JP2004353257A - Floating body damping apparatus, and floating body type base isolated structure equipped with floating body damping apparatus - Google Patents

Floating body damping apparatus, and floating body type base isolated structure equipped with floating body damping apparatus Download PDF

Info

Publication number
JP2004353257A
JP2004353257A JP2003151374A JP2003151374A JP2004353257A JP 2004353257 A JP2004353257 A JP 2004353257A JP 2003151374 A JP2003151374 A JP 2003151374A JP 2003151374 A JP2003151374 A JP 2003151374A JP 2004353257 A JP2004353257 A JP 2004353257A
Authority
JP
Japan
Prior art keywords
floating
floating body
seismic isolation
damping device
damping apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003151374A
Other languages
Japanese (ja)
Other versions
JP4120812B2 (en
Inventor
Takumi Oyama
巧 大山
Takeshi Nozu
剛 野津
Toshiyuki Kaneko
俊幸 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2003151374A priority Critical patent/JP4120812B2/en
Publication of JP2004353257A publication Critical patent/JP2004353257A/en
Application granted granted Critical
Publication of JP4120812B2 publication Critical patent/JP4120812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a floating body damping apparatus and a floating body type base isolated structure using the floating body damping apparatus capable of suppressing the horizontal behavior of a floating body even to horizontal external force in a periodic band close to a natural period applied to the floating body. <P>SOLUTION: The floating body damping apparatus 8 is installed at the bottom face of a floating body structure body 2 of the floating body type base isolated structure 1 constituted such that load (W<SB>1</SB>-ΔW<SB>1</SB>) excluding a part (ΔW<SB>1</SB>) of fixed load W<SB>1</SB>of the floating body structure body 2 is offset by buoyancy B and that fluctuating load W<SB>2</SB>and the part (ΔW<SB>1</SB>) of the fixed load W1 are supported by a low shearing rigidity structure 9. The floating body damping apparatus 8 is composed of a member with water permeating performance and formed as a solid structure with prescribed thickness and area. The floating body damping apparatus 8 acquires damping performance utilizing energy dispersion caused by the viscosity of liquid according to the relative velocity of the floating body damping apparatus 8 and liquid particles infiltrating inside. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、液体に浮揚する浮体の挙動を安定に保持する浮体減衰装置、及び浮体減衰装置を備えた浮体式免震構造物に関する。
【0002】
【従来の技術】
従来より、図5に示すように、構造物本体12を液体13中に浮かべることで、固有周期の長周期化を図る完全浮体構造の浮体式免震構造物11は、水平地震動に対して高い免震効果を得ることのできる構造として、一般に広く知られている(非特許文献1参照)。このような完全浮体構造の浮体式免震構造物11は、高い免震性能を有するものの、構造物本体12に生じる変動荷重により構造物本体12が容易に傾いたり、液面の変動に追随して構造物本体12が鉛直方向に変動するなど、居住性及び使用性の面で課題が生じていた。
【0003】
そこで、これらの課題に対応すべく、図6に示すように、構造物本体12を完全に液体13中に浮揚させることなく、構造物本体12自身の固定荷重の一部を免震装置等の低せん断構造体15を介して支持する部分浮体式構造の浮体式免震構造物11を考案した(特許文献1参照)。これら部分浮体式構造の浮体式免震構造物11は、前述した完全浮体構造の浮体式免震構造物11と同等の免震性能を確保しながら鉛直方向の挙動を抑制でき、固定構造物と同等の居住性及び使用性を確保できるものである。
【0004】
【非特許文献1】
大山 巧他、「浮体式免震工法に関する研究−水平免震性能と風外力に対する安定性−」、日本建築学会大会学術講演概集、p765−766、1999年9月
【特許文献1】
特願平2002−188430号公報
【0005】
【発明が解決しようとする課題】
このような浮体式免震構造物11は、何れも構造物本体12の固有周期を、地震動の卓越周期帯域から長周期側にずらすことにより、地震に対してほぼ揺れない構造を実現するものである。しかし、軟弱地盤上に浮体式免震構造物11を構築する場合、地震動は軟弱地盤中を伝播する過程で長周期化されるため、構造物本体12に入力される地震外力は長周期成分を含むものとなり、免震性能は悪化しやすい。また、構造物本体12には地震動のみならず長周期成分を多く含む風外力が作用するため、固有周期を長周期側にずらすだけでは強風時に構造物の揺れが大きくなり、居住性の確保が困難となる。
【0006】
上記事情に鑑み、本発明は、浮体に作用する固有周期に近い周期帯域の水平外力に対しても、浮体の水平挙動を抑制することのできる浮体減衰装置、及び浮体減衰装置を用いた浮体式免震構造物を提供することを目的としている。
【0007】
【課題を解決するための手段】
請求項1記載の浮体減衰装置は、液体中に浮揚する浮体の底面に備えられており、立体構造体に成形されるとともに、透水性能を有することを特徴としている。
【0008】
請求項2記載の浮体減衰装置を備えた浮体式免震構造物は、請求項1に記載の浮体減衰装置と、地盤を掘削して構築する免震ピットと、該免震ピット内に満たされた液体と、該液体中に少なくとも固定荷重より大きい浮力を生じない深さまで挿入される浮体構造物本体と、地盤上に配置され、前記浮体構造物本体に生じる鉛直下方向の変動荷重、及び浮力で相殺しない固定荷重を支持できる鉛直剛性を有するとともに、浮体構造物本体と地盤とを絶縁する低せん断剛性構造体を備えてなり、前記浮体構造物本体の底面に、前記浮体減衰装置が設置されることを特徴としている。
【0009】
【発明の実施の形態】
以下、本発明に係る浮体減衰装置、及び浮体減衰装置を備えた浮体式免震構造物について、図1から図4を用いて詳述する。本発明の浮体減衰装置は、透水性能を有する立体構造体により形成されることにより、液体が浮体減衰装置の内方で運動する際に生じる液体の粘性に起因したエネルギー逸散を利用して、減衰力を得るものであり、該浮体減衰装置を部分浮体式の浮体式免震構造物に備えることにより、長周期成分を含む地震動や強風等の水平外力に対しても、高い免震性能を維持するものである
【0010】
浮体式免震構造物1は、図1に示すように、浮体構造物本体2と、免震ピット3と、液体7と、低せん断剛性構造体9と、浮体減衰装置8を備えている。浮体構造物本体2は、居住空間やオフィス空間等の居室機能を有するものであり、免震ピット3は、地盤6を所望の深さまで掘削することにより形成され、外回りには土圧を受けるための地下外壁5を備えている。また、前記免震ピット3は、浮体構造物本体2が免震ピット3の内方に配置された際に、外壁面と免震ピット3の地下外壁5との間には所定幅のクリアランスを確保しており、地震により浮体構造物本体2が水平方向に移動した場合にも、地下外壁5に接触しない大きさの平面形状に構築されている。
【0011】
このような免震ピット3は、その内方に液体7が配されることを目的として設けられるスペースである。つまり、前記浮体式免震構造物1は、免震ピット3に液体7が配され、該液体7に浮揚するように浮体構造物本体2が配される構成となっている。このような浮体構造物本体2の浮体荷重Wは、浮体構造物本体2の固定荷重Wと、内装等による積載荷重及び利用者の移動等により生じる活荷重を含む鉛直下方向に作用する正値の変動荷重Wとを足しあわせたもの(W=W+W)である。本実施の形態では、前記浮体構造物本体2の浮体荷重W全てを浮力により相殺することなく、浮体構造物本体2の固定荷重Wの一部(ΔW)を除いた荷重(W−ΔW)を浮力Bにより相殺する深さまで、浮体構造物本体2を液体7中に挿入する構成としている。このため、浮体構造物本体2は、変動荷重W及び固定荷重Wの一部(ΔW)が鉛直下方向に生じることとなり、この荷重W+ΔW は、低せん断剛性構造体9を介して地盤6により支持される。
【0012】
ところで、一般に、構造物に対して高い免震性能を確保するためには、構造物の固有周期を長周期化することにより高い免震効果が挙げられることが知られている。そこで、本実施の形態では、前記浮体構造物本体2の上部構造2aの平面視形状を、免震ピット3より張り出す程度の大きさに形成するとともに、免震ピット3の外周縁近傍の地盤6に、所定の距離を持ってせん断弾性係数の小さいゴム等の前記低せん断剛性構造体9を複数配することとし、該低せん断剛性構造体9に浮体構造物本体2の上部構造2aを軟着底させる構成としている。
なお、水中使用可能な低せん断剛性構造体9を用いる場合には、浮体構造物本体2の底面と免震ピット3の掘削底面4の間に低せん断剛性構造体9を設置しても良い。
【0013】
先にも述べたように、本実施の形態では浮体構造物本体2は、固定荷重Wの一部(ΔW)を除いた荷重(W−ΔW)を液体7より受ける浮力Bにより相殺する構成としているため、ここで用いられる前記低せん断剛性構造体9は、前記浮体構造物本体2に生じる変動荷重W及び固定荷重Wの一部(ΔW)を支持する機能と、浮体構造物本体2と免震ピット3との水平挙動を絶縁し、長周期化する機能とを有するアイソレーターとして機能するものである。
【0014】
本実施の形態では、該低せん断剛性構造体9に積層ゴムを用いているが、必ずしもこれにこだわるものではなく、上述する変動荷重W及び固定荷重Wの一部(ΔW)を支持する機能と、浮体構造物本体2と免震ピット3との水平挙動を絶縁し、浮体構造物本体2の固有周波数を長周期化する機能とを有するものであれば、何れの低せん断剛性構造体を用いてもよい。ただし、免震ピット3の液体7は、いずれかの現象により液面下降することが想定され、このような場合には、浮力Bが減少して浮体構造物本体2の固定荷重Wの一部(ΔW)は増大する。該低せん断剛性構造体9は、液体7が最下液面に達した際の固定荷重Wの一部(ΔW)を支持する場合にも、上述する機能を損なうことなく、浮体構造物本体2を支持できる強度を確保しておくこととする。
【0015】
また、浮体構造物本体2の固定荷重Wの一部(ΔW)を除いた荷重(W−ΔW)を浮力Bで相殺し、低せん断剛性構造体9で、変動荷重W及び固定荷重Wの一部(ΔW)を支持させる構成は、免震ピット3に配される液体7がいずれかの原因で、液面変位を生じる場合に備えるものである。つまり、免震ピット3に配される液体7の液面が、何らかの現象により上昇した場合に、増大した浮力Bを固定荷重Wの一部(ΔW)で相殺することにより、浮体構造物本体2の浮き上がりを防止するものである。
【0016】
したがって、常時における浮体構造物本体2の液体7中への挿入深さが、前記免震ピット3に配された液体7の液面が上昇し、最上液面に達した際にも、固定荷重Wの一部(ΔW)が0以上となる挿入深さとなるように、液深の最大値もしくは液面の最上レベルを調整しておくことが必要であり、これにより、液体7が最上液面に達した際にも、浮体構造物本体2が完全に浮揚することなく、低せん断剛性構造体9に支持される状態を維持できるものである。
【0017】
なお、前記免震ピット3に配される液体7が、液面変位を生じない場合には、浮体構造物本体2の液体7中への挿入深さを、固定荷重Wの全部を浮力Bで相殺するように調整しておき、低せん断剛性構造体9には、変動荷重Wのみを支持させる構成としても良い。
【0018】
上述する構成の浮体式免震構造物1には、浮体構造物本体2の底面に浮体減衰装置8が設置されている。該浮体減衰装置8は、透水性能を有する部材により構成され、所定の厚さ及び面積を有する立体構造体に形成されている。本実施の形態では、これら浮体減衰装置8の材料に、立体不織布を用いているが、必ずしもこれにこだわるものではなく、アスファルト等のれき性材料やモルタル及びコンクリート等のセメント系材料で構成される透水性を有するマット、あるいは軽石などを収納したスリット状の収納装置等、空隙率が高く、透水係数の高い材料であれば何れを用いても良い。
【0019】
なお、本実施の形態において、浮体減衰装置8は浮体構造物本体2の底面全面に設置されているが、必ずしもこれにこだわるものではなく、底面の何れかの位置に単体で、もしくは複数に分割して設置しても良い。したがって、前記浮体構造物本体2は、必ずしも上部構造を上部構造2aの平面視形状を、免震ピット3より張り出す程度の大きさに形成し、免震ピット3の外周縁近傍の地盤6上に配置された前記低せん断剛性構造体9に支持させる必要はなく、浮体構造物本体2の浮体減衰装置8が設置されていない底面を、免震ピット3の掘削底面4に配置した低せん断剛性構造体9に軟着底させる構成としても良い。
【0020】
上述する浮体減衰装置8を、前記浮体構造物本体2の底面に設置する構成は、浮体減衰装置8の内方に侵入した液体粒子と浮体減衰装置8との相対速度に応じて、液体の粘性に起因して起こるエネルギー逸散、つまり減衰力を利用するもので、さらにその形状を立体構造体とすることにより運動エネルギーの逸散が顕著になるため、より大きい減衰性能が得られるものである。これら浮体減衰装置8を付加することによる減衰性能は、浮体減衰装置8に用いる材料の空隙率や透水係数により調整することができるものであり、また、浮体減衰装置8の体積を変化させることによっても、所望の減衰性能を確保することができるものである。
【0021】
したがって、同一材料の浮体減衰装置8について、減衰性能を向上させたい場合には、浮体減衰装置8の体積を増加させることにより、減衰性能を向上させることが可能となる。しかし、浮体減衰装置8は、前記浮体構造物本体2の底面に設置するものであり、前記免震ピット3の掘削底面4とのクリアランスを考慮する必要があることから、浮体減衰装置8の減衰性能を調整する際には、部材厚を一定とし、面積を拡縮することで、減衰性能を調整すればよい。
【0022】
上述する浮体式免震構造物1の減衰機能の効果を把握すべく、前記浮体構造物本体2の底面に対して、図2(a)に示すように、何も設置せず滑面とする第1のケース、図2(b)に示すように、複数の突起物10を設置する第2のケース、図2(c)に示すように、前記浮体減衰装置8を設置する第3のケース、の3つの条件について比較を行った。以下に、浮体式免震構造物1の諸条件を示す。
【0023】
まず、前記浮体構造物本体2は、図2(a)に示すように、幅1m、長さ2mのアクリル製模型を用いることとし、固定荷重の2/3を浮力で支持、1/3を前記低せん断剛性構造体9を介して地盤6に支持させる構成としている。
また、第2のケースで用いる突起物10は、1cm四方の角材により構成され、図2(b)に示すように、浮体構造物本体2の底面に所定の離間間隔をもって1000個固着している。なお、前記浮体構造物本体2の底面に、複数の突起物10を設置する構成は、浮体構造物本体2に連動して突起物10が水平方向に移動する際に、液体7に渦を発生させることにより運動エネルギーを逸散させて減衰力を得る方法として、従来より考案されているものである。
さらに、第3のケースで用いる浮体減衰装置8は、空隙率96%、透水係数13.7cm/s、厚さ2.5cmの不織布よりなる透水マットより構成し、図2(c)に示すように、浮体構造物本体2の底面全面に固着している。
【0024】
上述する3ケースの浮体式免震構造物1について、様々な周波数で正弦波加振を行った際の、各ケースの水平振動に対する加速度伝達関数を図3に示す。前記浮体構造物本体2の底面が滑面である第1のケースでは、加速度応答倍率の最大値は22.6に達し、等価減衰係数はわずか2.2%である。また、底面に突起物10を固着した第2のケースでは、最大応答倍率は19.2に低減され、等価減衰係数は2.6%に増加し、極めて小さいが減衰付加効果を得ることができる。
これに対し、底面に浮体減衰装置8を取り付けた第3のケースでは、最大応答倍率は3.3に低減、等価減衰係数は15.2%と大きく増加し、高い減衰効果を発揮している様子がわかる。
【0025】
このように、減衰効果の高い浮体減衰装置8を用いた第3のケースと底面を滑面とした第1のケースについて、強震記録から得たタフト波(1952年EW方向)及び八戸波(1968年NS方向)、工学的基盤での関東地震波を軟弱地盤(40m厚)のサイトで再現した模擬地盤波であるサイト波1(NS方向)及びサイト波2(EW方向)の4種類の地震波を付与した際の、加速度応答倍率、最大相対変位を図4(a)(b)に示す。
なお、加速度応答倍率は、構造物の最大応答加速度お地震の最大加速度の比であり、最大相対変位は、構造物変位と地盤変位の差の最大値と地盤の最大変位の比である。
【0026】
図4(a)に示すように、底面が滑面の第1のケースでは、軟弱地盤上のサイト波に対して、応答加速度倍率が大きくなり、サイト波2では0.56にまで達している。これに対して、底面に浮体減衰装置8を用いた第3のケースでは、最も応答加速度倍率が大きくなるサイト波2でも、その数値は0.4を下回っていることから、浮体減衰装置8を付加することにより浮体式免震構造物1は、軟弱地盤上の地震波においても免震性能が向上していることがわかる。
【0027】
このように、軟弱地盤上においても免震性能が向上している様子は、図4(b)に示す最大相対変位にも現れており、特にタフト波に対する減衰効果が顕著に現れている。これは、八戸波よりもタフト波の方が、固有周波数付近の成分を多く含んでいるためである。
上述する結果から、浮体構造物本体2の底面に浮体減衰装置8を設置した浮体式免震構造物1は、地震波の性質によって免震性能にばらつきを小さくすることができ、何れの地震波にも安定した免震性能を得られることがわかる。
【0028】
上述する構成によれば、浮体減衰装置8は、透水性能を有することにより液体が浮体減衰装置8の内方で運動する際に生じる液体の粘性に起因したエネルギー逸散を利用して減衰性能を得るものであり、浮体構造物本体2等の浮体の底面に設置されることにより、浮体の共振現象を抑えることのできることから、浮体に対して効果的な減衰機能を与えることが可能となる。
【0029】
また、該浮体減衰装置8は、上述するように、透水性能を有することにより液体が浮体減衰装置8の内方で運動する際に生じる液体の粘性に起因したエネルギー逸散を利用して減衰力を得ることから、一般に減衰装置として用いられているオイルダンパーや高減衰積層ゴム等の一般の免震構造に用いられているダンパーと比較して、安価でかつメンテナンスを不要とすることが可能となる。
さらに、該浮体減衰装置8の減衰性能は、浮体減衰装置8に用いる材料の空隙率や透水性能により調整できるとともに、浮体減衰装置8の体積でもコントロールすることができ、従来のダンパーと比較して取り扱いを容易に行うことが可能となる。
【0030】
このような浮体減衰装置8を備えた浮体式免震構造物1は、浮体構造物本体2の底面に浮体減衰装置8が設置されていることにより、浮体減衰装置8が長周期成分を多く含む軟弱地盤上での地震動や風外力に対する浮体構造物本体2の揺れを低減するためのパッシブな減衰機構として有効であることから、長周期成分を含む地震動や強風時にも高い免震性能を維持することが可能であり、これに伴い、快適な居住性及び使用性を確保することが可能となる。
【0031】
【発明の効果】
請求項1記載の浮体減衰装置によれば、液体中に浮揚する浮体の底面に備えられており、立体に成形されるとともに、透水性能を有することから、液体が浮体減衰装置の内方で運動する際に生じる液体の粘性に起因したエネルギー逸散を利用して減衰性能を得るとともに、浮体の共振現象を抑えることができることから、浮体に対して効果的な減衰機能を付与することが可能となる。
これらは、メガフロートのような海洋構造物の底面に備える構成とすれば、波による動揺の低減にも効果的に作用することが可能となる。
【0032】
また、該浮体減衰装置は、前述したように透水性能を有することで減衰性能を得ているため、一般に減衰装置として用いられているオイルダンパーや高減衰積層ゴム等の一般の免震構造に用いられているダンパーと比較して、安価でかつメンテナンスを不要とすることが可能となる。
【0033】
さらに、該浮体減衰装置の減衰性能は、浮体減衰装置に用いる材料の空隙率や透水性能により調整できるとともに、浮体減衰装置の体積でもコントロールすることができ、従来のダンパーと比較して取り扱いを容易に行うことが可能となる。
【0034】
請求項2記載の浮体減衰装置を備えた浮体式免震構造物によれば、請求項1に記載の浮体減衰装置と、地盤を掘削して構築する免震ピットと、該免震ピット内に満たされた液体と、該液体中に少なくとも固定荷重より大きい浮力を生じない深さまで挿入される浮体構造物本体と、該浮体構造物本体に生じる鉛直下方向の変動荷重、及び浮力で相殺しない固定荷重を支持できる鉛直剛性を有するとともに、浮体構造物本体と地盤とを絶縁する低せん断剛性構造体を備えてなり、前記浮体構造物本体の底面に、前記浮体減衰装置が設置される。
【0035】
これにより、浮体式免震構造物は、浮体構造物本体の底面に備えた浮体減衰装置が、長周期成分を多く含む軟弱地盤上での地震動や風外力に対する浮体構造物本体の揺れを低減するためのパッシブな減衰機構として有効であることから、長周期成分を含む地震や強風時にも浮体構造物本体の揺れを抑制することができ、快適な居住性及び使用性を確保することが可能となる。
【図面の簡単な説明】
事例を示す図である。
【図1】本発明に係る浮体式免震構造物を示す図である。
【図2】本発明に係る浮体式免震構造物の性能比較に用いる他の浮体式免震構造物を示す図である。
【図3】浮体式免震構造物の水平振動に対する加速度伝達関数を示すグラフである。
【図4】4種類の典型的な地震波に対する浮体式免震構造物の加速度応答倍率、及び最大相対変位を示すグラフである。
【図5】従来の完全浮体構造の浮体式免震構造物を示す図である。
【図6】従来の部分浮体構造の浮体式免震構造物を示す図である。
【符号の説明】
1 浮体式免震構造物
2 浮体構造物本体
2a 上部構造
3 免震ピット
4 掘削底面
5 地下外壁
6 地盤
7 液体
8 浮体減衰装置
9 低せん断剛性構造体
10 突起物
11 浮体式免震構造物
12 構造物本体
13 液体
14 免震ピット
15 低せん断構造体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a floating body damping device for stably maintaining the behavior of a floating body floating in a liquid, and a floating type seismic isolation structure provided with the floating body damping device.
[0002]
[Prior art]
Conventionally, as shown in FIG. 5, a floating type seismic isolation structure 11 of a complete floating structure, which has a long natural period by floating a structure body 12 in a liquid 13, has a high resistance to horizontal earthquake motion. It is widely known as a structure capable of obtaining a seismic isolation effect (see Non-Patent Document 1). Although the floating type seismic isolation structure 11 having such a completely floating structure has high seismic isolation performance, the structure main body 12 easily tilts due to the fluctuating load generated on the structure main body 12, or follows the fluctuation of the liquid level. Thus, there has been a problem in terms of comfort and usability, for example, the structure body 12 fluctuates in the vertical direction.
[0003]
Therefore, in order to cope with these problems, as shown in FIG. 6, a part of the fixed load of the structure main body 12 itself is removed by a seismic isolation device or the like without completely floating the structure main body 12 in the liquid 13. A floating type seismic isolation structure 11 having a partially floating structure that is supported via a low shear structure 15 has been devised (see Patent Document 1). The floating type seismic isolation structure 11 having the partial floating structure can suppress the vertical behavior while securing the same seismic isolation performance as the floating type seismic isolation structure 11 having the completely floating structure described above, and can be used as a fixed structure. It is possible to secure the same livability and usability.
[0004]
[Non-patent document 1]
Taku Oyama et al., "Study on Floating Type Seismic Isolation Method-Horizontal Seismic Isolation Performance and Stability to Wind Force-", Proc. Of the Architectural Institute of Japan Conference, p765-766, September 1999 [Patent Document 1]
Japanese Patent Application No. 2002-188430 [0005]
[Problems to be solved by the invention]
Such a floating type seismic isolation structure 11 realizes a structure that is substantially not shaken by an earthquake by shifting the natural period of the structure body 12 from the predominant period band of the seismic motion to the long period side. is there. However, when building a floating seismic isolation structure 11 on soft ground, the seismic motion is prolonged in the process of propagating through soft ground, so the external force input to the structure body 12 has a long-period component. The seismic isolation performance is likely to deteriorate. In addition to the seismic motion, not only the seismic motion but also the wind external force including many long-period components acts on the structure main body 12. Therefore, simply shifting the natural period to the long-period side increases the sway of the structure during strong winds, and secures the livability. It will be difficult.
[0006]
In view of the above circumstances, the present invention is directed to a floating body damping device capable of suppressing horizontal behavior of a floating body, even for a horizontal external force in a cycle band close to a natural period acting on the floating body, and a floating body type using the floating body damping device. It aims to provide seismic isolation structures.
[0007]
[Means for Solving the Problems]
The floating body damping device according to the first aspect is provided on the bottom surface of the floating body floating in the liquid, is formed into a three-dimensional structure, and has water permeability.
[0008]
A floating type seismic isolation structure provided with the floating body damping device according to claim 2, a floating body damping device according to claim 1, a seismic isolation pit constructed by excavating the ground, and a filling in the seismic isolation pit. Liquid, a floating structure main body inserted into the liquid to a depth that does not generate a buoyancy greater than at least a fixed load, and a vertical downward fluctuating load, which is disposed on the ground and generated in the floating structure main body, and buoyancy It has a vertical rigidity that can support a fixed load that does not cancel out, and has a low shear rigid structure that insulates the floating structure main body and the ground, and the floating body damping device is installed on the bottom surface of the floating structure main body. It is characterized by that.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a floating body damping device according to the present invention and a floating type seismic isolation structure provided with the floating body damping device will be described in detail with reference to FIGS. The floating body damping device of the present invention is formed by a three-dimensional structure having water permeability, and utilizes energy dissipation caused by the viscosity of the liquid generated when the liquid moves inside the floating body damping device. By providing the floating body damping device in a partially floating floating type seismic isolation structure, high seismic isolation performance can be achieved even for horizontal external forces such as strong ground motions and strong winds including long-period components. [0010]
As shown in FIG. 1, the floating seismic isolation structure 1 includes a floating structure main body 2, a seismic isolation pit 3, a liquid 7, a low shear rigid structure 9, and a floating body damping device 8. The floating structure main body 2 has a living room function such as a living space or an office space, and the seismic isolation pit 3 is formed by excavating the ground 6 to a desired depth, and is subjected to earth pressure around the outside. The underground outer wall 5 is provided. The seismic isolation pit 3 has a predetermined width of clearance between the outer wall surface and the underground outer wall 5 of the seismic isolation pit 3 when the floating structure main body 2 is disposed inside the seismic isolation pit 3. It is constructed in a planar shape of a size that does not contact the underground outer wall 5 even when the floating structure main body 2 moves in the horizontal direction due to an earthquake.
[0011]
Such a seismic isolation pit 3 is a space provided for the purpose of disposing the liquid 7 therein. That is, the floating type seismic isolation structure 1 is configured such that the liquid 7 is disposed in the seismic isolation pit 3 and the floating structure main body 2 is disposed so as to float on the liquid 7. Floating load W of such floating structure body 2 includes a fixed load W 1 of floating structure body 2, positive acting vertically downward, including a live load caused by the movement or the like of the live load and user by interior like is that the sum of the fluctuating load W 2 value (W = W 1 + W 2 ). In the present embodiment, the load (W 1 −) excluding a part (ΔW 1 ) of the fixed load W 1 of the floating structure main body 2 without offsetting the entire floating load W of the floating structure main body 2 by buoyancy. ΔW 1 ) is inserted into the liquid 7 to a depth that cancels out the buoyancy B. Therefore, the floating structure main body 2 generates a part (ΔW 1 ) of the fluctuating load W 2 and the fixed load W 1 in a vertically downward direction, and the load W 2 + ΔW 1 causes the low shear rigid structure 9 to move. Supported by the ground 6.
[0012]
By the way, it is generally known that in order to secure a high seismic isolation performance for a structure, a high seismic isolation effect can be obtained by increasing the natural period of the structure. Therefore, in the present embodiment, the upper structure 2a of the floating structure main body 2 is formed to have a shape in plan view that is large enough to protrude from the seismic isolation pit 3, and the ground near the outer peripheral edge of the seismic isolation pit 3 is formed. 6, a plurality of low shear rigid structures 9 such as rubber having a small shear modulus are arranged at a predetermined distance, and the upper structure 2a of the floating structure main body 2 is softened to the low shear rigid structures 9. It is configured to land.
In addition, when using the low shear rigid structure 9 which can be used in water, the low shear rigid structure 9 may be installed between the bottom surface of the floating structure main body 2 and the excavation bottom surface 4 of the seismic isolation pit 3.
[0013]
As described above, in the present embodiment, the floating structure main body 2 receives the load (W 1 −ΔW 1 ) from the liquid 7 excluding a part (ΔW 1 ) of the fixed load W 1 by the buoyancy B. Since the structure is designed to cancel, the low shear rigid structure 9 used here has a function of supporting a part (ΔW 1 ) of the variable load W 2 and the fixed load W 1 generated in the floating structure body 2, It functions as an isolator having the function of insulating the horizontal behavior between the floating structure main body 2 and the seismic isolation pit 3 and extending the period.
[0014]
In the present embodiment, laminated rubber is used for the low-shear rigid structure 9. However, the present invention is not limited to this, and supports a part (ΔW 1 ) of the above-mentioned variable load W 2 and fixed load W 1. Any low-shear stiffness structure as long as it has a function of insulating the horizontal movement between the floating structure main body 2 and the seismic isolation pit 3 and extending the natural frequency of the floating structure main body 2 A body may be used. However, it is assumed that the liquid 7 in the seismic isolation pit 3 drops due to any phenomenon, and in such a case, the buoyancy B decreases and one of the fixed loads W1 of the floating structure main body 2 is reduced. The part (ΔW 1 ) increases. Even when the low shear rigid structure 9 supports a part (ΔW 1 ) of the fixed load W 1 when the liquid 7 reaches the lowermost liquid level, the floating structure can be used without impairing the function described above. The strength which can support the main body 2 is secured.
[0015]
Further, the load (W 1 −ΔW 1 ) excluding a part (ΔW 1 ) of the fixed load W 1 of the floating structure main body 2 is offset by the buoyancy B, and the low shear rigid structure 9 has the variable load W 2 and The configuration for supporting a part (ΔW 1 ) of the fixed load W 1 is provided in case that the liquid 7 arranged in the seismic isolation pit 3 causes a liquid level displacement due to any cause. In other words, when the liquid level of the liquid 7 arranged in the seismic isolation pit 3 rises due to some phenomenon, the increased buoyancy B is offset by a part (ΔW 1 ) of the fixed load W 1 , and thus the floating structure is provided. This prevents the main body 2 from rising.
[0016]
Therefore, even when the insertion depth of the floating structure main body 2 into the liquid 7 at all times is such that the liquid level of the liquid 7 arranged in the seismic isolation pit 3 rises and reaches the uppermost liquid level, the fixed load is maintained. It is necessary to adjust the maximum value of the liquid depth or the uppermost level of the liquid surface so that a part (ΔW 1 ) of W 1 becomes an insertion depth of not less than 0, whereby the liquid 7 becomes the highest. Even when the liquid body reaches the liquid level, the state in which the floating structure main body 2 is supported by the low-shear rigid structure 9 can be maintained without completely floating.
[0017]
Incidentally, the seismic isolation pit 3 liquid 7 disposed is, when no liquid level displacement, the insertion depth of the floating structure in a liquid 7 of the body 2, buoyancy B all of the fixed load W 1 in advance adjusted to cancel, the low shear rigid structure 9 may be configured to support only the variable load W 2.
[0018]
In the floating seismic isolation structure 1 having the above-described configuration, a floating body damping device 8 is installed on the bottom surface of the floating structure main body 2. The floating body damping device 8 is formed of a member having water permeability, and is formed in a three-dimensional structure having a predetermined thickness and area. In the present embodiment, a three-dimensional nonwoven fabric is used as the material of the floating body damping device 8, but it is not necessarily limited to this, and is composed of a debris material such as asphalt and a cement-based material such as mortar and concrete. Any material having a high porosity and a high water permeability such as a mat having water permeability or a slit-shaped storage device storing pumice or the like may be used.
[0019]
In the present embodiment, the floating body damping device 8 is installed on the entire bottom surface of the floating structure main body 2; however, the present invention is not limited to this, and the floating body damping device 8 may be singly or plurally divided at any position on the bottom surface. It may be installed. Therefore, the main body 2 of the floating structure is not necessarily formed by forming the upper structure so that the shape of the upper structure 2a in a plan view is larger than the seismic isolation pit 3 and on the ground 6 near the outer peripheral edge of the seismic isolation pit 3. It is not necessary to support the low-shear rigidity structure 9 disposed at the bottom, and the bottom surface of the floating structure main body 2 where the floating body damping device 8 is not installed is disposed on the excavation bottom surface 4 of the seismic isolation pit 3. It is good also as a structure which makes the structure 9 soft-bottom.
[0020]
The above-described structure in which the floating body damping device 8 is installed on the bottom surface of the floating structure main body 2 has a structure in which the viscosity of the liquid is adjusted in accordance with the relative speed between the liquid particles entering the inside of the floating body damping device 8 and the floating body damping device 8. It uses energy dissipation, that is, the damping force that is caused by kinetic energy, and the kinetic energy dissipation becomes remarkable when the shape is made into a three-dimensional structure, so that greater damping performance can be obtained. . The damping performance by adding the floating body damping device 8 can be adjusted by the porosity and the water permeability of the material used for the floating body damping device 8, and by changing the volume of the floating body damping device 8. Also, the desired damping performance can be ensured.
[0021]
Therefore, when it is desired to improve the damping performance of the floating body damping device 8 of the same material, the damping performance can be improved by increasing the volume of the floating body damping device 8. However, the floating body damping device 8 is installed on the bottom surface of the floating structure main body 2, and it is necessary to consider the clearance between the seismic isolation pit 3 and the excavated bottom surface 4. When adjusting the performance, the damping performance may be adjusted by keeping the member thickness constant and expanding and reducing the area.
[0022]
In order to grasp the effect of the damping function of the above-mentioned floating-type seismic isolation structure 1, the bottom surface of the above-mentioned floating-structure main body 2 is made smooth without any installation, as shown in FIG. A first case, a second case for installing a plurality of protrusions 10 as shown in FIG. 2B, and a third case for installing the floating body damping device 8 as shown in FIG. 2C. , And three conditions were compared. The conditions of the floating seismic isolation structure 1 are shown below.
[0023]
First, as shown in FIG. 2A, the floating structure main body 2 uses an acrylic model having a width of 1 m and a length of 2 m, and supports 2/3 of the fixed load by buoyancy, and 1/3 of the fixed load. It is configured to be supported on the ground 6 via the low shear rigid structure 9.
Further, the protrusions 10 used in the second case are made of a square material of 1 cm square, and as shown in FIG. 2B, 1000 protrusions are fixed to the bottom surface of the floating structure main body 2 with a predetermined spacing. . The configuration in which the plurality of protrusions 10 are installed on the bottom surface of the floating structure main body 2 generates a vortex in the liquid 7 when the protrusions 10 move in the horizontal direction in conjunction with the floating structure main body 2. This has been conventionally devised as a method of dissipating kinetic energy to obtain a damping force.
Further, the floating body damping device 8 used in the third case is composed of a water permeable mat made of a nonwoven fabric having a porosity of 96%, a water permeability of 13.7 cm / s, and a thickness of 2.5 cm, as shown in FIG. In addition, it is fixed to the entire bottom surface of the floating structure main body 2.
[0024]
FIG. 3 shows an acceleration transfer function with respect to horizontal vibration of each case when sine wave excitation is performed at various frequencies for the above-mentioned three cases of the floating type seismic isolation structure 1. In the first case where the bottom surface of the floating structure main body 2 is a smooth surface, the maximum value of the acceleration response magnification reaches 22.6, and the equivalent damping coefficient is only 2.2%. In the second case in which the projection 10 is fixed to the bottom surface, the maximum response magnification is reduced to 19.2, and the equivalent damping coefficient is increased to 2.6%. .
On the other hand, in the third case in which the floating body damping device 8 is attached to the bottom surface, the maximum response magnification is reduced to 3.3, and the equivalent damping coefficient is greatly increased to 15.2%, exhibiting a high damping effect. You can see the situation.
[0025]
As described above, for the third case using the floating body damping device 8 having a high damping effect and the first case having a smooth bottom surface, tuft waves (EW direction in 1952) and Hachinohe waves (1968) obtained from strong motion records. NS direction), and four types of seismic waves, site waves 1 (NS direction) and site waves 2 (EW direction), which are simulated ground waves that reproduce the Kanto seismic waves on the engineering base at the site of soft ground (40 m thick). FIGS. 4A and 4B show the acceleration response magnification and the maximum relative displacement at the time of application.
The acceleration response magnification is the ratio of the maximum response acceleration of the structure to the maximum acceleration of the earthquake, and the maximum relative displacement is the ratio of the maximum value of the difference between the structure displacement and the ground displacement to the maximum displacement of the ground.
[0026]
As shown in FIG. 4A, in the first case in which the bottom surface is smooth, the response acceleration magnification is larger than that of the site wave on the soft ground, and reaches 0.56 for the site wave 2. . On the other hand, in the third case using the floating body damping device 8 on the bottom surface, the numerical value of the site wave 2 having the largest response acceleration magnification is less than 0.4. It can be seen that the addition of the floating structure improves the seismic isolation performance of the floating seismic isolation structure 1 even in the case of seismic waves on soft ground.
[0027]
As described above, the manner in which the seismic isolation performance is improved even on soft ground also appears in the maximum relative displacement shown in FIG. 4 (b), and particularly, the damping effect on the tuft wave appears remarkably. This is because the tuft wave contains more components near the natural frequency than the Hachinohe wave.
From the results described above, the floating type seismic isolation structure 1 in which the floating body damping device 8 is installed on the bottom surface of the floating structure main body 2 can reduce the variation in seismic isolation performance due to the nature of the seismic wave, and any seismic wave It can be seen that stable seismic isolation performance can be obtained.
[0028]
According to the above-described configuration, the floating body damping device 8 has a water-permeability, and uses the energy dissipation caused by the viscosity of the liquid generated when the liquid moves inside the floating body damping device 8 to increase the damping performance. Since it is possible to suppress the resonance phenomenon of the floating body by being installed on the bottom surface of the floating body such as the floating structure main body 2, it is possible to provide the floating body with an effective damping function.
[0029]
Further, as described above, the floating body damping device 8 has a water-permeating property, and utilizes the energy dissipation caused by the viscosity of the liquid generated when the liquid moves inside the floating body damping device 8 to provide a damping force. Therefore, compared to the dampers used for general seismic isolation structures such as oil dampers commonly used as damping devices and high damping laminated rubber, it is possible to reduce the cost and eliminate the need for maintenance. Become.
Further, the damping performance of the floating body damping device 8 can be adjusted by the porosity and water permeability of the material used for the floating body damping device 8 and can be controlled by the volume of the floating body damping device 8 as compared with a conventional damper. Handling can be performed easily.
[0030]
In the floating type seismic isolation structure 1 including the floating body damping device 8, the floating body damping device 8 includes a large number of long-period components because the floating body damping device 8 is installed on the bottom surface of the floating structure main body 2. Since it is effective as a passive damping mechanism for reducing the sway of the floating structure body 2 against soft ground motion and external wind force, high seismic isolation performance is maintained even during strong ground motion or strong wind including long-period components. This makes it possible to ensure comfortable living and usability.
[0031]
【The invention's effect】
According to the floating body damping device of the first aspect, the floating body is provided on the bottom surface of the floating body that floats in the liquid, and is formed into a three-dimensional shape and has water permeability, so that the liquid moves inside the floating body damping device. In addition to obtaining the damping performance by utilizing the energy dissipation caused by the viscosity of the liquid generated at the time of performing, the resonance phenomenon of the floating body can be suppressed, and it is possible to provide an effective damping function to the floating body Become.
If these are provided on the bottom surface of a marine structure such as a megafloat, they can effectively act to reduce the sway caused by waves.
[0032]
In addition, since the floating body damping device obtains damping performance by having water permeability as described above, it is used for a general seismic isolation structure such as an oil damper or a high damping laminated rubber which is generally used as a damping device. As compared with a damper that is used, it is possible to reduce the cost and eliminate the need for maintenance.
[0033]
Furthermore, the damping performance of the floating body damping device can be adjusted by the porosity and water permeability of the material used for the floating body damping device, and can be controlled by the volume of the floating body damping device, which makes handling easier than conventional dampers. It is possible to do it.
[0034]
According to the floating type seismic isolation structure provided with the floating body damping device according to claim 2, the floating body damping device according to claim 1, a seismic isolation pit constructed by excavating the ground, and A filled liquid, a floating structure body inserted into the liquid to a depth that does not generate a buoyancy greater than at least a fixed load, and a vertically downward fluctuating load generated in the floating structure body, and fixing not offset by buoyancy It has a vertical rigidity capable of supporting a load and has a low-shear rigid structure that insulates the floating structure main body from the ground. The floating body damping device is installed on the bottom surface of the floating structure main body.
[0035]
Thereby, in the floating type seismic isolation structure, the floating body damping device provided on the bottom surface of the floating body main body reduces the vibration of the floating body main body due to seismic motion and wind external force on soft ground containing many long-period components. Is effective as a passive damping mechanism, which can suppress the shaking of the floating structure body even during an earthquake or strong wind that includes long-period components, ensuring comfortable living and usability. Become.
[Brief description of the drawings]
It is a figure showing an example.
FIG. 1 is a view showing a floating seismic isolation structure according to the present invention.
FIG. 2 is a view showing another floating seismic isolation structure used for performance comparison of the floating seismic isolation structure according to the present invention.
FIG. 3 is a graph showing an acceleration transfer function with respect to horizontal vibration of a floating seismic isolation structure.
FIG. 4 is a graph showing the acceleration response magnification and the maximum relative displacement of a floating seismic isolation structure with respect to four types of typical seismic waves.
FIG. 5 is a diagram showing a conventional floating type seismic isolation structure having a complete floating structure.
FIG. 6 is a view showing a conventional floating type seismic isolation structure having a partial floating structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Floating type seismic isolation structure 2 Floating structure main body 2a Superstructure 3 Seismic isolation pit 4 Excavation bottom 5 Underground outer wall 6 Ground 7 Liquid 8 Floating body damping device 9 Low shear rigid structure 10 Projection 11 Floating type seismic isolation structure 12 Structure body 13 Liquid 14 Seismic isolation pit 15 Low shear structure

Claims (2)

液体中に浮揚する浮体の底面に備えられており、
立体構造体に成形されるとともに、透水性能を有することを特徴とする浮体減衰装置。
It is provided on the bottom of the floating body that floats in the liquid,
A floating body damping device formed into a three-dimensional structure and having water permeability.
請求項1に記載の浮体減衰装置と、
地盤を掘削して構築する免震ピットと、
該免震ピット内に満たされた液体と、
該液体中に、少なくとも固定荷重より大きい浮力を生じない深さまで挿入される浮体構造物本体と、
地盤上に配置され、前記浮体構造物本体に生じる鉛直下方向の変動荷重、及び浮力で相殺しない固定荷重を支持できる鉛直剛性を有するとともに、浮体構造物本体と地盤とを絶縁する低せん断剛性構造体を備えてなり、
前記浮体構造物本体の底面に、前記浮体減衰装置が設置されることを特徴とする浮体減衰装置を備えた浮体式免震構造物。
A floating body damping device according to claim 1,
Seismic isolation pits that are built by excavating the ground,
A liquid filled in the seismic isolation pit,
A floating structure main body inserted into the liquid to a depth that does not generate buoyancy greater than at least a fixed load;
A low-shear rigid structure that is arranged on the ground and has a vertical rigidity capable of supporting a vertical variable load generated in the floating structure main body and a fixed load that does not cancel out due to buoyancy, and insulates the floating structural body from the ground. With a body,
A floating seismic isolation structure having a floating body damping device, wherein the floating body damping device is installed on a bottom surface of the floating structure main body.
JP2003151374A 2003-05-28 2003-05-28 Floating body damping device and floating body seismic isolation structure equipped with floating body damping device Expired - Fee Related JP4120812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003151374A JP4120812B2 (en) 2003-05-28 2003-05-28 Floating body damping device and floating body seismic isolation structure equipped with floating body damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151374A JP4120812B2 (en) 2003-05-28 2003-05-28 Floating body damping device and floating body seismic isolation structure equipped with floating body damping device

Publications (2)

Publication Number Publication Date
JP2004353257A true JP2004353257A (en) 2004-12-16
JP4120812B2 JP4120812B2 (en) 2008-07-16

Family

ID=34046916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151374A Expired - Fee Related JP4120812B2 (en) 2003-05-28 2003-05-28 Floating body damping device and floating body seismic isolation structure equipped with floating body damping device

Country Status (1)

Country Link
JP (1) JP4120812B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239803A (en) * 2006-03-06 2007-09-20 Shimizu Corp Floating body type seismic isolation structure
JP2007308958A (en) * 2006-05-18 2007-11-29 Shimizu Corp Floating type base isolated structure
JP2010196839A (en) * 2009-02-26 2010-09-09 Shimizu Corp Damping device
US8303903B2 (en) 2008-01-31 2012-11-06 Nikkiso Co., Ltd. Apparatus for carbon nanotube synthesis
JP2021080760A (en) * 2019-11-20 2021-05-27 株式会社シェルタージャパン Floating type artificial ground, and floating type disaster prevention house

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007239803A (en) * 2006-03-06 2007-09-20 Shimizu Corp Floating body type seismic isolation structure
JP2007308958A (en) * 2006-05-18 2007-11-29 Shimizu Corp Floating type base isolated structure
US8303903B2 (en) 2008-01-31 2012-11-06 Nikkiso Co., Ltd. Apparatus for carbon nanotube synthesis
JP2010196839A (en) * 2009-02-26 2010-09-09 Shimizu Corp Damping device
JP2021080760A (en) * 2019-11-20 2021-05-27 株式会社シェルタージャパン Floating type artificial ground, and floating type disaster prevention house

Also Published As

Publication number Publication date
JP4120812B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
Konar et al. Flow damping devices in tuned liquid damper for structural vibration control: a review
CA1296746C (en) Method for effectively restraining response of a structure to outside disturbances and apparatus therefor
KR101719298B1 (en) Buoyancy construction methods for earthquake-proof
JP5621101B1 (en) Seismic foundation for buildings
JP2004353257A (en) Floating body damping apparatus, and floating body type base isolated structure equipped with floating body damping apparatus
JP4277185B2 (en) Additional damping mechanism for floating base-isolated structures
JP6075953B2 (en) Seismic isolation structure
JP6372692B2 (en) Construction method of buoyancy type base isolation structure and buoyancy type base isolation structure
JP5181281B2 (en) Additional damping mechanism for floating base-isolated structures
Hamada et al. Numerical analysis on seismic response of piled raft foundation with ground improvement based on seismic observation records
KR20090056401A (en) Energy absorbing system for floating breakwater
JP2004027732A (en) Aseismatic structure of floating body type aseismatic structure
JP2010196839A (en) Damping device
JP4022313B2 (en) Seismic isolation / vibration isolation structure with suspension and sliding
JPH10292669A (en) Base isolating device of building and base isolating structure of building using the same
KR20110128636A (en) Seismic isolation damping apparatus of bridge
Fasil et al. The state of the art on seismic isolation of shear wall structure using elastomeric isolators
JP2007070857A (en) Base isolation structure of building
JP3999364B2 (en) Seismic isolation structure for bridges
JP2510478B2 (en) Building and its vibration suppression device
RU128211U1 (en) SEISMIC ISOLATING FOUNDATION (OPTIONS)
JP3903313B2 (en) Basic structure of the structure
JP5294108B2 (en) Damping damper
JPH10121415A (en) Base isolation structure of lower part of bridge pier
JP2011099538A (en) Vertical base isolation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4120812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130509

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140509

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees