JP5383169B2 - Power interchange system for DC electric railway and AC electric railway - Google Patents

Power interchange system for DC electric railway and AC electric railway Download PDF

Info

Publication number
JP5383169B2
JP5383169B2 JP2008311898A JP2008311898A JP5383169B2 JP 5383169 B2 JP5383169 B2 JP 5383169B2 JP 2008311898 A JP2008311898 A JP 2008311898A JP 2008311898 A JP2008311898 A JP 2008311898A JP 5383169 B2 JP5383169 B2 JP 5383169B2
Authority
JP
Japan
Prior art keywords
power
voltage
limit reference
electric railway
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008311898A
Other languages
Japanese (ja)
Other versions
JP2010132209A (en
Inventor
武史 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2008311898A priority Critical patent/JP5383169B2/en
Publication of JP2010132209A publication Critical patent/JP2010132209A/en
Application granted granted Critical
Publication of JP5383169B2 publication Critical patent/JP5383169B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は直流電気鉄道と交流電気鉄道との間で自動的に電力融通を行う電力融通システムに関する。   The present invention relates to a power interchange system that automatically performs power interchange between a DC electric railway and an AC electric railway.

電気鉄道における変電所の電力負荷は、変電所の電力を供給する区間に電車が走行する時間のみ大きくなる間欠特性を有する。従って、最大電力は大きくなるため、変電所の設備容量を大きく設定する必要がある。また、電力が間欠特性を有するため、実際に使用する電力量に比して契約電力が大きくなる。以上の理由により、電気鉄道システムにおいては、電力負荷平準化を行うことによって、設備コストに低減を図ることが要求されている。 The power load of the substation in the electric railway has an intermittent characteristic that increases only during the time the train travels in the section where the power of the substation is supplied. Therefore, since the maximum power becomes large, it is necessary to set a large capacity of the substation. Moreover, since electric power has an intermittent characteristic, contract electric power becomes large compared with the electric energy actually used. For the above reasons, in electric railway systems, it is required to reduce the equipment cost by performing power load leveling.

電気鉄道において電車が電力回生を行う際に、付近に力行する電車が存在しないと電力回生エネルギーを有効に活用することができない。直流電気鉄道では、電力回生エネルギーの行き場がなくなると回生失効となるケースがある。また、電車が回生運転状態のときに他の電車が力行状態を終了した場合には、負荷の急激な減少による回生失効が起こる。交流電気鉄道では電力回生エネルギーは受電側即ち電力会社側に逆流して送電システムに悪影響を及ぼすことが懸念される。以上の理由により、電車の電力回生エネルギーを効率よく電車の力行エネルギーに吸収させることが要求されている。 When electric trains regenerate electric power in electric railways, electric power regenerative energy cannot be used effectively unless there is a train that runs in the vicinity. In DC electric railways, there are cases in which regeneration expires when there is no place for power regenerative energy. Further, when another train ends the power running state when the train is in a regenerative operation state, regeneration invalidation due to a rapid decrease in load occurs. In an AC electric railway, there is a concern that the power regenerative energy may flow backward to the power receiving side, that is, the power company side, adversely affecting the power transmission system. For the above reasons, it is required to efficiently absorb the electric power regenerative energy of the train into the power running energy of the train.

そこで、電気鉄道においては電力負荷平準化、回生失効防止、回生電力有効活用を図る様々な装置が開発されてきた。例えば、特開2000−233669号公報(特許文献1)や特開2001−260718号公報(特許文献2)に記載されている直流電気鉄道における直流電力貯蔵装置を利用した電力回生方式は、直流変電所の直流側に昇降圧チョッパと直流電力蓄積装置からなる直流電力貯蔵装置を装備したものであり、電気車の回生運転によって外線電圧がその定格電圧範囲の上限を超えた場合には、前記昇降圧チョッパにより外線電圧を降圧制御し、外線から前記昇降圧チョッパを介して前記直流電力蓄積装置の充電電流として前記電気車の回生電力を吸収させるものである。 Thus, various devices have been developed in electric railways for leveling power load, preventing regeneration and invalidation, and effectively using regenerative power. For example, a power regeneration method using a DC power storage device in a DC electric railway described in JP 2000-233669 A (Patent Document 1) and JP 2001-260718 A (Patent Document 2) is a DC substation. A DC power storage device comprising a step-up / step-down chopper and a DC power storage device is installed on the DC side of the station, and if the external line voltage exceeds the upper limit of its rated voltage range due to regenerative operation of the electric vehicle, The external line voltage is stepped down by a pressure chopper, and the regenerative power of the electric vehicle is absorbed as a charging current of the DC power storage device from the external line via the step-up / step-down chopper.

なお、前記直流貯蔵装置を構成する前記昇降圧チョッパは、直流き電線とレールとの間に接続された高圧側アームと低圧側アームの直列回路と、前記高圧側アームと低圧側アームの接続点とレールとの間に接続された直流電力蓄積装置とからなる。そして、前記高圧側アームは外線から流れ込む充電電流を制御できる向きに一端を外線に接続した第1半導体スイッチ及び前記第1半導体スイッチに逆並列に接続された第1ダイオードで構成され、前記低圧側アームは前記第1半導体スイッチと電流を制御できる向きが同じで且つ前記第1半導体スイッチの他端と直列接続された第2半導体スイッチ及び前記第2半導体スイッチに逆並列接続された第2ダイオードで構成されている。 The step-up / down chopper constituting the DC storage device includes a series circuit of a high-pressure side arm and a low-pressure side arm connected between a DC feeder and a rail, and a connection point between the high-pressure side arm and the low-pressure side arm. And a DC power storage device connected between the rail and the rail. The high-voltage side arm includes a first semiconductor switch having one end connected to the external line in a direction in which a charging current flowing from the external line can be controlled, and a first diode connected in reverse parallel to the first semiconductor switch, The arm is a second semiconductor switch that has the same direction of current control as the first semiconductor switch and is connected in series with the other end of the first semiconductor switch, and a second diode connected in reverse parallel to the second semiconductor switch. It is configured.

また、特開2000−102173号公報(特許文献3)には、交流電気鉄道の電力平準化装置が記載されている。即ち、この電力平準化装置は、無負荷又は軽負荷時に交流電源電圧をき電変圧器を経て電力変換器で交直変換し、その直流出力で電力貯蔵装置を充電し、重負荷時に前記電力変換器をインバータとして作動させ、前記電力貯蔵装置を放電させて前記電力変換器で直交変換し、その交流出力を注入用変圧器及び前記き電変圧器を経て負荷側に供給するものである。 Japanese Unexamined Patent Publication No. 2000-102173 (Patent Document 3) describes a power leveling device for an AC electric railway. In other words, this power leveling device converts the AC power supply voltage at the time of no load or light load, passes through a power transformer, and converts the power into a power converter, charges the power storage device with its DC output, and converts the power at heavy load. The power storage device is operated as an inverter, the power storage device is discharged and orthogonally converted by the power converter, and the AC output is supplied to the load side via the injection transformer and the feeding transformer.

ところで、交流電気鉄道と直流電気鉄道が並行している区間において、従来から交流電気鉄道と直流電気鉄道はそれぞれに電力負荷平準化、回生失効防止、回生電力有効活用を図るために、電力貯蔵システムが設けられる場合、各電力貯蔵システムは、十分な効果を発揮するように設備容量は大きく設定される。このように、大きな設備容量の電力貯蔵システムが2つも存在しているので、交流電気鉄道と直流電気鉄道が並行している区間を有する鉄道会社の設備コストは、非常に高くなる問題がある。
特開2000−233669号公報 特開2001−260718号公報 特開2000−102173号公報
By the way, in the section where AC electric railway and DC electric railway are parallel, the AC electric railway and DC electric railway have conventionally been equipped with power storage systems in order to achieve power load leveling, regenerative deactivation prevention, and effective use of regenerative power. Is provided, the capacity of each power storage system is set to be large so as to exert a sufficient effect. As described above, since there are two power storage systems having a large installation capacity, there is a problem that the installation cost of a railway company having a section in which an AC electric railway and a DC electric railway are parallel is very high.
JP 2000-233669 A JP 2001-260718 A JP 2000-102173 A

交流電気鉄道と直流電気鉄道が並行している区間において、電力負荷平準化、回生失効防止、回生電力有効活用を図る電力貯蔵システムの設備コストを低減することである。 In the section where the AC electric railway and the DC electric railway are parallel, it is to reduce the equipment cost of the power storage system for leveling the electric power load, preventing the regeneration from becoming invalid, and effectively utilizing the regenerative power.

上記課題を解決するために、直流電気鉄道と交流電気鉄道が並行している区間において、直流電気鉄道のき電線とレールとの間に配置する直流電気鉄道用の電力貯蔵装置を、交流電気鉄道のき電線と中性線との間に配置される交流電気鉄道用の電力貯蔵装置に兼用し、直流電気鉄道と交流電気鉄道との間で電力を融通できるようにした。
即ち、上記課題を解決する直流電気鉄道と交流電気鉄道の電力融通システムは、直流電気鉄道の直流き電回路に直流遮断器と電力変換器を介して接続された電力貯蔵媒体と前記電力変換器を制御する制御装置とで構成された直流電力貯蔵装置を、交流遮断器と降圧用変圧器と直流/交流変換装置を介して交流き電回路に接続すると共に、前記制御装置が直流き電電圧と基準直流電圧との比較並びに交流き電電圧と基準交流電圧との比較に基づいて前記電力変換器並びに前記直流/交流変換装置を制御するようにシステムを構成し、並行する区間を有する直流電気鉄道と交流電気鉄道の間で電力の相互融通を可能にしたことを特徴とするものである。
In order to solve the above-described problems, a power storage device for a DC electric railway disposed between a feeder line and a rail of the DC electric railway in a section where the DC electric railway and the AC electric railway are parallel is provided. It is also used as a power storage device for AC electric railroads arranged between the cable and neutral wires, so that power can be interchanged between the DC electric railroad and the AC electric railroad.
That is, a power interchange system for a DC electric railway and an AC electric railway that solves the above-described problem is a power storage medium connected to a DC feeder circuit of a DC electric railway via a DC circuit breaker and a power converter, and the power converter. A DC power storage device configured with a control device for controlling the AC power supply circuit through an AC circuit breaker, a step-down transformer, and a DC / AC conversion device, and the control device is connected to a DC feeding voltage. The system is configured to control the power converter and the DC / AC converter based on the comparison between the power supply and the reference DC voltage and the comparison between the AC feeding voltage and the reference AC voltage. It is characterized by enabling mutual interchange of electric power between railway and AC electric railway.

本発明により、交流電気鉄道と直流電気鉄道が並行している区間において、電力負荷平準化、回生失効防止、回生電力有効活用を図る電力貯蔵システムの設備コスト低減が図られるようになった。
また、本発明により、直流電気鉄道の直流変電所の電力負荷と交流電気鉄道の交流変電所の電力負荷が共に平準化されるようになり、設備容量の低減、契約電力の低減が図られ、鉄道会社のコスト負担が低減された。
更に、直流電気鉄道と交流電気鉄道の間で電力融通を行うようにしたので、回生運転中の電車と力行運転中の電車の数が増え、電力回生エネルギーが失効する可能性が大幅に減少し、電気ブレーキの利用率の拡大が図られた。
更にまた、電力回生エネルギーが有効に活用されるので、省エネルギーも実現できるようになった。
According to the present invention, in the section where the AC electric railway and the DC electric railway are in parallel, the equipment cost of the power storage system that achieves power load leveling, regenerative invalidation prevention, and effective use of regenerative power can be reduced.
Further, according to the present invention, the power load of the DC substation of the DC electric railway and the power load of the AC substation of the AC electric railway are both leveled, and the equipment capacity is reduced and the contract power is reduced. The railway company's cost burden has been reduced.
Furthermore, since power interchange was performed between the DC electric railway and the AC electric railway, the number of trains in regenerative operation and trains in power running increased, and the possibility that power regenerative energy would expire significantly decreased. The use of electric brakes was expanded.
Furthermore, since energy regenerative energy is effectively used, energy saving can be realized.

本発明は、直流電気鉄道の直流き電回路に直流遮断器と電力変換器を介して接続された電力貯蔵媒体と前記電力変換器を制御する制御装置とで構成された直流電力貯蔵装置を、交流遮断器と降圧用変圧器と直流/交流変換装置を介して交流き電回路に接続すると共に、前記制御装置が直流き電電圧と基準直流電圧との比較並びに交流き電電圧と基準交流電圧との比較に基づいて前記電力変換器並びに前記直流/交流変換装置を制御するようにシステムを構成し、並行する区間を有する直流電気鉄道と交流電気鉄道の間で電力の相互融通を可能にしたことを特徴とする直流電気鉄道と交流電気鉄道の電力融通システムである。
前記基準直流電圧は、直流側が力行か否かを判断するための下限基準直流電圧V DC1 及び直流側が電力回生か否かを判断するための上限基準直流電圧V DC2 である。また、前記基準交流電圧は交流側が力行か否かを判断するための下限基準交流電圧V AC1 及び交流側が電力回生か否かを判断するための上限基準交流電圧V AC2 である。
The present invention provides a DC power storage device comprising a power storage medium connected to a DC feeder circuit of a DC electric railway via a DC circuit breaker and a power converter, and a control device for controlling the power converter. An AC circuit breaker, a step-down transformer and a DC / AC converter are connected to the AC feeder circuit, and the control device compares the DC feeder voltage with the reference DC voltage, and also compares the AC feeder voltage with the reference AC voltage. The system is configured to control the power converter and the DC / AC converter on the basis of the comparison with the above, enabling mutual interchange of power between the DC electric railway and the AC electric railway having parallel sections. This is a power interchange system for DC electric railways and AC electric railways.
The reference DC voltage is a lower limit reference DC voltage V DC1 for determining whether the DC side is power running or an upper limit reference DC voltage V DC2 for determining whether the DC side is power regeneration . The reference AC voltage is a lower limit reference AC voltage V AC1 for determining whether or not the AC side is powering and an upper limit reference AC voltage V AC2 for determining whether or not the AC side is power regeneration .

本発明の一実施例の直流電気鉄道と交流電気鉄道の電力融通システムは、図1の全体システム構成図及び図2の主要部の回路構成図に示す如く、直流電気鉄道の直流き電システム10と交流電気鉄道の交流き電システム20との間で電力融通を電力貯蔵装置1を介して自動的に行うようにしたシステムである。直流き電システム10において、所定間隔を隔てて設置されている複数の直流変電所15,16から直流き電線11とレール12に直流電力が給電されている。直流き電システム10の電車14は、力行中は直流き電線11とレール12からなる直流き電回路から直流電力を供給され、回生中は前記直流き電回路に直流回生電力を供給する。 The power interchange system for a DC electric railway and an AC electric railway according to an embodiment of the present invention includes a DC feeding system 10 for a DC electric railway, as shown in an overall system configuration diagram of FIG. 1 and a main circuit configuration diagram of FIG. And the AC power supply system 20 of the AC electric railway, the power interchange is automatically performed via the power storage device 1. In the DC feeder system 10, DC power is supplied to the DC feeder 11 and the rail 12 from a plurality of DC substations 15 and 16 that are installed at predetermined intervals. The train 14 of the DC feeding system 10 is supplied with DC power from a DC feeding circuit composed of the DC feeder 11 and the rail 12 during power running, and supplies DC regeneration power to the DC feeding circuit during regeneration.

交流き電システム20において、交流変電所25は所定間隔を隔てて複数個所設置されおり、交流変電所間にはき電区分所26が設けられている。交流変電所25とき電区分所26との間には複数の補助き電区分所27,28が設けられている。三相交流電力は交流変電所25からトロリー線21、レール22、交流き電線23に給電されている。交流き電システム20の電車24は、力行中はトロリー線21、レール22からなる交流き電回路から交流電力を供給され、回生中は前記交流き電回路に交流回生電力を供給する。 In the AC feeder system 20, a plurality of AC substations 25 are installed at predetermined intervals, and a feeder section 26 is provided between the AC substations. A plurality of auxiliary feeder section 27 and 28 are provided between the AC substation 25 and the section 26. Three-phase AC power is fed from the AC substation 25 to the trolley wire 21, rail 22, and AC feeder 23. The train 24 of the AC feeder system 20 is supplied with AC power from an AC feeder circuit composed of the trolley wire 21 and the rail 22 during power running, and supplies AC regeneration power to the AC feeder circuit during regeneration.

電力融通システムは、電力貯蔵装置1、電力変換装置(DC/AC)2、制御部3、直流き電電圧検出部4、及び交流き電電圧検出部5を含む。図2に示す如く、電力貯蔵装置1は電力貯蔵媒体1Aと電力変換器1Bとで構成され、電力変換装置(DC/AC)2は直流/交流変換部2Aと交流/直流変換部2Bとで構成されている。電力貯蔵装置1は、直流遮断器6を介して直流き電システム10の直流き電線11とレール12に接続され、且つ、電力変換装置(DC/AC)2、降圧用変圧器7及び交流遮断器8を介して交流き電システム20のトロリー線21とレール22に接続されている。 The power interchange system includes a power storage device 1, a power conversion device (DC / AC) 2, a control unit 3, a DC feeding voltage detection unit 4, and an AC feeding voltage detection unit 5. As shown in FIG. 2, the power storage device 1 includes a power storage medium 1A and a power converter 1B, and the power conversion device (DC / AC) 2 includes a DC / AC converter 2A and an AC / DC converter 2B. It is configured. The power storage device 1 is connected to a DC feeder 11 and a rail 12 of a DC feeder system 10 through a DC breaker 6, and includes a power converter (DC / AC) 2, a step-down transformer 7, and an AC breaker. It is connected to the trolley wire 21 and the rail 22 of the AC feeder system 20 via the device 8.

制御部3は、所定の基準値が予め記憶された記憶部を備えたパーソナルコンピュータの如き情報処理装置である。制御部3は、直流き電電圧検出部4の直流き電電圧VDCが及び交流き電電圧検出部5の交流き電電圧VACを入力信号とし、前記記憶部に記憶されている基準値と比較して、比較結果に基づいて電力変換器1B及び電力変換装置2を制御し、直流電気鉄道と交流電気鉄道の間の電力融通を行わせる。 The control unit 3 is an information processing apparatus such as a personal computer including a storage unit in which a predetermined reference value is stored in advance. The control unit 3 uses the DC feeding voltage V DC of the DC feeding voltage detection unit 4 and the AC feeding voltage V AC of the AC feeding voltage detection unit 5 as input signals, and the reference value stored in the storage unit Compared with, the power converter 1B and the power converter 2 are controlled based on the comparison result, and power interchange between the DC electric railway and the AC electric railway is performed.

即ち、制御部3の記憶部には下限基準直流電圧VDC1と上限基準直流電圧VDC2、及び下限基準交流電圧VAC1 と上限基準交流電圧VAC2の4つの基準値が予め記憶されている。そして、制御部3は、入力された直流き電電圧VDCが及び交流き電電圧VACと、これらの基準値を演算プログラムに従って比較する。前記演算プログラムは、制御部3の記憶部に予め格納されているものである。2つの入力信号と4つの基準値との比較結果は、表1の如く「交流側力行、直流側力行−状態1」、「交流側力行、直流側負荷なし−状態2」、「交流側力行、直流側電力回生−状態3」、「交流側負荷なし、直流側力行−状態4」、「交流側負荷なし、直流側負荷なし−状態5」、「交流側負荷なし、直流側電力回生−状態6」、「交流側電力回生、直流側力行−状態7」、「交流側電力回生、直流側負荷なし−状態8」及び「交流側電力回生、直流側電力回生−状態9」の9種類となる。以下、演算プログラムの一例のフローチャートである図3に参照しながら、本発明に係る直流電気鉄道と交流電気鉄道の間で電力融通がどのように行われるかを説明する。 That is, the storage unit of the control unit 3 stores in advance four reference values of the lower limit reference DC voltage V DC1 and the upper limit reference DC voltage V DC2 , and the lower limit reference AC voltage V AC1 and the upper limit reference AC voltage V AC2 . Then, the control unit 3 compares the input DC feeding voltage V DC and the AC feeding voltage V AC with these reference values according to a calculation program. The arithmetic program is stored in advance in the storage unit of the control unit 3. As shown in Table 1, the comparison results between the two input signals and the four reference values are “AC side power running, DC side power running—state 1”, “AC side power running, no DC side load—state 2”, “AC side power running” , DC side power regeneration-state 3 "," No AC side load, DC side power running-state 4 "," No AC side load, no DC side load-state 5 "," No AC side load, DC side power regeneration- Nine types of "state 6", "AC side power regeneration, DC side power running-state 7", "AC side power regeneration, no DC side load-state 8" and "AC side power regeneration, DC side power regeneration-state 9" It becomes. Hereinafter, with reference to FIG. 3 which is a flowchart of an example of an arithmetic program, how power interchange is performed between the DC electric railway and the AC electric railway according to the present invention will be described.

Figure 0005383169
Figure 0005383169

(交流側力行、直流側力行−状態1)
制御部3は、交流き電電圧VACが下限基準交流電圧VAC1よりも小さい状態、即ち、交流側力行状態か否かを判定し(101)、判定結果がNoならステップ104に進む。ステップ101の判定結果がYesなら、制御部3は直流き電電圧VDCが下限基準直流電圧VDC1よりも小さい状態、即ち直流側力行状態か否かを判定する(102)、判定結果がNoならステップ103に進む。ステップ102の判定結果がYesなら、交流側力行、且つ、直流側力行にある状態(状態1)にあるので、制御部3は電力貯蔵媒体1Aから放電するように電力貯蔵装置1と電力変換装置2を制御する。
(AC side power running, DC side power running-State 1)
Control unit 3, the AC feeding circuit voltage V AC is smaller than the lower limit reference AC voltage V AC1 state, i.e., determines whether the AC side power running state (101), the determination result goes to No if step 104. If the decision result in the step 101 is Yes, the control unit 3 is the DC feeding circuit voltage V DC is less than the lower limit reference DC voltage V DC1 state, that is, whether the DC side power running state (102), the determination result is No If so, go to Step 103. If the determination result in step 102 is Yes, the power storage device 1 and the power conversion device are discharged so that the control unit 3 discharges from the power storage medium 1A because the power is in the AC side power running and the DC side power running (state 1). 2 is controlled.

(交流側力行、直流側負荷なし−状態2)
ステップ102の判定結果がNoなら、制御部3は直流き電電圧VDCが下限基準直流電圧VDC1以上で且つ上限基準直流電圧VDC2以下の状態、即ち、直流側負荷なし状態か否かを判定する(103)。ステップ103の判定結果がYesなら、交流側力行、且つ、直流側負荷なしの状態(状態2)にあるので、制御部3は電力貯蔵媒体1Aから放電し、交流き電システム20側に電力融通するように電力貯蔵装置1と電力変換装置2を制御する。
(AC side power running, DC side no load-state 2)
If the decision result in step 102 is No, the controller 3 determines whether or not the DC feeding voltage V DC is not lower than the lower limit reference DC voltage V DC1 and not higher than the upper limit reference DC voltage V DC2 , that is, whether there is no DC side load. Determine (103). If the determination result in step 103 is Yes, the control unit 3 is discharged from the power storage medium 1 </ b> A because the power is on the AC side and no load is on the DC side (state 2). Thus, the power storage device 1 and the power conversion device 2 are controlled.

(交流側力行、直流側電力回生−状態3)
ステップ103の判定結果がNoなら、直流側力行状態と直流側負荷なし状態のいずれでもないので、直流き電電圧VDCが上限基準直流電圧VDC2よりも大きい状態、即ち、直流側電力回生状態である。このときは、交流側力行、且つ、直流側電力回生の状態(状態3)にあるので、制御部3は直流き電システム10側から交流き電システム20側へ電力融通し、且つ電力貯蔵媒体1Aを充電するように電力貯蔵装置1と電力変換装置2を制御する。
(AC side power running, DC side power regeneration-State 3)
If the decision result in the step 103 is No, since none of the state without DC side load and the DC side power running state, a direct current feeding circuit voltage V DC is greater than the upper limit reference DC voltage V DC2 state, i.e., the DC-side power regeneration state It is. At this time, since it is in the AC side power running and the DC side power regeneration state (state 3), the control unit 3 exchanges power from the DC feeding system 10 side to the AC feeding system 20 side, and the power storage medium. The power storage device 1 and the power conversion device 2 are controlled so as to charge 1A.

(交流側負荷なし、且つ直流側力行−状態4)
ステップ101の判定結果がNoなら、制御部3は交流き電電圧VACが下限基準交流電圧VAC1 以上で且つ上限基準交流電圧VAC2以下の状態、即ち交流側負荷なし状態か否かを判定する(104)し、判定結果がNoならステップ107に進む。ステップ104の判定結果がYesなら、制御部3は直流き電電圧VDCが下限基準直流電圧VDC1よりも小さい状態、即ち直流側力行状態か否かを判定し(105)、判定結果がNoならステップ106に進む。ステップ105の判定結果がYesなら、交流側負荷なし、且つ、直流側力行にある状態(状態4)にあるので、制御部3は電力貯蔵媒体1Aから放電し、直流き電システム10側に電力融通するように電力貯蔵装置1と電力変換装置2を制御する。
(No AC side load and DC side power running-State 4)
If the decision result in the step 101 is No, the control unit 3 determines whether and upper reference alternating voltage V AC2 following state AC feeding circuit voltage V AC is lower reference alternating voltage V AC1 above, i.e. without AC side load state If the determination result is No, the process proceeds to step 107. If the decision result in the step 104 is Yes, the control unit 3 determines the DC feeding circuit voltage V DC is less state than the lower limit reference DC voltage V DC1, namely whether the DC side power running state (105), the determination result is No If so, go to Step 106. If the determination result in step 105 is Yes, since there is no AC side load and DC side power running (state 4), the control unit 3 discharges from the power storage medium 1A and supplies power to the DC feeding system 10 side. The power storage device 1 and the power conversion device 2 are controlled so as to be flexible.

(交流側負荷なし、直流側負荷なし−状態5)
ステップ105の判定結果がNoなら、制御部3は直流き電電圧VDCが下限基準直流電圧VDC1以上で且つ上限基準直流電圧VDC2以下の状態、即ち、直流側負荷なし状態か否かを判定する(106)。ステップ106の判定結果がYesなら、交流側負荷なし、且つ、直流側負荷なしの状態(状態5)にあるので、本発明に係る電力融通システムを待機状態におくように制御部3は電力貯蔵装置1と電力変換装置2を制御する。
(No AC side load, no DC side load-Condition 5)
If the decision result in the step 105 is No, the control unit 3 and the upper reference DC voltage V DC2 following state DC feeding circuit voltage V DC is lower reference DC voltage V DC1 or more, i.e., whether no DC side load state Determine (106). If the determination result in step 106 is Yes, since there is no AC side load and no DC side load (state 5), the control unit 3 stores the power so that the power interchange system according to the present invention is in a standby state. The apparatus 1 and the power converter 2 are controlled.

(交流側負荷なし、直流側電力回生−状態6)
ステップ106の判定結果がNoなら、直流側力行状態と直流側負荷なし状態のいずれでもないので、直流き電電圧VDCが上限基準直流電圧VDC2よりも大きい状態、即ち、直流側電力回生状態である。このときは、交流側負荷なし、且つ、直流側電力回生の状態(状態6)にあるので、制御部3は直流き電システム10側からの電力で電力貯蔵媒体1Aを充電するように電力貯蔵装置1と電力変換装置2を制御する。
(No AC side load, DC side power regeneration-state 6)
If the decision result in the step 106 is No, since none of the state without DC side load and the DC side power running state, a direct current feeding circuit voltage V DC is greater than the upper limit reference DC voltage V DC2 state, i.e., the DC-side power regeneration state It is. At this time, since there is no AC side load and the DC side power regeneration state (state 6), the control unit 3 stores power so as to charge the power storage medium 1A with power from the DC feeding system 10 side. The apparatus 1 and the power converter 2 are controlled.

(交流側電力回生、直流側力行−状態7)
ステップ104の判定結果がNoなら、交流側力行状態と交流側負荷なし状態のいずれでもないので、制御部3は交流き電電圧VACが上限基準交流電圧VAC2よりも大きい状態、即ち、交流側電力回生状態にあると判定する。そして、ステップ104に続いて、制御部3は直流き電電圧VDCが下限基準直流電圧VDC1よりも小さい状態、即ち直流側力行状態か否かを判定し(107)、判定結果がNoならステップ108に進む。ステップ107の判定結果がYesなら、交流側電力回生、且つ、直流側力行にある状態(状態7)にあるので、制御部3は交流き電システム20側から直流き電システム10側に電力融通し、且つ電力貯蔵媒体1Aを充電するように電力貯蔵装置1と電力変換装置2を制御する。
(AC side power regeneration, DC side power running-state 7)
If the decision result in the step 104 is No, since neither without AC side load and the AC side power running state condition, the control unit 3 has an AC feeding circuit voltage V AC is greater than the upper limit reference AC voltage V AC2 state, i.e., AC It determines with it being in a side electric power regeneration state. Subsequently to step 104, the control unit 3 determines the state DC feeding circuit voltage V DC is less than the lower limit reference DC voltage V DC1, namely whether the DC side power running state (107), if the determination result is No Proceed to step 108. If the determination result in step 107 is Yes, the control unit 3 is in the state of AC side power regeneration and DC side powering (state 7), so that the control unit 3 provides power accommodation from the AC feeder system 20 side to the DC feeder system 10 side. The power storage device 1 and the power conversion device 2 are controlled so as to charge the power storage medium 1A.

(交流側電力回生、直流側負荷なし−状態8)
ステップ107の判定結果がNoなら、制御部3は直流き電電圧VDCが下限基準直流電圧VDC1以上で且つ上限基準直流電圧VDC2以下の状態、即ち、直流側負荷なし状態か否かを判定する(108)。ステップ108の判定結果がYesなら、交流側電力回生、且つ、直流側負荷なしの状態(状態8)にあるので、制御部3は交流き電システム20側からの電力で電力貯蔵媒体1Aを充電するように電力貯蔵装置1と電力変換装置2を制御する。
(AC side power regeneration, no DC side load-state 8)
If the decision result in the step 107 is No, the control unit 3 and the upper reference DC voltage V DC2 following state DC feeding circuit voltage V DC is lower reference DC voltage V DC1 or more, i.e., whether no DC side load state Determine (108). If the determination result in step 108 is Yes, the control unit 3 charges the power storage medium 1A with power from the AC feeding system 20 side because AC power regeneration and no DC load are present (state 8). Thus, the power storage device 1 and the power conversion device 2 are controlled.

(交流側電力回生、直流側電力回生−状態9)
ステップ108の判定結果がNoなら、直流側力行状態と直流側負荷なし状態のいずれでもないので、制御部3は直流き電電圧VDCが上限基準直流電圧VDC2よりも大きい状態、即ち、直流側電力回生状態であると判定する。このときは、交流側電力回生、且つ、直流側電力回生の状態(状態9)にあるので、制御部3は直流き電システム10側と交流き電システム20側からの双方の電力で電力貯蔵媒体1Aを充電するように電力貯蔵装置1と電力変換装置2を制御する。
(AC power regeneration, DC power regeneration-state 9)
If the decision result in the step 108 is No, since none of the state without DC side load and the DC side power running state, the control unit 3 is the DC feeding circuit voltage V DC is greater than the upper limit reference DC voltage V DC2 state, i.e., DC It determines with it being a side electric power regeneration state. At this time, since it is in an AC side power regeneration and DC side power regeneration state (state 9), the control unit 3 stores power with both power from the DC feeding system 10 side and the AC feeding system 20 side. The power storage device 1 and the power conversion device 2 are controlled so as to charge the medium 1A.

本発明の一実施例の直流電気鉄道と交流電気鉄道の電力融通システムの全体構成図である。1 is an overall configuration diagram of a power interchange system for a DC electric railway and an AC electric railway according to an embodiment of the present invention. 本発明の一実施例の直流電気鉄道と交流電気鉄道の電力融通システムの主要部の回路構成図である。It is a circuit block diagram of the principal part of the electric power interchange system of the DC electric railway and AC electric railway of one Example of this invention. 本発明の一実施例の直流電気鉄道と交流電気鉄道の電力融通システムの処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of a process of the electric power interchange system of the DC electric railway and AC electric railway of one Example of this invention.

符号の説明Explanation of symbols

1 電力貯蔵装置
1A 電力貯蔵媒体
1B 電力変換器
2 電力変換装置(DC/AC)
2A 直流/交流変換部
2B 交流/直流変換部
3 制御部
4 直流き電電圧検出部
5 交流き電電圧検出部
6 直流遮断器
7 降圧用変圧器
8 交流遮断器
10 直流き電システム
11 直流き電線
12 レール
14 電車
15,16 直流変電所
20 交流き電システム
21 トロリー線
22 レール
23 交流き電線
24 電車
25 交流変電所
26 き電区分所
27,28 補助き電区分所



















DESCRIPTION OF SYMBOLS 1 Power storage device 1A Power storage medium 1B Power converter 2 Power conversion device (DC / AC)
2A DC / AC converter 2B AC / DC converter 3 Control unit 4 DC feeding voltage detection unit 5 AC feeding voltage detection unit 6 DC circuit breaker 7 Step-down transformer 8 AC circuit breaker 10 DC feeding system 11 DC feeding Electric wire 12 Rail 14 Trains 15 and 16 DC substation 20 AC feeder system 21 Trolley wire 22 Rail 23 AC feeder 24 Train 25 AC substation 26 Feed section 27, 28 Auxiliary feed section



















Claims (10)

直流電気鉄道の直流き電回路に直流遮断器と電力変換器を介して接続された電力貯蔵媒体と前記電力変換器を制御する制御装置とで構成された直流電力貯蔵装置を、交流遮断器と降圧用変圧器と直流/交流変換装置を介して交流き電回路に接続すると共に、前記制御装置が直流き電電圧と直流側が力行か否かを判断するための下限基準直流電圧並びに直流側が電力回生か否かを判断するための上限基準直流電圧との比較、及び交流き電電圧と交流側が力行か否かを判断するための下限基準交流電圧並びに交流側が電力回生か否かを判断するための上限基準交流電圧との比較に基づいて前記電力変換器並びに前記直流/交流変換装置を制御するようにシステムを構成し、並行する区間を有する直流電気鉄道と交流電気鉄道の間で電力の相互融通を可能にしたことを特徴とする直流電気鉄道と交流電気鉄道の電力融通システム。 A DC power storage device comprising a power storage medium connected to a DC feeder circuit of a DC electric railway via a DC circuit breaker and a power converter, and a control device for controlling the power converter, an AC circuit breaker, It is connected to an AC feeder circuit via a step-down transformer and a DC / AC converter, and the control device determines a DC feeding voltage and a lower limit reference DC voltage for determining whether or not the DC side is powered. Comparison with the upper limit reference DC voltage to determine whether or not regeneration , and AC reference voltage and lower limit reference AC voltage to determine whether the AC side is power running and whether the AC side is power regeneration The system is configured to control the power converter and the DC / AC converter based on the comparison with the upper limit reference AC voltage of the power supply, and the mutual power between the DC electric railway and the AC electric railway having parallel sections is configured. Versatility DC electric railway and an AC electric railway power interchange system, characterized in that made possible. 直流き電電圧が前記下限基準直流電圧よりも小さく、且つ交流き電電圧が前記下限基準交流電圧よりも小さいときは、前記制御装置は前記電力貯蔵媒体を放電させるように前記電力変換器並びに前記直流/交流変換装置を制御することを特徴とする請求項1に記載の直流電気鉄道と交流電気鉄道の電力融通システム。 Smaller than the DC feeding circuit voltage the lower limit reference DC voltage, and when the AC feeding circuit voltage is less than the lower limit reference alternating voltage, said control device the power converter and the like to discharge the power storage medium 2. The electric power interchange system for a DC electric railway and an AC electric railway according to claim 1, wherein the DC / AC converter is controlled. 直流き電電圧が前記下限基準直流電圧よりも小さく、且つ交流き電電圧が前記下限基準交流電圧以上で前記上限基準交流電圧以下であるときには、前記制御装置は前記電力貯蔵媒体を放電させると共に、前記交流き電回路から前記直流き電回路へ電力の融通が行われように前記電力変換器並びに前記直流/交流変換装置を制御することを特徴とする請求項1に記載の直流電気鉄道と交流電気鉄道の電力融通システム。 Smaller than the DC feeding circuit voltage the lower limit reference DC voltage, and when the AC feeding circuit voltage is below the lower limit reference upper limit reference alternating voltage in the alternating voltage or higher, the control device together with discharging the power storage medium, 2. The DC electric railway and the AC according to claim 1, wherein the power converter and the DC / AC converter are controlled so that power is exchanged from the AC feeding circuit to the DC feeding circuit. Electric railway power interchange system. 直流き電電圧が前記下限基準直流電圧よりも小さく、且つ交流き電電圧が前記上限基準交流電圧よりも大きいときには、前記制御装置は交流側回生電力を前記直流き電回路へ電力融通し、且つ前記交流き電回路で消費できない余剰電力で前記電力貯蔵媒体を充電させるように前記電力変換器並びに前記直流/交流変換装置を制御することを特徴とする請求項1に記載の直流電気鉄道と交流電気鉄道の電力融通システム。 Smaller than the DC feeding circuit voltage the lower limit reference DC voltage, and when the AC feeding circuit voltage is greater than the upper limit reference alternating voltage, the control device will power interchange the AC side regenerative power to the DC feeding circuit circuit, and 2. The DC electric railway and the AC according to claim 1, wherein the power converter and the DC / AC converter are controlled to charge the power storage medium with surplus power that cannot be consumed by the AC feeder circuit. Electric railway power interchange system. 直流き電電圧が前記下限基準直流電圧以上で前記上限基準直流電圧以下、且つ交流き電電圧が前記下限基準交流電圧よりも小さいときは、前記制御装置は前記電力貯蔵媒体を放電させると共に、前記直流き電回路から前記交流き電回路への電力融通が行われように前記電力変換器並びに前記直流/交流変換装置を制御することを特徴とする請求項1に記載の直流電気鉄道と交流電気鉄道の電力融通システム。 The upper limit reference DC voltage below the DC feeding circuit voltage the lower limit reference DC voltage or more and when the AC feeding circuit voltage is less than the lower limit reference alternating voltage, the control device together with discharging the power storage medium, said 2. The direct current electric railway and the alternating current electricity according to claim 1, wherein the power converter and the direct current / alternating current converter are controlled so that electric power is exchanged from the direct current feeder to the alternating current feeder. Railway power interchange system. 直流き電電圧が前記下限基準直流電圧以上で前記上限基準直流電圧以下、且つ交流き電電圧が前記下限基準交流電圧以上で前記上限基準交流電圧以下であるときには、前記制御装置は前記電力貯蔵媒体を待機状態におくように前記電力変換器並びに前記直流/交流変換装置を制御することを特徴とする請求項1に記載の直流電気鉄道と交流電気鉄道の電力融通システム。 The upper limit reference DC voltage below the DC feeding circuit voltage the lower limit reference DC voltage or more and when the AC feeding circuit voltage is the lower than the upper limit reference alternating voltage with the lower limit reference alternating voltage or higher, the control device the power storage medium 2. The power interchange system for a DC electric railway and an AC electric railway according to claim 1, wherein the power converter and the DC / AC converter are controlled so as to be in a standby state. 直流き電電圧が前記下限基準直流電圧以上で前記上限基準直流電圧以下、且つ交流き電電圧が前記上限基準交流電圧よりも大きいときには、前記制御装置は交流側回生電力を前記電力貯蔵媒体に貯蔵させるように前記電力変換器並びに前記直流/交流変換装置を制御することを特徴とする請求項1に記載の直流電気鉄道と交流電気鉄道の電力融通システム。 DC feeding circuit voltage upper limit reference DC voltage by the lower-limit reference DC voltage or less, and when the AC feeding circuit voltage is greater than the upper limit reference alternating voltage, wherein the control device stores the AC side regenerative power to the power storage medium 2. The power interchange system for a DC electric railway and an AC electric railway according to claim 1, wherein the power converter and the DC / AC converter are controlled so as to cause the power converter to operate. 直流き電電圧が前記上限基準直流電圧よりも大きく、且つ交流き電電圧が前記下限基準交流電圧よりも小さいときは、前記制御装置は直流側回生電力を前記交流き電回路へ電力融通し、且つ前記直流き電回路で消費できない余剰電力で前記電力貯蔵媒体を充電させるように前記電力変換器並びに前記直流/交流変換装置を制御することを特徴とする請求項1に記載の直流電気鉄道と交流電気鉄道の電力融通システム。 Larger than the DC feeding circuit voltage upper limit reference DC voltage, and when the AC feeding circuit voltage is less than the lower limit reference alternating voltage, the control device will power interchange the DC side regenerative power to the AC feeding circuit circuit, 2. The DC electric railway according to claim 1, wherein the power converter and the DC / AC converter are controlled to charge the power storage medium with surplus power that cannot be consumed by the DC feeder circuit. AC electric railway power interchange system. 直流き電電圧が前記上限基準直流電圧よりも大きく、且つ交流き電電圧が前記下限基準交流電圧以上で前記上限基準交流電圧以下であるときには、前記制御装置は直流側回生電力で前記電力貯蔵媒体を充電させるように前記電力変換器並びに前記直流/交流変換装置を制御することを特徴とする請求項1に記載の直流電気鉄道と交流電気鉄道の電力融通システム。 Larger than the DC feeding circuit voltage upper limit reference DC voltage, and when the AC feeding circuit voltage is the lower than the upper limit reference alternating voltage with the lower limit reference alternating voltage or higher, the control device the power storage medium with DC side regenerative power 2. The electric power interchange system for a DC electric railway and an AC electric railway according to claim 1, wherein the power converter and the DC / AC converter are controlled so as to charge the battery. 直流き電電圧が前記上限基準直流電圧よりも大きく、且つ交流き電電圧が前記上限基準交流電圧よりも大きいときには、前記制御装置は前記電力貯蔵媒体を充電させるように前記電力変換器並びに前記直流/交流変換装置を制御することを特徴とする請求項1に記載の直流電気鉄道と交流電気鉄道の電力融通システム。 Larger than the DC feeding circuit voltage upper limit reference DC voltage, and when the AC feeding circuit voltage is greater than the upper limit reference alternating voltage, said control device the power converter and the DC so as to charge the power storage medium The power interchange system for a DC electric railway and an AC electric railway according to claim 1, wherein an AC / AC converter is controlled.
JP2008311898A 2008-12-08 2008-12-08 Power interchange system for DC electric railway and AC electric railway Expired - Fee Related JP5383169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008311898A JP5383169B2 (en) 2008-12-08 2008-12-08 Power interchange system for DC electric railway and AC electric railway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008311898A JP5383169B2 (en) 2008-12-08 2008-12-08 Power interchange system for DC electric railway and AC electric railway

Publications (2)

Publication Number Publication Date
JP2010132209A JP2010132209A (en) 2010-06-17
JP5383169B2 true JP5383169B2 (en) 2014-01-08

Family

ID=42343974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008311898A Expired - Fee Related JP5383169B2 (en) 2008-12-08 2008-12-08 Power interchange system for DC electric railway and AC electric railway

Country Status (1)

Country Link
JP (1) JP5383169B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SI3007925T1 (en) * 2013-06-14 2019-09-30 Hedgehog Applications B.V. Method and system for utilization of regenerative braking energy of rail vehicles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353134A (en) * 1986-08-21 1988-03-07 Toshiba Corp Regulating device for circulating amount of dc power
JPH057530U (en) * 1991-07-15 1993-02-02 株式会社明電舎 Electric railway feeder circuit
JP2001161030A (en) * 1999-11-30 2001-06-12 Nissin Electric Co Ltd Battery power storage system for dc power distribution system
JP2005247192A (en) * 2004-03-05 2005-09-15 Toshiba Corp Regenerative power storage system
JP4399392B2 (en) * 2005-04-28 2010-01-13 東海旅客鉄道株式会社 Power interchange device

Also Published As

Publication number Publication date
JP2010132209A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
US9873335B2 (en) Electric railcar power feeding system, power feeding device, and power storage device
CA2917083C (en) Hybrid drive system
JP5082450B2 (en) Power supply equipment
JP4415874B2 (en) Charge and discharge method for transportation system
KR101419203B1 (en) Electric-vehicle propulsion power-conversion device
JP5752562B2 (en) Control system for power storage device for DC electric railway
JP2010252524A (en) Device and method for controlling energy storage of electric rolling stock
JP2009072003A5 (en)
WO2019119495A1 (en) Train traction rescue method and system
JP2005162076A (en) Method and device for controlling regenerative power absorption for electric railroad, and control device for power converter
US9013125B2 (en) Electric power converter of electric rolling stock
JP3618273B2 (en) DC feeder system for electric railway
US20140167701A1 (en) Power Converter and its Control Method
JPS63174501A (en) Controller for electric rolling stock
US20130049458A1 (en) Battery charging system and train
JP2011245979A (en) Feeding voltage control method of electric railroad system
JP5398433B2 (en) Electric railway power system
JP5777669B2 (en) Electric vehicle control device
EP3088241B1 (en) Regeneration inverter device for electric railroad
JP5383169B2 (en) Power interchange system for DC electric railway and AC electric railway
KR101182252B1 (en) a charging and discharging system of electric railcar using resuscitation power
JP2010000810A (en) Feeder system of dc feeding network
JP2008055918A (en) Control method for dc feeder system
KR100713840B1 (en) A recovery electric power storage system of electric rail car
JP5509442B2 (en) Power converter and electric railway system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees