JP5387356B2 - Corrosion-proof electrodeposition coating method and apparatus for marine steel structures - Google Patents

Corrosion-proof electrodeposition coating method and apparatus for marine steel structures Download PDF

Info

Publication number
JP5387356B2
JP5387356B2 JP2009265922A JP2009265922A JP5387356B2 JP 5387356 B2 JP5387356 B2 JP 5387356B2 JP 2009265922 A JP2009265922 A JP 2009265922A JP 2009265922 A JP2009265922 A JP 2009265922A JP 5387356 B2 JP5387356 B2 JP 5387356B2
Authority
JP
Japan
Prior art keywords
steel structure
marine steel
electrodeposition
potential
marine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009265922A
Other languages
Japanese (ja)
Other versions
JP2011111626A (en
Inventor
達志 岩本
靖庸 鈴木
健一 赤嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009265922A priority Critical patent/JP5387356B2/en
Publication of JP2011111626A publication Critical patent/JP2011111626A/en
Application granted granted Critical
Publication of JP5387356B2 publication Critical patent/JP5387356B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Prevention Of Electric Corrosion (AREA)
  • Revetment (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

本発明は、海洋鋼構造物の防食電着被膜施工方法及び装置に関するものである。   The present invention relates to an anticorrosion electrodeposition coating method and apparatus for marine steel structures.

一般に、岸壁等に護岸のために設けられる鋼矢板、橋梁や桟橋等に設けられる鋼管杭、或いはコンクリート構造物の表面を鉄鋼部材で被覆した鋼ケーソン等の海洋鋼構造物は、その一部が海水に水没した状態で設けられており、非常に錆が発生し易い環境に晒されている。   In general, some steel marine structures such as steel sheet piles provided on the quay for revetment, steel pipe piles provided on bridges and piers, etc., or steel caissons whose concrete structures are covered with steel members It is provided in a state where it is submerged in seawater, and is exposed to an environment where rust is likely to occur.

従って、このような海洋鋼構造物では、長期間の使用により錆が発生し減肉して強度が低下するため、補強工事或いは取替工事等を行う必要が生じるが、該補強工事或いは取替工事には多大の費用が掛かるため、電気防食、電着防食、或いはこれらの併用により、前記海洋鋼構造物の寿命延長を図ることが行われている。   Accordingly, in such marine steel structures, rust is generated due to long-term use and the thickness is reduced and the strength is reduced. Therefore, it is necessary to perform reinforcement work or replacement work. Since a great deal of cost is required for construction, it is attempted to extend the life of the marine steel structure by means of anticorrosion, anticorrosion, or a combination thereof.

図3は従来の海洋鋼構造物1への電着被膜形成の一例を示す概略図であって、海洋鋼構造物1の海水に水没した水没部2に対し所要の間隔をあけて陽極3を設け、該陽極3と海洋鋼構造物1との間に直流電源4を設けて直流電流を通電することにより、海水に溶存するカルシウムイオン(Ca2+)やマグネシウムイオン(Mg2+)等の陽イオンが陰極としての海洋鋼構造物1へ向かって海水中を泳動し、該海洋鋼構造物1において電子を得ることとなり、該海洋鋼構造物1の水没部2表面に、CaCO3 及びMg(OH)2 等を主成分とする防食電着被膜5(エレクトロコーティング層)が形成され、該防食電着被膜5により前記海洋鋼構造物1の水没部2が防食されるようになっている。 FIG. 3 is a schematic view showing an example of the conventional electrodeposition film formation on the marine steel structure 1, and the anode 3 is arranged at a predetermined interval with respect to the submerged portion 2 submerged in the seawater of the marine steel structure 1. By providing a DC power source 4 between the anode 3 and the marine steel structure 1 and energizing a DC current, calcium ions (Ca 2+ ), magnesium ions (Mg 2+ ) and the like dissolved in seawater The cations migrate in the seawater toward the marine steel structure 1 as a cathode, and electrons are obtained in the marine steel structure 1. CaCO 3 and Mg are formed on the surface of the submerged portion 2 of the marine steel structure 1. An anticorrosion electrodeposition coating 5 (electrocoating layer) mainly composed of (OH) 2 or the like is formed, and the submerged portion 2 of the marine steel structure 1 is anticorrosion by the anticorrosion electrodeposition coating 5. .

そして、従来の場合、前記海洋鋼構造物1の施工面積及び電流密度条件に基づいて選定された通電条件で前記直流電源4から直流電流を通電することが行われていた。   In the conventional case, a direct current is applied from the direct current power source 4 under an energization condition selected based on the construction area of the marine steel structure 1 and the current density condition.

尚、前述の如き海洋鋼構造物の防食方法の一般的技術水準を示すものとしては、例えば、特許文献1、2がある。   For example, Patent Documents 1 and 2 show the general technical level of the anticorrosion method for marine steel structures as described above.

特許第4146637号公報Japanese Patent No. 4146737 特許第3799679号公報Japanese Patent No. 3799679

しかしながら、前述の如く、海洋鋼構造物1の施工面積及び電流密度条件に基づいて選定された通電条件で直流電源4から直流電流を通電するのでは、電着対象の海洋鋼構造物1と陽極3との距離の僅かな差異、配線抵抗の違い等によって通電時の電流密度にムラが生じ、高電流密度の箇所ではガス発生による膜の剥離が生じる等、均一な膜厚の防食電着被膜5を生成することは困難となっていた。   However, as described above, when a direct current is applied from the direct current power source 4 under the energization conditions selected based on the construction area of the marine steel structure 1 and the current density condition, the marine steel structure 1 to be electrodeposited and the anode No. 3 corrosion resistance electrodeposition coating with uniform film thickness, such as uneven current density when energized due to slight difference in distance, wiring resistance, etc., and peeling of film due to gas generation at high current density locations It has been difficult to generate 5.

尚、特許文献2には、防食被膜を形成させる際に、アノードから防食被膜処理を行う構造物鋼体へ流れる電流、照合電極と構造物鋼体間に加わる電位差、電解液の温度を計測することにより防食被膜処理が良好に行われているか否かの監視を行う点が記載されているが、これは単なるモニタリングに過ぎず、具体的な直流電流の制御に関しては特に開示されていない。   In Patent Document 2, when the anticorrosion coating is formed, the current flowing from the anode to the structural steel body that performs the anticorrosion coating treatment, the potential difference applied between the reference electrode and the structural steel body, and the temperature of the electrolytic solution are measured. Although it is described that monitoring of whether or not the anticorrosion coating treatment is performed satisfactorily, this is merely monitoring, and there is no particular disclosure regarding specific direct current control.

本発明は、斯かる実情に鑑み、海洋鋼構造物の表面に均一な厚さの防食電着被膜を確実に形成し得る海洋鋼構造物の防食電着被膜施工方法及び装置を提供しようとするものである。   In view of such circumstances, the present invention intends to provide an anticorrosion electrodeposition coating method and apparatus for an marine steel structure that can reliably form an anticorrosion electrodeposition coating having a uniform thickness on the surface of the marine steel structure. Is.

本発明は、海洋鋼構造物の海水に水没した水没部に対し所要の間隔をあけて陽極を設け、該陽極と海洋鋼構造物との間に直流電源を設けて直流電流を通電することにより、海洋鋼構造物の水没部表面に防食電着被膜を形成する海洋鋼構造物の防食電着被膜施工方法において、
前記直流電源による通電時に照合電極により海洋鋼構造物側の電位測定を行い、該海洋鋼構造物側の電位が予め設定された電着基準電位範囲にある場合には、前記直流電流値を保持し、前記海洋鋼構造物側の電位が予め設定された電着基準電位範囲以下である場合には、前記直流電流値を減少させる一方、前記海洋鋼構造物側の電位が予め設定された電着基準電位範囲以上である場合には、前記直流電流値を増加させることを特徴とする海洋鋼構造物の防食電着被膜施工方法にかかるものである。
The present invention provides an anode with a predetermined interval with respect to a submerged portion of a marine steel structure submerged in seawater, and a direct current is applied by providing a direct current power source between the anode and the marine steel structure. In the method of applying an anticorrosion electrodeposition coating for a marine steel structure that forms an anticorrosion electrodeposition coating on the surface of the submerged portion of the marine steel structure,
Measure the potential on the marine steel structure side with the reference electrode when energized by the DC power supply, and if the potential on the marine steel structure side is within the preset electrodeposition reference potential range, hold the DC current value However, when the potential on the marine steel structure side is equal to or less than a preset electrodeposition reference potential range, the DC current value is decreased while the potential on the marine steel structure side is set to a preset voltage. In the case where it is equal to or higher than the deposition reference potential range, the present invention relates to a method for applying an anticorrosion electrodeposition coating for a marine steel structure, wherein the direct current value is increased.

又、本発明は、海洋鋼構造物の海水に水没した水没部に対し所要の間隔をあけて設けられる陽極と、
該陽極と海洋鋼構造物との間に直流電流を通電することにより、海洋鋼構造物の水没部表面に防食電着被膜を形成する直流電源と、
該直流電源による通電時に海洋鋼構造物側の電位測定を行う照合電極と、
該照合電極で測定された海洋鋼構造物側の電位が予め設定された電着基準電位範囲にある場合には、前記直流電流値を保持し、前記照合電極で測定された海洋鋼構造物側の電位が予め設定された電着基準電位範囲以下である場合には、前記直流電流値を減少させる一方、前記照合電極で測定された海洋鋼構造物側の電位が予め設定された電着基準電位範囲以上である場合には、前記直流電流値を増加させる制御信号を前記直流電源へ出力する制御装置と
を備えたことを特徴とする海洋鋼構造物の防食電着被膜施工装置にかかるものである。
Further, the present invention provides an anode provided at a predetermined interval with respect to a submerged portion submerged in seawater of a marine steel structure,
A direct current power source for forming a corrosion-proof electrodeposition coating on the surface of the submerged portion of the marine steel structure by passing a direct current between the anode and the marine steel structure;
A reference electrode for measuring the potential of the marine steel structure when energized by the DC power supply;
When the potential on the marine steel structure side measured with the reference electrode is in the preset electrodeposition reference potential range, the DC current value is retained, and the marine steel structure side measured with the reference electrode Is less than a preset electrodeposition reference potential range, the DC current value is reduced, while the marine steel structure side potential measured by the reference electrode is set in advance. And a control device for outputting a control signal for increasing the direct current value to the direct current power source when the potential range is exceeded. It is.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

前記直流電源による通電時には、照合電極により海洋鋼構造物側の電位測定が行われ、該照合電極で測定された海洋鋼構造物側の電位が予め設定された電着基準電位範囲にある場合には、前記直流電流値を保持する制御信号が制御装置から直流電源へ出力されるが、前記照合電極で測定された海洋鋼構造物側の電位が予め設定された電着基準電位範囲以下である場合には、前記直流電流値を減少させる制御信号が制御装置から直流電源へ出力される一方、前記照合電極で測定された海洋鋼構造物側の電位が予め設定された電着基準電位範囲以上である場合には、前記直流電流値を増加させる制御信号が制御装置から直流電源へ出力される。   When energized by the DC power source, the potential of the marine steel structure side is measured by the reference electrode, and the potential of the marine steel structure side measured by the reference electrode is within a preset electrodeposition reference potential range The control signal holding the DC current value is output from the control device to the DC power supply, but the potential on the marine steel structure side measured by the verification electrode is below a preset electrodeposition reference potential range In this case, a control signal for decreasing the DC current value is output from the control device to the DC power supply, while the marine steel structure side potential measured by the reference electrode is equal to or greater than a predetermined electrodeposition reference potential range. In this case, a control signal for increasing the DC current value is output from the control device to the DC power source.

この結果、従来のように、海洋鋼構造物の施工面積及び電流密度条件に基づいて選定された通電条件で直流電源から直流電流を単に通電するのとは異なり、電着対象の海洋鋼構造物と陽極との距離の僅かな差異、配線抵抗の違い等によって通電時の電流密度にムラが生じていた場合には、該電流密度のムラがなくなるように直流電流値が補正される形となり、均一な電流密度で通電を行えるため、高電流密度の箇所でのガス発生による膜の剥離が生じること等も避けられ、均一な膜厚の防食電着被膜を生成することが可能となる。   As a result, unlike the conventional case where the DC current is simply supplied from the DC power source under the current-carrying conditions selected based on the construction area and current density conditions of the marine steel structure, the marine steel structure subject to electrodeposition If there is unevenness in the current density during energization due to slight differences in the distance between the anode and the anode, differences in wiring resistance, etc., the direct current value is corrected so that the unevenness in the current density is eliminated, Since energization can be performed with a uniform current density, it is possible to avoid film peeling due to gas generation at a location with a high current density, and it is possible to generate an anticorrosive electrodeposition film with a uniform film thickness.

本発明の海洋鋼構造物の防食電着被膜施工方法及び装置によれば、海洋鋼構造物の表面に均一な厚さの防食電着被膜を確実に形成し得るという優れた効果を奏し得る。   According to the anticorrosion electrodeposition coating method and apparatus for marine steel structures of the present invention, it is possible to achieve an excellent effect that an anticorrosion electrodeposition film having a uniform thickness can be reliably formed on the surface of the marine steel structure.

本発明の実施例における装置構成を示すブロック図である。It is a block diagram which shows the apparatus structure in the Example of this invention. 本発明の実施例における制御の流れを示すフローチャートである。It is a flowchart which shows the flow of control in the Example of this invention. 従来の海洋鋼構造物への電着被膜形成の一例を示す概略図である。It is the schematic which shows an example of the electrodeposition film formation to the conventional marine steel structure.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1及び図2は本発明の実施例であって、図中、図3と同一の符号を付した部分は同一物を表わしており、基本的な構成は図3に示す従来のものと同様であるが、本実施例の特徴とするところは、図1及び図2に示す如く、直流電源4による通電時に海洋鋼構造物1側の電位測定を行う照合電極6を配設すると共に、該照合電極6で測定された海洋鋼構造物1側の電位が予め設定された電着基準電位範囲にある場合には、前記直流電流値を保持し、前記照合電極6で測定された海洋鋼構造物1側の電位6aが予め設定された電着基準電位範囲以下である場合には、前記直流電流値を減少させる一方、前記照合電極6で測定された海洋鋼構造物1側の電位6aが予め設定された電着基準電位範囲以上である場合には、前記直流電流値を増加させる制御信号4aを前記直流電源4へ出力する制御装置7を設けた点にある。   1 and 2 show an embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 3 denote the same components, and the basic configuration is the same as that of the conventional one shown in FIG. However, the feature of this embodiment is that, as shown in FIGS. 1 and 2, a reference electrode 6 for measuring the potential on the marine steel structure 1 side when energized by the DC power supply 4 is disposed, and When the potential on the marine steel structure 1 side measured by the verification electrode 6 is in a preset electrodeposition reference potential range, the DC current value is held, and the marine steel structure measured by the verification electrode 6 When the potential 6a on the object 1 side is equal to or less than the predetermined electrodeposition reference potential range, the direct current value is decreased, while the potential 6a on the marine steel structure 1 side measured by the verification electrode 6 is reduced. If it is above the preset electrodeposition reference potential range, increase the DC current value. Certain control signal 4a to the point of providing the control unit 7 to be output to the DC power supply 4.

本実施例の場合、前記海洋鋼構造物1に見立てた陰極としての試験片を用いて仮通電を行い、電流密度−電位の関係を求め、該仮通電において陰極電流密度が4[A/m2]となるような電位6aを電着基準電位の最小値とし、前記仮通電において陰極電流密度が3[A/m2](鋼矢板のような複雑形状のものに対しては2[A/m2])となるような電位6aを電着基準電位の最大値とし、前記最小値から最大値までの範囲を前記電着基準電位範囲として予め設定するようにしてある。因みに、前記照合電極6を例えば、銀−塩化銀電極とした場合、港湾のような静水環境での電着基準電位範囲は-1.3〜-1.1[V]となる。 In the case of the present example, provisional energization was performed using a test piece as a cathode assumed as the marine steel structure 1 to obtain a current density-potential relationship. 2 ] is set to the minimum value of the electrodeposition reference potential, and the cathode current density is 3 [A / m 2 ] in the temporary energization (for the complex shape such as a steel sheet pile, 2 [A / M 2 ]) is set as the maximum value of the electrodeposition reference potential, and the range from the minimum value to the maximum value is preset as the electrodeposition reference potential range. Incidentally, when the reference electrode 6 is, for example, a silver-silver chloride electrode, the electrodeposition reference potential range in a still water environment such as a harbor is −1.3 to −1.1 [V].

尚、図1には、便宜上、二個の直流電源4と、該直流電源4に接続された二個ずつ(合計四個)の陽極と、前記直流電源4に対応する二個の照合電極6とを図示しているが、各々の個数に関しては、電着被膜施工の対象となる海洋鋼構造物1の規模に応じて適宜選定されることは言うまでもない。   In FIG. 1, for convenience, two DC power supplies 4, two anodes connected to the DC power supply 4 (four in total), and two reference electrodes 6 corresponding to the DC power supply 4 are shown. However, it goes without saying that the number of each is appropriately selected according to the scale of the marine steel structure 1 to be subjected to electrodeposition coating.

次に、上記実施例の作用を説明する。   Next, the operation of the above embodiment will be described.

先ず、図2のフローチャートに示す如く、初期設定された直流電流値で直流電源4による通電が行われ(図2のステップS1参照)、該直流電源4による通電時には、照合電極6により海洋鋼構造物1側の電位測定が行われる(図2のステップS2参照)。   First, as shown in the flowchart of FIG. 2, energization by the DC power source 4 is performed with an initial set DC current value (see step S <b> 1 in FIG. 2). The potential measurement on the object 1 side is performed (see step S2 in FIG. 2).

続いて、前記照合電極6で測定された海洋鋼構造物1側の電位6aが予め設定された電着基準電位範囲(例えば、-1.3〜-1.1[V])にあるか否かの判定が制御装置7において行われ(図2のステップS3参照)、前記電着基準電位範囲にある場合には、前記直流電流値を保持(図2のステップS4参照)する制御信号4aが制御装置7から直流電源4へ出力される。   Subsequently, it is determined whether or not the potential 6a on the marine steel structure 1 side measured by the verification electrode 6 is in a preset electrodeposition reference potential range (for example, −1.3 to −1.1 [V]). When the control device 7 (see step S3 in FIG. 2) is within the electrodeposition reference potential range, a control signal 4a for holding the DC current value (see step S4 in FIG. 2) is sent from the control device 7 Output to DC power supply 4.

前記照合電極6で測定された海洋鋼構造物1側の電位6aが予め設定された電着基準電位範囲にない場合、それが前記電着基準電位範囲以下であるか否かの判定が制御装置7において行われ(図2のステップS5参照)、前記照合電極6で測定された海洋鋼構造物1側の電位6aが予め設定された電着基準電位範囲以下(例えば、-1.3[V]以下)である場合には、前記直流電流値を減少(図2のステップS6参照)させる制御信号4aが制御装置7から直流電源4へ出力される。   When the potential 6a on the marine steel structure 1 side measured by the reference electrode 6 is not within the preset electrodeposition reference potential range, it is determined whether or not the potential 6a is below the electrodeposition reference potential range. 7 (see step S5 in FIG. 2), the potential 6a on the marine steel structure 1 side measured by the reference electrode 6 is below a preset electrodeposition reference potential range (for example, −1.3 [V] or less) ), A control signal 4a for decreasing the DC current value (see step S6 in FIG. 2) is output from the control device 7 to the DC power supply 4.

一方、前記照合電極6で測定された海洋鋼構造物1側の電位6aが予め設定された電着基準電位範囲以下でない、即ち、前記ステップS5で「NO」と判定された場合には、前記照合電極6で測定された海洋鋼構造物1側の電位6aは必然的に、予め設定された電着基準電位範囲以上(例えば、-1.1[V]以上)となるため、この場合には、前記直流電流値を増加(図2のステップS7参照)させる制御信号4aが制御装置7から直流電源4へ出力される。   On the other hand, if the potential 6a on the marine steel structure 1 side measured by the verification electrode 6 is not less than or equal to the predetermined electrodeposition reference potential range, that is, if it is determined as “NO” in step S5, Since the potential 6a on the marine steel structure 1 side measured by the reference electrode 6 is inevitably higher than a predetermined electrodeposition reference potential range (for example, −1.1 [V] or higher), in this case, A control signal 4a for increasing the DC current value (see step S7 in FIG. 2) is output from the control device 7 to the DC power source 4.

尚、前記直流電流値の制御は、予め設定された通電期間(例えば、3〜7日)が満了するまで(図2のステップS8参照)繰り返される。   The control of the direct current value is repeated until a preset energization period (for example, 3 to 7 days) expires (see step S8 in FIG. 2).

この結果、従来のように、海洋鋼構造物1の施工面積及び電流密度条件に基づいて選定された通電条件で直流電源4から直流電流を単に通電するのとは異なり、電着対象の海洋鋼構造物1と陽極との距離の僅かな差異、配線抵抗の違い等によって通電時の電流密度にムラが生じていた場合には、該電流密度のムラがなくなるように直流電流値が補正される形となり、均一な電流密度で通電を行えるため、高電流密度の箇所でのガス発生による膜の剥離が生じること等も避けられ、均一な膜厚の防食電着被膜を生成することが可能となる。   As a result, unlike the conventional case where the direct current is simply supplied from the direct current power source 4 under the current supply conditions selected based on the construction area and the current density condition of the offshore steel structure 1, the marine steel to be electrodeposited is used. If the current density is uneven when energized due to a slight difference in the distance between the structure 1 and the anode, a difference in wiring resistance, etc., the direct current value is corrected so as to eliminate the current density unevenness. Since it can be energized at a uniform current density, it is possible to avoid film peeling due to gas generation at high current density locations, and to produce a corrosion-resistant electrodeposition coating with a uniform film thickness. Become.

こうして、海洋鋼構造物1の表面に均一な厚さの防食電着被膜を確実に形成し得る。   In this way, an anticorrosion electrodeposition film having a uniform thickness can be reliably formed on the surface of the marine steel structure 1.

尚、本発明の海洋鋼構造物の防食電着被膜施工方法及び装置は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The anticorrosion electrodeposition coating method and apparatus for marine steel structures of the present invention are not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. Of course.

1 海洋鋼構造物
2 水没部
3 陽極
4 直流電源
4a 制御信号
5 防食電着被膜
6 照合電極
6a 電位
7 制御装置
DESCRIPTION OF SYMBOLS 1 Marine steel structure 2 Submerged part 3 Anode 4 DC power supply 4a Control signal 5 Corrosion-proof electrodeposition coating 6 Reference electrode 6a Electric potential 7 Controller

Claims (2)

海洋鋼構造物の海水に水没した水没部に対し所要の間隔をあけて陽極を設け、該陽極と海洋鋼構造物との間に直流電源を設けて直流電流を通電することにより、海洋鋼構造物の水没部表面に防食電着被膜を形成する海洋鋼構造物の防食電着被膜施工方法において、
前記直流電源による通電時に照合電極により海洋鋼構造物側の電位測定を行い、該海洋鋼構造物側の電位が予め設定された電着基準電位範囲にある場合には、前記直流電流値を保持し、前記海洋鋼構造物側の電位が予め設定された電着基準電位範囲以下である場合には、前記直流電流値を減少させる一方、前記海洋鋼構造物側の電位が予め設定された電着基準電位範囲以上である場合には、前記直流電流値を増加させることを特徴とする海洋鋼構造物の防食電着被膜施工方法。
A marine steel structure is provided by providing a positive electrode with a predetermined interval with respect to the submerged portion of the marine steel structure submerged in seawater, and providing a DC power supply between the anode and the marine steel structure. In the anticorrosion electrodeposition coating method for marine steel structures, which forms an anticorrosion electrodeposition coating on the surface of the submerged part
Measure the potential on the marine steel structure side with the reference electrode when energized by the DC power supply, and if the potential on the marine steel structure side is within the preset electrodeposition reference potential range, hold the DC current value However, when the potential on the marine steel structure side is equal to or less than a preset electrodeposition reference potential range, the DC current value is decreased while the potential on the marine steel structure side is set to a preset voltage. An anticorrosion electrodeposition coating method for marine steel structures, wherein the direct current value is increased when the electrodeposition reference potential range is exceeded.
海洋鋼構造物の海水に水没した水没部に対し所要の間隔をあけて設けられる陽極と、
該陽極と海洋鋼構造物との間に直流電流を通電することにより、海洋鋼構造物の水没部表面に防食電着被膜を形成する直流電源と、
該直流電源による通電時に海洋鋼構造物側の電位測定を行う照合電極と、
該照合電極で測定された海洋鋼構造物側の電位が予め設定された電着基準電位範囲にある場合には、前記直流電流値を保持し、前記照合電極で測定された海洋鋼構造物側の電位が予め設定された電着基準電位範囲以下である場合には、前記直流電流値を減少させる一方、前記照合電極で測定された海洋鋼構造物側の電位が予め設定された電着基準電位範囲以上である場合には、前記直流電流値を増加させる制御信号を前記直流電源へ出力する制御装置と
を備えたことを特徴とする海洋鋼構造物の防食電着被膜施工装置。
An anode provided at a predetermined interval with respect to a submerged part submerged in seawater of a marine steel structure;
A direct current power source for forming a corrosion-proof electrodeposition coating on the surface of the submerged portion of the marine steel structure by passing a direct current between the anode and the marine steel structure;
A reference electrode for measuring the potential of the marine steel structure when energized by the DC power supply;
When the potential on the marine steel structure side measured with the reference electrode is in the preset electrodeposition reference potential range, the DC current value is retained, and the marine steel structure side measured with the reference electrode Is less than a preset electrodeposition reference potential range, the DC current value is reduced, while the marine steel structure side potential measured by the reference electrode is set in advance. An anticorrosion electrodeposition coating apparatus for a marine steel structure, comprising: a control device that outputs a control signal for increasing the direct current value to the direct current power source when the electric potential range is exceeded.
JP2009265922A 2009-11-24 2009-11-24 Corrosion-proof electrodeposition coating method and apparatus for marine steel structures Active JP5387356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009265922A JP5387356B2 (en) 2009-11-24 2009-11-24 Corrosion-proof electrodeposition coating method and apparatus for marine steel structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009265922A JP5387356B2 (en) 2009-11-24 2009-11-24 Corrosion-proof electrodeposition coating method and apparatus for marine steel structures

Publications (2)

Publication Number Publication Date
JP2011111626A JP2011111626A (en) 2011-06-09
JP5387356B2 true JP5387356B2 (en) 2014-01-15

Family

ID=44234196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009265922A Active JP5387356B2 (en) 2009-11-24 2009-11-24 Corrosion-proof electrodeposition coating method and apparatus for marine steel structures

Country Status (1)

Country Link
JP (1) JP5387356B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103821382A (en) * 2014-01-16 2014-05-28 河海大学 Electro-osmotic pore solution replacement method for repairing chloride corrosion in concrete structures

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110541576B (en) * 2019-08-15 2021-02-02 同济大学 Underground structure leakage crack field repairing device and method based on electrodeposition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473094A (en) * 1987-09-11 1989-03-17 Mitsui Shipbuilding Eng Method for preventing corrosion of steel structure in seawater
JP2005248257A (en) * 2004-03-04 2005-09-15 Mitsubishi Heavy Ind Ltd Stain prevention-corrosion prevention apparatus for metal structure and method for energizing stain prevention-corrosion prevention apparatus
JP4424059B2 (en) * 2004-05-11 2010-03-03 株式会社Ihi Method for forming anticorrosion film
JP2006029065A (en) * 2004-06-15 2006-02-02 Jfe Engineering Kk Oceanic steel structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103821382A (en) * 2014-01-16 2014-05-28 河海大学 Electro-osmotic pore solution replacement method for repairing chloride corrosion in concrete structures
CN103821382B (en) * 2014-01-16 2016-03-16 河海大学 A kind of electric osmose of rehabilitating concrete structure chlorine salt corrosion substitutes hole solution method

Also Published As

Publication number Publication date
JP2011111626A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
US20180216246A1 (en) Method and system for applying superimposed time-varying frequency electromagnetic wave for corrosion protection of submerged and/or buried structures
US8298397B2 (en) Auxiliary device, a marine surface vessel, and a method for corrosion protection in a marine construction
AU2012392207B2 (en) System and method for providing corrosion protection of metallic structure using time varying electromagnetic wave
EA005014B1 (en) Corrosion-protected concrete structure, method of constructing and system
JP5387356B2 (en) Corrosion-proof electrodeposition coating method and apparatus for marine steel structures
JP6071053B2 (en) Method and apparatus for cathodic protection of structural metal materials
KR101347707B1 (en) Hybrid type cathode protection system sacrificial anode type cathode protection technologies for marine concrete structure
CN102004072B (en) Method and device for chlorine ion penetration test of non-conductive coating
JP7066465B2 (en) Method for forming anticorrosion electrodeposition coating on underwater metal structures
JPH0931675A (en) Electric corrosion protection method using multiple booster type anodic protection and device therefor
JP2005240464A (en) Device and method for preventing fouling of structure in contact with seawater
JP5387219B2 (en) Confirmation method of electrodeposition coating on marine steel structures
JP5678505B2 (en) Method of forming anti-corrosion coating for offshore steel structures in tidal currents
JP5402177B2 (en) The galvanic anode body and the galvanic anode method
JP5740851B2 (en) Steel sheet pile electrodeposition protection system
KR100997500B1 (en) Anticorrosion system
JP5434237B2 (en) Method and apparatus for maintaining anticorrosive deposition film
JP2019066300A (en) Method for detecting effects of electrolytic protection
Yaro et al. Sacrificial anode cathodic protection of low carbon steel in sea water
JP2019104977A (en) Corrosion prevention device for underwater metal structure
JP2005113167A (en) Efficient electrolytic corrosion protection method, corrosion-protected steel, and corrosion-protected structure
JP2006029065A (en) Oceanic steel structure
Wang et al. Boundary element modelling of the impressed current cathodic protection of an offshore platform
WO2023218090A2 (en) Electrolytic system for defouling, structures comprising said system and method for defouling a submerged structure
JP4438158B2 (en) Antifouling method for concrete structure and antifouling device for seawater conduit of concrete structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130923

R151 Written notification of patent or utility model registration

Ref document number: 5387356

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131029

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250