JPS6353134A - Regulating device for circulating amount of dc power - Google Patents

Regulating device for circulating amount of dc power

Info

Publication number
JPS6353134A
JPS6353134A JP19605386A JP19605386A JPS6353134A JP S6353134 A JPS6353134 A JP S6353134A JP 19605386 A JP19605386 A JP 19605386A JP 19605386 A JP19605386 A JP 19605386A JP S6353134 A JPS6353134 A JP S6353134A
Authority
JP
Japan
Prior art keywords
power
electric
voltage
electric power
semiconductor switches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19605386A
Other languages
Japanese (ja)
Inventor
Toshio Aoki
敏雄 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19605386A priority Critical patent/JPS6353134A/en
Publication of JPS6353134A publication Critical patent/JPS6353134A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To automatically regulate a quantity of electric power to be balanced between sections of the mutual extension of the service, by providing an integrating means, which respectively integrates the quantity of electric power supplied through each of the first and second semiconductor switches, and controlling the semiconductor switches so that the quantity of electric power is supplied equally in each direction. CONSTITUTION:DC power quantity integration devices 15a, 15b integrate a quantity of electric power allowed to flow respectively into electric car feeder cables 5a, 5b. And comparators 16a, 16b, which compare the quantity of electric power conducting an electric current to be supplied to the electric car feeder cables 5a, 5b when one of the integrated value of the respective DC power quantity integrating devices 15a, 15b is larger than the other, output a signal to close semiconductor switches 13b, 13a. Accordingly, circulating amounts of electric power can be balanced with each other by controlling the semiconductor switches 13a, 13b to be opened and closed so that the electric power quantity integrating devices 15a and 15b continually integrate the equal amount of power.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は直流電気鉄道において営業主体のy2なる路線
に直流電気車が相11東入れを11なっている間で、相
互の電力供給量を自動的に調整づるピI rr!e融通
電力量調整装置に関づる。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention is directed to a direct current electric railway in which a direct current electric car is connected to a line called y2, which is operated by a business entity, while a direct current electric car is running between phase 11 east and 11. Automatically adjusts the amount of power supplied to the device. Relates to e-accommodating power amount adjustment device.

(従来の技術) 従来の直流電気鉄道に、J5ける2礼間相n乗り入れの
電力量の調整方法について第7図の系側゛亡図に従って
説明する。
(Prior Art) A method of adjusting the amount of electric power for a conventional DC electric railway to be used for two-way phase N on J5 will be explained with reference to the system side diagram shown in FIG. 7.

第7図は相異なる2社の相互乗り入れ部分のそれぞれの
直流変電所1a、1bおよびこの2社間を区分する直流
き1区分所2について表わしたちのである。それぞれの
直流変電所1a、Ibは三相交流電力を整流器用変圧器
3a、3bと整流器4a、4bにより直流電力に変換し
、直流電車線5a、5bに供給するものである。一方、
直流き1区分所2は直流電車!fA5a、5bを相互に
区分するためのセクション6をはさんで、直流高速度遮
断器を用いた区分開閉器7とそれぞれの向きの電力量を
計測するための直流変流器88.8b。
FIG. 7 shows the DC substations 1a and 1b of the mutually accessible parts of two different companies, and the DC substation 2 that separates these two companies. Each DC substation 1a, Ib converts three-phase AC power into DC power using rectifier transformers 3a, 3b and rectifiers 4a, 4b, and supplies the DC power to DC power lines 5a, 5b. on the other hand,
DC 1 classification station 2 is a DC train! A section switch 7 using a DC high-speed circuit breaker and a DC current transformer 88.8b for measuring the amount of electric power in each direction are sandwiched between a section 6 for mutually dividing the fAs 5a and 5b.

直流計器用変圧器9a、9bおよび直流電力4積算装置
10a、10bからなる。
It consists of DC instrument transformers 9a, 9b and DC power 4 integration devices 10a, 10b.

ここで、直流電力4積算装置10aは直流電車線5aか
ら直流電車線5bの方向に流れる電力量、直流電力4積
算装置10bは逆に直流電車線5bから直流電車線5a
方向に流れる電力量を計測するものである。
Here, the DC power 4 integrating device 10a is the amount of power flowing from the DC overhead contact line 5a to the DC overhead contact line 5b, and the DC power 4 integrating device 10b is the amount of electric power flowing from the DC overhead contact line 5b to the DC overhead contact line 5a.
It measures the amount of electricity flowing in the direction.

また、区分開閉器7は一般に機械式のものが採用されて
いる。ところで、電気車両がセクション6を通過すると
ぎは、セクション間の電(ヴ差をなくするために区分開
閉器7を閉合する必要がある。
Further, the section switch 7 is generally of a mechanical type. By the way, when the electric vehicle passes through section 6, it is necessary to close the section switch 7 in order to eliminate the voltage difference between the sections.

一方、他社電車線にある電気車両に対して電力を供給し
ないようにするには、セクション通過時以外これを開t
liづ゛る必要がある。しかし、区分開閉器7が機械式
であると、その開閉には機械的な摩耗を伴うことから、
一般には常時閉合して使用されている。
On the other hand, if you want to prevent power from being supplied to electric vehicles on other companies' tram lines, open this button except when passing through a section.
It is necessary to read it. However, if the section switch 7 is mechanical, opening and closing involves mechanical wear.
Generally, it is used closed at all times.

このため、両社の電気車両は運転ダイヤ、駅の位置、直
流変電所1a、1bの直流電圧変動、電車15a、5b
の直流抵抗の違い等により直流電力量積算装置10 a
 および10bの示1’ (lAはそれぞれ異なる。一
方、直流電気車11の運用に当っては、それぞれの直流
電気車11を相互に同じ距離だけ相互乗り入れすること
により両社の車両の運用を平均化しバランスを取ってい
る。ところが、直流電力4積算装置10a、10bの示
す伯の差は上記のほかにも、運転ダイヤのみだれ、電気
Φ両の運転方法等によっても変わり、計測の都瓜変わっ
てくる。
For this reason, the electric vehicles of both companies are based on operating schedules, station locations, DC voltage fluctuations at DC substations 1a and 1b, and trains 15a and 5b.
Due to the difference in DC resistance, etc., the DC power integration device 10 a
and 10b's 1' (lA are different. On the other hand, when operating the DC electric cars 11, the operations of the vehicles of both companies are averaged by mutually driving each DC electric car 11 the same distance. However, in addition to the above, the difference in the numbers indicated by the four DC power integration devices 10a and 10b also varies depending on the operating schedule, the operating method of the electric vehicle, etc., and the measurement method has changed. come.

よって、一般にはある一定期間ごとにこの直流電力量積
算装置10a、10bの検針を行ない、差が零となるよ
う直流変電所1a、1bの整流器用変圧器2a、2bの
1次タップ電圧を変えたり、整流器用変圧器2a、2b
および整流器3a。
Therefore, in general, the meters of the DC power integration devices 10a and 10b are read at certain intervals, and the primary tap voltages of the rectifier transformers 2a and 2b of the DC substations 1a and 1b are changed so that the difference becomes zero. , rectifier transformers 2a, 2b
and rectifier 3a.

3bの運転台数を増減したりして調整している。Adjustments are being made by increasing or decreasing the number of 3b units in operation.

また、時には電力量の差に応じた電気料金によって取引
をしていた。しかしながら、これらは先に述べたように
常に外部条件により異なってくるため、その都度調整を
行なわなければならず、金銭のやりとりを伴うという不
便をきたしている。
In addition, sometimes transactions were made based on electricity rates depending on the difference in the amount of electricity. However, as mentioned above, these always differ depending on external conditions, so adjustments must be made each time, which is inconvenient as it involves the exchange of money.

(発明が解決しようとする問題点) 上に述べたように、従来は2社間の融通霜ブノ吊を調整
するために、直流変電所1a、1bの整流器用変圧器2
a、 2bの1次タップ電圧を変えたり、運転台数を変
えたりして相互の融通電力量を調整していたが、これは
全て人手にたよっていた。
(Problems to be Solved by the Invention) As described above, in the past, in order to adjust the flexible frost hanging between two companies, the rectifier transformer 2 of the DC substations 1a and 1b was
The mutual power interchange was adjusted by changing the primary tap voltage of A and 2B and by changing the number of operating units, but all of this was done manually.

また、調整方法によっては、電車線における電圧低下と
なり直流電気車の運行に支障をきたす虞れもあった。
Furthermore, depending on the adjustment method, there is a risk that the voltage will drop on the overhead contact line, interfering with the operation of DC electric cars.

一方、平均化の調整にもかかわらず調整しきれなかった
ミノJffiは金銭により処理されている。しかしなが
ら、各社の設備、季節等の条件より電力量の単価も異な
り、なによりも金銭のやりとりを伴うことは非常に不便
であった。
On the other hand, Mino Jffi, which could not be fully adjusted despite the averaging adjustment, is being processed with money. However, the unit price of electricity varies depending on the equipment of each company, the season, etc., and above all, it is very inconvenient to have to exchange money.

本発明は上記の問題点を解決するためになされたもので
、電気車両の運転に影響を与えることなくしかも繁雑な
直流変電所における操作や電気料金のやりとりを行なう
こと無く相互乗り入れの2社間の電力量のバランスを自
動的に行なうことを可能とした直流融通電力fi%調整
装置の提供を目的とづる。
The present invention was made in order to solve the above problems, and it is possible to connect two companies with mutual access without affecting the operation of electric vehicles and without having to operate complicated DC substations or exchange electricity charges. The purpose of the present invention is to provide a DC interchange power fi% adjustment device that can automatically balance the amount of electric power.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、セクションで分離された電気鉄道用直流電車
線を一方の直流ぎ電線から他方の直流き電線に電力を供
給する第1の半導体開閉器と、前記他方の直流き電線か
ら一方の直流き電線に電力を供給する第2の半導体開閉
器と、前記第1および第2の各半導体間m器を介して供
給される電力量をそれぞれ積算する積算手段と、この積
算手段の出力に基いてそれぞれの方向に流れる電力量が
等しくなるように前記第1および第2の半導体開閉器を
オン・オフυ」御する制御手段とを備えたものである。
(Means for Solving the Problems) The present invention provides a first semiconductor switch for supplying power from one DC feeder line to the other DC feeder line for an electric railway DC overhead contact line separated in sections; a second semiconductor switch that supplies power from the other DC feeder to one DC feeder, and an integration means that integrates the amount of power supplied through each of the first and second inter-semiconductor devices; and control means for controlling the first and second semiconductor switches on and off so that the amount of electric power flowing in each direction is equal based on the output of the integrating means.

(作 用) この発明においては、積算手段の出力に基いて制御手段
が、直流き電線相互の電力量の差の大きさに合わせて第
1および第2の半導体開閉器を制御すると共に、電力量
の差が零になるように制御するため、電力量の差による
直流変電所の煩雑な操作や料金のやりとりを行なう必要
がなくなる。
(Function) In this invention, the control means controls the first and second semiconductor switches in accordance with the magnitude of the difference in electric power between the DC feeders based on the output of the integrating means, and also controls the first and second semiconductor switches based on the output of the integrating means. Since the difference in power amount is controlled to be zero, there is no need to perform complicated operations at DC substations or exchange charges due to differences in power amount.

(実施例) 以下、図面を参照しながら本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す系統図である。FIG. 1 is a system diagram showing one embodiment of the present invention.

同図に示すように、それぞれの直流変電所1a。As shown in the figure, each DC substation 1a.

1bの間のセクション6をはさんで直流融通を力酊調整
装置12が設置される。この直流融通電力量調整装置1
2は直流電車線5a、5bに両端を接続し相互に電流の
開閉ができるirl流両万両方向半導体開閉器13通直
流電流を制r111装胃15に入力できるレベルにする
ための直流電流変換器8a。
A DC adjustment adjustment device 12 is installed across the section 6 between the sections 1b and 1b. This DC interchange power amount adjustment device 1
2 is a DC current converter 8a that connects both ends to the DC overhead contact lines 5a and 5b and is capable of mutually switching on/off the current through 13 irl flow two-way semiconductor switches 13; .

Bb、直流電圧を制御装置15に入力できるレベルにす
るための直流電圧変換器9a、gb、直流電気車11の
位置を検出するための位置検出器14a、14b、およ
び電流、電圧、電気車位置等の外部条件を処理し、直流
両方向半導体開閉器13をtI制御する制御装置15か
ら構成されている。
Bb, DC voltage converters 9a and gb for bringing the DC voltage to a level that can be input to the control device 15, position detectors 14a and 14b for detecting the position of the DC electric car 11, and current, voltage, and electric car position. It is comprised of a control device 15 that processes external conditions such as, and controls the DC bidirectional semiconductor switch 13 at tI.

かかる構成において、半導体開閉器13は通常開放状態
としておき、直流電気車11がセクション6に向かって
電気車位置検出装置1421または14bに入ったとき
閉合させ、セクション6と逆方向に電気車位冒検出装置
14bまたは14aを通過するとき開放させることによ
り、セクション6を直流電気車11が通過するときセク
ション6の両端電車1j+5a、5bの電圧を等しくし
ている。
In this configuration, the semiconductor switch 13 is normally left open, and is closed when the DC electric car 11 enters the electric car position detection device 1421 or 14b toward the section 6, and is turned on to detect the position of the electric car in the opposite direction to the section 6. By opening the device 14b or 14a when passing the device 14b or 14a, when the DC electric car 11 passes through the section 6, the voltages of the electric cars 1j+5a and 5b at both ends of the section 6 are equalized.

直流電気車11のカ行電流または回生電力により電車線
5a、5bのいずれかの電圧が異常に低くなった場合や
、異常に高くなった場合は、直流電気車11の良好な運
行のため電圧の高い方から低い方へ電流が供給されるよ
うに半導体開閉器13を閉合させる。このとき電車線5
a、5bの相互間に電流が流れる。この電力量は少ない
量ではあるが完全に零ではなく、どちらかが多い。この
電力量を零とするため、通常運転電圧箱n(最低電圧と
最高電圧の間)において電力量の差が零となるように半
導体開閉器13を開閉して調整する。
If the voltage of either the overhead contact line 5a or 5b becomes abnormally low or high due to the direct current or regenerative power of the DC electric car 11, the voltage The semiconductor switch 13 is closed so that current is supplied from the higher side to the lower side. At this time, tram line 5
A current flows between a and 5b. Although this amount of electric power is small, it is not completely zero, and either one is large. In order to make this power amount zero, the semiconductor switch 13 is opened and closed to adjust so that the difference in power amount becomes zero in the normal operation voltage box n (between the lowest voltage and the highest voltage).

通常、電車線5 a 、+ 5 bの電圧は互いに異な
っており、半導体開閉器13が開放しているとき電車線
5a側にカ行車負゛荷が多ければ電車線5a側の電圧が
電車線5b側の電圧よりも低くなり、また逆の場合は、
電車線5b側の電圧が高くなる。この通常電圧差を利用
して融通電力量が零となるよう制御表′1115を運用
して調整する。
Normally, the voltages on the overhead contact lines 5a and +5b are different from each other, and if there is a large load of cars on the overhead contact line 5a side when the semiconductor switch 13 is open, the voltage on the overhead contact line 5a side will be higher than that of the overhead contact line 5a. If the voltage becomes lower than the voltage on the 5b side and vice versa,
The voltage on the overhead contact line 5b side increases. Using this normal voltage difference, the control table '1115 is operated and adjusted so that the amount of interchanged power becomes zero.

第2図は制御装置15の詳細なM4成を示すブロック図
である。
FIG. 2 is a block diagram showing the detailed M4 configuration of the control device 15.

同図において、直F&電力吊積算@ rll 15 a
は電車線5aから5bへの流入電力量を積算し、ia流
流電力積積算装置15b逆に電車線5bから5 Flに
流入する電力量を積算する。比較器16aは直流電力石
積t、7装置15aと15bの積算値を比較して直流電
力量積算装置15aの積算 4fiが大きいときに4制
御器17aに対して電車線5bから電1p1i15aに
対して電流を通電σべく半導体開閉器13bを1M1合
する信号を出力づる。一方、比較器16bは直流電力量
積算装置15aど15bの積q値を比較して直流電力h
(積算装置15bの積算値が大きいときに制御器17b
に対して電車線5aから電車線5bに対して電流を通電
するべく半導体開閉器13aを閉合1−る信号を出力す
る。
In the same figure, direct F & power hanging integration @ rll 15 a
integrates the amount of electric power flowing from the overhead contact line 5a to 5b, and integrates the amount of electric power flowing from the overhead contact line 5b to 5Fl conversely. The comparator 16a compares the integrated values of the DC power amount integrating device 15a and 15b, and when the integrated value of the DC power amount integrating device 15a is large, the current from the contact line 5b to the power line 1p1i15a is calculated for the 4 controller 17a. A signal is output that connects the semiconductor switch 13b to 1M1 in order to conduct current σ. On the other hand, the comparator 16b compares the product q values of the DC power amount integrating devices 15a and 15b to determine the DC power h.
(When the integrated value of the integrating device 15b is large, the controller 17b
In contrast, a signal is output to close the semiconductor switch 13a in order to conduct current from the overhead contact line 5a to the overhead contact line 5b.

上述のようにして直流電力id積積装装置5aと15b
が常に等しくなるように半導体間111器13a、13
bを開閉υ1す11することによりおUいの融通電力量
をバランス8t!ることができる。
As described above, the DC power ID loading/unloading devices 5a and 15b are
between semiconductor devices 13a and 13 so that
By opening and closing υ111, the amount of power that can be used by the user is balanced by 8t! can be done.

第3図は制御装置15の他の構成例を示づブ[1ツク図
で、特に直′A+、tf気中11がΔIスから8点に向
って進むとき、しクシ」ン6の通過時にセクション6の
両側の電圧を等しく制御するための描成を示すものであ
る。
FIG. 3 is a block diagram showing another example of the configuration of the control device 15. In particular, when the straight A+, tf air 11 moves from the ΔI base toward the 8th point, the passage of the 2 shows a diagram for controlling the voltage on both sides of section 6 equally.

かかる構成において、直流電気車11がセクション6に
入る場合には、直流電気車位置検出装置14aからの信
号により半導体間IV1m13a。
In such a configuration, when the DC electric car 11 enters the section 6, a signal from the DC electric car position detecting device 14a is used to detect the voltage between the semiconductors IV1m13a.

13bをオンする。次に、直流電気車11がセクション
6を通過し8点にいたると、直流電気車位置検出装置1
4bより信号を受は半導体間閉器13a、1’3bを開
放しオフする。ただし、半導体開閉器13a、’13b
を開放する場合は、常に直流電気車位置検出装置14b
よりの信号だけでなく後続の直流電気車11がA点にい
ないことを条件に開放する。この条件は否定論理演算素
子19ど論理和演算素子20により判断し、制御器17
a、17bに与えることで実現される。逆に、Ii流流
電型車118点側よりA点側に向って移動する場合、同
様の論理構成により半導体開閉器13a、13bを制御
ずればよい。
13b is turned on. Next, when the DC electric car 11 passes through section 6 and reaches point 8, the DC electric car position detection device 1
When the signal is received from 4b, the semiconductor circuit breakers 13a and 1'3b are opened and turned off. However, semiconductor switches 13a, '13b
When opening the DC electric vehicle position detection device 14b,
It is opened not only on the condition that the following signal is received but also that the following DC electric car 11 is not at point A. This condition is determined by the NOT logic operation element 19 and the OR operation element 20, and the controller 17
This is achieved by giving it to a and 17b. Conversely, when moving from the Ii galvanic type car 118 point side to the A point side, the semiconductor switches 13a and 13b may be controlled and shifted using the same logical configuration.

第4図は直流電気車11の位置検出装置14a。FIG. 4 shows the position detection device 14a of the DC electric car 11.

14bの構成例を示す回路図である。14b is a circuit diagram showing a configuration example of 14b. FIG.

同図に示すように、直流電気車11は2本のレール21
の上を走っているが、このレール21は直流電気車11
の位置を検出するために一定区間ごとにレール絶縁部2
2a、22be:2けである。
As shown in the figure, the DC electric car 11 has two rails 21.
This rail 21 runs on the DC electric car 11.
The rail insulation section 2 is installed at regular intervals in order to detect the position of the
2a, 22be: 2 digits.

このレール絶縁部22a、22bは直流電流のみが流れ
るようにインピーダンスボンド23a。
The rail insulators 22a and 22b are connected to impedance bonds 23a so that only direct current flows.

23bによって接続して成る。ここで、インピーダンス
ボンド23a、23bは直流電流に対してはほとんど抵
抗が零となるようになっているが、交流電流に対しては
大きな゛抵抗となるようになっている。一方、このレー
ル絶縁部22a、22bの片側には商用周波等の交流電
圧が軌道変圧器24を介して2本のレール21間に与え
られる。また、もう一方のレール絶縁側には軌道継電器
25が設置されるが、これは軌道変圧器24からの交流
電圧によって常時励磁されている。
23b. Here, the impedance bonds 23a and 23b have almost zero resistance to direct current, but have a large resistance to alternating current. On the other hand, an alternating current voltage such as a commercial frequency is applied between the two rails 21 via a track transformer 24 on one side of the rail insulators 22a and 22b. A track relay 25 is installed on the other rail insulated side, and is constantly excited by an alternating current voltage from the track transformer 24.

ここで、直流電気車11がこの区間に入ると直R電気車
の車@26によって2本のレール21間は短絡されるこ
とになり、軌道継電器25は励…されなくなり直流電気
車11が「有」として閉合する接点信号27が得られる
Here, when the DC electric car 11 enters this section, the two rails 21 will be short-circuited by the car @26 of the direct R electric car, and the track relay 25 will not be energized, and the DC electric car 11 will be A contact signal 27 is obtained which closes as "Yes".

第5図35よび第6図は直流電気車11のカ行電流また
は回生電力により電車線5a、5bのいずれかの電圧が
異常に低くなった場合あるいム異常に高くなった場合に
、電気車11の良好な運行のために電圧の高い方から低
い方へ電流を供給するよう制御するための制御11装置
の構成を示すブロック図である。
Fig. 5 35 and Fig. 6 show that when the voltage of either the overhead contact line 5a or 5b becomes abnormally low or high due to the direct current of the DC electric car 11 or the regenerative power, FIG. 2 is a block diagram showing the configuration of a control device 11 for controlling the supply of current from a higher voltage to a lower voltage for good operation of the vehicle 11. FIG.

これら、各図において、直流電車線5a、5bのそれぞ
れの電圧は直流変圧器9a、9bから変換器28a、2
8bを介して比較器31a、31bに入力され、最低基
準電圧29または最高基準電圧32と比較される。
In these figures, the respective voltages of DC overhead contact lines 5a and 5b are transferred from DC transformers 9a and 9b to converters 28a and 28a.
The voltage is inputted to comparators 31a and 31b via 8b, and compared with the lowest reference voltage 29 or the highest reference voltage 32.

さて、第5図の構成では、セクション6をはさIυだ電
車線5a、5bの直流電圧が最低)^単重1モ29より
低下したとき、つまり直流電気車のカ行電流の負荷が大
きいとき、半導体開閉器13a。
Now, in the configuration shown in Fig. 5, when the DC voltage of the overhead contact wires 5a and 5b across the section 6 is lower than the lowest unit weight of 1 mo29, that is, the load of the current of the DC electric car is large. When the semiconductor switch 13a.

13bをオンして接Lvc覆ることにより電圧降下を補
っている。
The voltage drop is compensated for by turning on 13b and covering the connection Lvc.

一方、第6図の構成では、最高基1?−宙圧32は高く
セットされており、電車線5a、5b(7)電圧の一方
が異常に高くなった場合、つまり直流電気車11の回生
電流による電圧上昇があった場合、半導体giti器1
3a、13bをオンして電気車の回生電流を流してやる
ことにより電車線5aまたは5bの電圧上昇をおさえ、
直流電気車11の回生が充分行なえるようにしている。
On the other hand, in the configuration shown in Figure 6, the highest group 1? - The air pressure 32 is set high, and if one of the voltages of the overhead contact lines 5a, 5b (7) becomes abnormally high, that is, if there is a voltage increase due to the regenerative current of the DC electric car 11, the semiconductor giti device 1
3a and 13b are turned on to allow the regenerative current of the electric car to flow, suppressing the voltage rise in the overhead contact line 5a or 5b,
Sufficient regeneration of the DC electric vehicle 11 is made possible.

らなみに、第5図、第6図のいずれの構成でも、異常な
電流が流れたときは開閉に13a、13bを強11目的
に開放することにより系統の保護を行なう必要はある。
Incidentally, in either of the configurations shown in FIGS. 5 and 6, when abnormal current flows, it is necessary to protect the system by opening and closing 13a and 13b for the purpose of switching.

かくして、本実施例によれば、直流電気車11の運転状
態に関係なく、セクション6を境とするそれぞれの電車
線5a、5bからの電力量のやりとりなどの煩雑な作業
を行なうことなく常に一定となるようLl制御されるた
め、2社間の電気Xt+相互乗り入れにおけるiiJ流
電力の融通量を平均化することができる。
Thus, according to the present embodiment, regardless of the operating state of the DC electric car 11, the amount of electric power is always constant without performing complicated operations such as exchanging electric power from each contact line 5a, 5b bordering section 6. Since the Ll control is performed so that the amount of electric power exchanged between the two companies in the electric power Xt+mutual connection can be averaged.

なお、上記実陥例では直流電流変換器!器として中一方
向性のものを例示して説明したが、両方向を旧α1でき
る直流電流変換器を使用して系を(14成してもよいこ
とはもちろんである。
In addition, in the actual failure example above, a DC current converter is used! Although a unidirectional converter has been described as an example, it goes without saying that the system may also be constructed using a DC current converter that can operate in both directions.

また、第2図、第3図、第5図、第6図の各構成は別々
に例示したが、すべての構成を論理的に組み合わせて一
体化した制御装置を構成することにより、すべての機能
を満足することができる。
In addition, although the configurations in Figures 2, 3, 5, and 6 are illustrated separately, all functions can be realized by logically combining all configurations and configuring an integrated control device. can be satisfied.

〔発明の効果〕〔Effect of the invention〕

以上述べたように−、本発明によれば、交流電力を整流
器等の変換装置を介して直流として直流電気車に供して
いる直流電車線において、直流電車線間相互の電力量差
をなくしたい場所において相互の電力量の差の大きさに
合わせて半導体開閉器を片方向ずつ開閉制御することに
よって電力量の差が零となるよう制tilするようにし
たため、電力h1の差によって煩雑な直流変電所におけ
る操作や電気料金のやりとりを行なうことなく容易に電
力量の差を零とすることができる。
As described above, according to the present invention, in a DC overhead contact line where AC power is converted to DC through a converter such as a rectifier and is supplied to a DC electric train, in a place where it is desired to eliminate the difference in power amount between the DC overhead contact lines, By controlling the opening and closing of the semiconductor switch in one direction according to the magnitude of the difference in the mutual power consumption, the difference in power consumption is controlled to zero, so the difference in power h1 reduces the complexity of DC substations. The difference in power amount can be easily reduced to zero without any operations or exchange of electricity charges.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の系統図、第2図は同実施例
の主要素の詳細な構成を示すブロック図、第3図、第5
図、第6図は同実施例の主要素の他の構成例を示すブロ
ック図、第4図は一般的な直流電気in位置検出装置の
構成を示す回路図、第7図は従来の直流融通電力は調整
装置の系統図である。 1a、lb・・・直流変電所、6・・・レクション、8
a、8b・・・直流電流変換器、9a、9b・・・直流
電流変換器、11・・・直流電気車、12・・・直流融
通電力量調整装置、1’3.13a、 13 b・・・
半導体開閉器、14a、14b・・・電気車位置検出装
置、15・・・制tII装置。 出願人代理人  佐  藤  −雄 罠 2I21 朽 3 図 札4 z 65 図 島6 凹
Fig. 1 is a system diagram of an embodiment of the present invention, Fig. 2 is a block diagram showing the detailed configuration of the main elements of the embodiment, Figs.
6 is a block diagram showing another configuration example of the main elements of the same embodiment, FIG. 4 is a circuit diagram showing the configuration of a general DC electric in position detection device, and FIG. 7 is a conventional DC accommodating Power is a system diagram of a regulating device. 1a, lb...DC substation, 6...Rection, 8
a, 8b... DC current converter, 9a, 9b... DC current converter, 11... DC electric car, 12... DC interchange power amount adjustment device, 1'3.13a, 13 b.・・・
Semiconductor switch, 14a, 14b... Electric vehicle position detection device, 15... Control tII device. Applicant's agent Sato - Otara 2I21 Kutsu 3 Illustration card 4 z 65 Zujima 6 Concave

Claims (1)

【特許請求の範囲】 1、セクションで分離された電気鉄道用直流電車線の一
方の直流き電線から他方の直流き電線に電力を供給する
第1の半導体開閉器と、前記他方の直流き電線から一方
の直流き電線に電力を供給する第2の半導体開閉器と、
前記第1および第2の各半導体開閉器を介して供給され
る電力量をそれぞれ積算する積算手段と、この積算手段
の出力に基づいてそれぞれの方向に供給される電力量が
等しくなるように前記第1および第2の半導体開閉器を
オン・オフ制御する制御手段とを備えたことを特徴とす
る直流融通電力量調整装置。 2、前記制御手段が電気車のセクション通過時にセクシ
ョン間の両端の電圧を等しくするべく前記第1、第2の
半導体開閉器を閉合することを特徴とする特許請求の範
囲第1項記載の直流融通電力量調整装置。 3、前記制御手段が、前記セクションのいずれかの電圧
が最低設定電圧よりも低くなったとき、および最高設定
電圧よりも高くなったとき、電圧の高い方から低い方に
電流が流れるように前記第1または第2の半導体開閉器
を閉合することを特徴とする特許請求の範囲第1項また
は第2項記載の直流融通電力量調整装置。
[Scope of Claims] 1. A first semiconductor switch that supplies power from one DC feeder to the other DC feeder of an electric railway DC contact line separated by sections, and a first semiconductor switch that supplies power from the other DC feeder a second semiconductor switch that supplies power to one DC feeder;
an integrating means for integrating the amounts of electric power supplied through each of the first and second semiconductor switches; A DC accommodating power amount adjustment device comprising: control means for controlling on/off of the first and second semiconductor switches. 2. The direct current according to claim 1, wherein the control means closes the first and second semiconductor switches to equalize the voltages at both ends of the section when the electric vehicle passes through the section. Flexible power adjustment device. 3. The control means controls the current to flow from the higher voltage to the lower voltage when the voltage in any of the sections becomes lower than the lowest set voltage and higher than the highest set voltage. The DC accommodating power amount adjusting device according to claim 1 or 2, characterized in that the first or second semiconductor switch is closed.
JP19605386A 1986-08-21 1986-08-21 Regulating device for circulating amount of dc power Pending JPS6353134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19605386A JPS6353134A (en) 1986-08-21 1986-08-21 Regulating device for circulating amount of dc power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19605386A JPS6353134A (en) 1986-08-21 1986-08-21 Regulating device for circulating amount of dc power

Publications (1)

Publication Number Publication Date
JPS6353134A true JPS6353134A (en) 1988-03-07

Family

ID=16351412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19605386A Pending JPS6353134A (en) 1986-08-21 1986-08-21 Regulating device for circulating amount of dc power

Country Status (1)

Country Link
JP (1) JPS6353134A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438001U (en) * 1990-07-26 1992-03-31
NL1012134C2 (en) * 1998-05-25 2001-02-20 Asea Brown Boveri Device for powering DC-powered vehicles.
JP2010132209A (en) * 2008-12-08 2010-06-17 Railway Technical Res Inst Electric power interchange system in direct-current electric railroad and alternating-current electric railroad
JP2014104962A (en) * 2012-11-30 2014-06-09 Hitachi Ltd Device and system for controlling electric railway feeder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0438001U (en) * 1990-07-26 1992-03-31
NL1012134C2 (en) * 1998-05-25 2001-02-20 Asea Brown Boveri Device for powering DC-powered vehicles.
JP2010132209A (en) * 2008-12-08 2010-06-17 Railway Technical Res Inst Electric power interchange system in direct-current electric railroad and alternating-current electric railroad
JP2014104962A (en) * 2012-11-30 2014-06-09 Hitachi Ltd Device and system for controlling electric railway feeder

Similar Documents

Publication Publication Date Title
JPH11511949A (en) High voltage power converter system
US6326773B1 (en) Power conversion apparatus
KR101411025B1 (en) Alternating current electronic railroad power system
JPS61500198A (en) Current source sine wave inverter
US5569987A (en) Power supply system for a long-stator drive for a magnetic levitation train
CN110239398A (en) A kind of cophase supply traction substation protection for feed line trip method
CN105934875A (en) Power conversion device
JP4399392B2 (en) Power interchange device
RU2427484C1 (en) Electric power supply system of electrified ac railways
CN106488858B (en) The power-supply device of AC electric vehicle
JPS6353134A (en) Regulating device for circulating amount of dc power
US1916307A (en) Battery charging regulation
CA1186729A (en) Control system for dc power transmission
RU2552572C1 (en) 25 kv alternating current supply system for electrified railroads
SU1355514A1 (en) Device for reducing circulating currents in traction circuit of electrified alternating current railways
US1260094A (en) Power indicating and limiting system.
Inarida et al. A novel power control method achieving high reliability of auxiliary power supply system for trains
JP2010120513A (en) Ac feeder device for electric railway
US2130842A (en) Potential source compensation
SU1359853A1 (en) Method of reducing the circulating currents in traction network
JPS61200037A (en) Direct current feeding apparatus
JP6548796B1 (en) POWER CONVERSION SYSTEM, TRAFFIC SYSTEM, AND POWER CONVERSION METHOD
JPS61200038A (en) Direct current feeder
CN113131537A (en) Interlocking control method for double-current system test line
JPH0739005A (en) Power converter for electric car