JP5382367B2 - Floating-type seismic isolation structure with pressurized liquid - Google Patents

Floating-type seismic isolation structure with pressurized liquid Download PDF

Info

Publication number
JP5382367B2
JP5382367B2 JP2010267604A JP2010267604A JP5382367B2 JP 5382367 B2 JP5382367 B2 JP 5382367B2 JP 2010267604 A JP2010267604 A JP 2010267604A JP 2010267604 A JP2010267604 A JP 2010267604A JP 5382367 B2 JP5382367 B2 JP 5382367B2
Authority
JP
Japan
Prior art keywords
seismic isolation
floating
liquid
layer
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010267604A
Other languages
Japanese (ja)
Other versions
JP2012102861A (en
Inventor
裕一 藤井
Original Assignee
裕一 藤井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 裕一 藤井 filed Critical 裕一 藤井
Priority to JP2010267604A priority Critical patent/JP5382367B2/en
Publication of JP2012102861A publication Critical patent/JP2012102861A/en
Application granted granted Critical
Publication of JP5382367B2 publication Critical patent/JP5382367B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、加圧液体による浮体式免震構造に関する。The present invention relates to a floating type seismic isolation structure using pressurized liquid.

従来より、図8に示すように、浮体構造物本体12を免震ピット13中に浮かべ、大地と絶縁することによって水平地震動に対し高い免震効果を得るものとして、完全浮体構造の浮体式免震構造物11は一般に広く知られている(非特許文献1参照)。
しかしこのような完全浮体式免震構造では、浮体構造物本体12に生じる変動荷重により構造物が容易に傾いたり、液面の変動に追随して浮体構造物本体12が鉛直方向に変動するなど、居住性及び使用性の面から課題が生じていた。
そこで図9に示すように、浮体構造物本体の変動荷重と固定荷重の一部を免震装置などの低せん断剛性構造体17を介して地盤16で支持する部分浮体式免震構造も提案されている(特許文献1参照)。
Conventionally, as shown in FIG. 8 , the floating body structure 12 is floated in a seismic isolation pit 13 and insulated from the ground to obtain a high seismic isolation effect against horizontal ground motion. The seismic structure 11 is generally known widely (see Non-Patent Document 1).
However, in such a completely floating seismic isolation structure, the structure easily tilts due to a fluctuating load generated in the floating structure main body 12, or the floating structure main body 12 fluctuates in the vertical direction following the change in the liquid level. There were problems in terms of comfort and usability.
Therefore, as shown in FIG. 9 , a partial floating type seismic isolation structure is proposed in which part of the variable load and fixed load of the floating structure body is supported by the ground 16 via a low shear rigid structure 17 such as a seismic isolation device. (See Patent Document 1).

この部分浮体式免震構造の場合、図9に示すように浮体構造物本体12の荷重Wは、浮体構造物本体12の固定荷重W1と鉛直下方向に作用する正値の変動荷重W2とを足しあわせたもの(W=W1+W2)である。荷重Wから変動荷重W2と浮力Bを除いた荷重W1が正値になるよう浮体構造物本体12を免震ピット13中に挿入する構成としている。浮力BはW1−W1で表される。また、低せん断剛性構造体17を介して地盤16により支持される荷重はW2+W1である。In the case of this partially floating type seismic isolation structure, as shown in FIG. 9 , the load W of the floating structure main body 12 includes a fixed load W1 of the floating structure main body 12 and a positive variable load W2 acting vertically downward. It is the sum (W = W1 + W2). The floating body main body 12 is inserted into the seismic isolation pit 13 so that the load ΔW1 obtained by removing the variable load W2 and the buoyancy B from the load W becomes a positive value. Buoyancy B is represented by W1- W1. The load supported by the ground 16 through the low shear rigidity structure 17 is W2 + ΔW1 .

なお、浮体構造物本体12の浮体底面は水平でその面積をA、底面から喫水線までの高さをdとすると、排水量はA・dであり、浮力Bはρ・A・d・g(ρは液体の密度、gは重力加速度)となる。In addition, if the floating body bottom surface of the floating structure body 12 is horizontal and its area is A, and the height from the bottom surface to the water line is d, the amount of drainage is A · d, and the buoyancy B is ρ · A · d · g (ρ Is the density of the liquid and g is the acceleration of gravity.

上記の浮体式免震構造では水平地震動に対する免震性を有しているものの、鉛直(上下)地震動に対する免震性は有していなかったことから、浮体底部に空気室を設け、浮体式のみでは得られない鉛直地震動に対する免震性をエアークッション効果で得るという提案がされている。
また、浮体底部の一方向に対して空気室を少なくとも4つに等分割することにより静的安定性の維持と復元力を得るという、空気室を有する浮体式免震構造も提案されている(特許文献2参照)。
一方、浮体式免震構造物を構成する下部構造の側壁と免震ピットの内壁との間に形成され る開口を塞ぎ、液体内圧による浮遊式免震構造も提案されている。(特許文献3参照)。
Although the above floating body type seismic isolation structure has seismic isolation characteristics for horizontal ground motion, it did not have seismic isolation characteristics for vertical (up and down) ground motions. There is a proposal to obtain the seismic isolation for vertical ground motion that cannot be obtained by the air cushion effect.
In addition, a floating-type seismic isolation structure having an air chamber is proposed in which static stability is maintained and restoring force is obtained by equally dividing the air chamber into at least four in one direction of the bottom of the floating body ( Patent Document 2).
On the other hand, closes the opening that will be formed between the side wall and the inner wall of the seismic isolation pit of the lower structure constituting the floating base isolation structures, it has also been proposed floating seismic isolation by liquid pressure. (See Patent Document 3).

大山巧他、「浮体式免震工法に関する研究−水平免震性能と風外力に対する安定性−」、日本建築学会大会学術講演概集p765−766、1999年9月Oyama Taku et al., “Research on Floating-type Seismic Isolation Method: Horizontal Seismic Isolation Performance and Stability to Wind Force”, Architectural Institute of Japan Conference Annual Meeting p765-766, September 1999 特開2004−27732JP 2004-27732 A 特開2000−110402JP 2000-110402 A 特開2005−83018JP-A-2005-83018

従来の浮体式免震構造における免震ピットは、所望の深さまで地盤を掘り下げることにより形成され土圧に耐える強度をもった側壁と床底面を備えている。また、浮体構造物本体の側壁と免震ピットの側壁との間に所定の幅のクリアランスを全周に亘って設けなければならない。
従来の浮体式免震構造の小規模な建築物や一般住宅等への導入は、その規模の割合において大掛かりな免震ピットを必要とし、合理性、経済性に欠けるものであった。
The conventional seismic isolation pit in the floating type base isolation structure includes a side wall and a floor bottom that are formed by digging the ground to a desired depth and have strength to withstand earth pressure. In addition, a clearance having a predetermined width must be provided over the entire circumference between the side wall of the floating structure body and the side wall of the seismic isolation pit.
The introduction of a conventional floating-type seismic isolation structure to a small-scale building or a general house requires a large seismic isolation pit in proportion to the scale, and lacks rationality and economy.

本発明は、上記のような事情に鑑みてなされたものであって、浮体構造物本体と平らな地 盤との間に免震ピットの代わりとなる加圧液体を閉じ込める免震層を設けることを基本的な形態とし、より一層機能的で経済的な加圧液体による浮体式免震構造を提供することを目的とする。The present invention was made in view of the circumstances as described above, the provision of the seismic isolation layer to confine Alternative pressurized liquid seismic isolation pit between the floating structure body and a flat earth plate It is an object of the present invention to provide a floating type seismic isolation structure with pressurized liquid that is more functional and economical.

本発明では、液体を閉じ込める手段として、浮体構造物本体と平らな地盤との間に免震ピ ットの代わりとなる例えば弾性機能を併せ持つシール材で囲まれた免震層を設けることを特徴とする。
浮体式免震構造は先ずは部分浮体として、免震層と、免震層内に注入される加圧液体と、加圧液体を加圧調整するための液体加圧機構を設け、変動荷重と固定荷重の一部を支持し浮体構造物本体と地盤との水平挙動を絶縁する免震装置を備える。
液体加圧機構は、例えば浮体構造物本体の底部に接している免震層上部面から浮体構造物本体に設置されている貯液タンクの液面までの高さによる圧力を利用し、液体加圧機構により加圧調整された加圧液体は、免震層に注入され免震層上部面を鉛直上方向に押し上げる浮力Bとして作用する。
例えば通常時または中小規模の地震時において、液体加圧機構で加圧調整された加圧液体により、浮体式免震構造は浮体構造物本体を部分浮体させ部分浮体式免震構造として機能させることが可能となる。
In the present invention, characterized in that as a means of confining the liquid, provided with a seismic isolation layer surrounded by the sealing material having both of Alternative example elastic function of MenShinpi Tsu bets between the floating structure body and flat ground And
Floating-type seismic isolation structure is first a partial floating body, with a seismic isolation layer, a pressurized liquid injected into the seismic isolation layer, and a liquid pressurization mechanism for pressurizing and adjusting the pressurized liquid. A seismic isolation device that supports part of the fixed load and insulates the horizontal behavior of the floating structure body and the ground is provided.
The liquid pressurizing mechanism uses, for example, the pressure due to the height from the upper surface of the seismic isolation layer in contact with the bottom of the floating structure body to the liquid level of the liquid storage tank installed in the floating structure body. Pressurized liquid pressure-adjusted by the pressure mechanism is injected into the seismic isolation layer and acts as a buoyancy B that pushes the upper surface of the seismic isolation layer vertically upward.
For example, during normal or small-scale earthquakes, the floating body seismic isolation structure should function as a partially floating body isolation structure by partially floating the floating structure body with pressurized liquid that has been pressurized and adjusted by the liquid pressure mechanism. Is possible.

本発明では、浮体構造物本体の底部および免震層の上部に形成された凹部内に空気層と液体層からなる流体室と、流体室内に圧搾空気を送り込むための圧搾空気機構を設けること
を特徴とする。
例えば大規模の地震時において、圧搾空気機構が作動し圧搾空気が流体室に注入されることにより、浮体式免震構造は浮体構造物本体を部分浮体から完全浮体へ瞬時に移行させ完全浮体式免震構造として機能させることが可能となる。
In the present invention, a fluid chamber composed of an air layer and a liquid layer is provided in a recess formed at the bottom of the floating structure main body and the upper part of the seismic isolation layer, and a compressed air mechanism for sending compressed air into the fluid chamber is provided. Features.
For example, when a large-scale earthquake occurs, the compressed air mechanism operates and compressed air is injected into the fluid chamber, so that the floating body seismic isolation structure instantly moves the floating structure body from a partial floating body to a fully floating body. It can function as a seismic isolation structure.

本発明では、流体室に隔壁と、抵抗板と、延出片と、透水減衰材の抵抗体を備えることを特徴とする。これらの抵抗体により浮体式免震構造は減衰効果等を発揮させ免震性能を向上させることが可能となる。In the present invention, the fluid chamber includes a partition wall, a resistance plate, an extension piece, and a resistance body of a water-permeable attenuation material . With these resistors, the floating type base isolation structure can exhibit a damping effect and improve the base isolation performance.

本発明では、流体室の各一辺を隔壁で2以上に分割し流体室を4以上の小室に分割することを特徴とする。流体室の分割により浮体式免震構造は完全浮体式免震構造の静的安定性を維持させ復元力を得させることが可能となる。In the present invention, each side of the fluid chamber is divided into two or more by a partition, and the fluid chamber is divided into four or more small chambers. By dividing the fluid chamber, the floating base-isolated structure can maintain the static stability of the fully floating base-isolated structure and obtain a restoring force.

本発明では、浮体構造物本体外部の地下等に容積の異なる複数の空気室を設け各空気層と連通させることを特徴とする。これにより浮体構造物本体の重心を低く保ちつつ十分な容積量の空気層を確保でき、浮体式免震構造は鉛直方向の免震性能を向上させ共振を防ぐことが可能となる。The present invention is characterized in that a plurality of air chambers having different volumes are provided in the basement or the like outside the floating structure main body to communicate with each air layer. As a result, a sufficient volume of air layer can be secured while keeping the center of gravity of the floating structure main body low, and the floating-type seismic isolation structure can improve vertical isolation performance and prevent resonance.

本発明によれば、浮体構造物本体と平らな地盤との間に免震ピットの代わりとなるシール材で囲まれた免震層と液体を加圧調整するための液体加圧機構を設け、免震層に加圧液体を注入し、免震層の側面のシール材にゴム等の弾性機能を併せ持たせるかまたは弾性機能をもった部材をシール材の内ないし外に配置し、また変動荷重と固定荷重の一部を支持し浮体構造物本体と地盤との水平挙動を絶縁する免震装置を備えることにより、浮体構造物本体を部分浮体から完全浮体まで浮体程度を自在に調整でき得る。部分浮体式免震構造においては水平方向の免震効果を発揮させ得る。According to the present invention, a seismic isolation layer surrounded by a sealing material instead of the seismic isolation pit between the floating structure main body and the flat ground and a liquid pressurizing mechanism for pressurizing the liquid are provided. Pressurized liquid is injected into the seismic isolation layer, and the sealing material on the side of the seismic isolation layer is combined with an elastic function such as rubber, or a member with an elastic function is placed inside or outside the sealing material, and it fluctuates. By providing a seismic isolation device that supports a part of the load and fixed load and insulates the horizontal behavior of the floating structure body and the ground, the floating structure body can be freely adjusted from the partial floating body to the complete floating body. . In the partial floating type seismic isolation structure, the horizontal seismic isolation effect can be exhibited.

本発明によれば、浮体構造物本体の底部および免震層の上部に形成された凹部内に隔壁で囲われ空気層と液体層からなる流体室を設け、また圧搾空気機構を設けることにより、例えば大地震時に圧搾空気を流体室内に注入することができ、浮体構造物本体を部分浮体から完全浮体へ瞬時に移行させることが可能となる。
完全浮体式免震構造においては水平方向の免震効果を一層高めることができるとともに、流体室の空気層のエアークッション効果により鉛直方向の免震効果を発揮させ得る。
According to the present invention, by providing a fluid chamber composed of an air layer and a liquid layer surrounded by a partition wall in a recess formed at the bottom of the floating structure body and the upper part of the seismic isolation layer, and by providing a compressed air mechanism, For example, compressed air can be injected into the fluid chamber during a large earthquake, and the floating structure main body can be instantaneously transferred from the partial floating body to the complete floating body.
In the fully floating seismic isolation structure, the horizontal seismic isolation effect can be further enhanced, and the vertical seismic isolation effect can be exhibited by the air cushion effect of the air layer of the fluid chamber.

本発明によれば、流体室の液体層中に透水減衰材を備えることにより、減衰効果を発揮させ得る。According to the present invention, the damping effect can be exhibited by providing the water-permeable damping material in the liquid layer of the fluid chamber.

本発明によれば、流体室を分割する隔壁と、隔壁に平行して配置される抵抗板と、隔壁端および抵抗板端に直交する延出片等を備えることにより、これらが免震層および液体層の液体中を運動するとき、速度の二乗に比例する液体の抵抗力を受け、減衰効果を発揮させ得る。According to the present invention, a partition wall that divides the fluid chamber, a resistance plate arranged in parallel to the partition wall, an extension piece perpendicular to the partition wall end and the resistance plate end, and the like are provided. When moving in the liquid in the liquid layer, the liquid's resistance proportional to the square of the velocity is received, and a damping effect can be exhibited.

本発明によれば、前項同様に隔壁と抵抗板と延出片等を備えることにより、これらが免震層および液体層の液体中を運動するとき、加速度に比例する液体の抵抗力も受け、質量が増加したような挙動をとる付加質量効果が生じることになる。即ち、浮体構造物本体の重量が見掛け上増加することになり、免震周期を長期化させ免震性能を向上させ得る。According to the present invention, the partition wall, the resistance plate, the extension piece and the like are provided in the same manner as in the previous section, so that when these move in the liquid of the base isolation layer and the liquid layer, the resistance force of the liquid proportional to the acceleration is also received, and the mass As a result, an additional mass effect is obtained that behaves as if increased. That is, the weight of the floating structure main body is apparently increased, and the seismic isolation cycle can be prolonged and the seismic isolation performance can be improved.

本発明によれば、流体室の各一辺を隔壁で2以上に分割し流体室を4以上に分割したそれぞれの小室に、独立し高さの異なる空気層を設けることにより、完全浮体時における静的安定性を維持し復元力を得るとともに、地震動の卓越振動数等との共振を防ぐ効果を持たせ得る。According to the present invention, an air layer having a different height is provided in each of the small chambers, each side of which is divided into two or more by a partition wall and the fluid chamber is divided into four or more, so that the static chamber during the complete floating body is provided. It is possible to maintain the mechanical stability and obtain the restoring force, and to prevent the resonance with the dominant frequency of the earthquake motion.

本発明によれば、浮体構造物本体外部の地下等に容積の異なる複数の空気室を設け各空気層と連通させることにより、浮体構造物本体の重心を低く保ちつつ十分な容積量の空気層を確保でき、鉛直方向の免震性能を向上させ共振を防ぐ効果を持たせ得る。According to the present invention, a plurality of air chambers having different volumes are provided in the basement or the like outside the floating structure main body so as to communicate with each air layer, so that an air layer having a sufficient volume amount while keeping the center of gravity of the floating structure main body low. Can be secured, and the effect of preventing the resonance by improving the seismic isolation performance in the vertical direction can be provided.

本発明の第一の実施形態の免震ピットを必要としない加圧液体による浮体式免震構造について、図1に基づいて以下に説明する。
図1は本発明における第一の実施形態の免震ピットを必要としない加圧液体による浮体式免震構造に関する部分浮体式免震構造と液体加圧機構の概要を示す図である。
A floating-type seismic isolation structure using pressurized liquid that does not require the seismic isolation pit according to the first embodiment of the present invention will be described below with reference to FIG.
FIG. 1 is a diagram showing an outline of a partially floating seismic isolation structure and a liquid pressurizing mechanism related to a floating body seismic isolation structure using a pressurized liquid that does not require a seismic isolation pit according to the first embodiment of the present invention.

図1に示すように第一の実施形態の免震ピットを必要としない加圧液体による浮体式免震構造物1は、液体4を閉じ込める手段として浮体構造物本体2と平らな地盤6との間に免 震ピットの代わりとなるシール材5で囲まれた免震層3を設け、例えば免震層3の側面のシール材5にゴム等の弾性機能を併せ持たせ、免震層3内に注入される加圧された液体4と、液体4を加圧調整するための液体加圧機構8と、部分浮体時に浮体構造物本体2と地盤6の水平挙動を絶縁する免震装置7を備えて構成される。
ここでは側面のシール材5にゴム等の弾性機能を併せ持たせるとしているが、同様な弾性機能をもった部材を側面のシール材5の内側ないし外側に配置しても構わない。
なお、図1では免震装置7として弾性滑り支承を用いており、浮体構造物本体2に生じる鉛直方向の変動荷重と、加圧液体4による浮力で相殺された残りの固定荷重は、該弾性滑り支承を介し地盤6で支持される。
As shown in FIG. 1, the floating-type seismic isolation structure 1 using pressurized liquid that does not require the seismic isolation pit of the first embodiment includes a floating structure main body 2 and a flat ground 6 as a means for confining the liquid 4 . the seismic isolation layer 3 surrounded provided by the sealing member 5 to substitute for seismic isolation pit between, for example, allowed Awasemota the elastic function such as rubber sealant fifth aspect of the isolation layer 3, the seismic isolation layer 3 A pressurized liquid 4 injected into the liquid, a liquid pressurizing mechanism 8 for adjusting the pressure of the liquid 4, and a seismic isolation device 7 that insulates the horizontal behavior of the floating structure body 2 and the ground 6 during partial floating. It is prepared for.
Here, the side sealing material 5 is provided with an elastic function such as rubber, but a member having a similar elastic function may be arranged inside or outside the side sealing material 5.
In FIG. 1, an elastic sliding bearing is used as the seismic isolation device 7, and the vertical fluctuation load generated in the floating body 2 and the remaining fixed load offset by the buoyancy caused by the pressurized liquid 4 It is supported by the ground 6 through a sliding bearing.

図1の液体加圧機構8は高さによる圧力を利用する概要を示すものである。液体加圧機構8により免震層3に注入される液体4が加圧される。
なお、本発明においては液体4が加圧されればよいのでアクティブな機械式の液体加圧機構でも構わない。
図1に示すように例えば液体加圧機構8は、液体4を貯める貯液タンク8aと、液体4を注入、排出、または供給するための配液管8bと、配液管8bに取り付ける配液管バルブ8cと、貯液タンク8a内の液面の水平位置を調整するための水位調整スライダー8dからなる。免震層3が空気で満たされている初期状態においては、リーク&リリーフバルブ10dを開放し抜気しつつ免震層3に液体4を注入する。
The liquid pressurizing mechanism 8 in FIG. 1 shows an outline of using pressure depending on height. The liquid 4 injected into the seismic isolation layer 3 is pressurized by the liquid pressurizing mechanism 8.
In the present invention, an active mechanical liquid pressurizing mechanism may be used because the liquid 4 only needs to be pressurized.
As shown in FIG. 1, for example, the liquid pressurizing mechanism 8 includes a liquid storage tank 8a for storing the liquid 4, a liquid distribution pipe 8b for injecting, discharging or supplying the liquid 4, and a liquid distribution attached to the liquid distribution pipe 8b. It consists of a pipe valve 8c and a water level adjustment slider 8d for adjusting the horizontal position of the liquid level in the liquid storage tank 8a. In the initial state where the seismic isolation layer 3 is filled with air, the liquid 4 is injected into the seismic isolation layer 3 while the leak and relief valve 10d is opened and evacuated.

図1の液体加圧機構8において、免震層3内の圧力調整は、免震層3上部面から貯液タンク8a内の液面までの高さdをコントロールすることにより行う。
浮体構造物本体2の荷重W=M・g ・・・(1) M:浮体構造物本体2の質量
浮体構造物本体2底面に接する免震層3上部面の有効受圧面積をAとすると、免震層3上部面は加圧液体による浮力Bを受ける。
浮力Bは次のとおり。
B=ρ・A・d・g ・・・・・・・・・・・(2) ρ:液体4の密度(g/cm)ここで、Mを20×10kg、ρを1g/cm、Aを20×10cmとすると、(1)と(2)は次のとおり。なお側面シール材5のゴム等の力はWに比し小さいので考慮しない。
M・g = 20×10 ×10 (g)×g(cm/sec
B = 1(g/cm)×20×10 (cm)×d(cm)×g(cm/sec
地盤6から免震装置7の弾性滑り支承が浮き上がる場合、(1)=(2)となる。
従って、d=100cmが得られる。
即ち、貯液タンク8a内の液面を、免震層3上部面から100cmの高さになるよう水位調整スライダー8dを設定しその高さまで液体4を注入すると、貯液タンク8a内の液面が喫水となり浮体構造物本体2は完全浮体となる。
その場合、浮力を受ける免震層3上部面の圧力(=ゲージ圧力)は0.1at (工学気圧、kgf/cm)であり、絶対圧力は1.1atである。
なお、0cm<d<100cmの範囲で浮体構造物本体2は部分浮体となっている。貯液タンク8a内の液面の高さを、免震層3上部面から0cm〜100cmまでコントロールすることにより、免震層3上部面の絶対圧力を1.0atから1.1atまで比例的に調整することが可能となる。
即ち、貯液タンク8a内の液面の高さを水位調整スライダー8dで操作することにより、浮体構造物本体2を部分浮体から完全浮体まで、浮体程度を自在に調整することが可能となる。
In the liquid pressurizing mechanism 8 in FIG. 1, the pressure in the base isolation layer 3 is adjusted by controlling the height d from the upper surface of the base isolation layer 3 to the liquid level in the liquid storage tank 8a.
When the effective pressure receiving area of the isolation layer 3 upper surface in contact with the mass floating structure body 2 bottom of floating structure body 2, A,: floating construction load W = M · g ·· · ( 1) of the main body 2 M The upper surface of the seismic isolation layer 3 receives buoyancy B caused by pressurized liquid.
Buoyancy B is as follows.
B = ρ · A · d · g ·········· · (2) ρ: density of the liquid 4 (g / cm 3) Here, M and 20 × 10 3 kg, the [rho 1 g / When cm 3 and A are 20 × 10 4 cm 2 , (1) and (2) are as follows. In addition, since the force of the rubber | gum etc. of the side seal material 5 is small compared with W, it does not consider.
M · g = 20 × 10 3 × 10 3 (g) × g (cm / sec 2 )
B = 1 (g / cm 3 ) × 20 × 10 4 (cm 2 ) × d (cm) × g (cm / sec 2 )
When the elastic sliding bearing of the seismic isolation device 7 is lifted from the ground 6, (1) = (2) .
Therefore, d = 100 cm is obtained.
That is, when the liquid level adjustment slider 8d is set so that the liquid level in the liquid storage tank 8a is 100 cm above the upper surface of the seismic isolation layer 3, and the liquid 4 is injected to that level, the liquid level in the liquid storage tank 8a Becomes a draft and the floating structure main body 2 becomes a complete floating body.
In that case, the pressure (= gauge pressure) of the upper surface of the seismic isolation layer 3 that receives buoyancy is 0.1 at (engineering pressure, kgf / cm 2 ), and the absolute pressure is 1.1 at.
In addition, the floating structure main body 2 is a partial floating body in the range of 0 cm <d <100 cm. By controlling the height of the liquid level in the liquid storage tank 8a from 0 cm to 100 cm from the upper surface of the seismic isolation layer 3, the absolute pressure on the upper surface of the seismic isolation layer 3 is proportionally increased from 1.0 at to 1.1 at. It becomes possible to adjust.
That is, by operating the liquid level in the liquid storage tank 8a with the water level adjustment slider 8d, the floating structure body 2 can be freely adjusted from the partial floating body to the complete floating body.

図4は、免震層3の側面シール材5にゴム等の弾性体を用いた場合の断面概要を示した図である。免震層3に液体4を注入していき液面が免震層3上部面に達したとき(d=0)、その水位は免震層3の高さhでありその底面の圧力をHとしている。さらに液体4を注入し続けて液体加圧機構8の貯液タンク8a内の液面の高さが免震層3上部面からdに達したとき、浮力を受ける免震層3上部面の圧力をDとしている。
液面の高さが免震層3上部面から0のとき、側面シール材5は図4(a)のとおり下方に下がるにつれ液体圧がかかる形状となり、さらに液体4を注入し液面が喫水の高さまで達したときには、図4(b)のとおり円弧に近い形状になると想定している。
即ち、側面シール材5の断面におけるゴム等の弾性体が図4(a)から図4(b)に伸びた長さは、液面の高さ0からdになるまで注入された液体4の圧力Dによる。またその際に注入された液体4の容積は、概ね図4(a)から図4(b)に増えた円弧の面積Sarcに免震層3の側面全周の長さを乗じたものである。
FIG. 4 is a diagram showing an outline of a cross section when an elastic body such as rubber is used for the side seal material 5 of the seismic isolation layer 3. When liquid 4 is poured into the seismic isolation layer 3 and the liquid level reaches the upper surface of the seismic isolation layer 3 (d = 0), the water level is the height h of the seismic isolation layer 3 and the pressure at the bottom is H It is said. Further, when the liquid 4 continues to be injected and the liquid level in the liquid storage tank 8a of the liquid pressurizing mechanism 8 reaches d from the upper surface of the base isolation layer 3, the pressure on the upper surface of the base isolation layer 3 that receives buoyancy. Is D.
When the liquid level is 0 from the upper surface of the seismic isolation layer 3, the side seal material 5 is shaped so that the liquid pressure is applied as it falls downward as shown in FIG. It is assumed that when the height reaches the height, the shape is close to an arc as shown in FIG.
That is, the length of the elastic body such as rubber in the cross section of the side sealing material 5 extending from FIG. 4A to FIG. 4B is the length of the liquid 4 injected from the liquid level height 0 to d. Due to pressure D. In addition, the volume of the liquid 4 injected at that time is approximately the arc area Sarc increased from FIG. 4A to FIG. 4B multiplied by the length of the entire side surface of the seismic isolation layer 3. .

免震層3の側面シール材5にゴム等の弾性体を用いた場合、側面シール材5は水平変形量を制御する水平バネ材としても機能する。
従って、図1のとおり免震層3は加圧液体4で浮力Bを発生させることにより浮体構造物本体2を支持する機能を持つと共に、免震層3の側面全周が水平バネ材となり水平変形能力と復元性能をもつことから、免震層3全体が巨大な免震装置として機能する。
When an elastic body such as rubber is used for the side seal material 5 of the seismic isolation layer 3, the side seal material 5 also functions as a horizontal spring material for controlling the horizontal deformation amount.
Therefore, as shown in FIG. 1, the seismic isolation layer 3 has a function of supporting the floating structure main body 2 by generating the buoyancy B with the pressurized liquid 4, and the entire side surface of the seismic isolation layer 3 becomes a horizontal spring material and is horizontal. Since it has deformation capability and restoration performance, the entire seismic isolation layer 3 functions as a huge seismic isolation device.

免震装置7は例えば弾性滑り支承で、地盤6上に所定の距離を持って複数配置され、上部に浮体構造物本体2が配設される。該弾性滑り支承は積層ゴムを直列につないだ滑り支承である。
なお、本発明で免震装置7は弾性滑り支承に限るものではない。
このように配置された免震装置7は、部分浮体時において浮体構造物本体2の荷重から免震層3上部面より受ける浮力Bを除いた荷重を支持する機能と、浮体構造物本体2と地盤6との水平挙動を絶縁する機能を有する。
また、図1および図2では、免震装置7は免震層3の外側に配置されているが、免震層3の内側に配置されても構わない。
The seismic isolation device 7 is, for example, an elastic sliding support, and a plurality of seismic isolation devices 7 are arranged on the ground 6 with a predetermined distance, and the floating structure main body 2 is disposed on the upper part. The elastic sliding bearing is a sliding bearing in which laminated rubbers are connected in series.
In the present invention, the seismic isolation device 7 is not limited to the elastic sliding bearing.
The seismic isolation device 7 thus arranged has a function of supporting a load excluding the buoyancy B received from the upper surface of the seismic isolation layer 3 from the load of the floating structure main body 2 during partial floating, and the floating structure main body 2. It has a function of insulating the horizontal behavior from the ground 6.
In FIG. 1 and FIG. 2, the seismic isolation device 7 is disposed outside the seismic isolation layer 3, but may be disposed inside the seismic isolation layer 3.

本発明の第一の実施形態は、例えばここでは中小規模の地震への対応を目的としており、また大規模の地震に対し第二の実施形態へ瞬時に移行するための待機形態としている。
第一の実施形態において免震層3の側面シール材5にゴム等の弾性体と免震装置7に弾性滑り支承を用いた場合、例えば小規模の地震時には滑り支承の滑りが生じないものとすると、側面シール材5の水平バネと弾性滑り支承の積層ゴムが並列に構成される状態であることから、それらの水平剛性の和が該免震層部における全ての剛性となる。
また、例えば中規模以上の地震時には該弾性滑り支承が滑動するものとすると、積層ゴムは地盤6から絶縁され、該免震層部の剛性は側面シール材5の水平バネのみとなる。
The first embodiment of the present invention is here for the purpose of dealing with, for example, small and medium-sized earthquakes, and has a standby mode for instantaneously shifting to the second embodiment for large-scale earthquakes.
In the first embodiment, when an elastic body such as rubber is used for the side sealing material 5 of the seismic isolation layer 3 and an elastic sliding bearing is used for the seismic isolation device 7, for example, the sliding bearing does not slip during a small-scale earthquake. Then, since the horizontal spring of the side surface sealing material 5 and the laminated rubber of the elastic sliding bearing are configured in parallel, the sum of their horizontal rigidity becomes all the rigidity in the seismic isolation layer portion.
Further, for example, if the elastic sliding bearing slides during an earthquake of medium scale or larger, the laminated rubber is insulated from the ground 6 and the rigidity of the seismic isolation layer is only the horizontal spring of the side sealing material 5.

本発明の第二の実施形態の免震ピットを必要としない加圧液体による浮体式免震構造について、図2に基づいて以下に説明する。
図2は本発明における第二の実施形態の免震ピットを必要としない加圧液体による浮体式免震構造に関する完全浮体式免震構造と流体室および圧搾空気機構の概要を示す図である。
図2に示すように、第二の実施形態は図1の第一の実施形態の免震ピットを必要としない加圧液体による浮体式免震構造物1に加え、流体室9と、流体室9に圧搾空気を送り込むための圧搾空気機構10を設けて構成される。
A floating-type seismic isolation structure using pressurized liquid that does not require the seismic isolation pit according to the second embodiment of the present invention will be described below with reference to FIG.
FIG. 2 is a diagram showing an outline of a fully floating seismic isolation structure, a fluid chamber, and a compressed air mechanism related to a floating seismic isolation structure using a pressurized liquid that does not require a seismic isolation pit according to the second embodiment of the present invention.
As shown in FIG. 2, the second embodiment includes a fluid chamber 9 and a fluid chamber in addition to the floating-type seismic isolation structure 1 using pressurized liquid that does not require the seismic isolation pit of the first embodiment of FIG. 1. 9 is provided with a compressed air mechanism 10 for sending compressed air.

図2に示すように流体室9は、浮体構造物本体2の底部および免震層3の上部に形成された凹部内に隔壁で囲われて設置される。さらに流体室9は各一辺を隔壁で2以上に分割され流体室9は4以上の小室に分割される。
流体室9は圧搾空気が注入され圧搾空気が溜まる上部の空気層9aと、下部に液体4が溜まる液体層9bからなる。
また、流体室9は、流体室9を囲い分割する隔壁9cと、隔壁9cに平行して配置される抵抗板9dと、液体層9b部に配置される透水減衰材9eと、隔壁9c端および抵抗板9d端に直交して配置される延出片9fからなる。
流体室9はその形状によりダンパーとして強い減衰機能を有する。抵抗板9dの配列数は流体室9の大きさに応じ効果的に配置する。
なお、浮力を受ける面は、流体室9の各空気層9aと液体層9bの境界面と、流体室9の部分を除く免震層3上部面であると見做され、流体室が設けられることによっても有効受圧面積は変わらない。この流体室9の各境界面と流体室9部分を除く免震層3上部面の平均水平面が浮力を受ける面の高さとなる。
従って、液体加圧機構8において、この平均水平面から貯液タンク8a内の液面までが液体4を加圧する高さとなる。
As shown in FIG. 2, the fluid chamber 9 is installed by being surrounded by a partition wall in a recess formed in the bottom of the floating structure body 2 and the upper part of the seismic isolation layer 3. Further, each fluid chamber 9 is divided into two or more by a partition on each side, and the fluid chamber 9 is divided into four or more small chambers.
The fluid chamber 9 includes an upper air layer 9a in which compressed air is injected and the compressed air is accumulated, and a liquid layer 9b in which the liquid 4 is accumulated in the lower part.
The fluid chamber 9 includes a partition wall 9c that surrounds and divides the fluid chamber 9, a resistance plate 9d that is disposed in parallel to the partition wall 9c, a water-permeable damping material 9e that is disposed in the liquid layer 9b, an end of the partition wall 9c, and It consists of the extension piece 9f arrange | positioned orthogonally to the resistance board 9d end.
The fluid chamber 9 has a strong damping function as a damper due to its shape. The number of resistor plates 9d is effectively arranged according to the size of the fluid chamber 9.
Note that the surface receiving the buoyancy is considered to be the boundary surface between each air layer 9a and the liquid layer 9b of the fluid chamber 9 and the upper surface of the seismic isolation layer 3 excluding the fluid chamber 9, and the fluid chamber is provided. The effective pressure receiving area does not change. The average horizontal plane of the upper surface of the seismic isolation layer 3 excluding the boundary surfaces of the fluid chamber 9 and the fluid chamber 9 portion is the height of the surface receiving buoyancy.
Therefore, in the liquid pressurizing mechanism 8, the height from the average horizontal plane to the liquid level in the liquid storage tank 8a is the height at which the liquid 4 is pressurized.

図2に示すように例えば圧搾空気機構10は、圧搾空気を貯えるエアータンク10eと、エアータンク10eと流体室9等を結ぶエアーパイプ10aと、圧搾空気を一方向だけに流す逆流防止のためのチェックバルブ10bと、エアーパイプ10aに取り付けた地震感知器付エアーバルブ10cと、流体室9等の圧搾空気抜き弁と安全弁を並列して備えるリーク&リリーフバルブ10dと、エアータンク10eに圧搾空気を供給するためのエアーコンプレッサー10f等からなる。As shown in FIG. 2, for example, the compressed air mechanism 10 includes an air tank 10 e that stores compressed air, an air pipe 10 a that connects the air tank 10 e and the fluid chamber 9, and the like to prevent backflow that flows compressed air in only one direction. Supplying compressed air to the check valve 10b, an air valve 10c with an earthquake detector attached to the air pipe 10a, a leak and relief valve 10d including a compressed air vent valve such as a fluid chamber 9 and a safety valve in parallel, and an air tank 10e Air compressor 10f and the like.

通常時において浮体構造物本体2は部分浮体として備えているが、例えば大規模の地震動を感知したときに地震感知器付エアーバルブ10cが開き、エアータンク10eからエアーパイプ10aを通し空気層9aに圧搾空気が注入され、その圧力により浮体構造物本体2は瞬時に完全浮体となる。
なお、各バルブは手動でも開閉可能とする。
Normally, the floating structure body 2 is provided as a partial floating body. For example, when a large-scale earthquake motion is detected, the air valve 10c with the earthquake detector is opened, and the air tank 10e is passed through the air pipe 10a to the air layer 9a. Compressed air is injected, and the floating structure main body 2 becomes a complete floating body instantaneously by the pressure.
Each valve can be opened and closed manually.

図2における浮体式免震構造物1のシミュレーションモデルとして、図7のとおり諸元値を定め、以下に固有周期等を解析する。As a simulation model of the floating seismic isolation structure 1 in FIG. 2, the specification values are determined as shown in FIG. 7, and the natural period and the like are analyzed below.

図2に示すように圧搾空気が注入された完全浮体においては、免震装置7の弾性滑り支承は地盤6から離れ浮揚している状態となる。
免震層3の側面シール材5にゴムの弾性体を用いた場合、側面シール材5が水平変形量を制御する水平バネ材となる。
図4(c)は、側面シール材5にゴムを使用した場合において、ゴム面は便宜上曲面ではなく平面としてその断面を表し、免震層3の高さをhとし、初期値よりxcmだけ水平に浮体構造物本体2を相対変位させたときの水平剛性を図解したものである。以下に浮体構造物本体2の完全浮体時において、免震層3の側面シール材5によるx軸方向の運動方程式を立てその固有周期である免震周期を考察する。
水平変位をxとしたときのゴムの伸びhとその水平方向の伸びhxは、次のとおり。

Figure 0005382367
従って、液体4の付加質量効果、抵抗による減衰効果を考慮しなければ、完全浮体時の水平方向の運動方程式は次のとおり。ただしMは浮体構造物本体2の質量とする。
Figure 0005382367
は免震層3の側面シール材5のゴムの剛性の総和であり、次のとおり。
=G・E/h ・・・・・・・・・・・・・・・・・(4)
G :ゴムせん断弾性率
E :ゴム断面積
浮体式免震構造物1の諸元値を図7より参照し、ゴム断面積E=360cmを得る。
G=2、3、4kgf/cmの3種とすると、(4)からK=24、36、48kgf/cmを得る。初速値は総エネルギー入力の速度換算値Veとして、120、150、200cm/secの3種とする。
(3)式に上記数値を設定し、0.002秒刻みで数値計算して得られた解を、G別Ve別にグラフ化し図示したものが図5(a)、(b)におけるORG線である。結論として、せん断弾性率、初速値が小さい程、免震周期が長期化する。
(3)式における免震周期Tは、G=4kgf/cm、Ve =200cm/secの場合、免震性能の指標となる4秒免震を超える次の数値が得られる。
= 4.7sec ・・・・・・・・・・・・・・・・・・(5) As shown in FIG. 2, in the completely floating body into which the compressed air is injected, the elastic sliding bearing of the seismic isolation device 7 is in a state of being levitated away from the ground 6.
When a rubber elastic body is used for the side sealing material 5 of the seismic isolation layer 3, the side sealing material 5 becomes a horizontal spring material for controlling the horizontal deformation amount.
FIG. 4 (c) shows that when rubber is used for the side sealing material 5, the rubber surface is not a curved surface but is a plane instead of a curved surface for convenience, the height of the seismic isolation layer 3 is h, and it is horizontal by xcm from the initial value. The horizontal rigidity when the floating structure main body 2 is relatively displaced is illustrated. In the following, when the floating structure body 2 is completely floated, an equation of motion in the x-axis direction by the side sealing material 5 of the seismic isolation layer 3 is established and the seismic isolation period which is its natural period is considered.
Elongation hx rubber elongation h and its horizontal direction when the horizontal displacement was x, as follows.
Figure 0005382367
Therefore, if the additional mass effect of liquid 4 and the damping effect due to resistance are not considered, the equation of motion in the horizontal direction when completely floating is as follows. However, M is the mass of the floating structure body 2.
Figure 0005382367
K G is the sum of the stiffness of the rubber of the side seal member 5 of the base isolation layer 3, as follows.
K G = G · E / h ················ · (4)
G: Rubber shear modulus E: Rubber cross sectional area Floating body type seismic isolation structure 1 is referred to from FIG. 7, and rubber cross sectional area E = 360 cm 2 is obtained.
Assuming three types of G = 2 , 3, 4 kgf / cm 2 , K G = 24, 36, 48 kgf / cm is obtained from (4) . There are three initial speed values of 120, 150, and 200 cm / sec as the speed converted value Ve of the total energy input.
The values obtained by setting the above numerical values in equation (3) and calculating the numerical values in increments of 0.002 seconds are graphed and illustrated by Ve for each G. The ORG lines in FIGS. 5 (a) and 5 (b) are shown. is there. In conclusion, the smaller the shear modulus and initial velocity value, the longer the seismic isolation cycle.
As for the seismic isolation period T O in the equation (3) , when G = 4 kgf / cm 2 and Ve = 200 cm / sec, the following numerical value exceeding the 4-second seismic isolation serving as an index of the seismic isolation performance is obtained.
T O = 4.7sec ················· · (5 )

前項において、免震層3および液体層9bの液体4の中を隔壁9c、抵抗板9dおよび延出片9f等が運動をするとき、形状抵抗(圧力または慣性抵抗)、造波抵抗、造渦抵抗等を受ける。その抗力Rは次の式のとおり。

Figure 0005382367
ρ :液体の密度
Cd:抵抗係数
:速度の二乗
S :運動方向からの投射断面積(造波抵抗等のときS→▽2/3 ▽:排水容量)なお、緩やかな運動における速度に比例する粘性抵抗は小さいので考慮しない。
従って、(3)の運動方程式に上記抗力Rを付加すると次の式のとおり。
Figure 0005382367
ただし、sign(x′)はx′の正負符号を表す。
ここで、抗力のうち形状抵抗のみを考慮し、ρ=1g/cm、Cd=1.2とする。
また水平運動における隔壁9cおよび抵抗板9dの運動方向からの投射断面積について、S=10、13、16×10cmとする。
透水減衰材9eおよび延出片9fは、ここでは水平運動の形状抵抗体として考慮しない。(6)式を前項と同様に数値計算して、S=16mでG別Ve別にグラフ化し図示したものが図5(a)、(b)におけるS線であり、投射断面積S別に図示したものが図5(c)である。結論として、せん断弾性率、初速値が小さい程、また投射断面積が大きい程、免震周期が長期化する。In the preceding paragraph, when the partition wall 9c, the resistance plate 9d, the extension piece 9f, etc. move in the liquid 4 of the seismic isolation layer 3 and the liquid layer 9b, shape resistance (pressure or inertial resistance), wave resistance, vortex Receive resistance. The drag R is as follows:
Figure 0005382367
ρ: Density of liquid Cd: Resistance coefficient V 2 : Square of velocity S: Projected cross section from the direction of motion (when wave resistance etc. S → ▽ 2/3 ▽: Drainage capacity) The proportional viscous resistance is small and is not considered.
Therefore, when the drag R is added to the equation of motion of (3), the following equation is obtained.
Figure 0005382367
However, sign (x ′) represents the sign of x ′.
Here, ρ = 1 g / cm 3 and Cd = 1.2 are considered in consideration of only the shape resistance of the drag.
Moreover, it is set as S = 10, 13, 16 * 10 < 4 > cm < 2 > about the projection sectional area from the moving direction of the partition 9c and the resistance board 9d in horizontal movement.
Here, the water-permeable damping material 9e and the extension piece 9f are not considered as shape resistors for horizontal movement. The equation (6) is numerically calculated in the same manner as in the previous section, and S = 16 m 2 and graphed for each Ve by G. The S lines in FIGS. FIG. 5C shows the result. In conclusion, the smaller the shear modulus and initial velocity value and the larger the projected cross section, the longer the seismic isolation period.

前項同様に、免震層3および液体層9bの液体4の中を隔壁9c、抵抗板9dおよび延出片9fが運動をするとき、加速度に比例する抵抗も受ける。
そのとき、抵抗係数をMrとすると(6)の運動方程式の右辺に−Mr・x″が抗力として付加されることになる。これを左辺に移項して整理すると、(M+Mr)・x″となり、慣性力に対する付加質量効果が生じることがわかる。
即ち付加質量効果は、見掛け上の質量を増大させることにより免震周期を長期化し免震性能を向上させる。
As in the previous section, when the partition wall 9c, the resistance plate 9d and the extension piece 9f move in the liquid 4 of the base isolation layer 3 and the liquid layer 9b, a resistance proportional to the acceleration is also received.
At that time, if the resistance coefficient is Mr, −Mr · x ″ is added as a drag to the right side of the equation of motion of (6) . If this is moved to the left side and arranged, it becomes (M + Mr) · x ″. It can be seen that an additional mass effect on the inertial force occurs.
In other words, the additional mass effect increases the apparent mass, thereby prolonging the base isolation cycle and improving the base isolation performance.

リーク&リリーフバルブ10dにより流体室9から空気が抜かれる状況で液体4を注入し流体室9を液体4だけで満たし、浮体構造物本体2を完全浮体させた場合の免震層3部分のローリング運動を解析する。
流体室9に空気層9aが存在しないため浮体構造物本体2は上下運動をせずローリング運動のみ生じるものとし、また免震層3による抵抗、付加慣性モーメントも考慮しないものとする。諸元値は図7を参照し、ゴムのせん断弾性率G=4kgf/cmとする。
免震層3部分のローリング運動の概要は図6(a)、(b)のとおりとする。
免震層3の上部面の浮力の中心であるBを原点とするy’軸の軸を中心にローリングし、z’軸がθだけ傾いた場合を想定する。
θは小さいことよりsinθ=θと線形近似する。またθだけ傾いても免震装置7の弾性滑り支承は地盤6から離れて浮揚している状態とする。
ローリング運動におけるゴムによるモーメントは次のとおり。

Figure 0005382367
Ny面のゴムの力fy =Ky・Lx/2・θ= 2.67×10θ(kgf)
Figure 0005382367
Nx面のゴムの力fx =Kx・x・θ=0.0267θ・x(kgf)
Figure 0005382367
重心Gの慣性モーメントI、GからLz/2だけ鉛直下方にあるBの慣性モーメントIは次のとおり。
Figure 0005382367
Bを原点とし、z’軸がθだけ傾いたときの運動方程式は次のとおり。
Figure 0005382367
右辺=−C・θとする。
(7)、(8)、(10)よりCは次のとおり。ただし、1 kgf=980kgcm/secとする。
C= 4.56×10 ・・・・・・・・・・・・・・・・(11)
従って、(10)の運動方程式の周期Trは、(9)(11)より次のとおり。
Figure 0005382367
図7の諸元表の条件等で免震層3部分は4.8秒程度の固有ローリング周期をもつ。
(5)および(6)式の水平免震周期に近いことから、共振によるロッキング運動への注意が必要である。Rolling of the seismic isolation layer 3 portion when the liquid 4 is injected and the fluid chamber 9 is filled with only the liquid 4 in a situation where air is extracted from the fluid chamber 9 by the leak and relief valve 10d, and the floating structure body 2 is completely floated. Analyze movement.
Since the air layer 9a does not exist in the fluid chamber 9, the floating structure main body 2 does not move up and down, and only the rolling motion occurs, and the resistance and additional moment of inertia due to the seismic isolation layer 3 are not considered. For the specification values, refer to FIG. 7 and the shear modulus G of rubber is 4 kgf / cm 2 .
The outline of the rolling motion of the seismic isolation layer 3 is as shown in FIGS. 6 (a) and 6 (b).
A case is assumed in which rolling is performed about the axis of the y ′ axis with the origin B as the center of the buoyancy of the upper surface of the seismic isolation layer 3 and the z ′ axis is inclined by θ.
Since θ is small, it is linearly approximated as sin θ = θ. Moreover, even if it inclines only (theta), the elastic sliding bearing of the seismic isolation apparatus 7 will be in the state which has floated away from the ground 6. FIG.
The moment by the rubber in the rolling motion is as follows.
Figure 0005382367
Ny-plane rubber force fy = Ky · Lx / 2 · θ = 2.67 × 10 3 θ (kgf)
Figure 0005382367
Nx face rubber force fx = Kx · x · θ = 0.0267θ · x 2 (kgf)
Figure 0005382367
Moment of inertia I G of the center of gravity G, the moment of inertia I B of B with only Lz / 2 vertically downward from G as follows.
Figure 0005382367
The equation of motion when B is the origin and the z ′ axis is tilted by θ is as follows.
Figure 0005382367
Right side = −C · θ.
From (7), (8) and (10) , C is as follows. However, 1 kgf = 980 kg · cm / sec 2 .
C = 4.56 × 10 9 ··············· · (11)
Therefore, the period Tr of the equation of motion of (10) is as follows from (9) and (11) .
Figure 0005382367
The seismic isolation layer 3 has a natural rolling period of about 4.8 seconds due to the conditions in the specification table of FIG.
Since it is close to the horizontal seismic isolation cycle of equations (5) and (6) , attention to rocking motion due to resonance is necessary.

圧搾空気が注入された完全浮体時において、流体室9および免震層3の有効受圧面積がほぼ等しいものとすると、浮体構造物本体2は流体室9に荷重Wとほぼ等しい浮力を受け浮揚しており、液体室9部分にかかる荷重は直列的に流体室9の空気層9aを介して免震層3により支持されている状態である。
即ち、空気層9aの空気の剛性によるエアークッション効果で鉛直方向に対する免震効果を得ることが期待できる。
Assuming that the effective pressure receiving areas of the fluid chamber 9 and the seismic isolation layer 3 are substantially equal during the complete floating body in which the compressed air is injected, the floating structure body 2 floats due to the fluid chamber 9 receiving a buoyant force substantially equal to the load W. The load applied to the liquid chamber 9 is supported by the seismic isolation layer 3 via the air layer 9a of the fluid chamber 9 in series.
That is, it can be expected that a seismic isolation effect in the vertical direction is obtained by the air cushion effect due to the rigidity of the air in the air layer 9a.

ここで空気層9aの有効受圧面積をAaとし、AAaのときの空気層9aによるエアークッション効果を考察する。
空気層9aの空気バネ定数Kaは近似的に次のとおり。

Figure 0005382367
γ :ポリトロピック数で動1.4
Pa:絶対圧力(P+1)
Va:空気層9aの容積
Vt:エアータンク10eの容積
ここではエアータンク10eの容積Vtおよび免震層3側面シール材5の剛性は考慮しないものとする。
空気層9aの気柱の高さをHa(Ha=Va/Aa)とすると(12)式は次のとおり、
Figure 0005382367
空気層9aの固有周期Ta、固有振動数faは一般に次のとおり。
Figure 0005382367
ただし、空気層にかかる浮体構造物本体2の荷重をWa(Wa=(Pa−1)・Aa)と し、Wa/Aa=W/Aとする。また、図7の諸元表の条件でPa=1.1atとする。 固有振動数faが1Hz以下であれば十分な免震効果が得られることが知られている。
ここでは空気層9aの高さHaが約380cm以上であれば、faは1Hz以下となる。 Here the effective pressure receiving area of the air layer 9a and Aa, consider the air cushion effect by the air layer 9a when the A Aa.
The air spring constant Ka of the air layer 9a is approximately as follows.
Figure 0005382367
γ: Movement by polytropic number 1.4
Pa: Absolute pressure (P + 1)
Va: volume of the air layer 9a Vt: volume of the air tank 10e Here, the volume Vt of the air tank 10e and the rigidity of the seismic isolation layer 3 side surface sealing material 5 are not considered.
If the height of the air column of the air layer 9a is Ha (Ha = Va / Aa) , the formula (12) is as follows:
Figure 0005382367
The natural period Ta and the natural frequency fa of the air layer 9a are generally as follows.
Figure 0005382367
However, the load of the floating structure main body 2 applied to the air layer is Wa (Wa = (Pa−1) · Aa), and Wa / Aa = W / A. In addition, Pa = 1.1 at in the conditions of the specification table of FIG. It is known that a sufficient seismic isolation effect can be obtained if the natural frequency fa is 1 Hz or less.
Here, if the height Ha of the air layer 9a is about 380 cm or more, fa is 1 Hz or less.

図7の諸元表の条件で免震層3と空気層9aの共振への配慮は必要ないが、固有振動数faが地震動の卓越振動数と同程度であることより地震動との共振を防ぐ配慮が必要である。
地震動との共振を防ぐには、例えば圧搾空気の注入方法を工夫し流体室9の小室の各空気層9aの気柱の高さHaを変えることによる。
なお、図7の諸元表の条件で空気バネによる十分な免震効果を得るには、前項のとおり空気層9aの気柱の高さHaを約380cm以上にする必要がある。空気層9aの容積Vaを圧搾空気で満たすには大容量の圧搾空気を注入することになり、注入に時間を要し浮体構造物本体2を瞬時に完全浮体させることができない恐れがある。
従って、注入量への対応からも、流体室9の空気層9aに予め圧搾空気を必要な高さまで注入しておく
Although it is not necessary to consider the resonance of the seismic isolation layer 3 and the air layer 9a under the conditions in the specification table of FIG. 7, the resonance with the ground motion is prevented by the fact that the natural frequency fa is about the same as the dominant frequency of the ground motion. Consideration is necessary.
In order to prevent resonance with seismic motion, for example, the compressed air injection method is devised to change the height Ha of each air layer 9a in the small chamber of the fluid chamber 9.
In order to obtain a sufficient seismic isolation effect by the air spring under the conditions shown in the specification table of FIG. 7, the height Ha of the air column of the air layer 9a needs to be about 380 cm or more as described above. In order to fill the volume Va of the air layer 9a with the compressed air, a large volume of compressed air is injected, and it takes time for the injection, and the floating structure body 2 may not be completely floated instantaneously.
Therefore, the compressed air is injected into the air layer 9a of the fluid chamber 9 in advance to the required height in order to cope with the injection amount .

免震層を設けることを特徴とする本発明においても流体室9に圧搾空気が注入された場合、特許文献2同様の考えで浮体構造物本体2の静的安定性を維持し復元力を得るために、流体室9の各一辺を隔壁9cにより2以上に分割し流体室を4以上の小室に分割する必要がある。分割の際は等間隔とし、浮力中心点で対称とすることが望ましい Even in the present invention characterized by providing a seismic isolation layer, when compressed air is injected into the fluid chamber 9, the static stability of the floating body 2 is maintained and a restoring force is obtained in the same manner as in Patent Document 2. Therefore, it is necessary to divide each side of the fluid chamber 9 into two or more by the partition wall 9c and divide the fluid chamber into four or more small chambers. When dividing, it is desirable that they are equally spaced and symmetric at the buoyancy center point .

本発明の第三の実施形態の免震ピットを必要としない加圧液体による浮体式免震構造について、図3に基づいて以下に説明する。
図3は本発明における第三の実施形態の免震ピットを必要としない加圧液体による浮体式免震構造に関する完全浮体式免震構造と空気室の概要を示す図である。
図3に示すように、第三の実施形態は図2の第二の実施形態の免震ピットを必要としない加圧液体による浮体式免震構造物1に加え、空気室9gを設けて構成される。
A floating-type seismic isolation structure using pressurized liquid that does not require the seismic isolation pit according to the third embodiment of the present invention will be described below with reference to FIG.
FIG. 3 is a diagram showing an outline of a fully floating seismic isolation structure and an air chamber related to a floating seismic isolation structure using a pressurized liquid that does not require a seismic isolation pit according to the third embodiment of the present invention.
As shown in FIG. 3, the third embodiment is configured by providing an air chamber 9g in addition to the floating-type seismic isolation structure 1 using pressurized liquid that does not require the seismic isolation pit of the second embodiment of FIG. Is done.

第二の実施形態における空気層9aにおいて、空気バネによる有効な免震効果を得るためには、十分な容積即ち十分な気柱の高さを確保する必要がある。
しかし、そのままでは軽い空気層が浮体構造物本体2の底部に位置するため浮体構造物本体2の重心位置が高くなりバランスの悪い構造となる。
そこで図3に示すように、例えば浮体構造物本体2の下方の地下に容積量の異なる複数の独立した空気室9gを設置し各空気層9aと連通させることにより、擬似的に十分な気柱の高さをもった空気層を確保できる。
各空気室9gは気密され与圧可能であり各空気層9aとフレキシブルなエアーパイプ等で連通されていれば、浮体構造物本体2外部のどこに設置しても構わない。
空気室9gにより、浮体構造物本体2の重心を低く保ちつつ十分な容積量の空気層9aを確保でき、鉛直方向の免震性能を向上させ地震動の卓越振動数等との共振を防ぐことが可能となる。
In the air layer 9a in the second embodiment, in order to obtain an effective seismic isolation effect by the air spring , it is necessary to secure a sufficient volume , that is , a sufficient height of the air column.
However, since the light air layer is positioned at the bottom of the floating structure main body 2 as it is, the position of the center of gravity of the floating structure main body 2 becomes high, resulting in a poorly balanced structure.
Therefore, as shown in FIG. 3, for example, by installing a plurality of independent air chambers 9g having different volumes in the basement below the floating structure body 2 and communicating with the air layers 9a, a sufficiently large air column can be obtained. An air layer with a height of can be secured.
Each air chamber 9g may be installed anywhere outside the floating structure main body 2 as long as it is airtight and can be pressurized and communicated with each air layer 9a by a flexible air pipe or the like.
The air chamber 9g can secure a sufficient volume of the air layer 9a while keeping the center of gravity of the floating structure main body 2 low, improve the vertical seismic isolation performance and prevent resonance with the dominant frequency of seismic motion, etc. It becomes possible.

本発明における第一の実施形態の免震ピットを必要としない加圧液体による浮体式免震構造に関する部分浮体式免震構造と液体加圧機構の概要を示す図The figure which shows the outline | summary of the partial floating-type seismic isolation structure and liquid pressurization mechanism regarding the floating-type seismic isolation structure by the pressurized liquid which does not require the seismic isolation pit of 1st embodiment in this invention 本発明における第二の実施形態の免震ピットを必要としない加圧液体による浮体式免震構造に関する完全浮体式免震構造と流体室および圧搾空気機構の概要を示す図The figure which shows the outline | summary of the completely floating body type seismic isolation structure regarding the floating body type base isolation structure by the pressurized liquid which does not require the base isolation pit of 2nd embodiment in this invention, a fluid chamber, and a compressed air mechanism 本発明における第三の実施形態の免震ピットを必要としない加圧液体による浮体式免震構造に関する完全浮体式免震構造と空気室の概要を示す図The figure which shows the outline | summary of the complete floating body type seismic isolation structure and air chamber regarding the floating type base isolation structure by the pressurized liquid which does not require the base isolation pit of 3rd embodiment in this invention 本発明における免震層側面の断面概要を示す図The figure which shows the cross-sectional outline | summary of the seismic isolation layer in this invention 本発明における免震層部分の水平運動の免震周期解析を示す図The figure which shows the seismic isolation period analysis of the horizontal motion of the seismic isolation layer part in this invention 本発明における免震層部分のローリング運動の概要を示す図The figure which shows the outline | summary of the rolling motion of the seismic isolation layer part in this invention シミュレーションモデルにおける浮体式免震構造物の諸元値表Specification table for floating seismic isolation structure in simulation model 従来の完全浮体式免震構造の概要を示す図The figure which shows the outline of the conventional full floating type seismic isolation structure 従来の部分浮体式免震構造の概要を示す図The figure which shows the outline of the conventional partial floating type seismic isolation structure

1 浮体式免震構造物
2 浮体構造物本体
3 免震層
4 液体
5 シール材
6 地盤
7 免震装置
8 液体加圧機構
8a 貯液タンク
8b 配液管
8c 配液管バルブ
8d 水位調整スライダー
9 流体室
9a 空気層
9b 液体層
9c 隔壁
9d 抵抗板
9e 透水減衰材
9f 延出片
9g 空気室
10 圧搾空気機構
10a エアーパイプ
10b チェックバルブ
10c 地震感知器付エアーバルブ
10d リーク&リリーフバルブ
10e エアータンク
10f エアーコンプレッサー
11 浮体式免震構造物
12 浮体構造物本体
13 免震ピット
14 液体
15 掘削底面
16 地盤
17 免震装置(低せん断剛性構造体)
DESCRIPTION OF SYMBOLS 1 Floating type seismic isolation structure 2 Floating structure main body 3 Seismic isolation layer 4 Liquid 5 Sealing material 6 Ground 7 Seismic isolation device 8 Liquid pressurization mechanism 8a Liquid storage tank 8b Liquid distribution pipe 8c Liquid distribution pipe valve 8d Water level adjustment slider 9 Fluid chamber 9a Air layer 9b Liquid layer 9c Partition wall 9d Resistance plate 9e Permeable damping material 9f Extension piece 9g Air chamber 10 Compressed air mechanism 10a Air pipe 10b Check valve 10c Air valve 10d with seismic detector Leak & relief valve 10e Air tank 10f Air compressor 11 Floating type seismic isolation structure 12 Floating structure main body 13 Seismic isolation pit 14 Liquid 15 Drilling bottom surface 16 Ground 17 Seismic isolation device (low shear rigidity structure)

Claims (7)

浮体構造物本体と平らな地盤との間に、免震ピットの代わりとなるシール材で囲まれた免震層を設け、シール材に弾性機能を併せ持たせるかまたは弾性機能を持った部材をシール材の内ないし外に配置し、免震層に加圧された液体を注入することにより、浮体構造物本体を部分または完全に浮体させ水平方向の免震性能を得ることを基本とし、その部分浮体式免震構造において、免震層の加圧液体で浮体相殺しない固定荷重を支持する鉛直剛性を有し、免震層の内ないし外に浮体構造物本体と地盤との水平挙動を絶縁する免震装置を備え、その部分または完全浮体式免震構造において、免震層に注入する液体を加圧調整するための液体加圧機構を設けることを特徴とする浮体式免震構造。 A seismic isolation layer surrounded by a sealing material instead of the seismic isolation pit is provided between the floating structure main body and the flat ground, and the sealing material has an elastic function or a member having an elastic function. Basically, it is placed inside or outside the sealing material, and by injecting pressurized liquid into the seismic isolation layer, the floating body itself is partially or completely floated to obtain horizontal seismic isolation performance. In the partially floating type seismic isolation structure, it has a vertical rigidity that supports a fixed load that does not cancel the floating body with pressurized liquid in the seismic isolation layer, and insulates the horizontal behavior of the floating structure body and the ground inside or outside the base isolation layer A floating-type seismic isolation structure comprising a liquid pressurization mechanism for pressurizing and adjusting a liquid to be injected into the seismic isolation layer in a part or a complete floating-type seismic isolation structure. 請求項1の部分または完全浮体式免震構造において、浮体構造物本体底部と免震層上部に形成された凹部内に空気層と液体層からなる流体室を設けることを特徴とする浮体式免震構造。2. The floating body-type isolation system according to claim 1, wherein a fluid chamber composed of an air layer and a liquid layer is provided in a recess formed in the bottom of the floating structure body and the top of the isolation layer. Seismic structure. 請求項2の部分または完全浮体式免震構造において、流体室に圧搾空気を送り込むための圧搾空気機構を設けることを特徴とする浮体式免震構造。3. The floating type seismic isolation structure according to claim 2, further comprising a compressed air mechanism for sending compressed air into the fluid chamber. 請求項3の部分または完全浮体式免震構造において、流体室に透水性減衰材と、隔壁と、抵抗板と、延出片を配置し抵抗体として備えることを特徴とする浮体式免震構造。4. The floating type seismic isolation structure according to claim 3, wherein a permeable damping material, a partition wall, a resistance plate, and an extension piece are arranged in the fluid chamber as a resistance body. . 請求項4の完全浮体式免震構造において、流体室の各一辺を隔壁により2以上に分割し流体室を4以上の小室に分割することにより、浮体構造物本体の静的安定性を維持し復元力を持たせることを特徴とする浮体式免震構造。5. The fully floating seismic isolation structure according to claim 4, wherein each side of the fluid chamber is divided into two or more by a partition and the fluid chamber is divided into four or more small chambers, thereby maintaining the static stability of the floating structure main body. A floating seismic isolation system characterized by having a restoring force. 請求項5の完全浮体式免震構造において、流体室の各空気層の圧搾空気容量を変えることにより、地震動の卓越振動数等との共振を防ぐことを特徴とする浮体式免震構造。6. The fully floating body-isolated structure according to claim 5, wherein resonance with the dominant frequency of seismic motion is prevented by changing the compressed air capacity of each air layer in the fluid chamber. 請求項5の完全浮体式免震構造において、浮体構造物本体の重心を低く保ちつつ、十分な容積量の空気層を確保し鉛直方向の免震性能を向上させ共振を防ぐため、浮体構造物本体外部の地下等に容積量の異なる複数の空気室を設けることを特徴とする浮体式免震構造。6. The fully floating seismic isolation structure according to claim 5, wherein a floating structure is provided in order to maintain a low center of gravity of the floating structure main body and secure a sufficient volume of air layer to improve vertical isolation performance and prevent resonance. A floating-type seismic isolation structure characterized by providing a plurality of air chambers with different volumes in the basement outside the body.
JP2010267604A 2010-11-12 2010-11-12 Floating-type seismic isolation structure with pressurized liquid Expired - Fee Related JP5382367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010267604A JP5382367B2 (en) 2010-11-12 2010-11-12 Floating-type seismic isolation structure with pressurized liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010267604A JP5382367B2 (en) 2010-11-12 2010-11-12 Floating-type seismic isolation structure with pressurized liquid

Publications (2)

Publication Number Publication Date
JP2012102861A JP2012102861A (en) 2012-05-31
JP5382367B2 true JP5382367B2 (en) 2014-01-08

Family

ID=46393487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010267604A Expired - Fee Related JP5382367B2 (en) 2010-11-12 2010-11-12 Floating-type seismic isolation structure with pressurized liquid

Country Status (1)

Country Link
JP (1) JP5382367B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5853294B1 (en) * 2015-05-19 2016-02-09 一般社団法人加圧浮体免震協会 Pressurized floating slack isolation structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111885887A (en) * 2020-07-28 2020-11-03 郑州师范学院 Industrial control network security isolation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000110402A (en) * 1998-10-07 2000-04-18 Mitsubishi Heavy Ind Ltd Floating base isolation structure
JP2001140499A (en) * 1999-11-16 2001-05-22 Mitsubishi Heavy Ind Ltd Floating body type seismic isolation structure
JP2003021192A (en) * 2001-07-06 2003-01-24 Shimizu Corp Elastically mooring method of float for floating vibration control device
JP2005083018A (en) * 2003-09-05 2005-03-31 Shimizu Corp Floating type base isolation structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5853294B1 (en) * 2015-05-19 2016-02-09 一般社団法人加圧浮体免震協会 Pressurized floating slack isolation structure

Also Published As

Publication number Publication date
JP2012102861A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
US20230295945A1 (en) Tuned liquid damper with a membrane liquid-gas interface
EP2295661B1 (en) Vibration damping construction system
JPH04102742A (en) Earthquakeproof supporting device
KR20100090764A (en) Liquid damper for reducing vertical and/or horizontal vibrations in a building or machine structure
JP2008121328A (en) Three-dimensional base isolation device
JP2016033390A (en) Vibration isolation vibration damping apparatus
JP5382367B2 (en) Floating-type seismic isolation structure with pressurized liquid
Malhotra Sloshing loads in liquid-storage tanks with insufficient freeboard
Jafarzadeh Design and evaluation concepts of laminar shear box for 1g shaking table tests
JP2006264596A (en) Floating body unit and floating body type aseismatic structure
JP5192731B2 (en) 3D seismic isolation system
Bougacha et al. Effects of sedimentary material on the response of concrete gravity dams
US9074368B2 (en) Energy absorbing system for safeguarding structures from disruptive forces
JP6015950B2 (en) Embankment structure with improved seismic performance of multi-tiered concrete blocks
JP6297921B2 (en) Seismic isolation system
US10988060B2 (en) Pneumatic seat support
JP2012077876A (en) Base isolation structure
CN208792381U (en) A kind of smooth sliding shock proof damping damping unit of dedicated two dimension of building
JP2017089277A (en) Rubber plate cushioning mechanism, and air levitation-type base isolation device
JPH0694072A (en) U-shaped type damping tank
JP2004353257A (en) Floating body damping apparatus, and floating body type base isolated structure equipped with floating body damping apparatus
JP4640665B2 (en) Floating body vertical vibration isolation method
Sahraeian et al. A study on seismic behavior of piled raft foundation for oil storage tanks using centrifuge model tests
JP2024061706A (en) Air floatation seismic isolation device and air supply unit for air floatation seismic isolation device
Peek et al. Postbuckling behavior of unanchored steel tanks under lateral loads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees