JP2001161030A - Battery power storage system for dc power distribution system - Google Patents

Battery power storage system for dc power distribution system

Info

Publication number
JP2001161030A
JP2001161030A JP34071799A JP34071799A JP2001161030A JP 2001161030 A JP2001161030 A JP 2001161030A JP 34071799 A JP34071799 A JP 34071799A JP 34071799 A JP34071799 A JP 34071799A JP 2001161030 A JP2001161030 A JP 2001161030A
Authority
JP
Japan
Prior art keywords
inverter
secondary battery
power
output
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34071799A
Other languages
Japanese (ja)
Inventor
Yoshiya Ogiwara
義也 荻原
Takeshi Kawakatsu
健 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP34071799A priority Critical patent/JP2001161030A/en
Publication of JP2001161030A publication Critical patent/JP2001161030A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the size and cost of a battery power storage system which injects the electric power from a secondary battery into the DC bus of a DC power distribution system. SOLUTION: In a battery power storage system which injects the electric power from a secondary battery 20 charged by means of an AC system 1 into the DC bus 5 of the DC power distribution system connected to the system 1, a power converter 21 is constituted of an inverter 22 which makes high-frequency conversion on the output voltage of the battery 20, a transformer 23 which boosts the output of the inverter 22, and a rectifier 24 which rectifies the output of the transformer 23 and electric power is injected into the bus 5 from the battery 20 by adjusting the output voltage of the rectifier 24 by controlling the output voltage of the inverter 22 based on the power fluctuation in the bus 5. Since the frequency of the inverter 22 is raised, the capacity, size, and cost of the power converter 21 are reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、交流系統から電気
鉄道等の直流配電系に供給される電力ピークを抑制し
て、直流配電系の受電電力を平準化する電池電力貯蔵シ
ステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery power storage system for suppressing a power peak supplied from an AC system to a DC distribution system of an electric railway or the like and leveling the received power of the DC distribution system.

【0002】[0002]

【従来の技術】電気鉄道においては、一般に朝夕のラッ
シュアワーの時間帯(重負荷時)で電力ピークを迎えて
消費電力が急増し、この時間帯を除く夜間等の軽負荷時
では消費電力が小さくなる。そこで、重負荷時には特定
の二次電池の電力を電気鉄道の直流き電線に注入し、軽
負荷時には直流き電線側の電力系統から二次電池を充電
するようにして、直流き電線における1日の電力ピーク
を抑制し、消費電力の平準化を実現させて、契約電力の
基本料金を低減化させるシステムが、直流電気鉄道向け
電池電力貯蔵システムとして研究開発されており、その
具体的回路例を図3に示す。
2. Description of the Related Art In an electric railway, the power consumption generally rises during the rush hour hours (heavy load) in the morning and evening, and the power consumption sharply increases. Become smaller. Therefore, when the load is heavy, the power of a specific secondary battery is injected into the DC feeder of the electric railway, and when the load is light, the secondary battery is charged from the power system on the DC feeder side. Has been researched and developed as a battery power storage system for DC electric railways by suppressing the power peak of As shown in FIG.

【0003】図3の電池電力貯蔵システムは、変電所等
の交流系統1から電力供給を受ける直流き電線5に二次
電池7をチョッパ回路8の電力変換装置を介して接続し
たシステムである。交流系統1が直流き電線用変圧器
2、整流器3、直流リアクトル4を介して直流き電線5
に接続されて、列車負荷6を駆動させる直流電気鉄道の
直流配電系が構成される。交流系統1から送電される数
1000Vの交流電圧が変圧器2で例えば750V〜1
500Vに降圧され、これが整流器3で整流され直流リ
アクトル4で平滑化された直流電力が直流き電線5に給
電される。
[0003] The battery power storage system of FIG. 3 is a system in which a secondary battery 7 is connected to a DC feeder line 5 supplied with power from an AC system 1 such as a substation via a power converter of a chopper circuit 8. An AC system 1 is connected to a DC feeder 5 via a DC feeder transformer 2, a rectifier 3, and a DC reactor 4.
And a DC distribution system of a DC electric railway that drives the train load 6. An AC voltage of several thousand volts transmitted from the AC system 1 is applied to the transformer 2 by, for example, 750V to 1V.
The DC power is reduced to 500 V, rectified by the rectifier 3 and smoothed by the DC reactor 4 and supplied to the DC feeder 5.

【0004】二次電池7と交流系統1の間に二次電池充
電用変圧器11、整流器12、直流リアクトル13が接
続され、二次電池7が交流系統1の交直変換電力で例え
ば1000〜2000V程度に充電される。二次電池7
の出力(放電)端子と直流き電線5の間にチョッパ回路
8が接続される。チョッパ回路8は、二次電池7の直流
出力電圧を半導体スイッチング素子Sで断続制御するこ
とで変圧して直流き電線5に注入(放電)される電力を
調整する。この電力調整で、直流き電線5の電力ピーク
の抑制と平準化の動作が行われる。なお、図3のチョッ
パ回路8は降圧チョッパ構成であるが、昇圧チョッパ構
成であってもよい。また、チョッパ回路8には半導体ス
イッチング素子Sの他に、チョッパ動作時に発生する電
流リップルや電圧リップルを抑制するリアクトルLやコ
ンデンサCから成るLCフィルター等を備える。
A secondary battery charging transformer 11, a rectifier 12, and a DC reactor 13 are connected between the secondary battery 7 and the AC system 1. Charged to about. Secondary battery 7
A chopper circuit 8 is connected between the output (discharge) terminal and the DC feeder 5. The chopper circuit 8 transforms the DC output voltage of the secondary battery 7 by intermittently controlling the semiconductor switching element S to adjust the power injected (discharged) into the DC feeder line 5. With this power adjustment, the operation of suppressing and leveling the power peak of the DC feeder line 5 is performed. Although the chopper circuit 8 in FIG. 3 has a step-down chopper configuration, it may have a step-up chopper configuration. The chopper circuit 8 includes, in addition to the semiconductor switching element S, an LC filter including a reactor L and a capacitor C for suppressing a current ripple and a voltage ripple generated during a chopper operation.

【0005】以上のチョッパ回路8の動作は、チョッパ
制御回路17で制御される。例えば交流系統1から直流
き電線5に給電される電力を計器用変成器15が検出
し、この検出信号をデマンド監視装置16が監視してチ
ョッパ制御回路17に充放電のタイミング信号を出力し
て、直流き電線5の重負荷時にはチョッパ回路8が二次
電池放電動作をし、軽負荷時にはチョッパ回路8が停止
して二次電池充電が行われる。
[0005] The operation of the chopper circuit 8 described above is controlled by a chopper control circuit 17. For example, the instrument transformer 15 detects power supplied from the AC system 1 to the DC feeder line 5, the demand monitoring device 16 monitors this detection signal, and outputs a charge / discharge timing signal to the chopper control circuit 17. When the DC feeder line 5 is heavily loaded, the chopper circuit 8 performs a secondary battery discharging operation, and when the DC feeder line 5 is lightly loaded, the chopper circuit 8 stops and the secondary battery is charged.

【0006】[0006]

【発明が解決しようとする課題】二次電池の直流電圧を
チョッパ回路のスイッチング作用で変圧して直流き電線
に注入する電池電力貯蔵システムにおいては、チョッパ
回路の半導体スイッチング素子に直流き電線電圧に対応
した定格電圧の高耐圧素子が必要となり、半導体スイッ
チング素子に大型で高コストなものが必要となる。ま
た、チョッパ回路が降圧チョッパ或いは昇圧チョッパの
いずれであっても、二次電池電圧と直流き電線電圧の電
圧差が大きく、この電圧差に対応して発生する電流リッ
プル成分を抑制するためのリアクトル、LCフィルター
に容量の大きな大型で高コストなものを使用する必要が
あって、二次電池出力を交流変換する電力変換装置が大
型化、高コスト化する問題があった。
SUMMARY OF THE INVENTION In a battery power storage system in which the DC voltage of a secondary battery is transformed by the switching action of a chopper circuit and injected into a DC feeder line, the semiconductor switching element of the chopper circuit converts the DC voltage into a DC feeder voltage. A high withstand voltage element having a corresponding rated voltage is required, and a large and expensive semiconductor switching element is required. Also, regardless of whether the chopper circuit is a step-down chopper or a step-up chopper, a voltage difference between the secondary battery voltage and the DC feeder voltage is large, and a reactor for suppressing a current ripple component generated in accordance with the voltage difference. In addition, it is necessary to use a large-size, high-cost filter having a large capacity for the LC filter, and there has been a problem that the power conversion device for converting the output of the secondary battery into an alternating current becomes large in size and high in cost.

【0007】本発明の目的とするところは、直流電気鉄
道等の直流配電系の電力ピークを抑制して電力の平準化
を行う二次電池仕様の電池電力貯蔵システムの小型化、
低コスト化を実現することにある。
It is an object of the present invention to reduce the size of a battery power storage system of a secondary battery specification which suppresses a power peak of a DC distribution system of a DC electric railway or the like to level power.
It is to realize cost reduction.

【0008】[0008]

【課題を解決するための手段】本発明の上記目的を達成
する技術的手段は、交流系統に接続される直流配電系の
直流母線に、交流系統で充電される二次電池を電力変換
装置を介して接続した電池電力貯蔵システムにおいて、
電力変換装置を、二次電池の出力電圧を交流変換するイ
ンバータと、このインバータの出力に1次巻線が接続さ
れたインバータ出力用変圧器と、この変圧器の2次巻線
と直流母線の間に接続されたインバータ出力用整流器で
構成し、直流配電系の直流母線の電力変動に基づいてイ
ンバータの出力電圧を制御してインバータ出力用整流器
の出力電圧を調整することで、二次電池から直流母線に
注入する電力を制御することを特徴とする。
Technical means for achieving the above object of the present invention is to provide a power conversion device by connecting a secondary battery charged by an AC system to a DC bus of a DC distribution system connected to an AC system. Battery storage system connected via
An inverter for converting the output voltage of the secondary battery into an alternating current, an inverter output transformer having a primary winding connected to the output of the inverter, and a secondary winding and a DC bus of the transformer. It consists of an inverter output rectifier connected in between, and controls the inverter output voltage based on the power fluctuation of the DC bus of the DC distribution system to adjust the output voltage of the inverter output rectifier. It is characterized in that the power injected into the DC bus is controlled.

【0009】ここで、二次電池と直流母線の間に配置さ
れたインバータは、二次電池の出力電圧を交流変換して
可変の直流電圧源を構成するもので、このインバータの
使用によりインバータ出力側の変圧器の小型化と、イン
バータ出力用整流器出力における電圧リップルの抑制化
が可能となる。
Here, the inverter disposed between the secondary battery and the DC bus constitutes a variable DC voltage source by converting the output voltage of the secondary battery into an alternating current. It is possible to reduce the size of the transformer on the side and to suppress the voltage ripple at the output of the rectifier for inverter output.

【0010】特に、請求項3の発明のようにインバータ
を商用周波数を大きく超える高周波インバータとするこ
とで、インバータ出力用変圧器のより小型化、リップル
成分のより抑制化が可能となる。
In particular, when the inverter is a high-frequency inverter that greatly exceeds the commercial frequency as in the invention of claim 3, it is possible to further reduce the size of the inverter output transformer and suppress the ripple component.

【0011】また、本発明の請求項2の発明のように、
上記二次電池出力とインバータ出力用整流器の出力を直
列接続することで、インバータ出力電圧が二次電池電圧
分だけ小さくできて、インバータとその出力側変圧器、
整流器をより小容量化、小型化することができる。
Also, as in the invention of claim 2 of the present invention,
By connecting the secondary battery output and the output of the inverter output rectifier in series, the inverter output voltage can be reduced by the secondary battery voltage, and the inverter and its output side transformer,
The rectifier can be reduced in capacity and size.

【0012】[0012]

【発明の実施の形態】以下、本発明の第1の実施形態を
図1に、第2の実施形態を図2に示し、順に説明する。
なお、図1と図2の各実施形態は、図3の直流電気鉄道
の直流配電系に図3の電池電力貯蔵システムと同じ目的
で適用したもので、図3と同一又は相当部分には同一符
号を付して説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The first embodiment of the present invention is shown in FIG. 1 and the second embodiment is shown in FIG.
1 and 2 are applied to the DC power distribution system of the DC electric railway shown in FIG. 3 for the same purpose as the battery power storage system shown in FIG. 3, and the same or corresponding parts as those in FIG. The description is omitted by attaching reference numerals.

【0013】図1の電池電力貯蔵システムは、交流系統
1に変圧器2,整流器3,直流リアクトル4を介して接
続された直流電気鉄道の直流き電線(直流母線)5に、
交流系統1で充電される二次電池20を電力変換装置2
1を介して接続したものである。電力変換装置21は、
二次電池20の出力電圧を交流変換するインバータ22
と、インバータ22の出力に1次巻線が接続されたイン
バータ出力用変圧器23と、変圧器23の2次巻線と直
流き電線5の間に接続されたインバータ出力用整流器2
4を備える。二次電池20は、必要に応じて交流系統1
で充電されるもので、例えば交流系統1の交流電圧を5
00V程度に降圧する二次電池用変圧器31と、降圧さ
れた交流を整流する二次電池用整流器(ダイオード整流
器、サイリスタ整流器等)32と、二次電池用リアクト
ル33を介して充電される。この二次電池充電と後述の
二次電池放電の制御は、直流き電線5におけるき電線電
流IL、き電線電圧VLを逐一監視することで行われ
る。
The battery power storage system of FIG. 1 includes a DC feeder (DC bus) 5 of a DC electric railway connected to an AC system 1 via a transformer 2, a rectifier 3, and a DC reactor 4.
The secondary battery 20 charged by the AC system 1 is connected to the power converter 2
1. The power converter 21
Inverter 22 that converts the output voltage of secondary battery 20 into AC
And an inverter output transformer 23 having a primary winding connected to the output of the inverter 22, and an inverter output rectifier 2 connected between the secondary winding of the transformer 23 and the DC feeder 5.
4 is provided. The secondary battery 20 is connected to the AC system 1 as necessary.
For example, when the AC voltage of the AC system 1 is 5
The secondary battery is charged through a secondary battery transformer 31 that steps down to about 00 V, a secondary battery rectifier (diode rectifier, thyristor rectifier, etc.) 32 that rectifies the stepped-down alternating current, and a secondary battery reactor 33. The control of the charging of the secondary battery and the discharging of the secondary battery described below are performed by monitoring the feeder current IL and the feeder voltage VL of the DC feeder 5 one by one.

【0014】インバータ22は、例えば二次電池20の
直流電圧を数10kHzの高周波に交流変換する高周波
インバータで、以下、必要に応じて高周波インバータ2
2と称する。高周波インバータ22と変圧器23は、二
次電池20の500V程度の直流電圧を高周波交流電圧
に昇圧変換し、この交流電力を整流器24が整流して直
流き電線5に注入(放電)する。したがって、二次電池
20の定格電圧は直流き電線5の定格電圧より十分に小
さく設計できて、高周波インバータ22を含む電力変換
装置21の各回路素子の定格容量を小さく設計すること
ができる。
The inverter 22 is, for example, a high-frequency inverter for converting a DC voltage of the secondary battery 20 into a high frequency of several tens of kHz.
No. 2. The high-frequency inverter 22 and the transformer 23 step-up convert a DC voltage of about 500 V of the secondary battery 20 into a high-frequency AC voltage, and the rectifier 24 rectifies this AC power and injects (discharges) it into the DC feeder line 5. Therefore, the rated voltage of the secondary battery 20 can be designed sufficiently lower than the rated voltage of the DC feeder line 5, and the rated capacity of each circuit element of the power converter 21 including the high-frequency inverter 22 can be designed to be small.

【0015】この電力変換装置21が放電動作をすると
きの注入電流Icは、(整流器24出力電圧−き電線電
圧)/(電力変換装置21の内部インピーダンス)の式
で決まり、この注入電流Icは直流き電線5の重負荷時
の負荷変動に対応する。注入電流Icの注入と注入停止
のタイミングは、例えばき電線電流ILの単位時間当た
りの平均値(積分値)が予め設定された第1のレベルを
超えたときを注入タイミングとし、同じ平均値が予め設
定された第2のレベルを下回ったときを注入停止タイミ
ングとすればよい。なお、この場合の第1のレベルは第
2のレベルより大きく設定される。
The injection current Ic when the power conversion device 21 performs a discharging operation is determined by the formula (output voltage of the rectifier 24−feeding line voltage) / (internal impedance of the power conversion device 21). It corresponds to the load fluctuation at the time of heavy load of the DC feeder line 5. The timing of the injection of the injection current Ic and the stop of the injection are determined, for example, when the average value (integral value) per unit time of the feeder current IL exceeds a first level set in advance, and the same average value is used. The time when the level falls below the second level set in advance may be set as the injection stop timing. In this case, the first level is set to be higher than the second level.

【0016】以上のように高周波インバータ22で二次
電池20の出力電圧を高周波電圧とすることで、インバ
ータ出力側の変圧器23が高周波用の小型軽量なものが
適用できる。また、高周波インバータ22は、PWM制
御(パルス幅制御)するか、或いは、1パルスでその幅
を変える1パルスPWM制御(導通幅制御)すること
で、交流出力電圧を可変に調整する。したがって、イン
バータ出力を整流する整流器24の出力電圧に含まれる
リップル成分が高周波となって直流き電線5への流出リ
ップル電流が抑制され、また、リップル周波数が高くな
るためにインバータ出力用変圧器23や、通常的に使用
される図示しないリップル抑制用LCフィルター類の小
容量化、小型化が可能となる。
As described above, by setting the output voltage of the secondary battery 20 to a high-frequency voltage by the high-frequency inverter 22, a small and lightweight high-frequency transformer 23 can be applied. The high-frequency inverter 22 variably adjusts the AC output voltage by performing PWM control (pulse width control) or one-pulse PWM control (conduction width control) that changes the width in one pulse. Therefore, the ripple component included in the output voltage of the rectifier 24 for rectifying the inverter output becomes high frequency, and the ripple current flowing out to the DC feeder line 5 is suppressed. In addition, since the ripple frequency increases, the inverter output transformer 23 Also, it is possible to reduce the capacity and the size of the normally used ripple suppression LC filters (not shown).

【0017】図1の実施形態においては、二次電池20
を充電するための変圧器31を交流系統1のき電整流器
用変圧器2の1次側に接続したが、図1の破線接続回路
で示すように変圧器2の低圧側の2次側に接続してもよ
く、このように接続することで二次電池用変圧器31が
小型軽量化できる。このことは図2の第2の実施形態も
同様である(図2の破線接続回路参照)。
In the embodiment shown in FIG.
Is connected to the primary side of the transformer 2 for the feeder rectifier of the AC system 1, but is connected to the secondary side of the low voltage side of the transformer 2 as shown by the broken line connection circuit in FIG. The secondary battery transformer 31 can be reduced in size and weight. This is the same for the second embodiment of FIG. 2 (see the broken line connection circuit of FIG. 2).

【0018】図2の第2の実施形態は、二次電池20の
出力と二次電池用整流器24の出力を直列接続したこと
が、図1の実施形態と異なる。図2の実施形態の場合も
二次電池20が交流系統1で充電され、二次電池20の
出力電圧が高周波インバータ22で高周波に交流変換さ
れ、整流器24で整流されて直流き電線5に注入され
る。ここで、図2の実施形態においては、二次電池20
と整流器24の出力を直列接続して、直流き電線5に二
次電池20と整流器24の合計出力電力を注入するた
め、その注入電流Icは、(二次電池20出力電圧+整
流器24出力電圧−き電線電圧)/(電力変換装置21
の内部インピーダンス)の式で決まる。
The second embodiment of FIG. 2 differs from the embodiment of FIG. 1 in that the output of the secondary battery 20 and the output of the rectifier 24 for the secondary battery are connected in series. In the case of the embodiment of FIG. 2 as well, the secondary battery 20 is charged by the AC system 1, the output voltage of the secondary battery 20 is converted to high frequency by the high frequency inverter 22, rectified by the rectifier 24, and injected into the DC feeder 5. Is done. Here, in the embodiment of FIG.
And the output of the rectifier 24 are connected in series, and the total output power of the secondary battery 20 and the rectifier 24 is injected into the DC feeder line 5. Therefore, the injection current Ic is (output voltage of the secondary battery 20 + output voltage of the rectifier 24). −feeding line voltage) / (power conversion device 21)
Is determined by the equation:

【0019】ここで、通常に使用される二次電池20の
出力電圧の定格電圧に対する変動範囲は±25%程度で
あり、この二次電池20の出力に整流器24の出力を直
列接続することで、電力変換装置21の容量が二次電池
出力相当分だけ小さく設定することができる。すなわ
ち、図1電力変換装置21の全体の容量は、(き電線電
圧VL)×(注入電流Ic)となり、他方の図2電力変
換装置21の全体の容量は、(き電線電圧VL−二次電
池電圧)×(注入電流Ic)となって、二次電池20の
定格電圧に比例して図2の電力変換装置21の全体の容
量が小さくできて、より小型化、低コスト化が可能とな
る。
Here, the variation range of the output voltage of the normally used secondary battery 20 with respect to the rated voltage is about ± 25%, and by connecting the output of the rectifier 24 to the output of the secondary battery 20 in series. In addition, the capacity of the power converter 21 can be set smaller by an amount corresponding to the output of the secondary battery. That is, the overall capacity of the power converter 21 in FIG. 1 is (feeder voltage VL) × (injection current Ic), and the overall capacity of the other power converter 21 in FIG. 2 is (feeder voltage VL−secondary). (The battery voltage) × (injection current Ic), and the overall capacity of the power converter 21 in FIG. 2 can be reduced in proportion to the rated voltage of the secondary battery 20, so that the size and cost can be further reduced. Become.

【0020】なお、本発明は、電気鉄道の直流き電線に
二次電池電力を充放電するものに限らず、工場負荷等の
変動負荷を有する直流配電系の直流母線に二次電池電力
を充放電して消費電力のピークを抑制する電池電力貯蔵
システムにも有効に適用できる。また、二次電池電圧を
交流変換するインバータは、上記したように高周波イン
バータが得策であるが、比較的低電圧仕様の電池電力貯
蔵システムにおいては二次電池電圧を商用周波数で交流
変換する低周波インバータを使用することも可能であ
る。
The present invention is not limited to charging and discharging secondary battery power to a DC feeder of an electric railway, but also charging secondary battery power to a DC bus of a DC distribution system having a variable load such as a factory load. The present invention can also be effectively applied to a battery power storage system that suppresses peak power consumption by discharging. As described above, a high-frequency inverter is the best solution for the AC conversion of the secondary battery voltage. However, in a battery power storage system with a relatively low voltage specification, a low-frequency inverter that converts the secondary battery voltage to a commercial frequency is used. It is also possible to use an inverter.

【0021】[0021]

【発明の効果】本発明によれば、二次電池と直流母線の
間に配置されたインバータが二次電池の出力電圧を交流
変換して昇圧される可変の直流電圧源となるので、イン
バータを含む電力変換装置の各回路素子に直流母線に対
応した大電圧型素子を適用する必要がなくなり、電力変
換装置の小型化、低コスト化が容易となる。さらに、イ
ンバータの出力周波数を高くするほどにインバータ出力
用変圧器の小型化や、インバータ出力用整流器出力にお
けるリップル成分の抑制化が容易となって、電力変換装
置の尚更の小型化、低コスト化と共に、リップル損低減
による高性能化が可能となる。
According to the present invention, the inverter disposed between the secondary battery and the DC bus serves as a variable DC voltage source that converts the output voltage of the secondary battery into AC and boosts the voltage. It is not necessary to apply a large-voltage element corresponding to the DC bus to each circuit element of the power conversion device including the power conversion device, and it is easy to reduce the size and cost of the power conversion device. Furthermore, as the output frequency of the inverter increases, the size of the transformer for inverter output and the suppression of ripple components in the output of the rectifier for inverter output become easier, and the size and cost of the power converter are further reduced. At the same time, high performance can be achieved by reducing the ripple loss.

【0022】また、二次電池出力とインバータ出力用整
流器出力を直列接続することで、電力変換装置全体の容
量を二次電池出力に相応して小さくすることができて、
電力変換装置のより一層の小型化、低コスト化が図れ
る。
Further, by connecting the output of the secondary battery and the output of the rectifier for inverter output in series, the capacity of the entire power converter can be reduced in accordance with the output of the secondary battery.
The power converter can be further reduced in size and cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態を示す電池電力貯蔵シ
ステムの回路図。
FIG. 1 is a circuit diagram of a battery power storage system according to a first embodiment of the present invention.

【図2】本発明の第2の実施形態を示す電池電力貯蔵シ
ステムの回路図。
FIG. 2 is a circuit diagram of a battery power storage system according to a second embodiment of the present invention.

【図3】従来の電池電力貯蔵システムの回路図。FIG. 3 is a circuit diagram of a conventional battery power storage system.

【符号の説明】[Explanation of symbols]

1 交流系統 5 直流母線、直流き電線 20 二次電池 21 電力変換装置 22 インバータ、高周波インバータ 23 インバータ出力用変圧器 24 インバータ出力用整流器 DESCRIPTION OF SYMBOLS 1 AC system 5 DC bus, DC feeder line 20 Secondary battery 21 Power converter 22 Inverter, high frequency inverter 23 Inverter output transformer 24 Inverter output rectifier

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 交流系統に接続される直流配電系の直流
母線に、交流系統で充電される二次電池を電力変換装置
を介して接続した電池電力貯蔵システムであって、 前記電力変換装置が、二次電池の出力電圧を交流変換す
るインバータと、このインバータの出力に1次巻線が接
続された変圧器と、この変圧器の2次巻線と直流母線の
間に接続された整流器を備え、直流母線の電力変動に基
づいてインバータの出力電圧を制御して整流器の出力電
圧を調整することで、二次電池から直流母線に注入する
電力を制御することを特徴とする直流配電系電池電力貯
蔵システム。
1. A battery power storage system in which a secondary battery charged by an AC system is connected via a power converter to a DC bus of a DC distribution system connected to an AC system, wherein the power converter is An inverter for converting the output voltage of the secondary battery into an AC, a transformer having a primary winding connected to the output of the inverter, and a rectifier connected between the secondary winding of the transformer and a DC bus. A DC distribution system battery comprising: controlling power output from a secondary battery to a DC bus by controlling an output voltage of an inverter based on power fluctuations of the DC bus and adjusting an output voltage of a rectifier. Power storage system.
【請求項2】 上記二次電池出力と整流器出力を直列接
続したことを特徴とする請求項1記載の直流配電系電池
電力貯蔵システム。
2. The DC power storage battery power storage system according to claim 1, wherein the secondary battery output and the rectifier output are connected in series.
【請求項3】 上記インバータが商用周波数を超える高
周波インバータであることを特徴とする請求項1又は2
記載の直流配電系電池電力貯蔵システム。
3. The inverter according to claim 1, wherein the inverter is a high-frequency inverter exceeding a commercial frequency.
The DC power storage battery power storage system as described in the above.
【請求項4】 上記直流母線が電気鉄道の直流き電線で
あることを特徴とする請求項1〜3いずれか1記載の直
流配電系電池電力貯蔵システム。
4. The DC power storage battery power storage system according to claim 1, wherein the DC bus is a DC feeder of an electric railway.
JP34071799A 1999-11-30 1999-11-30 Battery power storage system for dc power distribution system Withdrawn JP2001161030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34071799A JP2001161030A (en) 1999-11-30 1999-11-30 Battery power storage system for dc power distribution system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34071799A JP2001161030A (en) 1999-11-30 1999-11-30 Battery power storage system for dc power distribution system

Publications (1)

Publication Number Publication Date
JP2001161030A true JP2001161030A (en) 2001-06-12

Family

ID=18339648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34071799A Withdrawn JP2001161030A (en) 1999-11-30 1999-11-30 Battery power storage system for dc power distribution system

Country Status (1)

Country Link
JP (1) JP2001161030A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1544975A2 (en) * 2003-12-18 2005-06-22 Insta Elektro GmbH Energy supply system
JP2008062826A (en) * 2006-09-08 2008-03-21 West Japan Railway Co Electric power storage device
JP2010132209A (en) * 2008-12-08 2010-06-17 Railway Technical Res Inst Electric power interchange system in direct-current electric railroad and alternating-current electric railroad
JP2013095265A (en) * 2011-11-01 2013-05-20 Railway Technical Research Institute Control system of power storage device for direct current electric railway

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1544975A2 (en) * 2003-12-18 2005-06-22 Insta Elektro GmbH Energy supply system
JP2008062826A (en) * 2006-09-08 2008-03-21 West Japan Railway Co Electric power storage device
JP2010132209A (en) * 2008-12-08 2010-06-17 Railway Technical Res Inst Electric power interchange system in direct-current electric railroad and alternating-current electric railroad
JP2013095265A (en) * 2011-11-01 2013-05-20 Railway Technical Research Institute Control system of power storage device for direct current electric railway

Similar Documents

Publication Publication Date Title
JP6559888B2 (en) Terminal charging system, charging method and power adapter
TWI373900B (en) High efficiency charging circuit and power supplying system
TWI221695B (en) Uninterruptible power system
CN107408889B (en) Power converter
CN101741244B (en) Method and apparatus to increase efficiency in a power factor correction circuit
CN107431375B (en) Power supply device
US6577106B2 (en) Multi-functional AC/DC converter
US20090086520A1 (en) Grid-Connected Power Conditioner and Grid-Connected Power Supply System
JP3697112B2 (en) DC bidirectional converter
US10673320B2 (en) Snubber circuit and power conversion system including same
CN109219913A (en) Charging system, charging method and power supply adaptor
EP3404816B1 (en) Power converter system and method for operating a power converter system
JP6483914B2 (en) Power supply
US20220161673A1 (en) System and method for single-stage on-board charger power factor correction reactive control
US9473041B2 (en) Switching power supply apparatus with improved power conversion efficency to reduce power usage
US20220038019A1 (en) System and method for enhanced single-stage on-board charger with integrated rectifier
US20190165685A1 (en) Selection Control for Transformer Winding Input in a Power Converter
JP7124297B2 (en) power converter
JPH09233709A (en) Charger for electric car
US5822198A (en) Single stage power converter and method of operation thereof
US11431253B2 (en) Large capacity bidirectional isolated DC-DC converter and control method thereof
JP2001161030A (en) Battery power storage system for dc power distribution system
JP3330232B2 (en) AC / DC uninterruptible power supply
JP2017123703A (en) Dc-dc converter
JP3588429B2 (en) Power converter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070206