JP2005113167A - Efficient electrolytic corrosion protection method, corrosion-protected steel, and corrosion-protected structure - Google Patents

Efficient electrolytic corrosion protection method, corrosion-protected steel, and corrosion-protected structure Download PDF

Info

Publication number
JP2005113167A
JP2005113167A JP2003345218A JP2003345218A JP2005113167A JP 2005113167 A JP2005113167 A JP 2005113167A JP 2003345218 A JP2003345218 A JP 2003345218A JP 2003345218 A JP2003345218 A JP 2003345218A JP 2005113167 A JP2005113167 A JP 2005113167A
Authority
JP
Japan
Prior art keywords
corrosion
steel material
resistant metal
steel
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003345218A
Other languages
Japanese (ja)
Inventor
Masahiro Yamamoto
正弘 山本
Kenichiro Imafuku
健一郎 今福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003345218A priority Critical patent/JP2005113167A/en
Publication of JP2005113167A publication Critical patent/JP2005113167A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient electrolytic corrosion protection method with which corrosion protection above the water level less prone to be effective in the electrolytic corrosion protection method is reliably performed, and an electrode for electrolytic corrosion resistance need not be replaced, and corrosion protected steel and a corrosion protected steel structure. <P>SOLUTION: In the efficient electrolytic corrosion protection method, and the corrosion protected steel and the corrosion protected steel structure, an intermediate resin adhesive layer having the volumetric resistivity of ≥ 10<SP>9</SP>Ωcm is covered on a part of a steel surface with the thickness of ≥ 0.1 mm, and a highly corrosion-resistant metal layer is laminated on the adhesive layer. In this corrosion-resistant steel, a highly corrosion-resistant metal lamination part and a non-lamination part are simultaneously in contact with the environment of fresh water or sea water. The corrosion-resistant steel is connected to a DC power supply with the highly corrosion-resistant metal layer as an anode, and the steel as a cathode to perform the electrolytic corrosion protection is performed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、鋼構造物が港湾・河川の桟橋や護岸等、淡水もしくは海水環境の激しい腐食環境に曝される場合に、長期の防食性を確保する鋼材の防食方法と防食された構造物に関する。   The present invention relates to a steel material corrosion prevention method and a corrosion-proof structure that ensures long-term corrosion resistance when the steel structure is exposed to a corrosive environment of fresh water or seawater environment such as a pier or revetment of a harbor or river. .

激しい腐食環境に使用されるジャケット構造物やその他の構造物の部材としての鋼管杭、鋼管矢板、鋼矢板等は、腐食による劣化が懸念され、防食方法が構造物の寿命を決定すると言っても過言ではない。一般的には、塗装が行われ、中でも厚みが数mmに及ぶ重防食塗装が有効である。数十年に及ぶ長期耐久性が必要とされる場合、電気絶縁性、耐薬品性等の種々の防食性に優れ、安価な樹脂であるポリオレフィン、あるいはポリウレタンといった樹脂を被覆材として使用した重防食被覆鋼材が製造されている。重防食被覆では、特開平3−23527号公報(特許文献1)に示されるような、特殊な鋼材の下地処理、プライマー処理に防食被覆を組み合わせることで、長期の接着耐久性を確保している。   Steel pipe piles, steel pipe sheet piles, steel sheet piles, etc. used for jacket structures and other structures used in severe corrosive environments are subject to deterioration due to corrosion, and the anticorrosion method determines the life of the structure. It's not too much to say. In general, coating is performed, and particularly heavy anticorrosion coating having a thickness of several mm is effective. When long-term durability for several decades is required, it is excellent in various anticorrosive properties such as electrical insulation and chemical resistance, and is a heavy-duty anticorrosion using a resin such as polyolefin or polyurethane, which is an inexpensive resin, as a coating material. Coated steel is manufactured. In the heavy anticorrosion coating, long-term adhesion durability is secured by combining the anticorrosion coating with the base treatment and primer treatment of a special steel material as shown in JP-A-3-23527 (Patent Document 1). .

また、電気防食法も多用されている。電気防食方法に関しては、極めて一般的な方法で、例えば、木島茂著「防食工学」(日刊工業新聞社、昭和57年)(非特許文献1)にも詳しく記載されている。さらに、特開平9−143766号公報(特許文献2)には、高効率で電気防食を行える方法に関して記載されている。この中では、鋼材と塗装、さらに電気防食を組み合わせて、効率よく防食する方法に関して記載されている。
特開平3−23527号公報 特開平9−143766号公報 木島茂著「防食工学」(日刊工業新聞社、昭和57年)
In addition, the anticorrosion method is also frequently used. The electrocorrosion protection method is a very general method, and is described in detail, for example, in “Anti-corrosion Engineering” written by Shigeru Kijima (Nikkan Kogyo Shimbun, 1982) (Non-Patent Document 1). Furthermore, Japanese Patent Application Laid-Open No. 9-143766 (Patent Document 2) describes a method for performing an anticorrosion with high efficiency. In this, a method for efficiently preventing corrosion by combining steel, painting, and further anti-corrosion is described.
JP-A-3-23527 Japanese Patent Laid-Open No. 9-143766 "Anti-corrosion engineering" by Shigeru Kijima (Nikkan Kogyo Shimbun, 1982)

前述したように、淡水又は海水環境に設置された鋼構造物を防食する方法として、塗装や有機樹脂による被覆防食と電気防食法が一般的である。
しかしながら、重防食塗装やポリオレフィン樹脂による被覆の場合では、構造物が海水又は淡水に接する部分全体を被覆しないと、鋼材の腐食を抑制することはできず、また、水中部では被覆部の劣化後の補修が難しい。
As described above, as a method for preventing corrosion of a steel structure installed in a freshwater or seawater environment, coating corrosion protection and electrocorrosion protection with an organic resin are generally used.
However, in the case of coating with heavy anticorrosion coating or polyolefin resin, corrosion of the steel material cannot be suppressed unless the entire structure is in contact with seawater or fresh water. Is difficult to repair.

また、電気防食による防食では、イオンの伝導により電流が流れる水中部での防食は可能であるが、水面以上の部位では防食は行えない。海水域での構造物では、潮の干満により水面部の位置が変わり、河川域での構造物では、水の流入量の差により水面の高さが変わるために、防食ができない部位が存在してしまう。さらに、通常用いられている外部電源方式の電気防食法においては、不溶性の電極を、流電陽極方式では、アルミや亜鉛等の陽極を構造物の水中部に溶接等で接合して使用しており、さらに、時間が経過して陽極が劣化したり、消耗したりする場合には、これを取り替えなければならなかった。この作業は、水中部で行う潜水作業であるために、作業の手間もかかり、また、信頼性を確保する難しさもあった。   Moreover, in the anticorrosion by the electric anticorrosion, the anticorrosion can be performed in an underwater portion where an electric current flows due to the conduction of ions, but the anticorrosion cannot be performed in a portion above the water surface. In the structure in the sea area, the position of the water surface changes due to the tidal flow, and in the structure in the river area, the height of the water surface changes due to the difference in the amount of water inflow, so there is a part that cannot be protected against corrosion. End up. In addition, in the externally-prevented method of cathodic protection, an insoluble electrode is used. In the galvanic anode method, an anode such as aluminum or zinc is joined to the underwater part of the structure by welding or the like. Furthermore, if the anode deteriorates or wears out over time, it must be replaced. Since this operation is a diving operation performed in an underwater part, it takes time and effort and it is difficult to ensure reliability.

そこで、本発明は、上記の従来技術の問題点を解決するために、電気防食法の効き難い水面上の防食を確実に行い、水中部での電気防食用の電極を取り替えないで済ませられる、効率的な電気防食方法及びそのための防食鋼材並びに防食構造物を提供することを目的とする。   Therefore, in order to solve the above-described problems of the prior art, the present invention reliably performs corrosion protection on the water surface where the electrocorrosion protection method is not effective, and does not need to replace the electrode for electrocorrosion in the underwater part. An object of the present invention is to provide an efficient cathodic protection method, and a corrosion-resistant steel material and a corrosion-proof structure therefor.

本発明は、電気防食の効き難い水面上の防食と水中部での電気防食用の電極を取り替えないで済ませる方法を鋭意検討した結果、以下のような手段を見出した。
(1)鋼材表面の一部に、109 Ω・cm以上の体積抵抗率を有する中間樹脂接着層を0.1mm以上の厚みで被覆し、該接着層の上に高耐食金属層を積層した防食鋼材を、高耐食金属積層部と非積層部が同時に淡水又は海水環境に接する状態で、高耐食金属層を陽極、鋼材を陰極として直流電源を接続して鋼材を電気防食することを特徴とする効率的な電気防食方法。
In the present invention, as a result of earnestly studying a method for eliminating the need to replace the electrode for anticorrosion on the water surface where the anticorrosion is hardly effective and the electrode for anticorrosion in the underwater portion, the following means have been found.
(1) An intermediate resin adhesive layer having a volume resistivity of 10 9 Ω · cm or more is coated on a part of the steel material surface with a thickness of 0.1 mm or more, and a highly corrosion-resistant metal layer is laminated on the adhesive layer. The anticorrosive steel material is electrically anticorrosive by connecting a DC power source with the high corrosion resistant metal layer as the anode and the steel material as the cathode, with the high corrosion resistant metal laminated portion and the non-laminated portion in contact with the freshwater or seawater environment at the same time. An efficient cathodic protection method.

(2)前記鋼材の表面の電位が飽和KCl銀/塩化銀標準電極基準で−0.8V以下に維持することを特徴とする請求項1記載の電気防食方法。
(3)前記高耐食性金属層の全部又は一部が、チタニウム又はチタニウム合金からなる(1)又は(2)に記載の電気防食方法。
(4)前記チタニウム又はチタニウム合金の表面が、低分極処理を施されてなる(3)記載の電気防食方法。
(5)淡水又は海水環境に敷設される防食鋼材であって、敷設時に水面に位置する部分の鋼材表面に、109 Ω・cm以上の体積抵抗率を有する中間樹脂接着層を0.1mm以上の厚み被覆し、その上に高耐食金属層を積層し、該高耐食金属層及び鋼材に外部電源との接続部を有してなることを特徴とした防食鋼材。
(2) The electric corrosion protection method according to claim 1, wherein the surface potential of the steel material is maintained at -0.8 V or less based on a saturated KCl silver / silver chloride standard electrode standard.
(3) The anticorrosion method according to (1) or (2), wherein all or part of the highly corrosion-resistant metal layer is made of titanium or a titanium alloy.
(4) The cathodic protection method according to (3), wherein the surface of the titanium or titanium alloy is subjected to a low polarization treatment.
(5) Corrosion-resistant steel material laid in freshwater or seawater environment, and an intermediate resin adhesive layer having a volume resistivity of 10 9 Ω · cm or more is 0.1 mm or more on the surface of the steel material located on the water surface when laying A corrosion-resistant steel material comprising: a high-corrosion-resistant metal layer formed thereon; a high-corrosion-resistant metal layer and a steel material having a connection portion with an external power source.

(6)前記高耐食性金属層の全部又は一部が、チタニウム又はチタニウム合金からなる(5)記載の防食鋼材。
(7)前記チタニウム又はチタニウム合金の表面が、低分極処理を施されてなる(6)記載の防食鋼材。
(8)少なくとも(5)〜(7)のいずれかに記載の防食鋼材を淡水又は海水環境に敷設してなる防食構造物であって、前記高耐食金属層及び鋼材の接続部を介して外部電源に接続してなる防食構造物にある。
(6) The anticorrosion steel material according to (5), wherein all or part of the highly corrosion-resistant metal layer is made of titanium or a titanium alloy.
(7) The anticorrosion steel material according to (6), wherein the surface of the titanium or titanium alloy is subjected to a low polarization treatment.
(8) An anticorrosion structure obtained by laying at least the anticorrosion steel material according to any one of (5) to (7) in a freshwater or seawater environment, and externally connected through the connection portion of the high corrosion resistance metal layer and the steel material. The anticorrosive structure is connected to a power source.

本発明の電気防食法及び防食鋼材並びに防食構造物は、特定の体積抵抗率、厚みを有する中間樹脂接着層、高耐食金属層が積層され、鋼材を陰極として高耐食金属層との間に電圧を印加することで、これまでのような流電陽極方式等のように電極を取り付けたり、劣化後に付け替えたりすることが必要ない。さらに、従来の電気防食法では防食不可能であった水面上の気中部を高耐食金属で防食できるため、効率的な防食が可能である。   The anticorrosion method and the anticorrosive steel material and the anticorrosive structure of the present invention have a specific volume resistivity, an intermediate resin adhesive layer having a thickness, and a highly corrosion-resistant metal layer, and a voltage between the steel material and the highly corrosion-resistant metal layer as a cathode. By applying, it is not necessary to attach an electrode as in the conventional galvanic anode method, or to replace it after deterioration. Furthermore, since the aerial part on the surface of the water, which could not be protected by the conventional cathodic protection method, can be protected by a highly corrosion-resistant metal, efficient corrosion protection is possible.

本発明を実施するための最良な構成を図1に示す。本発明では、海水や淡水の水中に一部が没した鋼材の防食を行う。その際に、水中では鋼材と海水や淡水がそのまま接触する。ただし、水面部分には、図1に示したように、鋼材と中間樹脂層を介して高耐食金属層を積層した被覆材により接する。さらに、高耐食金属積層部と非積層部が同時に淡水又は海水環境に接する状態で、高耐食金属層を陽極、鋼材を陰極として直流電源を接続して鋼材を電気防食することを特徴とする。   The best configuration for carrying out the present invention is shown in FIG. In the present invention, the steel material partially submerged in seawater or fresh water is subjected to corrosion protection. At that time, in the water, the steel material and seawater or fresh water come into contact as they are. However, as shown in FIG. 1, the water surface portion is in contact with a coating material in which a high corrosion-resistant metal layer is laminated via a steel material and an intermediate resin layer. Furthermore, in the state where the highly corrosion-resistant metal laminated portion and the non-laminated portion are simultaneously in contact with fresh water or seawater environment, the steel material is electrically protected by connecting a direct current power source with the high corrosion-resistant metal layer as the anode and the steel material as the cathode.

本発明における防食鋼材は、上記電気防食方法を実現するための鋼材である。即ち、淡水又は海水環境に敷設される防食鋼材であって、敷設時に水面に位置する部分の鋼材表面に、109 Ω・cm以上の体積抵抗率を有する中間樹脂接着層を0.1mm以上の厚み被覆し、その上に高耐食金属層を積層し、該高耐食金属層及び鋼材に外部電源との接続部を有してなることを特徴とする。 The anticorrosion steel material in this invention is a steel material for implement | achieving the said anticorrosion method. That is, an anti-corrosion steel material laid in a freshwater or seawater environment, and an intermediate resin adhesive layer having a volume resistivity of 10 9 Ω · cm or more on a surface of the steel material located on the water surface at the time of laying is 0.1 mm or more. The high-corrosion-resistant metal layer is laminated thereon, and the high-corrosion-resistant metal layer and the steel material have a connection portion with an external power source.

本発明で用いる高耐食金属被覆層の長さは、特に規定するものではないが、下端は、海面や河川の水面が変動しても必ず水面下に接する位置まで被覆する必要があり、かつ防食電流を流せる位置として、海水域では、LWL(平均干潮面)より、河川域では渇水期の水位より、それぞれ0.5m下まで被覆することが望ましい。上端は、特に規定するものではないが、海水域ではHWL(平均満潮面)より、河川域では平均水位より、それぞれ0.5m以上高いことが望ましい。かつ、高耐食金属層は、流入した流木やプレジャーボートなどからの耐衝撃にも優れているために、より広く被覆することが望ましい。
ここで、本発明で用いる鋼材は、特に限定するものではないが、淡水又は海水環境で構造物用の部材として使われる、熱延鋼板、厚板、鋼管、鋼管杭、鋼管矢板、鋼矢板、各種形鋼、棒鋼、棒線材等が適用できる。
The length of the highly corrosion-resistant metal coating layer used in the present invention is not particularly specified, but the lower end must always be covered to a position that is in contact with the water surface even if the sea level or the water level of the river fluctuates. As positions where current can flow, it is desirable to cover 0.5m below the LWL (average low tide surface) in the seawater area and 0.5m below the water level in the dry season in the river area. Although the upper end is not particularly specified, it is preferable that the upper end is higher than the HWL (average high tide surface) in seawater by 0.5 m or more from the average water level in rivers. In addition, the highly corrosion-resistant metal layer is excellent in impact resistance from the inflowing driftwood, pleasure boat, etc., and therefore it is desirable to cover it more widely.
Here, the steel material used in the present invention is not particularly limited, but is used as a member for a structure in a freshwater or seawater environment, a hot-rolled steel plate, a thick plate, a steel pipe, a steel pipe pile, a steel pipe sheet pile, a steel sheet pile, Various shapes, steel bars, wire rods, etc. can be applied.

本発明で用いる中間樹脂接着層は、109 Ω・cm以上の体積抵抗率で、厚みを0.1mm以上有することが必要である。体積抵抗率が109 Ω・cm未満であると、上層の高耐食金属層と鋼材との間で、漏洩電流が無視できなくなるため、電気防食の効率が低下することから、これ以上を必要とし、1012Ω・cm以上が望ましい。体積抵抗率は、高いほど好ましいが、実用的に得られる高抵抗率の材料は1014Ω・cm程度である。また、厚みが0.1mm未満であると、施工時に絶縁破壊を起こし、漏洩電流を発生し易いので、0.1mm以上の厚みが必要である。好ましくは、0.5mm以上である。厚くするほど絶縁破壊には耐えられるが、構造物としての強度が低下する恐れがあるので、10mm以下とするのが実用的である。 The intermediate resin adhesive layer used in the present invention needs to have a volume resistivity of 10 9 Ω · cm or more and a thickness of 0.1 mm or more. If the volume resistivity is less than 10 9 Ω · cm, the leakage current cannot be ignored between the upper high-corrosion-resistant metal layer and the steel material. 10 12 Ω · cm or more is desirable. The volume resistivity is preferably as high as possible, but a high resistivity material obtained practically is about 10 14 Ω · cm. Further, if the thickness is less than 0.1 mm, dielectric breakdown occurs at the time of construction, and a leakage current is likely to be generated. Therefore, a thickness of 0.1 mm or more is necessary. Preferably, it is 0.5 mm or more. As the thickness is increased, the dielectric breakdown can be withstood, but the strength as a structure may be lowered. Therefore, it is practical to set the thickness to 10 mm or less.

中間樹脂層の材料としては、上記体積抵抗率、厚みを満足するものであれば、特に限定するものではなく、熱可塑性樹脂や熱硬化型樹脂、あるいは常温硬化型の樹脂等が用いられる。但し、鋼材や高耐食金属層との密着性を確保できることが必要である。そのために、中間樹脂層に接着剤や粘着材を積層する方法が適宜選択できる。   The material of the intermediate resin layer is not particularly limited as long as it satisfies the above volume resistivity and thickness, and a thermoplastic resin, a thermosetting resin, a room temperature curable resin, or the like is used. However, it is necessary to be able to ensure adhesion with a steel material or a highly corrosion-resistant metal layer. Therefore, a method of laminating an adhesive or a pressure-sensitive adhesive material on the intermediate resin layer can be selected as appropriate.

本発明で用いる高耐食金属層は、淡水又は海水環境で腐食し難い金属であればその材質は問わないが、具体的には、ステンレス鋼、チタニウム又はチタニウム合金、銅又は銅合金、金、白金、等を好適に用いることができる。ステンレス鋼を用いる場合には、その中でも、海水中で隙間腐食を起こし難い高Cr系、高Mo系が望ましい。特に、チタニウム又はチタニウム合金は、耐隙間腐食性に優れており、本発明に用いる高耐食金属層に好適である。さらに、チタニウム又はチタニウム合金の表面に低分極処理を施したものは、長期間の電気防食による分極現象が起き難く、最適である。   The material of the highly corrosion-resistant metal layer used in the present invention is not limited as long as it is a metal that does not easily corrode in freshwater or seawater environments. Specifically, stainless steel, titanium or titanium alloy, copper or copper alloy, gold, platinum , Etc. can be suitably used. In the case of using stainless steel, among them, a high Cr system and a high Mo system that hardly cause crevice corrosion in seawater are desirable. In particular, titanium or a titanium alloy is excellent in crevice corrosion resistance, and is suitable for a highly corrosion-resistant metal layer used in the present invention. Further, the surface of titanium or a titanium alloy subjected to low polarization treatment is optimal because a polarization phenomenon due to long-term cathodic protection hardly occurs.

ここで、低分極処理とは、本発明において長期間電圧を印加し続けると、陽極である高耐食金属層表面に皮膜が形成され、電流が流れ難くなる分極現象が生じてくる場合があるが、それを防止するための方法であり、チタニウム又はチタニウム合金の表面を、弗酸処理又はブラスト処理により粗度を上げ、表面積を大きくする方法、チタニウム又はチタニウム合金の表面にニッケル又は白金をめっきする方法のいずれか、又は、これら2種の組み合わせにより処理する方法が挙げられる。   Here, the low polarization treatment means that if a voltage is continuously applied for a long period of time in the present invention, a film is formed on the surface of the highly corrosion-resistant metal layer that is an anode, and a polarization phenomenon that makes it difficult for current to flow may occur. This is a method for preventing this, and the surface of titanium or titanium alloy is increased in roughness by hydrofluoric acid treatment or blasting to increase the surface area. The surface of titanium or titanium alloy is plated with nickel or platinum. The method of processing by either of these methods or a combination of these two types can be mentioned.

また、本発明の電気防食方法では、高耐食金属積層部と非積層部が同時に淡水又は海水環境に接する状態で、高耐食金属層を陽極に、鋼材を陰極にして直流電源と接続して鋼材を電気防食することが必須である。高耐食金属を陽極に用いることにより、流電陽極方式で用いられるアルミニウムや亜鉛等の陽極のように劣化・消耗してしまうことなく、恒久的に使用することができ、陽極の交換作業を不要とすることができる。   Further, in the cathodic protection method of the present invention, in a state where the highly corrosion-resistant metal laminated portion and the non-laminated portion are simultaneously in contact with fresh water or seawater environment, the steel material is connected to a DC power source with the high corrosion-resistant metal layer as the anode and the steel material as the cathode. It is essential to have anti-corrosion. By using a highly corrosion-resistant metal for the anode, it can be used permanently without being deteriorated or consumed like anodes such as aluminum and zinc used in the galvanic anode method, and there is no need to replace the anode. It can be.

さらに、前記鋼材の表面の電位が飽和KCl銀/塩化銀標準電極基準で−0.8V以下に維持することが好ましい。この電位が−0.8Vより貴であると、鋼材表面を防食できる状態に到達せずに、鋼材の腐食が生じる場合がある。これより卑であると鋼材は防食できるが、電位を下げすぎると、高耐食金属表面より水素の発生が起こり始める。よって、この水素の発生を防ぐことが望ましく、その際の電位は、高耐食金属の種類により多少異なるが、鋼材の表面電位として、−1.1V以上に設定することで、防ぐことができる。   Further, it is preferable that the surface potential of the steel material is maintained at −0.8 V or less with respect to a saturated KCl silver / silver chloride standard electrode. If this potential is nobler than -0.8 V, the steel material surface may not be in a state where corrosion can be prevented, and the steel material may be corroded. If it is lower than this, the steel material can be prevented from corrosion, but if the potential is lowered too much, generation of hydrogen starts from the surface of the highly corrosion-resistant metal. Therefore, it is desirable to prevent the generation of hydrogen, and the potential at that time varies slightly depending on the type of the highly corrosion-resistant metal, but can be prevented by setting the surface potential of the steel material to −1.1 V or more.

以上の説明した防食鋼材及びこれを用いた電気防食方法により、電気防食法の効き難い水面上の防食を確実に行い、水中部での電気防食用の電極を取り替えないで済ませられる効率的な電気防食方法を提供できる。さらに、本発明の防食構造物は、少なくとも上述の防食鋼材を淡水又は海水環境に敷設してなる防食構造物であって、前記高耐食金属層を陽極、鋼材を陰極として、各接続部を介して外部電源に接続してなる防食構造物である。   The above-described anti-corrosion steel material and the electro-corrosion method using the same make sure that the anti-corrosion method does not work effectively on the surface of the water, so that it is possible to eliminate the need to replace the electrode for electro-corrosion in the water. An anticorrosion method can be provided. Furthermore, the anticorrosion structure of the present invention is an anticorrosion structure in which at least the above-mentioned anticorrosion steel material is laid in a freshwater or seawater environment, and the high corrosion resistance metal layer is used as an anode and the steel material is used as a cathode through each connection portion. The anticorrosion structure is connected to an external power source.

ここで、防食構造物とは、本発明の防食鋼材を用いて淡水又は海水環境に設置された鋼構造物であるが、具体的には、鋼矢板、鋼管矢板を用いた岸壁、土留め壁、堤防、鋼管杭を用いた桟橋や橋脚等の基礎構造、さらに鋼材を用いた浮体構造物等が例示できる。本発明の防食構造物を防食構造物では、通常の電気防食構造物では必須となる。建設後に電気防食用の電極を設置する必要もなく、かつ電極が消耗した際の際取り付け作業も必要でなくなるため、トータルでコストを最小限にすることができる。   Here, the anticorrosion structure is a steel structure installed in a freshwater or seawater environment using the anticorrosion steel material of the present invention. Specifically, a steel sheet pile, a quay wall using a steel pipe sheet pile, and a retaining wall Examples include piers, foundation structures such as piers and piers using steel pipe piles, and floating structures using steel materials. In the anticorrosion structure, the anticorrosion structure of the present invention is essential in a normal cathodic protection structure. There is no need to install an electrode for anticorrosion after construction, and no installation work is required when the electrode is consumed, so that the total cost can be minimized.

(実施例1)
9mm厚み×100mm幅×200mm長さの鋼板にグリッドブラスト処理を施し、スケール等を除去した後、表1に示す水準の中間樹脂層と高耐食金属層を片側に鉄面を露出させる形で100mm×100mmの面積で被覆し、試験材とした。試験番号A〜Dは、市販のポリオール樹脂とイソシアネート硬化剤を混合するタイプのウレタン樹脂製プライマーを15〜50μmの厚みでスプレー塗装し、その上にカリオンクレー微粉末を含有する2液硬化ウレタンエラストマーをミキサーで混合し、目的の膜厚までスプレー塗装した。その上に、2液硬化型のウレタン樹脂製接着剤を100μm〜500μm塗布し、高耐食金属をロールにより圧着しながら貼り付けた。
(Example 1)
A steel plate of 9 mm thickness x 100 mm width x 200 mm length is subjected to grid blasting treatment, scales, etc. are removed, and then an intermediate resin layer and a high corrosion resistant metal layer of the level shown in Table 1 are exposed to an iron surface on one side to 100 mm. It coat | covered with the area of * 100mm, and was set as the test material. Test Nos. A to D are two-component cured urethane elastomers that are spray-coated with a urethane resin primer of 15 to 50 μm in thickness and mixed with a commercially available polyol resin and an isocyanate curing agent. Were mixed with a mixer and spray-coated to the desired film thickness. On top of that, a two-component curable urethane resin adhesive was applied in an amount of 100 μm to 500 μm, and a high corrosion-resistant metal was adhered while being pressed by a roll.

Figure 2005113167
Figure 2005113167

試験番号Eは、ウレタンエラストマーまでは上記と同じで、総膜厚を2.5mmにした。試験番号Fは市販の熱硬化型粉体エポキシ樹脂を100μm塗布後、鋼材表面を180℃まで加熱し、マレイン酸変性ポリエチレン層を400μm、低密度ポリエチレン層を2mm貼り付けた。その上に、ブチルゴムの表面に粘着材を塗布した2mm厚みのシートを貼り付け、さらに高耐食金属板を貼り付けた。試験番号Fの純チタン板には、あらかじめ、常温で5%弗酸+20%硝酸溶液中に10分間浸漬し、その後、10%塩酸+2%塩化白金酸溶液中でPtを対極にし、Ptめっきを行った。   Test number E was the same as described above up to the urethane elastomer, and the total film thickness was 2.5 mm. In test number F, a commercially available thermosetting powder epoxy resin was applied to 100 μm, the steel surface was heated to 180 ° C., a maleic acid-modified polyethylene layer was attached to 400 μm, and a low-density polyethylene layer was attached to 2 mm. On top of that, a 2 mm thick sheet coated with an adhesive on the surface of butyl rubber was pasted, and a high corrosion resistant metal plate was pasted. A pure titanium plate of test number F is previously immersed in a 5% hydrofluoric acid + 20% nitric acid solution at room temperature for 10 minutes, and then Pt is counter electroded in 10% hydrochloric acid + 2% chloroplatinic acid solution. went.

さらに、試験番号G〜Kは、ブロックイソシアネート硬化剤とエポキシ樹脂とキシレンの混合物を接着剤として所定の膜厚に塗布し、高耐食金属層を積層後、200℃に加熱して重合硬化させたものを試験材とした。G、H、J、Kは、体質顔料としてタルクを30質量%含むが、Iは、その替わりにZn粉末を70質量%含んでいる。なお、Kは、比較として、高耐食金属層を積層していない。   Further, in test numbers G to K, a mixture of a block isocyanate curing agent, an epoxy resin, and xylene was applied as an adhesive to a predetermined film thickness, and after the highly corrosion-resistant metal layer was laminated, it was polymerized and cured by heating to 200 ° C. The material was used as a test material. G, H, J, and K contain 30% by mass of talc as extender pigments, but I contains 70% by mass of Zn powder instead. In addition, K does not laminate | stack the highly corrosion-resistant metal layer as a comparison.

この試験片の、裏面、側面を、タールエポキシ塗料で300μm塗装し、シールした。試験材の高耐食金属面と鋼材面にそれぞれリード線を取り付け、25℃の人工海水に浸漬した。表2には、浸漬した鋼材と高耐食金属間に設置したリード線に電圧を印加して、1週間放置した後の鋼材表面の変化を示したものである。電圧の印加は、No.1〜8までは、鋼材表面の電位を飽和KCl銀/塩化銀電極で測定し、その電位を−0.85Vに設定し、1日毎に電位を測定し、変動があれば、極間電圧を変化させた。それ以外の試験は、初期に電位を設定し、そのまま実験を続けた。表2に示した電位は、1週間後の値である。   The back and side surfaces of this test piece were coated with a tar epoxy paint at 300 μm and sealed. Lead wires were attached to the high corrosion-resistant metal surface and the steel material surface of the test material, respectively, and immersed in artificial seawater at 25 ° C. Table 2 shows changes in the surface of the steel material after a voltage was applied to the lead wire installed between the immersed steel material and the highly corrosion-resistant metal and left for one week. Application of the voltage is no. For 1 to 8, the potential of the steel surface is measured with a saturated KCl silver / silver chloride electrode, the potential is set to -0.85 V, the potential is measured every day, and if there is a fluctuation, the interelectrode voltage is Changed. In other tests, the potential was initially set and the experiment was continued as it was. The potentials shown in Table 2 are values after one week.

No.6、9、10は、試料番号Fについて、電位を変えて実験した例で、何れも本発明例である。No.12は、試料番号Aの試験材を、陽極、陰極を逆にした比較例、No.13は、高耐食金属と鋼材を短絡した比較例である。
本発明例では、鋼材表面がエレクトロコーティングと呼ばれる白色の皮膜に覆われ、腐食は発生していない。これは、電気防食が効率よく効いている証拠である。比較例では、いずれも腐食していて、激しく腐食している場合もある。鋼材の表面電位では、より好ましい条件として本発明に規定する−0.8V以下のものが、腐食発生が見られず良好であった。特に、チタン表面に低分極処理をした試料番号Fでは、1週間の経過で印加電圧の変化もなく、良好な電気防食特性が得られている。
No. Reference numerals 6, 9, and 10 are examples in which the potential of the sample number F was changed and the experiment was performed. No. No. 12 is a comparative example in which the test material of sample number A was inverted for the anode and cathode, No. 12; Reference numeral 13 is a comparative example in which a high corrosion resistant metal and a steel material are short-circuited.
In the present invention example, the steel material surface is covered with a white film called electrocoating, and no corrosion occurs. This is evidence that the cathodic protection is effective. In the comparative examples, all are corroded and may be corroded severely. With respect to the surface potential of the steel material, a more preferable condition of −0.8 V or less as defined in the present invention was satisfactory with no occurrence of corrosion. In particular, Sample No. F obtained by subjecting the titanium surface to a low polarization treatment does not change the applied voltage over the course of one week, and good anticorrosive properties are obtained.

Figure 2005113167
Figure 2005113167

(実施例2)
鋼管に適用した場合の実施例として、外径600mm、厚さ9mm、長さ9mの鋼管外面の上端部3mにグリッドブラスト処理を施し、スケール等を除去した後、プライマーとして市販のイソシアネート末端プレポリマーによる湿気硬化型ウレタン樹脂塗料を15〜60μm膜厚となるようにスプレー塗布して硬化させた。次いで、その表面に市販のカオリンクレー微粉末を含有する2液硬化ウレタンエラストマーをミキサーで混合してスプレー塗装を行い全周に渡り、2.4m幅でロールで圧着しながら巻き付け、チタン板の下端には、幅50cmに渡り、弗酸処理+Ptめっきにより低分極処理を施した本発明の金属重防食被覆鋼管を作製した。一方、同一サイズでチタン板を巻きつけていないウレタン被覆のみの鋼管を比較とした。
(Example 2)
As an example when applied to a steel pipe, a commercially available isocyanate-terminated prepolymer is used as a primer after grid blasting is applied to the upper end 3 m of the outer surface of the steel pipe having an outer diameter of 600 mm, a thickness of 9 mm, and a length of 9 m to remove scales and the like. The moisture-curing urethane resin coating was spray-coated to a thickness of 15-60 μm and cured. Next, a two-component cured urethane elastomer containing fine powder of kaolin clay on the surface is mixed with a mixer and spray-coated, wrapped around the entire circumference while being crimped with a roll with a width of 2.4 m, and the lower end of the titanium plate The metal heavy-duty anti-corrosion-coated steel pipe of the present invention, which was subjected to low polarization treatment by hydrofluoric acid treatment + Pt plating over a width of 50 cm, was produced. On the other hand, a steel pipe of only urethane coating having the same size and not wrapped with a titanium plate was used as a comparison.

2本の鋼管を東京湾の海中部に建てこみ、チタン被覆した鋼管はチタン側を陽極に鋼材を陰極側にし、定電圧電源で電圧を印加した。その際の低分極処理を施した部位が平均干潮面より−0.5mの水深に位置させた。設定電圧は、銀塩化銀電極基準で−0.85Vになるように設定し、1週間後毎に電圧を設定し直した。最初の1ヶ月間は電圧の変化が起こったが、それ以降は、両極の電圧は、2.8Vで一定していた。1年後、海中部をダイバーにより検査したが、比較の鋼管では、付着生物の下で鋼材の腐食が起こり、錆が厚く堆積していたが、本発明例では、白色のエレクトロコーティングが形成され、錆の発生は認められず、本発明の効果が認められた。   Two steel pipes were built in the sea part of Tokyo Bay, and titanium-coated steel pipes were applied with a constant voltage power source with the titanium side as the anode and the steel material as the cathode side. The portion subjected to the low polarization treatment at that time was positioned at a depth of -0.5 m from the average low tide surface. The set voltage was set to −0.85 V with respect to the silver / silver chloride electrode, and the voltage was reset every week. The voltage change occurred during the first month, but after that, the voltage across the electrodes was constant at 2.8V. One year later, the underwater part was inspected by a diver. In the comparative steel pipe, the steel material was corroded under the attached organism, and the rust was deposited thickly. In the present invention example, a white electrocoating was formed. The occurrence of rust was not observed, and the effect of the present invention was recognized.

本発明の構成例を示す図である。It is a figure which shows the structural example of this invention.

符号の説明Explanation of symbols

1 鋼材
2 中間樹脂層
3 高耐食金属
4 水面
5 陽極
6 陰極
7 定電圧電源

代理人 弁理士 椎 名 彊 他1

1 Steel 2 Intermediate resin layer 3 High corrosion resistance metal 4 Water surface 5 Anode 6 Cathode 7 Constant voltage power supply

Attorney Attorney Shiina and others 1

Claims (8)

鋼材表面の一部に、109 Ω・cm以上の体積抵抗率を有する中間樹脂接着層を0.1mm以上の厚みで被覆し、該接着層の上に高耐食金属層を積層した防食鋼材を、高耐食金属積層部と非積層部が同時に淡水又は海水環境に接する状態で、高耐食金属層を陽極、鋼材を陰極として直流電源を接続して鋼材を電気防食することを特徴とする効率的な電気防食方法。 An anticorrosion steel material in which an intermediate resin adhesive layer having a volume resistivity of 10 9 Ω · cm or more is coated on a part of the steel material surface with a thickness of 0.1 mm or more, and a highly corrosion-resistant metal layer is laminated on the adhesive layer. Efficient corrosion-proofing of steel materials by connecting a DC power source with a high-corrosion-resistant metal layer as an anode and a steel material as a cathode, while the high-corrosion-resistant metal laminated portion and non-laminated portion are simultaneously in contact with freshwater or seawater environments Safe anti-corrosion method. 前記鋼材の表面の電位が飽和KCl銀/塩化銀標準電極基準で−0.8V以下に維持することを特徴とする請求項1記載の電気防食方法。 2. The cathodic protection method according to claim 1, wherein the surface potential of the steel material is maintained at -0.8 V or less with respect to a saturated KCl silver / silver chloride standard electrode. 前記高耐食性金属層の全部又は一部が、チタニウム又はチタニウム合金からなる請求項1又は2に記載の電気防食方法。 The cathodic protection method according to claim 1 or 2, wherein all or part of the highly corrosion-resistant metal layer is made of titanium or a titanium alloy. 前記チタニウム又はチタニウム合金の表面が、低分極処理を施こされてなる請求項3記載の電気防食方法。 The cathodic protection method according to claim 3, wherein the surface of the titanium or titanium alloy is subjected to a low polarization treatment. 淡水又は海水環境に敷設される防食鋼材であって、敷設時に水面に位置する部分の鋼材表面に、109 Ω・cm以上の体積抵抗率を有する中間樹脂接着層を0.1mm以上の厚み被覆し、その上に高耐食金属層を積層し、該高耐食金属層及び鋼材に外部電源との接続部を有してなることを特徴とした防食鋼材。 A corrosion-resistant steel material laid in a freshwater or seawater environment, and an intermediate resin adhesive layer having a volume resistivity of 10 9 Ω · cm or more is coated to a thickness of 0.1 mm or more on the surface of the steel material located on the surface of the water when laid And a corrosion-resistant steel material comprising a high-corrosion-resistant metal layer laminated thereon, and the high-corrosion-resistant metal layer and the steel material having a connection portion with an external power source. 前記高耐食性金属層の全部又は一部が、チタニウム又はチタニウム合金からなる請求項5記載の防食鋼材。 6. The anticorrosion steel material according to claim 5, wherein all or part of the high corrosion resistance metal layer is made of titanium or a titanium alloy. 前記チタニウム又はチタニウム合金の表面が、低分極処理を施されてなる請求項6記載の防食鋼材。 The anticorrosion steel material according to claim 6, wherein the surface of the titanium or the titanium alloy is subjected to a low polarization treatment. 少なくとも請求項5〜7のいずれかに記載の防食鋼材を淡水又は海水環境に敷設してなる防食構造物であって、前記高耐食金属層を陽極、鋼材を陰極として、各接続部を介して外部電源に接続してなる防食構造物。
It is a corrosion-proof structure formed by laying at least the corrosion-resistant steel material according to any one of claims 5 to 7 in a freshwater or seawater environment, with the high corrosion-resistant metal layer as an anode and the steel material as a cathode, through each connection portion. An anticorrosion structure connected to an external power supply.
JP2003345218A 2003-10-03 2003-10-03 Efficient electrolytic corrosion protection method, corrosion-protected steel, and corrosion-protected structure Withdrawn JP2005113167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003345218A JP2005113167A (en) 2003-10-03 2003-10-03 Efficient electrolytic corrosion protection method, corrosion-protected steel, and corrosion-protected structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003345218A JP2005113167A (en) 2003-10-03 2003-10-03 Efficient electrolytic corrosion protection method, corrosion-protected steel, and corrosion-protected structure

Publications (1)

Publication Number Publication Date
JP2005113167A true JP2005113167A (en) 2005-04-28

Family

ID=34538556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003345218A Withdrawn JP2005113167A (en) 2003-10-03 2003-10-03 Efficient electrolytic corrosion protection method, corrosion-protected steel, and corrosion-protected structure

Country Status (1)

Country Link
JP (1) JP2005113167A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309630A (en) * 2007-06-14 2008-12-25 National Univ Corp Shizuoka Univ Device and method for measurement in liquid
CN102535522A (en) * 2012-02-14 2012-07-04 江苏海上龙源风力发电有限公司 Mounting technology of impressed current device of steel structure fan foundation in intertidal zone
KR101349237B1 (en) 2012-06-25 2014-01-13 한국과학기술원 Apparatus for preventing from corrosion
CN110901847A (en) * 2019-12-20 2020-03-24 山东交通学院 Marine marine organism attachment prevention and control system and monitoring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309630A (en) * 2007-06-14 2008-12-25 National Univ Corp Shizuoka Univ Device and method for measurement in liquid
CN102535522A (en) * 2012-02-14 2012-07-04 江苏海上龙源风力发电有限公司 Mounting technology of impressed current device of steel structure fan foundation in intertidal zone
CN102535522B (en) * 2012-02-14 2016-03-30 江苏海上龙源风力发电有限公司 Mounting technology of impressed current device of steel structure fan foundation in intertidal zone
KR101349237B1 (en) 2012-06-25 2014-01-13 한국과학기술원 Apparatus for preventing from corrosion
CN110901847A (en) * 2019-12-20 2020-03-24 山东交通学院 Marine marine organism attachment prevention and control system and monitoring method

Similar Documents

Publication Publication Date Title
AU680694B2 (en) Ionically conductive agent, system for cathodic protection of galvanically active metals, and method and apparatus for using same
JPS6334192B2 (en)
KR20110122797A (en) Corrosion protection arrangement for offshore steel structure and method for manufacturing it
CN106320336B (en) The corrosion protection apparatus and its application method at marine environment steel-pipe pile Tidal zone position
JP2005113167A (en) Efficient electrolytic corrosion protection method, corrosion-protected steel, and corrosion-protected structure
JPH0931675A (en) Electric corrosion protection method using multiple booster type anodic protection and device therefor
US4946570A (en) Ceramic coated strip anode for cathodic protection
US20040134795A1 (en) System and method for protecting metals
CN206110127U (en) Corrosion protection device at marine environment steel -pipe pile tidal range district position
JP5402177B2 (en) The galvanic anode body and the galvanic anode method
CN201158711Y (en) Platinum-tantalum netted auxiliary anode for harbor work
JPH06173287A (en) Corrosion resistant structure for offshore steel structure
KR200316562Y1 (en) Pile for ocean structure with ceramic coated layer
Ekhasomhi et al. Design of a cathodic protection system for 2,000 barrels crude oil surge tank using zinc anode
Yaro et al. Sacrificial anode cathodic protection of low carbon steel in sea water
JP5678504B2 (en) Corrosion protection method for offshore steel structures in tidal currents.
JP2003286591A (en) Process for protecting corrosion of offshore structure and offshore structure
Goldie et al. CATHODIC PROTECTION & COATINGS
JP5678505B2 (en) Method of forming anti-corrosion coating for offshore steel structures in tidal currents
JP2006029065A (en) Oceanic steel structure
Szeliga Cathodic protection of ductile iron and steel water pipelines
JP2005029997A (en) Long-term durable anti-corrosive structure of steel sheet pile and its construction method
Rohella et al. Cathodic protection system: Protecting under‐water steel piles of an iron ore berth
Mrdović et al. Applications Impressed Current Cathodic Protection of the Ship Hull
JP5387219B2 (en) Confirmation method of electrodeposition coating on marine steel structures

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205