane of the Al 2 O 3 phase and the (112) plane of the oxide phase emitting a phosphor having a garnet-type structure are simultaneously used as the main surface. A composite substrate for forming a light emitting device. 請求項1〜4のいずれか1項に記載の発光素子形成用複合基板の前記窒化物層上に、窒化物系化合物半導体からなる発光層を有することを特徴とする発光素子。  5. A light emitting device comprising a light emitting layer made of a nitride compound semiconductor on the nitride layer of the composite substrate for forming a light emitting device according to claim 1. 前記発光層が、InAlGa1−x−yN(0≦x≦1、0≦y≦1、0≦x+y≦1)からなることを特徴とする、請求項5に記載の発光素子。The light-emitting layer, characterized in that it consists of In x Al y Ga 1-x -y N (0 ≦ x ≦ 1,0 ≦ y ≦ 1,0 ≦ x + y ≦ 1), light emission of claim 5 element. Al相と少なくとも1つの蛍光を発する酸化物相を含む少なくとも2つ以上の酸化物層が連続的かつ三次元的に相互に絡み合った組織を有する光変換材料基板上に、該光変換材料基板との界面の全面に、組成式Al Ga 1−x N(0<x≦1)で表されるA lを含む窒化物層と、該Alを含む窒化物層の上にGaN窒化物層を含む窒化物層を形成することを特徴とする発光素子形成用複合基板の製造方法。On a light conversion material substrate having a structure in which at least two or more oxide layers including an Al 2 O 3 phase and at least one fluorescent oxide phase are intertwined with each other in a continuous and three-dimensional manner. A nitride layer containing Al represented by the composition formula Al x Ga 1-x N (0 <x ≦ 1) and GaN nitrided on the nitride layer containing Al are formed on the entire surface of the interface with the material substrate. A method for manufacturing a composite substrate for forming a light emitting element , comprising forming a nitride layer including a physical layer. 前記Alを含む窒化物層が組成式AlNで表されることを特徴とする、請求項7記載のThe nitride layer containing Al is represented by a composition formula AlN. 発光素子形成用複合基板の製造方法。A method for manufacturing a composite substrate for forming a light emitting element. 前記窒化物層の形成において、少なくとも1つの層を有機金属化合物気相成長法で行うことを特徴とする、請求項7、8のいずれか1項に記載の発光素子形成用複合基板の製造方法。9. The method for manufacturing a composite substrate for forming a light-emitting element according to claim 7, wherein at least one layer is formed by a metal organic compound vapor phase growth method in forming the nitride layer. . 前記窒化物層中の形成において、Alを含む窒化物層を有機金属化合物気相成長法を用いて900℃以上1400℃未満の温度で形成することを特徴とする、請求項7〜9のい ずれか1項に記載の発光素子形成用複合基板の製造方法。10. The method according to claim 7 , wherein in the formation of the nitride layer, a nitride layer containing Al is formed at a temperature of 900 ° C. or higher and lower than 1400 ° C. using an organic metal compound vapor phase growth method. A method for producing a composite substrate for forming a light emitting element according to claim 1 .
JP2009531310A 2007-09-04 2008-09-03 COMPOSITE SUBSTRATE FOR LIGHT EMITTING ELEMENT FORMATION AND MANUFACTURING METHOD THEREOF Expired - Fee Related JP5388068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009531310A JP5388068B2 (en) 2007-09-04 2008-09-03 COMPOSITE SUBSTRATE FOR LIGHT EMITTING ELEMENT FORMATION AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007229263 2007-09-04
JP2007229263 2007-09-04
PCT/JP2008/066272 WO2009031696A1 (en) 2007-09-04 2008-09-03 Composite substrate for forming light emitting element and method for manufacturing the composite substrate
JP2009531310A JP5388068B2 (en) 2007-09-04 2008-09-03 COMPOSITE SUBSTRATE FOR LIGHT EMITTING ELEMENT FORMATION AND MANUFACTURING METHOD THEREOF

Publications (2)

Publication Number Publication Date
JPWO2009031696A1 JPWO2009031696A1 (en) 2010-12-16
JP5388068B2 true JP5388068B2 (en) 2014-01-15

Family

ID=40429001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009531310A Expired - Fee Related JP5388068B2 (en) 2007-09-04 2008-09-03 COMPOSITE SUBSTRATE FOR LIGHT EMITTING ELEMENT FORMATION AND MANUFACTURING METHOD THEREOF

Country Status (3)

Country Link
JP (1) JP5388068B2 (en)
TW (1) TW200917536A (en)
WO (1) WO2009031696A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011071323A (en) 2009-09-25 2011-04-07 Koito Mfg Co Ltd Semiconductor element, and method of manufacturing the same
MY160228A (en) * 2010-12-10 2017-02-28 Ube Industries Ceramic Composite for Light Conversion and Method for Manufacture Thereof
EP2908330B1 (en) * 2012-10-12 2021-05-19 Sumitomo Electric Industries, Ltd. Group iii nitride composite substrate, manufacturing method therefor, and group iii nitride semiconductor device manufacturing method
JP5892971B2 (en) * 2013-04-09 2016-03-23 株式会社東芝 Method for manufacturing nitride semiconductor layer
US9947110B2 (en) 2014-02-13 2018-04-17 Brainlab Ag Method for assisting the positioning of a medical structure on the basis of two-dimensional image data
JP6503819B2 (en) * 2015-03-23 2019-04-24 Tdk株式会社 Alumina substrate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017396A (en) * 1996-07-01 1998-01-20 Ube Ind Ltd Ceramic composite material
JP2003258299A (en) * 2002-02-28 2003-09-12 Shiro Sakai Gallium-nitride-based compound semiconductor device and manufacturing method thereof
WO2004065324A1 (en) * 2003-01-20 2004-08-05 Ube Industries, Ltd. Ceramic composite material for optical conversion and use thereof
JP2005303333A (en) * 2005-07-11 2005-10-27 Ngk Insulators Ltd Method for reducing dislocation density of semiconductor light emitting device
WO2006043719A1 (en) * 2004-10-21 2006-04-27 Ube Industries, Ltd. Light emitting diode element, board for light emitting diode and method for manufacturing light emitting diode element
JP2006324622A (en) * 2005-04-21 2006-11-30 Sharp Corp Manufacturing method for nitride semiconductor device and light emitting device
WO2007018222A1 (en) * 2005-08-10 2007-02-15 Ube Industries, Ltd. Substrate for light emitting diode and light emitting diode
WO2007083828A1 (en) * 2006-01-19 2007-07-26 Ube Industries, Ltd. Ceramic composite light converting member and light emitting device using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017396A (en) * 1996-07-01 1998-01-20 Ube Ind Ltd Ceramic composite material
JP2003258299A (en) * 2002-02-28 2003-09-12 Shiro Sakai Gallium-nitride-based compound semiconductor device and manufacturing method thereof
WO2004065324A1 (en) * 2003-01-20 2004-08-05 Ube Industries, Ltd. Ceramic composite material for optical conversion and use thereof
WO2006043719A1 (en) * 2004-10-21 2006-04-27 Ube Industries, Ltd. Light emitting diode element, board for light emitting diode and method for manufacturing light emitting diode element
JP2006324622A (en) * 2005-04-21 2006-11-30 Sharp Corp Manufacturing method for nitride semiconductor device and light emitting device
JP2005303333A (en) * 2005-07-11 2005-10-27 Ngk Insulators Ltd Method for reducing dislocation density of semiconductor light emitting device
WO2007018222A1 (en) * 2005-08-10 2007-02-15 Ube Industries, Ltd. Substrate for light emitting diode and light emitting diode
WO2007083828A1 (en) * 2006-01-19 2007-07-26 Ube Industries, Ltd. Ceramic composite light converting member and light emitting device using the same

Also Published As

Publication number Publication date
TW200917536A (en) 2009-04-16
JPWO2009031696A1 (en) 2010-12-16
WO2009031696A1 (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP4586802B2 (en) Light emitting diode element, light emitting diode substrate, and method for manufacturing light emitting diode element
JP5029362B2 (en) Light emitting diode substrate and light emitting diode
JP5649005B2 (en) COMPOSITE SUBSTRATE FOR LIGHT EMITTING ELEMENT FORMATION, LIGHT EMITTING DIODE ELEMENT AND MANUFACTURING METHOD
US8044572B2 (en) Light conversion structure and light-emitting device using the same
JP5388068B2 (en) COMPOSITE SUBSTRATE FOR LIGHT EMITTING ELEMENT FORMATION AND MANUFACTURING METHOD THEREOF
JP4032704B2 (en) Nitride semiconductor device
CN109075235B (en) Wavelength converting materials for light emitting devices
JP2022168071A (en) Luminescent materials
JP5366079B2 (en) COMPOSITE SUBSTRATE FOR LIGHT EMITTING ELEMENT FORMATION, LIGHT EMITTING DIODE ELEMENT AND MANUFACTURING METHOD THEREOF
CN108291329B (en) 13 race&#39;s element nitride crystal substrates and function element
US10472735B2 (en) Method of making a single crystal wavelength conversion element, single crystal wavelength conversion element, and light source containing same
TWI802825B (en) Composite wavelength converter, method of preparing the same, and white led light source including the same
JP2010238834A (en) Manufacturing method for light-emitting-diode substrate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees