JP5740851B2 - Steel sheet pile electrodeposition protection system - Google Patents

Steel sheet pile electrodeposition protection system Download PDF

Info

Publication number
JP5740851B2
JP5740851B2 JP2010142409A JP2010142409A JP5740851B2 JP 5740851 B2 JP5740851 B2 JP 5740851B2 JP 2010142409 A JP2010142409 A JP 2010142409A JP 2010142409 A JP2010142409 A JP 2010142409A JP 5740851 B2 JP5740851 B2 JP 5740851B2
Authority
JP
Japan
Prior art keywords
steel sheet
sheet pile
anode
electrodeposition
concave portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010142409A
Other languages
Japanese (ja)
Other versions
JP2012007197A (en
Inventor
達志 岩本
達志 岩本
靖庸 鈴木
靖庸 鈴木
健一 赤嶺
健一 赤嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2010142409A priority Critical patent/JP5740851B2/en
Publication of JP2012007197A publication Critical patent/JP2012007197A/en
Application granted granted Critical
Publication of JP5740851B2 publication Critical patent/JP5740851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)
  • Revetment (AREA)
  • Prevention Of Electric Corrosion (AREA)

Description

本発明は、鋼矢板の電着防食装置に関するものである。 The present invention relates to an electrodeposition anticorrosion apparatus for steel sheet piles.

一般に、岸壁等に護岸のために設けられる鋼矢板、橋梁や桟橋等に設けられる鋼管杭、或いはコンクリート構造物の表面を鉄鋼部材で被覆した鋼ケーソン等の海洋鋼構造物は、その一部が海水に水没した状態で設けられており、非常に錆が発生し易い環境に晒されている。   In general, some steel marine structures such as steel sheet piles provided on the quay for revetment, steel pipe piles provided on bridges and piers, etc., or steel caissons whose concrete structures are covered with steel members It is provided in a state where it is submerged in seawater, and is exposed to an environment where rust is likely to occur.

従って、このような海洋鋼構造物では、長期間の使用により錆が発生し減肉して強度が低下するため、補強工事或いは取替工事等を行う必要が生じるが、該補強工事或いは取替工事には多大の費用が掛かるため、電気防食、電着防食、或いはこれらの併用により、前記海洋鋼構造物の寿命延長を図ることが行われている。   Accordingly, in such marine steel structures, rust is generated due to long-term use and the thickness is reduced and the strength is reduced. Therefore, it is necessary to perform reinforcement work or replacement work. Since a great deal of cost is required for construction, it is attempted to extend the life of the marine steel structure by means of anticorrosion, anticorrosion, or a combination thereof.

図18は従来の海洋鋼構造物1への電着被膜形成の一例を示す概略図であって、海洋鋼構造物1の海水に水没した水没部2に対し所要の間隔をあけて陽極3を設け、該陽極3と海洋鋼構造物1との間に直流電源4を設けて直流電流を通電することにより、海水に溶存するカルシウムイオン(Ca2+)やマグネシウムイオン(Mg2+)等の陽イオンが陰極としての海洋鋼構造物1へ向かって海水中を泳動し、該海洋鋼構造物1において電子を得ることとなり、該海洋鋼構造物1の水没部2表面に、CaCO3 及びMg(OH)2 等を主成分とする防食電着被膜5(エレクトロコーティング層)が形成され、該防食電着被膜5により前記海洋鋼構造物1の水没部2が防食されるようになっている。 FIG. 18 is a schematic view showing an example of the conventional electrodeposition coating formation on the marine steel structure 1, and the anode 3 is disposed at a predetermined interval with respect to the submerged portion 2 submerged in the seawater of the marine steel structure 1. By providing a DC power source 4 between the anode 3 and the marine steel structure 1 and energizing a DC current, calcium ions (Ca 2+ ), magnesium ions (Mg 2+ ) and the like dissolved in seawater The cations migrate in the seawater toward the marine steel structure 1 as a cathode, and electrons are obtained in the marine steel structure 1. CaCO 3 and Mg are formed on the surface of the submerged portion 2 of the marine steel structure 1. An anticorrosion electrodeposition coating 5 (electrocoating layer) mainly composed of (OH) 2 or the like is formed, and the submerged portion 2 of the marine steel structure 1 is anticorrosion by the anticorrosion electrodeposition coating 5. .

従来の場合、前記陽極3としては丸棒や板といったごく一般的な形状の電極が用いられ、電着施工を行っているのが現状であった。   In the conventional case, as the anode 3, an electrode having a very general shape such as a round bar or a plate is used, and the current situation is that electrodeposition is performed.

尚、前述の如き海洋鋼構造物の防食方法の一般的技術水準を示すものとしては、例えば、特許文献1がある。   For example, Patent Document 1 shows a general technical level of the anticorrosion method for marine steel structures as described above.

特許第4146637号公報Japanese Patent No. 4146737

しかしながら、前述の如く、陽極3として丸棒や板といったごく一般的な形状の電極を用いて電着施工を行うのでは、特に海洋鋼構造物1が鋼矢板である場合には、該鋼矢板が凹凸形状を有していることから、陽極3との極間距離が不均一となって通電量に差が生じ、鋼矢板の表面に形成される防食電着被膜5の厚さに大きなバラつきが生じてしまうことが問題となっていた。   However, as described above, when electrodeposition is performed by using an electrode having a very general shape such as a round bar or a plate as the anode 3, particularly when the marine steel structure 1 is a steel sheet pile, the steel sheet pile is used. Has a concavo-convex shape, the distance between the anode 3 and the anode 3 is non-uniform, resulting in a difference in the energization amount, and the thickness of the anticorrosion electrodeposition coating 5 formed on the surface of the steel sheet pile varies greatly. It has become a problem to occur.

本発明は、斯かる実情に鑑み、鋼矢板の表面に均一な厚さの防食電着被膜を形成し得る鋼矢板の電着防食装置を提供しようとするものである。 In view of such circumstances, the present invention intends to provide a steel sheet pile electrodeposition anticorrosion apparatus capable of forming an anticorrosion electrodeposition film having a uniform thickness on the surface of the steel sheet pile.

本発明は、凹凸部が形成されるよう連結配置される鋼矢板の海水に水没した水没部に対し所要の間隔をあけて陽極を設け、該陽極と鋼矢板との間に直流電源を設けて直流電流を通電することにより、鋼矢板の水没部表面に防食電着被膜を形成する鋼矢板の電着防食装置において、
前記鋼矢板の凹部内面に倣うよう対向する少なくとも前面及び両側面の三面を有する陽極と、
前記連結配置される鋼矢板の凹部及び凸部の幅方向ピッチをP[cm]とし且つ該凹部及び凸部間の奥行をD[cm]とした場合に、前記陽極の前面及び両側面の三面と前記鋼矢板の凹部内面との極間距離c[cm]を
1≦c≦0.05×(P+2D)
に保持すると共に、前記鋼矢板の凸部表面に電流を流すための凹部からの前記陽極の両側面の張出量s[cm]を
0.75×D≦s≦1.25×D
に保持する保持手段と
を備え
前記保持手段は、岸壁側から海上へ張り出すよう設けられる設置用バーと、該設置用バーから吊り下げられて陽極が取り付けられる固定用バーと、該固定用バーの下端に取り付けられ海底に沈む錘とを備え、複数本の陽極を前記保持手段の設置用バー及び固定用バーにて一組にまとめたものを作成することにより、複数の凹部に対して一度に陽極の設置を行うよう構成したことを特徴とする鋼矢板の電着防食装置にかかるものである。
In the present invention , an anode is provided at a required interval with respect to a submerged portion of the steel sheet pile connected and arranged so that the uneven portion is formed, and a direct current power source is provided between the anode and the steel sheet pile. In the electrodeposition anticorrosion device for steel sheet piles, which forms an anticorrosion electrodeposition coating on the surface of the submerged portion of the steel sheet pile by passing a direct current,
An anode having at least three front and both side surfaces facing the concave inner surface of the steel sheet pile,
When the pitch in the width direction of the recesses and projections of the steel sheet piles to be connected is P [cm] and the depth between the recesses and projections is D [cm], the front and both sides of the anode The distance c [cm] between the electrode and the inner surface of the concave portion of the steel sheet pile
1 ≦ c ≦ 0.05 × (P + 2D)
And projecting amounts s [cm] of both side surfaces of the anode from the concave portion for allowing an electric current to flow through the convex surface of the steel sheet pile.
0.75 × D ≦ s ≦ 1.25 × D
And a holding means for holding the,
The holding means includes an installation bar provided so as to project from the quay side to the sea, a fixing bar suspended from the installation bar and attached with an anode, and attached to a lower end of the fixing bar and sinking to the seabed A plurality of anodes are combined into a set with a holding bar and a fixing bar for the holding means, and the anodes are installed at a time for a plurality of recesses. The present invention relates to a steel sheet pile electrodeposition anticorrosion device.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

前記鋼矢板の凹部内面に倣うよう対向する少なくとも前面及び両側面の三面を有する陽極を用い、前記連結配置される鋼矢板の凹部及び凸部の幅方向ピッチをP[cm]とし且つ該凹部及び凸部間の奥行をD[cm]とした場合に、保持手段によって、陽極の前面及び両側面の三面と鋼矢板の凹部内面との極間距離c[cm]が1≦c≦0.05×(P+2D)に保持されると共に、鋼矢板の凸部表面に電流を流すための凹部からの前記陽極の両側面の張出量s[cm]が0.75×D≦s≦1.25×Dに保持され、この状態で、前記陽極と鋼矢板との間に通電すると、従来のように、陽極として丸棒や板といったごく一般的な形状の電極を用いて電着施工を行うのとは異なり、鋼矢板が凹凸形状を有していても、通電量に差が生じにくくなり、鋼矢板の表面に形成される防食電着被膜の厚さに大きなバラつきが生じてしまうことが避けられる。   An anode having at least three front and opposite sides facing the inner surface of the concave portion of the steel sheet pile is used, the pitch in the width direction of the concave and convex portions of the steel sheet pile to be connected is P [cm], and the concave portion and When the depth between the convex portions is D [cm], the distance c [cm] between the three surfaces of the front surface and both side surfaces of the anode and the inner surface of the concave portion of the steel sheet pile is 1 ≦ c ≦ 0.05 × ( P + 2D), and the overhang amount s [cm] of both side surfaces of the anode from the concave portion for flowing current to the convex surface of the steel sheet pile is maintained at 0.75 × D ≦ s ≦ 1.25 × D. In this state, when an electric current is passed between the anode and the steel sheet pile, unlike the conventional method of performing electrodeposition using an electrode having a general shape such as a round bar or a plate as the anode, the steel sheet pile is used. Even if it has a concave-convex shape, it is difficult to make a difference in the amount of electricity applied to the surface of the steel sheet pile. It is avoided that the thickness of the formed anticorrosion electrodeposition film greatly varies.

本発明の鋼矢板の電着防食装置によれば、鋼矢板の表面に均一な厚さの防食電着被膜を形成し得、更に電着防食装置の施工を非常に効率良く行うことができるという優れた効果を奏し得る。 According to the electrodeposition anticorrosion device for steel sheet piles of the present invention, it is possible to form an anticorrosion electrodeposition coating having a uniform thickness on the surface of the steel sheet pile , and furthermore, it is possible to perform the electrodeposition anticorrosion device very efficiently. An excellent effect can be achieved.

本発明の実施例を示す概要構成平面図である。It is a general | schematic structure top view which shows the Example of this invention. 本発明の実施例の検証用として用いた解析ソフトウェアにおける解析プロセスを示すフローチャートである。It is a flowchart which shows the analysis process in the analysis software used for verification of the Example of this invention. (a)はJIS規格でZ形と称される鋼矢板を連結配置したZ形連結モデルにおいて、鋼矢板の凹部に断面矩形形状の陽極を配置した例を示す平面図、(b)は該Z形連結モデルにおける極間距離と電流密度の最大・最小値との関係を示す線図である。(A) is a plan view showing an example in which an anode having a rectangular cross section is arranged in a concave portion of a steel sheet pile in a Z-type connection model in which steel sheet piles called Z-shapes are connected and arranged according to JIS standards. It is a diagram which shows the relationship between the distance between poles and the maximum / minimum value of current density in a shape connection model. (a)はJIS規格でZ形と称される鋼矢板を連結配置したZ形連結モデルにおいて、鋼矢板の凹部に断面矩形形状の陽極を一部が張り出すよう配置した例を示す平面図、(b)は該Z形連結モデルにおける陽極の張出量と電流密度の最大・最小値との関係を示す線図である。(A) is a plan view showing an example in which an anode having a rectangular cross-section is arranged so as to partially protrude in a concave portion of a steel sheet pile in a Z-shaped connection model in which steel sheet piles called Z-shape are connected and arranged according to JIS standards; (B) is a diagram showing the relationship between the overhang amount of the anode and the maximum and minimum values of current density in the Z-shaped connection model. (a)はJIS規格でU形と称される鋼矢板を連結配置したU形連結モデルにおいて、鋼矢板の凹部に断面台形形状の陽極を配置した例を示す平面図、(b)は該U形連結モデルにおける極間距離と電流密度の最大・最小値との関係を示す線図である。(A) is a plan view showing an example in which a trapezoidal cross-sectional anode is disposed in a concave portion of a steel sheet pile in a U-shaped connection model in which steel sheet piles referred to as U shapes in JIS standards are connected and arranged; It is a diagram which shows the relationship between the distance between poles and the maximum / minimum value of current density in a shape connection model. (a)はJIS規格でU形と称される鋼矢板を連結配置したU形連結モデルにおいて、鋼矢板の凹部に断面台形形状の陽極を一部が張り出すよう配置した例を示す平面図、(b)は該U形連結モデルにおける陽極の張出量と電流密度の最大・最小値との関係を示す線図である。(A) is a plan view showing an example in which an anode having a trapezoidal cross section is arranged so as to partially protrude from a concave portion of a steel sheet pile in a U-shaped connection model in which steel sheet piles called U-shapes are connected and arranged according to JIS standards; (B) is a diagram showing the relationship between the protruding amount of the anode and the maximum and minimum values of current density in the U-shaped connection model. Z形連結モデルの1/2スケールの鋼矢板を作成し、実試験及び1/2スケールのシミュレーションで検証を行うために、鋼矢板の凹部に断面矩形形状の陽極を配置した例を示す平面図である。A plan view showing an example in which an anode having a rectangular cross section is arranged in a concave portion of a steel sheet pile in order to create a Z-linked model 1/2 scale steel sheet pile and verify it by a real test and a 1/2 scale simulation. It is. 図7に示す1/2スケールのZ形連結モデルにおける極間距離と過電圧分布のバラつきとの関係を示すプロット図である。It is a plot figure which shows the relationship between the distance between electrodes in the 1/2 scale Z-shaped connection model shown in FIG. 7, and the variation in overvoltage distribution. Z形連結モデルの1/2スケールの鋼矢板を作成し、実試験及び1/2スケールのシミュレーションで検証を行うために、鋼矢板の凹部に断面矩形形状の陽極を一部が張り出すよう配置した例を示す平面図である。In order to create a 1/2 scale steel sheet pile of the Z-shaped connection model, and to verify by actual test and 1/2 scale simulation, a part of the anode with a rectangular cross section is projected in the recess of the steel sheet pile FIG. 図9に示す1/2スケールのZ形連結モデルにおける陽極の張出量と過電圧分布のバラつきとの関係を示す線図である。FIG. 10 is a diagram showing the relationship between the amount of overhang of the anode and the variation in overvoltage distribution in the 1/2 scale Z-shaped connection model shown in FIG. 9. 本発明の実施例において、互いに隣接する陽極同士が接触した状態を示す概要構成平面図である。In the Example of this invention, it is a general | schematic structure top view which shows the state which the mutually adjacent anodes contacted. 本発明の実施例における陽極の断面形状を示す図であって、(a)台形で且つ中実の陽極を示す図、(b)は台形で且つ中空の陽極を示す図、(c)は網目構造の陽極を示す図、(d)は台形形状の下底の面を除去したコの字型の陽極を示す図である。It is a figure which shows the cross-sectional shape of the anode in the Example of this invention, Comprising: (a) The figure which shows a trapezoid and a solid anode, (b) is a figure which shows a trapezoid and a hollow anode, (c) is a mesh The figure which shows the anode of a structure, (d) is a figure which shows the U-shaped anode which removed the trapezoid-shaped bottom surface. 本発明の実施例における陽極の鋼矢板に対向する表面を示す図であって、(a)はメッシュ状の陽極を示す図、(b)は穴あき状の陽極を示す図である。It is a figure which shows the surface which opposes the steel sheet pile of the anode in the Example of this invention, Comprising: (a) is a figure which shows a mesh-shaped anode, (b) is a figure which shows a perforated anode. 本発明の実施例における保持手段を示す概略図であって、(a)は正面図、(b)は側面図である。It is the schematic which shows the holding means in the Example of this invention, Comprising: (a) is a front view, (b) is a side view. 本発明の実施例における保持手段による陽極を設置する手順の一例を示す側面図である。It is a side view which shows an example of the procedure which installs the anode by the holding means in the Example of this invention. 本発明の実施例における保持手段による陽極を設置する手順の他の例を示す側面図である。It is a side view which shows the other example of the procedure which installs the anode by the holding means in the Example of this invention. 本発明の実施例における複数本の陽極を保持手段の設置用バー及び固定用バーにて一組にまとめた例を示す平面図である。It is a top view which shows the example which put together the several anode in the Example of this invention into one set with the bar for installation of a holding means, and the bar for fixing. 従来の海洋鋼構造物への電着被膜形成の一例を示す概略図である。It is the schematic which shows an example of the electrodeposition film formation to the conventional marine steel structure.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明の実施例であって、凹部1Ya及び凸部1Ybが形成されるよう連結配置される海洋鋼構造物1としての鋼矢板1Yの海水に水没した水没部2に対し、該鋼矢板1Yの凹部1Ya内面に倣うよう対向する少なくとも前面3a及び両側面3bの三面を有する陽極3を用い、前記連結配置される鋼矢板1Yの凹部1Ya及び凸部1Ybの幅方向ピッチをP[cm]とし且つ該凹部1Ya及び凸部1Yb間の奥行をD[cm]とした場合に、前記陽極3の前面3a及び両側面3bの三面と前記鋼矢板1Yの凹部1Ya内面との極間距離c[cm]を1≦c≦0.05×(P+2D)に保持すると共に、前記鋼矢板1Yの凸部1Yb表面に電流を流すための凹部1Yaからの前記陽極3の両側面3bの張出量s[cm]を0.75×D≦s≦1.25×D以上に保持した状態で、前記陽極3と鋼矢板1Yとの間に直流電源4(図18参照)から通電するようにしたものである。   FIG. 1 shows an embodiment of the present invention, in which the steel submerged portion 2 submerged in seawater of a steel sheet pile 1Y as a marine steel structure 1 connected and arranged so as to form the concave portion 1Ya and the convex portion 1Yb. Using the anode 3 having at least three front surfaces 3a and both side surfaces 3b facing each other so as to follow the inner surface of the concave portion 1Ya of the sheet pile 1Y, the pitch in the width direction of the concave portion 1Ya and the convex portion 1Yb of the steel sheet pile 1Y to be connected is P And the depth between the concave portion 1Ya and the convex portion 1Yb is D [cm], the distance c between the three surfaces of the front surface 3a and both side surfaces 3b of the anode 3 and the inner surface of the concave portion 1Ya of the steel sheet pile 1Y [Cm] is maintained at 1 ≦ c ≦ 0.05 × (P + 2D), and the protruding amount s [of both side surfaces 3b of the anode 3 from the concave portion 1Ya for flowing current to the surface of the convex portion 1Yb of the steel sheet pile 1Y. cm] is 0.75 × D ≦ s ≦ 1.25 × D or more In the holding state, in which so as to energize the DC power supply 4 (see FIG. 18) between the anode 3 and the steel sheet pile 1Y.

ここで、本発明者等は、本実施例の有効性をシミュレーションで確認するために、市販の解析ソフトウェアである
「膜厚案内人 ver. 4.4」
(上村工業株式会社; http://www.uyemura.co.jp/uyemura/epps/index.htm)
を使用して検証を行った。該解析ソフトウェアである「膜厚案内人」は、解析モデルの作成及び解析結果の可視化を行うプリポストプロセッサと、解析を行う解析ソルバの二つのプログラムが必要であって、今回の検証に際しては、プリポストプロセッサとして
「Femap ver. 9.2/日本語版」(UGS Corp.)
という、Windows上で動作する有限要素法解析のモデル作成と解析結果の後処理(可視化)を行うソフトウェアを使用した。
Here, in order to confirm the effectiveness of the present embodiment by simulation, the present inventors etc. are commercially available analysis software “film thickness guider ver. 4.4”.
(Uemura Industrial Co., Ltd .; http://www.uyemura.co.jp/uyemura/epps/index.htm)
Was used for verification. The analysis software “film thickness guide” requires two programs: a pre-post processor that creates an analysis model and visualizes the analysis results, and an analysis solver that performs the analysis. As a processor "Femap ver. 9.2 / Japanese version" (UGS Corp.)
The software used to create a finite element analysis model that runs on Windows and to post-process (visualize) the analysis results was used.

前記解析ソフトウェアである「膜厚案内人」による解析プロセスは、図2のフローチャートに示す如く、入力データとして、海水の電気伝導度、解析領域、通電期間、全電流値、カソード分極、アノード分極、被膜の材料特性、解析設定パラメータをプリポストプロセッサへ入力し、該プリポストプロセッサにて鋼矢板1Yのモデルを作成し、該モデルをデータ変換して解析ソルバに入力し、電流密度分布解析を行い、該解析ソルバで得られたデータファイルを再度プリポストプロセッサに入力し、解析結果の表示を行うようになっており、表示された解析結果より電流密度分布に関する各種の検討が行えるようになっている。   As shown in the flowchart of FIG. 2, the analysis process by the “film thickness guide” that is the analysis software includes, as input data, the electrical conductivity of seawater, the analysis region, the energization period, the total current value, the cathode polarization, the anodic polarization, The material properties of the coating and analysis setting parameters are input to the pre-post processor, and a model of the steel sheet pile 1Y is created by the pre-post processor, the model is converted into data and input to the analysis solver, current density distribution analysis is performed, The data file obtained by the analysis solver is input again to the pre-post processor and the analysis result is displayed, and various examinations regarding the current density distribution can be performed from the displayed analysis result.

前記入力データの具体的数値は、
海水の電気伝導度:4.7882[S/m]
解析領域:40×20×1[m](幅×奥行×水深)の海水の領域
通電期間:864000[s](=10日)
全電流値:鋼矢板1Yでの電流密度の最大値が4.0[A/m2]となるように設定
被膜の電気化学当量:2.5 × 10-7[kg/C]
被膜の密度:1200[kg/m3
とした。
The specific numerical value of the input data is
Electrical conductivity of seawater: 4.7882 [S / m]
Analysis area: 40 x 20 x 1 [m] (width x depth x water depth) seawater area Energization period: 864000 [s] (= 10 days)
Total current value: set so that the maximum value of current density in steel sheet pile 1Y is 4.0 [A / m 2 ] Electrochemical equivalent of film: 2.5 × 10 −7 [kg / C]
Coating density: 1200 [kg / m 3 ]
It was.

因みに、前記カソード分極及びアノード分極とは、陰極としての鋼矢板1Y及び陽極3での過電圧−電流密度の関係式であり、各極の電気化学特性を決めるものである。前記過電圧とは、静止電位からずれた電位のことを指し、カソード分極の過電圧は静止電位よりどれくらい低い電位かを示し、アノード分極の過電圧は静止電位よりどれくらい高い電位かを示している。この分極データは水質・潮流等の環境や各極の材料特性によって異なり、今回の検証に際しては、カソード分極は実環境においてSS400鋼板の試験片を用いて採取し、アノード分極は室内の水槽実験において1[cm2]の亜鉛板を用いて測定したものを用いた。尚、本解析の結果とは無関係であるが、析出する被膜の物性に関するデータも入力する必要があるため、被膜にはMg(OH)2を仮定して、その電気化学当量(カソードに析出する量)及び密度を設定した。 Incidentally, the cathode polarization and the anode polarization are relational expressions of overvoltage-current density in the steel sheet pile 1Y and the anode 3 as cathodes, and determine the electrochemical characteristics of each electrode. The overvoltage refers to a potential that deviates from the resting potential, indicating how much lower the cathodic polarization overvoltage is than the resting potential, and how much higher the anodic polarization overvoltage is than the resting potential. This polarization data varies depending on the environment such as water quality / tidal current and material characteristics of each pole.In this verification, cathode polarization was collected using SS400 steel specimens in the actual environment, and anodic polarization was measured in an indoor aquarium experiment. What was measured using a 1 [cm 2 ] zinc plate was used. Although it is irrelevant to the result of this analysis, it is necessary to input data on the physical properties of the deposited film. Therefore, assuming that the film is Mg (OH) 2 , its electrochemical equivalent (deposited on the cathode) Amount) and density were set.

又、前記入力データとして使用する解析設定パラメータは、プリポストプロセッサ(Femap)に対しテキストコマンドを使用して、
1. コントロールデータ整数型
CNTI,次元,ガウス点数,収束繰返数,解法,解析内容,非線形判定値,CG法判定値,インコア,リスタート指定,節点移動指定
CNTI, 4, 2, 50, 4, 2, 3, 12, 1, 0, 0
2. コントロールデータ実数型
CNTR,深さ,全電流,非線形緩和係数,膜厚計算緩和係数
CNTR, 1.0,(前記全電流値), 0.99, 0.0
3. ステップデータ
STEP,連続番号,経過時間,時分割数,全電流,電位,出力制御,第2の電位設定,第3の電位設定,リスタートデータファイル出力
STEP, 1, 864000, 1, 0, 0, 0, 0, 0, 0
という形で入力した。尚、前記ステップデータにおける全電流に0を入力しているのは、コントロールデータ実数型において入力されたデータをそのまま使用するためである。又、前記ステップデータにおける第2の電位設定と第3の電位設定は、今回の場合使用しないため、0を入力している。
Moreover, the analysis setting parameter used as the input data is a text command for the pre-post processor (Femap),
1. Control data integer type
CNTI, dimension, number of Gauss points, number of convergence iterations, solution, analysis content, nonlinear judgment value, CG method judgment value, in-core, restart designation, nodal movement designation
CNTI, 4, 2, 50, 4, 2, 3, 12, 1, 0, 0
2. Control data real type
CNTR, depth, total current, nonlinear relaxation coefficient, film thickness calculation relaxation coefficient
CNTR, 1.0, (total current value), 0.99, 0.0
3. Step data
STEP, serial number, elapsed time, number of time divisions, total current, potential, output control, second potential setting, third potential setting, restart data file output
STEP, 1, 864000, 1, 0, 0, 0, 0, 0, 0
I entered it in the form of The reason why 0 is input to the total current in the step data is to use the data input in the control data real number type as it is. Further, the second potential setting and the third potential setting in the step data are not used in this case, so 0 is input.

そして、先ず、解析を簡略化するために、図3(a)に示す如く、JIS規格ではその断面形状からZ形と称される鋼矢板1Yを凹部1Ya及び凸部1Ybが形成されるよう連結配置したZ形連結モデルを作成し、該Z形連結モデルにおける鋼矢板1Yの凹部1Ya及び凸部1Ybの幅方向ピッチをP=40[cm]、奥行をD=34[cm]とし、このように凹凸形状が直角な鋼矢板1Yを、40×20×1[m]の解析領域の岸壁とみなした端面に設置すると共に、各陽極3による電流の重ね合わせを考慮するために、鋼矢板1Yの幅方向中央部における五箇所の凹部1Yaに断面矩形形状の陽極3を配置し、極間距離cを2,3,5,7,10,15[cm]の六条件で変化させた場合に、凹部1Ya三箇所(図3(a)中、仮想線で囲った箇所)の電流密度の最大・最小値及び分布を見ることで通電の均一性に関する評価を行った。   First, in order to simplify the analysis, as shown in FIG. 3A, the steel sheet pile 1Y, which is referred to as Z-shape in the JIS standard, is connected so that the concave portion 1Ya and the convex portion 1Yb are formed. An arranged Z-shaped connection model is created, and the pitch in the width direction of the concave portion 1Ya and the convex portion 1Yb of the steel sheet pile 1Y in the Z-shaped connection model is P = 40 [cm], and the depth is D = 34 [cm]. In order to install the steel sheet pile 1Y with a concavo-convex shape at right angles on the end face regarded as a quay in the analysis area of 40 × 20 × 1 [m], When the anode 3 having a rectangular cross section is arranged in the five concave portions 1Ya in the central portion in the width direction of the electrode, and the inter-electrode distance c is changed under six conditions of 2, 3, 5, 7, 10, 15 [cm] , The maximum current density of the three recesses 1 Ya (the portion surrounded by the phantom line in FIG. 3A) An evaluation of the uniformity of the current by looking at the small value and distribution was performed.

前記極間距離cが2,3,5[cm]の場合には、図3(b)に示す如く、鋼矢板1Yでの電流密度の最大値が4.0[A/m2]程度となるように陽極3一本あたりに通電する電流を5.6〜5.8[A]とすると、評価範囲の鋼矢板1Yの凹部1Ya(奥面及び両側面)の電流密度は略3.0〜4.0[A/m2]の範囲内に収まっていたが、前記極間距離cが7[cm]以上の場合には、鋼矢板1Yでの電流密度の最大値が4.0[A/m2]程度となるように陽極3一本あたりに通電する電流を5.0〜5.6[A]としても、鋼矢板1Yの凹部1Yaの奥隅部に電流が分布しなくなり電流密度の最小値が徐々に小さくなるため、電流密度分布のバラつきが大きくなっている。この要因としては、陽極3の鋼矢板1Y表面との幾何的関係及び対向面積があると考えられる。即ち、極間距離cが大きくなると、特に前記鋼矢板1Yの凹部1Yaの奥隅部と陽極3の距離がより大きくなる上に、鋼矢板1Yの凹部1Yaに対する陽極3の対向面積が小さいために電流密度が大きくなり、陽極3との距離が近い部分に電流が集中することによって、前記奥隅部に電流が流れにくくなるため、鋼矢板1Yの凹部1Yaでの電流密度のバラつきが大きくなったと考えられる。尚、前記陽極3に通電する電圧は1〜20[V]としてある。 When the inter-electrode distance c is 2, 3, 5 [cm], the maximum value of the current density at the steel sheet pile 1Y is about 4.0 [A / m 2 ] as shown in FIG. If the current applied to one anode 3 is 5.6 to 5.8 [A], the current density of the recess 1Ya (back surface and both side surfaces) of the steel sheet pile 1Y in the evaluation range is approximately 3.0 to 4.0 [A / m 2 ]. However, when the inter-electrode distance c is 7 [cm] or more, the anode 3 has a maximum current density of about 4.0 [A / m 2 ] in the steel sheet pile 1Y. Even if the current to be energized per wire is set to 5.0 to 5.6 [A], the current does not distribute in the back corner of the recess 1Ya of the steel sheet pile 1Y, and the minimum value of the current density gradually decreases. Is getting bigger. As this factor, it is considered that there is a geometric relationship with the steel sheet pile 1Y surface of the anode 3 and an opposing area. That is, when the inter-electrode distance c is increased, the distance between the back corner of the recess 1Ya of the steel sheet pile 1Y and the anode 3 is increased, and the area of the anode 3 facing the recess 1Ya of the steel sheet pile 1Y is small. Since the current density is increased and the current is concentrated in a portion where the distance from the anode 3 is short, it becomes difficult for the current to flow in the back corner portion, so that the variation in the current density in the concave portion 1Ya of the steel sheet pile 1Y has increased. Conceivable. The voltage applied to the anode 3 is 1 to 20 [V].

続いて、図4(a)に示す如く、前記Z形連結モデルにおける鋼矢板1Yの凹部1Ya及び凸部1Ybの幅方向ピッチをP=40[cm]、奥行をD=34[cm]として凹凸形状が直角な鋼矢板1Yを、40×20×1[m]の解析領域の岸壁とみなした端面に設置すると共に、各陽極3による電流の重ね合わせを考慮するために、鋼矢板1Yの幅方向中央部における五箇所の凹部1Yaに断面矩形形状の陽極3を一部が張り出すよう配置したモデルを作成し、前記解析結果(図3参照)を踏まえて極間距離cを5[cm]に固定した状態で、陽極3の張出量sを0,10,20,30,40,50,70,100[cm]の八条件で変化させた場合に、凹部1Ya三箇所及び凸部1Yb二箇所(図4(a)中、仮想線で囲った箇所)の電流密度の最大・最小値及び分布を見ることで通電の均一性に関する評価を行った。   Subsequently, as shown in FIG. 4 (a), the concave and convex portions 1Ya and 1Yb of the steel sheet pile 1Y in the Z-shaped connection model have a pitch in the width direction of P = 40 [cm] and a depth of D = 34 [cm]. In order to install the steel sheet pile 1Y having a right shape on the end face regarded as a quay in the analysis area of 40 × 20 × 1 [m], and to consider the superposition of currents by the anodes 3, the width of the steel sheet pile 1Y A model in which the anode 3 having a rectangular cross section is arranged so as to partially protrude in the five concave portions 1Ya in the center in the direction is created, and the distance c between the electrodes is 5 [cm] based on the analysis result (see FIG. 3). When the protruding amount s of the anode 3 is changed under eight conditions of 0, 10, 20, 30, 40, 50, 70, and 100 [cm] in a fixed state, the three recesses 1Ya and the two protrusions 1Yb By checking the maximum and minimum values and distribution of the current density (the part surrounded by the phantom line in FIG. 4A), Evaluation on uniformity was performed.

前記張出量sが0,10,20[cm]の場合には、図4(b)に示す如く、鋼矢板1Yでの電流密度の最大値が4.0[A/m2]程度となるように陽極3一本あたりに通電する電流を6.0[A]としても、評価範囲の鋼矢板1Yの凹部1Ya(奥面及び両側面)及び凸部1Ybの電流密度分布のバラつきが大きくなっているが、前記陽極3の張出量sを30[cm]以上にした場合には、鋼矢板1Yでの電流密度の最大値が4.0[A/m2]程度となるように陽極3一本あたりに通電する電流を6.0〜6.4[A]とすると、電流密度の最大・最小値の振れ幅の範囲はあまり変化しないという結果が得られた。従って、物量面を考慮すると、陽極3の張出量sは鋼矢板1Yの凸部1Ybから30[cm]に設定するのが最適であると考えられる。 When the overhang s is 0, 10, 20 [cm], the maximum value of the current density in the steel sheet pile 1Y is about 4.0 [A / m 2 ] as shown in FIG. Even if the current applied to each anode 3 is 6.0 [A], the variation in the current density distribution of the concave portion 1Ya (back surface and both side surfaces) and the convex portion 1Yb of the steel sheet pile 1Y in the evaluation range is large. When the protruding amount s of the anode 3 is set to 30 [cm] or more, the maximum value of the current density in the steel sheet pile 1Y is about 4.0 [A / m 2 ] per one anode 3 Assuming that the current to be applied is 6.0 to 6.4 [A], the result shows that the range of the fluctuation range of the maximum and minimum values of the current density does not change much. Therefore, in view of the quantity surface, it is considered optimal to set the protruding amount s of the anode 3 to 30 [cm] from the convex portion 1Yb of the steel sheet pile 1Y.

次に、図5(a)に示す如く、JIS規格ではその断面形状からU形と称される鋼矢板1Yを凹部1Ya及び凸部1Ybが形成されるよう連結配置したU形連結モデルを作成し、該U形連結モデルにおける鋼矢板1Yの凹部1Ya及び凸部1Ybの幅方向ピッチをP=40[cm](凹部1Yaの最奥部と凸部1Ybの先端部の幅が共に30.6[cm]で奥行方向における傾斜部の幅が9.4[cm])、奥行をD=30[cm]とし、このように凹凸形状が台形の鋼矢板1Yを、40×20×1[m]の解析領域の岸壁とみなした端面に設置すると共に、各陽極3による電流の重ね合わせを考慮するために、鋼矢板1Yの幅方向中央部における五箇所の凹部1Yaに断面台形形状の陽極3を配置したモデルを作成し、極間距離cを2,3,5,7,10,15[cm]の六条件で変化させた場合に、凹部1Ya三箇所(図5(a)中、仮想線で囲った箇所)の電流密度の最大・最小値及び分布を見ることで通電の均一性に関する評価を行った。   Next, as shown in FIG. 5 (a), a U-shaped connection model is created in which steel sheet piles 1Y, which are referred to as U shapes in the JIS standard, are connected and arranged so that the concave portions 1Ya and the convex portions 1Yb are formed. The pitch in the width direction of the concave portion 1Ya and the convex portion 1Yb of the steel sheet pile 1Y in the U-shaped connection model is P = 40 [cm] (the innermost width of the concave portion 1Ya and the width of the tip portion of the convex portion 1Yb are both 30.6 [cm]. The depth of the inclined portion in the depth direction is 9.4 [cm]), the depth is D = 30 [cm], and the concave and convex trapezoidal steel sheet pile 1Y has an analysis area of 40 × 20 × 1 [m]. A model in which the trapezoidal shaped anodes 3 are arranged in the five recesses 1Ya in the central portion in the width direction of the steel sheet pile 1Y in order to be installed on the end face regarded as a quay and to consider the superposition of currents by the respective anodes 3 Created and changed the distance c between the six conditions of 2, 3, 5, 7, 10, 15 [cm] When is a recess 1Ya three locations were evaluated regarding the uniformity of current by looking at the maximum and minimum values and the distribution of the current density (in FIG. 5 (a), the enclosed portion in phantom).

このU形連結モデルでは、前記極間距離cが2,3,5,7[cm]の場合には、図5(b)に示す如く、鋼矢板1Yでの電流密度の最大値が4.0[A/m2]程度となるように陽極3一本あたりに通電する電流を5.0[A]とすると、評価範囲の鋼矢板1Yの凹部1Ya(奥面及び両側面)の電流密度は略3.0〜4.0[A/m2]の範囲内に収まっていたが、前記極間距離cが10[cm]以上の場合には、鋼矢板1Yでの電流密度の最大値が4.0[A/m2]程度となるように陽極3一本あたりに通電する電流を4.4〜4.8[A]としても、鋼矢板1Yの凹部1Yaの奥隅部に電流が分布しなくなり、前述と同様、電流密度分布のバラつきが大きくなっている。 In this U-shaped connection model, when the inter-electrode distance c is 2, 3, 5, 7 [cm], the maximum value of the current density in the steel sheet pile 1Y is 4.0 [as shown in FIG. Assuming that the current applied to each anode 3 is 5.0 [A] so as to be about A / m 2 ], the current density of the concave portion 1Ya (back surface and both side surfaces) of the steel sheet pile 1Y in the evaluation range is approximately 3.0 to Although it was within the range of 4.0 [A / m 2 ], when the inter-electrode distance c is 10 [cm] or more, the maximum value of the current density in the steel sheet pile 1Y is 4.0 [A / m 2 ]. Even if the current applied to one anode 3 so as to be about 4.4 to 4.8 [A], no current is distributed in the back corner of the recess 1Ya of the steel sheet pile 1Y, and the current density distribution varies as described above. Is getting bigger.

続いて、図6(a)に示す如く、前記U形連結モデルにおける鋼矢板1Yの凹部1Ya及び凸部1Ybの幅方向ピッチをP=40[cm](凹部1Yaの最奥部と凸部1Ybの先端部の幅が共に30.6[cm]で奥行方向における傾斜部の幅が9.4[cm])、奥行をD=30[cm]として凹凸形状が台形の鋼矢板1Yを、40×20×1[m]の解析領域の岸壁とみなした端面に設置すると共に、各陽極3による電流の重ね合わせを考慮するために、鋼矢板1Yの幅方向中央部における五箇所の凹部1Yaに断面台形形状の陽極3を配置したモデルを作成し、前記解析結果(図5参照)を踏まえて極間距離cを5[cm]に固定した状態で、陽極3の張出量sを0,10,20,30,40,50[cm]の六条件で変化させた場合に、凹部1Ya三箇所及び凸部1Yb二箇所(図6(a)中、仮想線で囲った箇所)の電流密度の最大・最小値及び分布を見ることで通電の均一性に関する評価を行った。   Subsequently, as shown in FIG. 6A, the pitch in the width direction of the concave portion 1Ya and the convex portion 1Yb of the steel sheet pile 1Y in the U-shaped connection model is P = 40 [cm] (the innermost portion of the concave portion 1Ya and the convex portion 1Yb). The steel sheet pile 1Y having a trapezoidal shape with a depth of D = 30 [cm] and a depth of D = 30 [cm] is 40 × 20 × 1. In order to install on the end face regarded as the quay of the analysis area of [m] and to consider the superposition of currents by the respective anodes 3, the five concave portions 1 </ b> Ya at the central portion in the width direction of the steel sheet pile 1 </ b> Y A model in which the anode 3 is arranged is created, and the overhang amount s of the anode 3 is set to 0, 10, 20, while the inter-electrode distance c is fixed to 5 [cm] based on the analysis result (see FIG. 5). When changed under six conditions of 30, 40, 50 [cm], three concave portions 1Ya and two convex portions 1Yb (FIG. 6). In (a), the evaluation of the uniformity of energization was performed by observing the maximum and minimum values and the distribution of the current density in the area surrounded by the phantom line.

このU形連結モデルでは、前記張出量sが0,10,20[cm]の場合には、図6(b)に示す如く、鋼矢板1Yでの電流密度の最大値が4.0[A/m2]程度となるように陽極3一本あたりに通電する電流を5.0〜5.4[A]としても、評価範囲の鋼矢板1Yの凹部1Ya(奥面及び両側面)及び凸部1Ybの電流密度分布のバラつきが大きくなっているが、前記陽極3の張出量sを30[cm]以上にした場合には、鋼矢板1Yでの電流密度の最大値が4.0[A/m2]程度となるように陽極3一本あたりに通電する電流を5.4〜5.6[A]とすると、電流密度の最大・最小値の振れ幅の範囲はあまり変化しないという結果が得られた。従って、物量面を考慮すると、陽極3の張出量sは鋼矢板1Yの凸部1Ybから30[cm]に設定するのが最適であると考えられる。 In this U-shaped connection model, when the overhang s is 0, 10, 20 [cm], the maximum value of the current density in the steel sheet pile 1Y is 4.0 [A / m 2 ] Even if the current applied to one anode 3 so as to be about 5.0 to 5.4 [A], the current density of the concave portion 1Ya (back surface and both side surfaces) and the convex portion 1Yb of the steel sheet pile 1Y in the evaluation range Although the variation in distribution is large, when the protruding amount s of the anode 3 is set to 30 [cm] or more, the maximum value of the current density in the steel sheet pile 1Y is about 4.0 [A / m 2 ]. As can be seen, when the current applied to one anode 3 is 5.4 to 5.6 [A], the result shows that the range of the amplitude range of the maximum and minimum values of the current density does not change much. Therefore, in view of the quantity surface, it is considered optimal to set the protruding amount s of the anode 3 to 30 [cm] from the convex portion 1Yb of the steel sheet pile 1Y.

以上より、前記Z形連結モデルとU形連結モデルのどちらのモデルにおいても、前記陽極3の前面3a及び両側面3bの三面と前記鋼矢板1Yの凹部1Ya内面との極間距離cを5[cm]以下に保持すると共に、前記鋼矢板1Yの凸部1Yb表面に電流を流すための凹部1Yaからの前記陽極3の両側面3bの張出量sを30[cm]以上に保持した状態で、前記陽極3と鋼矢板1Yとの間に通電することが好ましく、この最適条件において、鋼矢板1Yの水没部2表面における電流密度を2.5〜4.0[A/m2]の範囲内に収め、鋼矢板1Yの表面に均一な厚さの防食電着被膜5(図18参照)を形成できるというシミュレーション結果が得られた。 As described above, in both the Z-shaped connection model and the U-shaped connection model, the inter-electrode distance c between the three surfaces of the front surface 3a and both side surfaces 3b of the anode 3 and the inner surface of the recess 1Ya of the steel sheet pile 1Y is 5 [ in the state where the projecting amount s of both side surfaces 3b of the anode 3 from the concave portion 1Ya for passing an electric current to the surface of the convex portion 1Yb of the steel sheet pile 1Y is maintained at 30 [cm] or more. It is preferable to energize between the anode 3 and the steel sheet pile 1Y. Under this optimum condition, the current density on the surface of the submerged portion 2 of the steel sheet pile 1Y is within a range of 2.5 to 4.0 [A / m 2 ], The simulation result that the anti-corrosion electrodeposition coating 5 (refer FIG. 18) of uniform thickness was formed on the surface of the steel sheet pile 1Y was obtained.

但し、上記のシミュレーション結果が1/1スケールの実際の鋼矢板1Yに必ずしも合致するとは限らないため、図3及び図4に示すZ形連結モデルの1/2スケールの鋼矢板1Yを作成し、実際の試験による実測及び1/2スケールのシミュレーションを行い、それぞれの結果が合致するか否かの検証を行った。   However, since the above simulation results do not necessarily match the actual steel sheet pile 1Y of 1/1 scale, create a 1/2 scale steel sheet pile 1Y of the Z-shaped connection model shown in FIGS. Actual measurement by actual test and 1/2 scale simulation were performed, and it was verified whether each result matched.

図7に示す如く、内法で幅が134[cm]、奥行が93[cm]、深さ21[cm]の容器内に海水をおよそ七割の深さまで注ぎ、該海水中に、凹部1Ya及び凸部1Ybの幅方向ピッチをP=40/2=20[cm]、奥行をD=34/2=17[cm]とした凹凸形状が直角な1/2スケールの鋼矢板1Y(材質はSS400)を設置すると共に、該鋼矢板1Yの凹部1Yaに断面矩形形状のアルミニウム製の陽極3を配置し、該陽極3及び鋼矢板1Y間に図示していない直流電源(20[A]、12[V])を接続し、極間距離cを変化させた場合に、凹部1Yaの内面複数箇所における過電圧分布のバラつきを実測する一方、シミュレーションを行った。尚、電流密度のバラつきと、過電圧(電位)分布のバラつきとは等価であるため、過電圧分布の最大値と最小値の差をバラつきの指標とした。   As shown in FIG. 7, seawater is poured into a container having a width of 134 [cm], a depth of 93 [cm], and a depth of 21 [cm] by an internal method to a depth of about 70%. And the width direction pitch of the convex portion 1Yb is P = 40/2 = 20 [cm], and the depth is D = 34/2 = 17 [cm]. SS400) and an aluminum anode 3 having a rectangular cross section are disposed in the recess 1Ya of the steel sheet pile 1Y, and a DC power source (20 [A], 12) not shown between the anode 3 and the steel sheet pile 1Y is disposed. When [V]) is connected and the inter-electrode distance c is changed, the variation of the overvoltage distribution at a plurality of locations on the inner surface of the recess 1Ya is measured while a simulation is performed. Since the variation in current density is equivalent to the variation in overvoltage (potential) distribution, the difference between the maximum value and the minimum value in the overvoltage distribution was used as an index for variation.

図7に示す1/2スケールのZ形連結モデルにおける極間距離cと過電圧分布のバラつきとの関係は、図8のプロット図に示す如く、実測とシミュレーションのいずれの場合も、略比例関係にあり、実測とシミュレーションのそれぞれの結果は合致することが確認された。即ち、1/1スケールの実際の鋼矢板1Yに関しても、シミュレーション結果は充分利用できるものと予想される。そして、図7に示す1/2スケールのZ形連結モデルにおいて、過電圧分布のバラつきを抑えるには、極間距離cを3[cm]以下に保持することが有効であると考えられ、1/1スケールの実際の鋼矢板1Yに関して極間距離cを5[cm]以下に保持することを併せて考慮すると、Z形連結モデル並びにU形連結モデルのいずれにおいても、極間距離cは、前記連結配置される鋼矢板1Yの凹部1Ya及び凸部1Ybの幅方向ピッチPと該凹部1Ya及び凸部1Yb間の奥行Dとに応じて、c≦0.05×(P+2D)という式から導き出せるという結論に至った。但し、実際の施工上、前記極間距離cを限りなくゼロに近づけることは、陽極3が鋼矢板1Yに接触してしまう問題から技術的に困難であるが、今回の試験では、極間距離cを1[cm]まで狭めても陽極3が鋼矢板1Yに接触してしまう心配がないことが確認されているため、極間距離cの下限値を1[cm]とし、1≦c≦0.05×(P+2D)とすれば良い。尚、0.05×(P+2D)≦1となるような規格の鋼矢板は存在しないため、この式は成立する。   As shown in the plot diagram of FIG. 8, the relationship between the inter-electrode distance c and the variation of the overvoltage distribution in the Z scale coupled model of 1/2 scale shown in FIG. 7 is substantially proportional in both the actual measurement and the simulation. Yes, it was confirmed that the results of actual measurement and simulation matched. That is, it is expected that the simulation results can be sufficiently used for the actual steel sheet pile 1Y of 1/1 scale. In the Z scale connected model of 1/2 scale shown in FIG. 7, it is considered effective to keep the distance c between the electrodes at 3 [cm] or less in order to suppress the variation in the overvoltage distribution. Considering that the distance c between the poles of an actual steel sheet pile 1Y of one scale is kept at 5 [cm] or less, the distance c between the poles in both the Z-shaped connection model and the U-shaped connection model is According to the conclusion that c ≦ 0.05 × (P + 2D) can be derived according to the width direction pitch P of the concave portion 1Ya and the convex portion 1Yb of the steel sheet pile 1Y to be connected and the depth D between the concave portion 1Ya and the convex portion 1Yb. It came. However, in actual construction, it is technically difficult to make the inter-electrode distance c as close to zero as possible because of the problem that the anode 3 is in contact with the steel sheet pile 1Y. Since it has been confirmed that there is no fear of the anode 3 coming into contact with the steel sheet pile 1Y even if c is narrowed to 1 [cm], the lower limit of the inter-electrode distance c is set to 1 [cm], and 1 ≦ c ≦ It may be 0.05 × (P + 2D). In addition, since there is no steel sheet pile of a standard that satisfies 0.05 × (P + 2D) ≦ 1, this equation is established.

同様に、図9に示す如く、内法で幅が134[cm]、奥行が93[cm]、深さ21[cm]の容器内に海水をおよそ七割の深さまで注ぎ、該海水中に、凹部1Ya及び凸部1Ybの幅方向ピッチをP=40/2=20[cm]、奥行をD=34/2=17[cm]とした凹凸形状が直角な1/2スケールの鋼矢板1Y(材質はSS400)を設置すると共に、該鋼矢板1Yの凹部1Yaに断面矩形形状のアルミニウム製の陽極3を配置し、該陽極3及び鋼矢板1Y間に図示していない直流電源(20[A]、12[V])を接続し、極間距離cを変化させずに固定した状態で、陽極3の張出量sを変化させた場合に、凹部1Yaの内面複数箇所及び凸部1Ybの表面複数箇所の過電圧分布のバラつきを実測する一方、シミュレーションを行った。尚、極間距離cは1≦c≦0.05×(P+2D)という式に基づき、0.05×(20+2×17)=2.7≒3[cm]に設定した。   Similarly, as shown in FIG. 9, seawater is poured into a container having a width of 134 [cm], a depth of 93 [cm], and a depth of 21 [cm] by an internal method to a depth of approximately 70%, In addition, the concave and convex portions 1Ya and the convex portions 1Yb have a width direction pitch of P = 40/2 = 20 [cm] and a depth of D = 34/2 = 17 [cm]. (The material is SS400) and an aluminum anode 3 having a rectangular cross section is disposed in the recess 1Ya of the steel sheet pile 1Y, and a DC power source (20 [A] is not shown between the anode 3 and the steel sheet pile 1Y. , 12 [V]), and when the overhang amount s of the anode 3 is changed in a state where the distance c between the electrodes is fixed without being changed, the plurality of inner surfaces of the concave portion 1Ya and the convex portions 1Yb While actually measuring the variation of the overvoltage distribution at multiple locations on the surface, simulation was performed. The inter-electrode distance c was set to 0.05 × (20 + 2 × 17) = 2.7≈3 [cm] based on the formula 1 ≦ c ≦ 0.05 × (P + 2D).

図9に示す1/2スケールのZ形連結モデルにおける陽極3の張出量sと過電圧分布のバラつきとの関係は、図10のプロット図に示す如く、陽極3の張出量sが14[cm]未満では陽極3の張出量sの増加に伴って過電圧分布のバラつきが減少し、陽極3の張出量sが14[cm]以上では過電圧分布のバラつきが変化せず、実測とシミュレーションのそれぞれの結果は合致することが確認された。即ち、1/1スケールの実際の鋼矢板1Yに関しても、シミュレーション結果は充分利用できるものと予想される。そして、図9に示す1/2スケールのZ形連結モデルにおいて、過電圧分布のバラつきを抑えるには、陽極3の張出量sを14[cm]以上に保持することが有効であると考えられ、1/1スケールの実際の鋼矢板1Yに関して陽極3の張出量sを30[cm]以上に保持することを併せて考慮すると、Z形連結モデル並びにU形連結モデルのいずれにおいても、陽極3の張出量sは、前記連結配置される鋼矢板1Yの凹部1Ya及び凸部1Yb間の奥行Dに応じて、0.75×D≦sという式から導き出せるという結論に至った。但し、実際の施工上、前記陽極3の張出量sを限りなく長くすることは、無駄であるばかりでなく、U形連結モデルの場合、互いに隣接する陽極3同士が接触してしまう問題が生じることから、上限を決める必要がある。前記陽極3の張出量sは、鋼矢板1Yの形状によっても異なるが、互いに隣接する陽極3同士が最も接触しやすいのは、前記連結配置される鋼矢板1Yの凹部1Ya及び凸部1Ybの傾斜が規格上最も緩やかな鋼矢板1Yを対象とした場合であり、該鋼矢板1Yは、「鋼管杭・鋼矢板技術協会」において規定されているハット型鋼矢板でNSP-10Hという形式のものに相当する。因みに、ハット型鋼矢板は継ぎ手位置及び組立て方が異なるだけで、形状はU形連結モデルと略同等と考えることができる。前記NSP-10Hという形式の鋼矢板1Yにおいては、図11に示す如く、凹部1Ya及び凸部1Ybの幅方向ピッチはP=45[cm]、奥行はD=23[cm]、凸部1Ybの幅は32.2[cm]、凹部1Yaの開口幅は57.8[cm]であるため、極間距離cを1[cm]まで狭めた場合、台形形状の陽極3の寸法関係は、
(22+s):22=((90−30.2)/2):((55.8−30.2)/2)
(22+s):22=29.9:12.8
となり、互いに隣接する陽極3が接する場合の張出量sは、
s=29.4[cm]
となる。これを、鋼矢板1Yの奥行Dを基準として表すと、
s=1.278×D
となるため、前記陽極3の張出量sの上限値としては、
s≒1.25×D
とすれば、少なくとも「鋼管杭・鋼矢板技術協会」において規定されているどのような鋼矢板1Yに適用したとしても、互いに隣接する陽極3同士が接触してしまう問題が生じることはなくなるため、前記陽極3の張出量sの範囲は、0.75×D≦s≦1.25×Dとすれば良い。尚、Z形連結モデルの鋼矢板1Yの場合、前記陽極3の張出量sを限りなく長くしても、互いに隣接する陽極3同士が接触することはないが、現実問題として同等の張出量sとする。
The relationship between the overhanging amount s of the anode 3 and the variation in the overvoltage distribution in the 1/2 scale Z-shaped connection model shown in FIG. 9 is shown in the plot diagram of FIG. If it is less than cm], the variation in the overvoltage distribution decreases with an increase in the overhang amount s of the anode 3, and if the overhang amount s of the anode 3 is 14 [cm] or more, the variation in the overvoltage distribution does not change. It was confirmed that the results of each were consistent. That is, it is expected that the simulation results can be sufficiently used for the actual steel sheet pile 1Y of 1/1 scale. In the 1/2 scale Z-shaped connection model shown in FIG. 9, it is considered effective to keep the overhang amount s of the anode 3 at 14 [cm] or more in order to suppress the variation in the overvoltage distribution. In consideration of maintaining the protruding amount s of the anode 3 at 30 [cm] or more with respect to the actual steel sheet pile 1Y of 1/1 scale, both the Z-shaped connection model and the U-shaped connection model It came to the conclusion that the overhang amount s of 3 can be derived from the equation 0.75 × D ≦ s according to the depth D between the concave portion 1Ya and the convex portion 1Yb of the steel sheet pile 1Y connected and arranged. However, in actual construction, it is not only unnecessary to lengthen the protruding amount s of the anode 3 as much as possible. In the case of a U-shaped connection model, there is a problem that the anodes 3 adjacent to each other come into contact with each other. Because it occurs, it is necessary to decide the upper limit. Although the protruding amount s of the anode 3 varies depending on the shape of the steel sheet pile 1Y, the adjacent anodes 3 are most likely to come into contact with each other in the recesses 1Ya and the projections 1Yb of the steel sheet piles 1Y that are connected and arranged. This is a case where the steel sheet pile 1Y whose inclination is the most gradual in the standard is targeted. Equivalent to. Incidentally, the shape of the hat-type steel sheet pile can be considered to be substantially the same as that of the U-shaped connection model, except that the joint position and the assembly method are different. In the steel sheet pile 1Y of the type NSP-10H, as shown in FIG. 11, the pitch in the width direction of the concave portion 1Ya and the convex portion 1Yb is P = 45 [cm], the depth is D = 23 [cm], and the convex portion 1Yb Since the width is 32.2 [cm] and the opening width of the recess 1 Ya is 57.8 [cm], when the inter-electrode distance c is reduced to 1 [cm], the dimensional relationship of the trapezoidal anode 3 is
(22 + s): 22 = ((90-30.2) / 2): ((55.8-30.2) / 2)
(22 + s): 22 = 29.9: 12.8
The overhang amount s when the adjacent anodes 3 are in contact with each other is
s = 29.4 [cm]
It becomes. When this is expressed with reference to the depth D of the steel sheet pile 1Y,
s = 1.278 × D
Therefore, as the upper limit value of the overhang amount s of the anode 3,
s ≒ 1.25 × D
If so, even if applied to any steel sheet pile 1Y specified in at least "steel pipe pile and steel sheet pile technology association", there will be no problem that the adjacent anodes 3 contact each other, The range of the overhang s of the anode 3 may be 0.75 × D ≦ s ≦ 1.25 × D. In addition, in the case of the steel sheet pile 1Y of the Z-shaped connection model, even if the protruding amount s of the anode 3 is made as long as possible, the adjacent anodes 3 do not come into contact with each other. Let the amount be s.

上述の如く、極間距離cに関する1≦c≦0.05×(P+2D)という式と、陽極3の張出量sに関する0.75×D≦s≦1.25×Dという式は、それぞれ誤差はあるものの、連結配置される鋼矢板1Yの凹部1Ya及び凸部1Ybの幅方向ピッチPと、該凹部1Ya及び凸部1Yb間の奥行Dとに応じて、鋼矢板1Yの表面に均一な厚さの防食電着被膜5を形成する上での指標となり得るものである。   As described above, the formula 1 ≦ c ≦ 0.05 × (P + 2D) relating to the inter-electrode distance c and the formula 0.75 × D ≦ s ≦ 1.25 × D relating to the overhang amount s of the anode 3 are connected, although there are errors. Corrosion-proof electrodeposition with a uniform thickness on the surface of the steel sheet pile 1Y according to the width direction pitch P of the concave portion 1Ya and the convex portion 1Yb of the steel sheet pile 1Y and the depth D between the concave portion 1Ya and the convex portion 1Yb. It can serve as an index for forming the film 5.

一方、前記陽極3の材質に関しては、溶解性・不溶解性は問わない。可能であれば港湾で使用される一般的な不溶解性のものが好ましいが、前記極間距離cを狭めに設定し、陽極3が崩壊しないようにする等、通電中の消耗分を考慮して陽極3を作成する場合には、溶解性材料を用いてもよい。   On the other hand, the material of the anode 3 may be either soluble or insoluble. If possible, a general insoluble material used in harbors is preferable. However, considering the consumed amount during energization, such as setting the inter-electrode distance c narrow and preventing the anode 3 from collapsing. Thus, when the anode 3 is formed, a soluble material may be used.

前記陽極3の形状に関しては、図12(a)に示す如く、台形で且つ中実のものとすることができるが、陽極3の形状は表面形状のみが重要であるため、図12(b)に示す如く、台形で且つ中空の陽極3でも良く、このような陽極3を用いれば軽量化により施工も容易なものになると考えられる。又、図12(c)のような網目構造の陽極3を用いることも可能である。更に又、図6(a)に示すU形連結モデルにおいて、台形形状の陽極3の上底の面と下底の面の電流密度分布を比較検討した結果、前記陽極3の上底の面の電流密度は3〜5[A/m2]、下底の面の電流密度は約0.5[A/m2]となっており、大まかに見て前記陽極3の下底の面に流れている電流は陽極3面積全体の10[%]程度と考えられるため、下底の面は必ずしも必要ではなく、図12(d)に示す如く、台形形状の下底の面を除去したコの字型の陽極3、即ち鋼矢板1Yの凹部1Ya内面に倣うよう対向する少なくとも前面3a及び両側面3bの三面を有する陽極3を用いることもできる。尚、U形連結モデルの鋼矢板1Yの場合、厳密には、図1に示す如く、その連結部に段差が生じるため、該段差に倣うように、陽極3の先端部の形状を、図1中、仮想線で示す形状としても良い。又、図4に示す如く、Z形連結モデルの鋼矢板1Yに用いる陽極3は、断面矩形形状となるが、図12に示す断面台形形状の陽極3と同様、中実、中空、網目構造、コの字型のいずれも選択可能である。 The shape of the anode 3 can be trapezoidal and solid as shown in FIG. 12 (a). However, since only the surface shape is important for the shape of the anode 3, FIG. As shown in FIG. 4, a trapezoidal and hollow anode 3 may be used. If such an anode 3 is used, it is considered that the construction can be facilitated by weight reduction. It is also possible to use the anode 3 having a network structure as shown in FIG. Furthermore, in the U-shaped connection model shown in FIG. 6A, the current density distributions of the upper base surface and the lower base surface of the trapezoidal anode 3 were compared, and as a result, The current density is 3 to 5 [A / m 2 ], and the current density of the lower bottom surface is about 0.5 [A / m 2 ], which flows roughly to the lower bottom surface of the anode 3. Since the current is considered to be about 10% of the entire area of the anode 3, the bottom surface is not necessarily required. As shown in FIG. 12D, the U-shaped shape with the trapezoidal bottom surface removed. Anode 3, that is, an anode 3 having at least three surfaces of a front surface 3a and both side surfaces 3b facing each other so as to follow the inner surface of the recess 1Ya of the steel sheet pile 1Y can be used. In the case of the steel sheet pile 1Y of the U-shaped connection model, strictly speaking, as shown in FIG. 1, since a step is generated in the connecting portion, the shape of the tip portion of the anode 3 is set so as to follow the step. A shape indicated by an imaginary line may be used. Moreover, as shown in FIG. 4, the anode 3 used for the steel sheet pile 1Y of the Z-shaped connection model has a rectangular cross section, but, like the anode 3 having a trapezoidal cross section shown in FIG. 12, a solid, hollow, mesh structure, Any of the U-shapes can be selected.

更に、前記陽極3の鋼矢板1Yに対向する表面は平板でも良いが、図13(a)に示す如く、メッシュ状、或いは、図13(b)に示す如く、穴あき状のものにすることで、波浪による陽極3への抗力や陽極3の重量を低減することができる。   Further, the surface of the anode 3 facing the steel sheet pile 1Y may be a flat plate, but it should have a mesh shape as shown in FIG. 13 (a) or a perforated shape as shown in FIG. 13 (b). Thus, drag to the anode 3 due to waves and the weight of the anode 3 can be reduced.

本実施例においては、陽極3の前面3a及び両側面3bの三面と前記鋼矢板1Yの凹部1Ya内面との極間距離cが非常に小さいため、波による揺動で鋼矢板1Yに陽極3が接触しショートすることがないように陽極3を固定する必要がある。そこで、図14(a),(b)に示す如く、岸壁側から海上へ張り出す設置用バー6を設け、該設置用バー6から吊り下げた固定用バー7に陽極3を取り付けると共に、該固定用バー7の下端に海底に沈む錘8を取り付けることにより、陽極3の保持手段9を構成する。   In the present embodiment, since the distance c between the poles between the three surfaces of the front surface 3a and both side surfaces 3b of the anode 3 and the inner surface of the recess 1Ya of the steel sheet pile 1Y is very small, the anode 3 is moved to the steel sheet pile 1Y by rocking due to waves. It is necessary to fix the anode 3 so as not to contact and short-circuit. Therefore, as shown in FIGS. 14 (a) and 14 (b), an installation bar 6 extending from the quay side to the sea is provided, and the anode 3 is attached to the fixing bar 7 suspended from the installation bar 6, A holding means 9 for the anode 3 is configured by attaching a weight 8 that sinks to the sea bottom to the lower end of the fixing bar 7.

前記保持手段9により陽極3を鋼矢板1Yに対して配置する際には、例えば、図15に示す如く、下端に錘8が取り付けられた固定用バー7と一体とした陽極3を予め作成し、該陽極3を鋼矢板1Y側へ移動・調整しつつ、前記固定用バー7の上端を、岸壁より張り出した設置用バー6と接続・固定したり、或いは、図16に示す如く、設置用バー6と固定用バー7と陽極3と錘8とを予め一体化したものを作成し、これら全体を鋼矢板1Y側へ移動・調整しつつ、前記設置用バー6を岸壁に固定したりすることができる。   When the anode 3 is arranged with respect to the steel sheet pile 1Y by the holding means 9, for example, as shown in FIG. 15, the anode 3 integrated with a fixing bar 7 having a weight 8 attached to the lower end is prepared in advance. While the anode 3 is moved / adjusted to the steel sheet pile 1Y side, the upper end of the fixing bar 7 is connected and fixed to the installation bar 6 protruding from the quay, or as shown in FIG. The bar 6, the fixing bar 7, the anode 3 and the weight 8 are previously integrated, and the installation bar 6 is fixed to the quay while moving and adjusting the whole to the steel sheet pile 1 Y side. be able to.

尚、前記設置用バー6及び固定用バー7にアルミ等を用いることで電源線を用いずに陽極3に通電することも可能である。   It is also possible to energize the anode 3 without using a power line by using aluminum or the like for the installation bar 6 and the fixing bar 7.

前記陽極3は、一本ずつ鋼矢板1Yの各凹部1Yaに対して保持手段9により配置することも勿論可能であるが、施工の効率化のために、例えば、図17に示す如く、複数本の陽極3を保持手段9の設置用バー6及び固定用バー7にて一組にまとめたものを作成することにより、複数の凹部1Yaに対して一度に陽極3の設置を行うことも可能である。   Of course, it is possible to arrange the anodes 3 one by one with respect to the respective recesses 1Ya of the steel sheet pile 1Y by means of the holding means 9, but in order to improve the construction efficiency, for example, as shown in FIG. It is also possible to install the anode 3 at a time for the plurality of recesses 1Ya by creating a set of the anode 3 in a set with the installation bar 6 and the fixing bar 7 of the holding means 9. is there.

そして、本実施例においては、前述の如く、保持手段9によって、陽極3の前面3a及び両側面3bの三面と鋼矢板1Yの凹部1Ya内面との極間距離cが1≦c≦0.05×(P+2D)に保持されると共に、鋼矢板1Yの凸部1Yb表面に電流を流すための凹部1Yaからの前記陽極3の両側面3bの張出量sが0.75×D≦s≦1.25×Dに保持され、この状態で、前記陽極3と鋼矢板1Yとの間に通電すると、従来のように、陽極3として丸棒や板といったごく一般的な形状の電極を用いて電着施工を行うのとは異なり、鋼矢板1Yが凹凸形状を有していても、通電量に差が生じにくくなり、鋼矢板1Yの表面に形成される防食電着被膜5(図18参照)の厚さに大きなバラつきが生じてしまうことが避けられる。   In this embodiment, as described above, the holding means 9 causes the distance c between the three surfaces of the front surface 3a and both side surfaces 3b of the anode 3 and the inner surface of the recess 1Ya of the steel sheet pile 1Y to be 1 ≦ c ≦ 0.05 × ( P + 2D), and the overhang amount s of both side surfaces 3b of the anode 3 from the concave portion 1Ya for flowing current to the surface of the convex portion 1Yb of the steel sheet pile 1Y is maintained at 0.75 × D ≦ s ≦ 1.25 × D. In this state, when an electric current is applied between the anode 3 and the steel sheet pile 1Y, the electrode 3 is electrodeposited using an electrode of a general shape such as a round bar or a plate as the anode 3 as in the past. In contrast, even if the steel sheet pile 1Y has an uneven shape, a difference in the amount of electricity is less likely to occur, and the thickness of the anticorrosion electrodeposition coating 5 (see FIG. 18) formed on the surface of the steel sheet pile 1Y varies greatly. Can be avoided.

こうして、鋼矢板1Yの表面に均一な厚さの防食電着被膜5を形成し得る。   Thus, the anticorrosion electrodeposition coating 5 having a uniform thickness can be formed on the surface of the steel sheet pile 1Y.

尚、本発明の鋼矢板の電着防食装置は、上述の実施例にのみ限定されるものではなく、Z形連結モデルやU形連結モデルのような鋼矢板に限らず、U形連結モデルを二枚向かい合わせて溶接した、いわゆる組み合わせ型の鋼矢板にも適用可能なこと等、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 In addition, the electrodeposition anticorrosion apparatus of the steel sheet pile of this invention is not limited only to the above-mentioned Example, Not only steel sheet piles, such as a Z-shaped connection model and a U-shaped connection model, but a U-shaped connection model. Needless to say, various modifications can be made without departing from the gist of the present invention, such as being applicable to a so-called combination type steel sheet pile welded face to face.

1 海洋鋼構造物
1Y 鋼矢板
1Ya 凹部
1Yb 凸部
2 水没部
3 陽極
3a 前面
3b 側面
4 直流電源
5 防食電着被膜
6 設置用バー
7 固定用バー
8 錘
9 保持手段
P 幅方向ピッチ
D 奥行
c 極間距離
s 張出量
DESCRIPTION OF SYMBOLS 1 Marine steel structure 1Y Steel sheet pile 1Ya Concave part 1Yb Convex part 2 Submerged part 3 Anode 3a Front surface 3b Side surface 4 DC power supply 5 Anticorrosion electrodeposition coating 6 Installation bar 7 Fixing bar 8 Weight 9 Holding means P Width direction pitch D Depth c Distance between electrodes s Overhang

Claims (1)

凹凸部が形成されるよう連結配置される鋼矢板の海水に水没した水没部に対し所要の間隔をあけて陽極を設け、該陽極と鋼矢板との間に直流電源を設けて直流電流を通電することにより、鋼矢板の水没部表面に防食電着被膜を形成する鋼矢板の電着防食装置において、
前記鋼矢板の凹部内面に倣うよう対向する少なくとも前面及び両側面の三面を有する陽極と、
前記連結配置される鋼矢板の凹部及び凸部の幅方向ピッチをP[cm]とし且つ該凹部及び凸部間の奥行をD[cm]とした場合に、前記陽極の前面及び両側面の三面と前記鋼矢板の凹部内面との極間距離c[cm]を
1≦c≦0.05×(P+2D)
に保持すると共に、前記鋼矢板の凸部表面に電流を流すための凹部からの前記陽極の両側面の張出量s[cm]を
0.75×D≦s≦1.25×D
に保持する保持手段と
を備え
前記保持手段は、岸壁側から海上へ張り出すよう設けられる設置用バーと、該設置用バーから吊り下げられて陽極が取り付けられる固定用バーと、該固定用バーの下端に取り付けられ海底に沈む錘とを備え、複数本の陽極を前記保持手段の設置用バー及び固定用バーにて一組にまとめたものを作成することにより、複数の凹部に対して一度に陽極の設置を行うよう構成したことを特徴とする鋼矢板の電着防食装置。
An anode is provided at a required interval with respect to the submerged portion of the steel sheet pile that is connected and arranged so that the uneven portion is formed, and a direct current is applied by providing a DC power source between the anode and the steel sheet pile. In the electrodeposition anticorrosion device of the steel sheet pile that forms an anticorrosion electrodeposition coating on the surface of the submerged portion of the steel sheet pile,
An anode having at least three front and both side surfaces facing the concave inner surface of the steel sheet pile,
When the pitch in the width direction of the recesses and projections of the steel sheet piles to be connected is P [cm] and the depth between the recesses and projections is D [cm], the front and both sides of the anode The distance c [cm] between the electrode and the inner surface of the concave portion of the steel sheet pile
1 ≦ c ≦ 0.05 × (P + 2D)
And projecting amounts s [cm] of both side surfaces of the anode from the concave portion for allowing an electric current to flow through the convex surface of the steel sheet pile.
0.75 × D ≦ s ≦ 1.25 × D
And a holding means for holding the,
The holding means includes an installation bar provided so as to project from the quay side to the sea, a fixing bar suspended from the installation bar and attached with an anode, and attached to a lower end of the fixing bar and sinking to the seabed A plurality of anodes are combined into a set with a holding bar and a fixing bar for the holding means, and the anodes are installed at a time for a plurality of recesses. electrodeposition anticorrosion device of a steel sheet pile, characterized in that the.
JP2010142409A 2010-06-23 2010-06-23 Steel sheet pile electrodeposition protection system Active JP5740851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010142409A JP5740851B2 (en) 2010-06-23 2010-06-23 Steel sheet pile electrodeposition protection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010142409A JP5740851B2 (en) 2010-06-23 2010-06-23 Steel sheet pile electrodeposition protection system

Publications (2)

Publication Number Publication Date
JP2012007197A JP2012007197A (en) 2012-01-12
JP5740851B2 true JP5740851B2 (en) 2015-07-01

Family

ID=45538064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010142409A Active JP5740851B2 (en) 2010-06-23 2010-06-23 Steel sheet pile electrodeposition protection system

Country Status (1)

Country Link
JP (1) JP5740851B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6701803B2 (en) * 2015-08-25 2020-05-27 株式会社Ihi Steel structure energization device and energization method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262499A (en) * 1987-04-20 1988-10-28 Mitsui Eng & Shipbuild Co Ltd Method for preventing corrosion of submarine structure and sealing same
JP4146637B2 (en) * 2001-12-20 2008-09-10 株式会社Ihi Corrosion protection method for harbor steel structures
JP4424059B2 (en) * 2004-05-11 2010-03-03 株式会社Ihi Method for forming anticorrosion film

Also Published As

Publication number Publication date
JP2012007197A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
Elsener Macrocell corrosion of steel in concrete–implications for corrosion monitoring
Walsh et al. Steel corrosion in submerged concrete structures—Part 1: field observations and corrosion distribution modeling
JP6365862B2 (en) Electrocorrosion diagnostic method and diagnostic device for metal structure
Fushimi et al. Current distribution during galvanic corrosion of carbon steel welded with type-309 stainless steel in NaCl solution
JP5740851B2 (en) Steel sheet pile electrodeposition protection system
JP2008297600A (en) Electrolytic protection method
Walsh et al. Steel Corrosion in Submerged Concrete Structures—Part 2: Modeling of Corrosion Evolution and Control
Dubuit et al. Biogalvanic cathodic protection of reinforced concrete structures in marine environments
JP7008473B2 (en) Foundation structure
JP6609007B2 (en) Seawater pump antifouling device and seawater antifouling method
JP5387356B2 (en) Corrosion-proof electrodeposition coating method and apparatus for marine steel structures
CN212576614U (en) Spraying device
EP4139499B1 (en) Anode assembly for corrosion control of steel reinforced concrete structures
JP7066465B2 (en) Method for forming anticorrosion electrodeposition coating on underwater metal structures
Qiao et al. Numerical simulation of the impressed current cathodic protection system for a reinforced concrete structure
Sassine et al. Experiments and numerical simulations on Impressed Current Cathodic Protection technique applied to steel reinforced concrete structures
JP5678504B2 (en) Corrosion protection method for offshore steel structures in tidal currents.
JP2020125529A (en) Coating film material for anode material, concrete structure and electrolytic corrosion protection method
JP5387219B2 (en) Confirmation method of electrodeposition coating on marine steel structures
JP5402177B2 (en) The galvanic anode body and the galvanic anode method
JP5424132B2 (en) Electrical protection method
Xu et al. The study of water-line corrosion in static and dynamically flowing electrolytes using multi-electrode sensor in combination with electrical resistance method
Attarchi et al. Use of FEM simulation to study corrosion phenomena under macrocell mechanism
Wang et al. Boundary element modelling of the impressed current cathodic protection of an offshore platform
Srinivasan et al. Design of Cathodic Protection of Rebars in Concrete Structures: An Electrochemical Engineering Approach

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R151 Written notification of patent or utility model registration

Ref document number: 5740851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250