JP5381957B2 - Silicon carbide single crystal manufacturing apparatus and manufacturing method - Google Patents

Silicon carbide single crystal manufacturing apparatus and manufacturing method Download PDF

Info

Publication number
JP5381957B2
JP5381957B2 JP2010240958A JP2010240958A JP5381957B2 JP 5381957 B2 JP5381957 B2 JP 5381957B2 JP 2010240958 A JP2010240958 A JP 2010240958A JP 2010240958 A JP2010240958 A JP 2010240958A JP 5381957 B2 JP5381957 B2 JP 5381957B2
Authority
JP
Japan
Prior art keywords
heat insulating
outer peripheral
insulating material
single crystal
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010240958A
Other languages
Japanese (ja)
Other versions
JP2012091967A (en
Inventor
裕也 久野
一都 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010240958A priority Critical patent/JP5381957B2/en
Publication of JP2012091967A publication Critical patent/JP2012091967A/en
Application granted granted Critical
Publication of JP5381957B2 publication Critical patent/JP5381957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、炭化珪素(以下、SiCという)単結晶の製造装置および製造方法に関するものである。   The present invention relates to an apparatus and a method for manufacturing a silicon carbide (hereinafter referred to as SiC) single crystal.

従来より、ガス供給法によるSiC単結晶の成長を行うSiC単結晶の製造装置が知られている。このSiC単結晶の製造装置では、真空容器内にSiC単結晶の結晶成長が行われる加熱容器(るつぼ)を配置し、加熱容器内にSiCの原料ガスを供給すると共に誘導電源からの電力供給に基づいて誘導コイルによる誘導加熱を行うことにより、加熱容器内もしくはその近傍に配置された種結晶の表面にSiC単結晶を成長させている。   2. Description of the Related Art Conventionally, SiC single crystal manufacturing apparatuses that perform SiC single crystal growth by a gas supply method are known. In this SiC single crystal manufacturing apparatus, a heating vessel (crucible) in which crystal growth of SiC single crystal is performed is arranged in a vacuum vessel, and SiC source gas is supplied into the heating vessel and power is supplied from an induction power source. Based on the induction heating based on the induction coil, a SiC single crystal is grown on the surface of the seed crystal disposed in or near the heating vessel.

このようなSiC単結晶の製造装置として、特許文献1に開示されたものがある。このSiC単結晶の製造装置では、加熱容器内の温度を効率良く制御できるように、加熱容器の周囲を円筒状の断熱材で囲んだ構造としており、その断熱材を軸方向に対して垂直方向に分断した構造としている。   An apparatus for manufacturing such a SiC single crystal is disclosed in Patent Document 1. This SiC single crystal manufacturing apparatus has a structure in which the periphery of the heating container is surrounded by a cylindrical heat insulating material so that the temperature in the heating container can be controlled efficiently, and the heat insulating material is perpendicular to the axial direction. The structure is divided into two parts.

特公昭61−47686号公報Japanese Examined Patent Publication No. 61-47686

上記のようなSiC単結晶製造装置では、円筒状の断熱材にも誘導コイルによる誘導過熱により誘導電流が流れることになる。この誘導電流を抑える方法として、円筒状の断熱材を、中心軸に対して平行に分割する分割面を入れることで、誘導電流の経路を遮る構造とすることが考えられる。   In the SiC single crystal manufacturing apparatus as described above, an induced current flows through the cylindrical heat insulating material due to induction overheating by the induction coil. As a method for suppressing this induced current, it is conceivable to form a structure in which the path of the induced current is blocked by inserting a split surface that divides the cylindrical heat insulating material in parallel to the central axis.

しかしながら、SiC単結晶の成長という非常に高温な雰囲気を作り出すことが必要とされるため、誘導電源のパワーが非常に高くされ、誘導電流も非常に大きくなる。このため、分割面にて分割された隣り合う断熱材同士の間の空隙のうち比較的幅が狭い部分において局所的な放電現象が起こり、誘導電力の安定な供給が阻害されるという問題が発生する。また、誘導電源側にスパイク電流などが流れ、誘導電源の電源回路に備えられる保護回路の機能により、誘導電源をOFFしてしまい、SiC単結晶の成長に必要な高温を実現することができなくなるという問題も生じる。   However, since it is necessary to create a very high temperature atmosphere for growing a SiC single crystal, the power of the induction power source is very high and the induction current is also very large. For this reason, there is a problem that a local discharge phenomenon occurs in a relatively narrow portion of the gap between adjacent heat insulating materials divided on the dividing surface, and the stable supply of induced power is hindered. To do. In addition, spike current flows on the induction power supply side, and the function of the protection circuit provided in the power supply circuit of the induction power supply turns off the induction power supply, making it impossible to realize the high temperature necessary for the growth of the SiC single crystal. The problem also arises.

本発明は上記点に鑑みて、円筒状の断熱材を中心軸に対して平行に分割する場合において、分割された隣り合う断熱材同士の間に放電現象が発生することを抑制できるSiC単結晶の製造装置および製造方法を提供することを目的とする。   In view of the above points, the present invention provides a SiC single crystal that can suppress the occurrence of a discharge phenomenon between adjacent divided heat insulating materials when the cylindrical heat insulating material is divided in parallel to the central axis. An object of the present invention is to provide a manufacturing apparatus and a manufacturing method.

上記目的を達成するため、請求項1に記載の発明では、台座(9)よりも原料ガス(3)の流動経路上流側に配置され、原料ガス(3)の加熱を行う加熱容器(8)と、加熱容器(8)を誘導加熱する加熱装置(13、14)と、加熱容器(8)の外周を囲んで配置された黒鉛にて構成される円筒形状の外周断熱材(10)とを有し、外周断熱材(10)は、該外周断熱材(10)の中心軸に沿った方向に分割する分割面にて分割された複数の分割部(10a〜10c)を有し、複数の分割部(10a〜10c)が組み合わされることで円筒形状を構成し、さらに、外周断熱材(10)を構成する黒鉛よりも低抵抗材料で構成され、複数の分割部(10a〜10c)の繋ぎ目の箇所に固定されることで隣り合う分割部(10a〜10c)同士を接続する低抵抗部材(20)が備えられていることを特徴としている。   In order to achieve the above object, in the invention described in claim 1, the heating container (8) arranged on the upstream side of the flow path of the source gas (3) from the pedestal (9) and heats the source gas (3). A heating device (13, 14) for inductively heating the heating container (8), and a cylindrical outer peripheral heat insulating material (10) composed of graphite disposed around the outer periphery of the heating container (8). The outer peripheral heat insulating material (10) includes a plurality of divided portions (10a to 10c) divided by a dividing surface that is divided in a direction along the central axis of the outer peripheral heat insulating material (10), Combining the divided portions (10a to 10c) constitutes a cylindrical shape, and further comprises a material having a lower resistance than graphite constituting the outer peripheral heat insulating material (10), and connects the divided portions (10a to 10c). Adjacent divided parts (10a to 10c) by being fixed to the eyes Is characterized by low resistance member (20) is provided to be connected.

このように、外周断熱材(10)を円筒形状で構成すると共に、中心軸に平行に円筒形状を複数に分断した分割部(10a〜10c)を備えた構成とし、かつ、各分割部(10a〜10c)の繋ぎ目の箇所を覆うように低抵抗部材(20)を備えた構造としている。これにより、複数の分割部(10a〜10c)の間の空隙のうち比較的幅が狭い部分において局所的な放電現象が起こることを抑制でき、誘導電力を安定して供給することが可能となる。   As described above, the outer peripheral heat insulating material (10) is configured in a cylindrical shape, and has a configuration including the divided portions (10a to 10c) in which the cylindrical shape is divided into a plurality of portions parallel to the central axis, and each divided portion (10a). To 10c), a low resistance member (20) is provided so as to cover the joint portion. Thereby, it is possible to suppress a local discharge phenomenon from occurring in a portion having a relatively narrow width among the gaps between the plurality of divided portions (10a to 10c), and it is possible to stably supply the induced power. .

請求項2に記載の発明では、低抵抗部材(20)は、外周断熱材(10)の内周面もしくは外周面に沿う円筒形状とされ、外周断熱材(10)の内周面もしくは外周面の少なくとも一部を覆っていることを特徴としている。   In the invention according to claim 2, the low resistance member (20) has a cylindrical shape along the inner peripheral surface or outer peripheral surface of the outer peripheral heat insulating material (10), and the inner peripheral surface or outer peripheral surface of the outer peripheral heat insulating material (10). It is characterized by covering at least a part of.

このように、低抵抗部材(20)を円筒形状の外周断熱材(10)の内周面もしくは外周面の少なくとも一部を覆うように配置することができる。このようにすれば、請求項1に記載の効果を得つつ、低抵抗部材(20)で覆った部分において、外周断熱材(10)の内周面もしくは外周面に原料ガス(3)が浸透することによる固体SiCの析出を抑制することが可能となる。   Thus, the low resistance member (20) can be arranged so as to cover at least a part of the inner peripheral surface or the outer peripheral surface of the cylindrical outer peripheral heat insulating material (10). In this way, the raw material gas (3) permeates the inner peripheral surface or the outer peripheral surface of the outer peripheral heat insulating material (10) in the portion covered with the low resistance member (20) while obtaining the effect of claim 1. It becomes possible to suppress precipitation of solid SiC by doing.

請求項3に記載の発明では、低抵抗部材(20)は、外周断熱材(10)の内周面もしくは外周面に沿う円筒形状とされ、外周断熱材(10)の内周面および外周面の少なくとも一方の全域を覆っていることを特徴としている。   In invention of Claim 3, a low resistance member (20) is made into the cylindrical shape along the inner peripheral surface or outer peripheral surface of an outer periphery heat insulating material (10), and the inner peripheral surface and outer peripheral surface of an outer peripheral heat insulating material (10). It is characterized by covering the whole area of at least one of the above.

このように、低抵抗部材(20)を円筒形状の外周断熱材(10)の内周面もしくは外周面全域を覆うように配置しても良い。このようにすれば、請求項1に記載の効果を得つつ、外周断熱材(10)の内周面もしくは外周面に原料ガス(3)が浸透することによる固体SiCの析出を抑制することが可能となる。   Thus, you may arrange | position the low resistance member (20) so that the inner peripheral surface of the cylindrical outer peripheral heat insulating material (10) or the whole outer peripheral surface may be covered. In this way, it is possible to suppress the precipitation of solid SiC due to the penetration of the raw material gas (3) into the inner peripheral surface or the outer peripheral surface of the outer peripheral heat insulating material (10) while obtaining the effect of claim 1. It becomes possible.

請求項4に記載の発明では、低抵抗部材(20)は、外周断熱材(10)のうち、台座(9)と加熱容器(8)の間を流動する原料ガス(3)が最初に衝突する位置を覆っていることを特徴としている。   In the invention according to claim 4, in the low resistance member (20), the raw material gas (3) flowing between the pedestal (9) and the heating vessel (8) in the outer peripheral heat insulating material (10) collides first. It is characterized by covering the position to perform.

このような構成とすれば、最も固体SiCが析出し易い場所を低抵抗部材(20)にて覆うことができるため、固体SiCの析出を抑制することが可能となる。   With such a configuration, the place where solid SiC is most likely to precipitate can be covered with the low-resistance member (20), so that it is possible to suppress the precipitation of solid SiC.

ここで説明した低抵抗部材(20)は、例えば、請求項5に記載したように、黒鉛シートもしくは高融点金属炭化物で構成される。   The low resistance member (20) described here is made of, for example, a graphite sheet or a refractory metal carbide as described in claim 5.

上記請求項1ないし5では、本発明をSiC単結晶の製造装置の発明として把握した場合について説明したが、請求項6に記載したように、本発明をSiC単結晶の製造方法として把握することもできる。   In the above claims 1 to 5, the case where the present invention is grasped as an invention of an apparatus for producing a SiC single crystal has been described. However, as described in claim 6, the present invention is grasped as a method for producing an SiC single crystal. You can also.

具体的には、請求項6に記載したように、中空円筒状部材にて構成される加熱容器(8)の中空部をガス供給経路として、該加熱容器(8)の外周を囲むように円筒形状の外周断熱材(10)を配置し、外周断熱材(10)を、該外周断熱材(10)の中心軸に沿った方向に分割する分割面にて分割された複数の分割部(10a〜10c)にて構成して、複数の分割部(10a〜10c)が組み合わされることで円筒形状が構成されるようにすると共に、該外周断熱材(10)を構成する複数の分割部(10a〜10c)の繋ぎ目の箇所に該外周断熱材(10)を構成する黒鉛よりも低抵抗材料で構成される低抵抗部材(20)を固定することで隣り合う分割部(10a〜10c)同士を接続した状態とし、この状態で、加熱容器(8)を加熱装置(13、14)にて誘導加熱しつつ、加熱容器(8)の一端側から原料ガス(3)を導入し、加熱容器(8)の他端側から原料ガス(3)を導出することで種結晶(5)に対して供給して炭化珪素単結晶を成長させることにより、請求項1と同様の効果を得ることができる。   Specifically, as described in claim 6, a cylinder is formed so as to surround the outer periphery of the heating vessel (8), with the hollow portion of the heating vessel (8) configured by a hollow cylindrical member as a gas supply path. The outer peripheral heat insulating material (10) having a shape is arranged, and the outer peripheral heat insulating material (10) is divided into a plurality of divided portions (10a) divided by a dividing surface that is divided in a direction along the central axis of the outer peripheral heat insulating material (10). -10c), and a plurality of divided portions (10a to 10c) are combined to form a cylindrical shape, and a plurality of divided portions (10a) constituting the outer peripheral heat insulating material (10) To 10c), the adjacent divided portions (10a to 10c) are fixed by fixing a low resistance member (20) made of a material having a lower resistance than graphite constituting the outer peripheral heat insulating material (10). Is connected, and in this state, add the heating container (8). Introducing the source gas (3) from one end side of the heating vessel (8) and deriving the source gas (3) from the other end side of the heating vessel (8) while induction heating with the apparatus (13, 14). By supplying to the seed crystal (5) and growing a silicon carbide single crystal, the same effect as in the first aspect can be obtained.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

本発明の第1実施形態にかかるSiC単結晶製造装置1の断面構成を示す図である。It is a figure showing the section composition of SiC single crystal manufacturing device 1 concerning a 1st embodiment of the present invention. 図1に示す第1外周断熱材10および低抵抗部材20を示した図であり、(a)が上面図、(b)が斜視図である。It is the figure which showed the 1st outer periphery heat insulating material 10 and the low resistance member 20 which are shown in FIG. 1, (a) is a top view, (b) is a perspective view. 本発明の第2実施形態にかかるSiC単結晶製造装置1に備えられる第1外周断熱材10および低抵抗部材20を示した図であり、(a)が上面図、(b)が斜視図である。It is the figure which showed the 1st outer periphery heat insulating material 10 and the low resistance member 20 with which the SiC single crystal manufacturing apparatus 1 concerning 2nd Embodiment of this invention is equipped, (a) is a top view, (b) is a perspective view. is there. 本発明の第3実施形態にかかるSiC単結晶製造装置1の断面構成を示す図である。It is a figure which shows the cross-sectional structure of the SiC single crystal manufacturing apparatus 1 concerning 3rd Embodiment of this invention. 図4に示す第1外周断熱材10および低抵抗部材20を示した図であり、(a)が上面図、(b)が斜視図である。It is the figure which showed the 1st outer periphery heat insulating material 10 and the low resistance member 20 which are shown in FIG. 4, (a) is a top view, (b) is a perspective view. 本発明の第4実施形態にかかるSiC単結晶製造装置1に備えられる第1外周断熱材10および低抵抗部材20を示した図であり、(a)が上面図、(b)が斜視図である。It is the figure which showed the 1st outer periphery heat insulating material 10 and the low resistance member 20 with which the SiC single crystal manufacturing apparatus 1 concerning 4th Embodiment of this invention is equipped, (a) is a top view, (b) is a perspective view. is there.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.

(第1実施形態)
図1に、本実施形態のSiC単結晶製造装置1の断面図を示す。以下、この図を参照してSiC単結晶製造装置1の構造について説明する。
(First embodiment)
In FIG. 1, sectional drawing of the SiC single crystal manufacturing apparatus 1 of this embodiment is shown. Hereinafter, the structure of SiC single crystal manufacturing apparatus 1 will be described with reference to FIG.

図1に示すSiC単結晶製造装置1は、底部に備えられた流入口2を通じてキャリアガスと共にSiおよびCを含有するSiCの原料ガス3(例えば、シラン等のシラン系ガスとプロパン等の炭化水素系ガスの混合ガス)を供給し、上部の流出口4を通じて排出することで、SiC単結晶製造装置1内に配置したSiC単結晶基板からなる種結晶5上にSiC単結晶を結晶成長させるものである。   An SiC single crystal manufacturing apparatus 1 shown in FIG. 1 includes an SiC source gas 3 containing Si and C together with a carrier gas through an inlet 2 provided at the bottom (for example, a silane-based gas such as silane and a hydrocarbon such as propane). A SiC single crystal is grown on a seed crystal 5 made of a SiC single crystal substrate disposed in the SiC single crystal manufacturing apparatus 1 by supplying a gas (mixed gas of the system gas) and discharging it through the upper outlet 4 It is.

SiC単結晶製造装置1には、真空容器6、第1断熱材7、加熱容器8、台座9、第1外周断熱材10、回転引上機構11、第2外周断熱材12および第1、第2加熱装置13、14が備えられている。   The SiC single crystal production apparatus 1 includes a vacuum vessel 6, a first heat insulating material 7, a heating vessel 8, a pedestal 9, a first outer peripheral heat insulating material 10, a rotary pulling mechanism 11, a second outer peripheral heat insulating material 12, a first and a first Two heating devices 13 and 14 are provided.

真空容器6は、石英ガラスなどで構成され、中空円筒状を為しており、キャリアガスや原料ガス3の導入導出が行え、かつ、SiC単結晶製造装置1の他の構成要素を収容すると共に、その収容している内部空間の圧力を真空引きすることにより減圧できる構造とされている。この真空容器6の底部に原料ガス3の流入口2が設けられ、上部(具体的には側壁の上方位置)に原料ガス3の流出口4が設けられている。   The vacuum vessel 6 is made of quartz glass or the like, has a hollow cylindrical shape, can introduce and lead the carrier gas and the source gas 3, and houses other components of the SiC single crystal manufacturing apparatus 1. The structure is such that the internal space in which it is housed can be depressurized by evacuating it. An inlet 2 for the source gas 3 is provided at the bottom of the vacuum vessel 6, and an outlet 4 for the source gas 3 is provided at the upper part (specifically, the position above the side wall).

第1断熱材7は、円筒形状を為しており、真空容器6に対して同軸的に配置され、中空部により原料ガス導入管7aを構成している。第1断熱材7は、例えば黒鉛や表面をTaC(炭化タンタル)にてコーティングした黒鉛などで構成される。   The first heat insulating material 7 has a cylindrical shape, is disposed coaxially with respect to the vacuum vessel 6, and constitutes a raw material gas introduction pipe 7 a with a hollow portion. The first heat insulating material 7 is made of, for example, graphite or graphite whose surface is coated with TaC (tantalum carbide).

加熱容器8は、種結晶5の表面にSiC単結晶を成長させる反応室を構成しており、例えば黒鉛や表面をTaC(炭化タンタル)にてコーティングした黒鉛などで構成され、台座9よりも原料ガス3の流動経路上流側に配置されている。この加熱容器8により、流入口2から供給された原料ガス3を種結晶5に導くまでに、原料ガス3に含まれたパーティクルを排除しつつ、原料ガス3を分解している。   The heating vessel 8 constitutes a reaction chamber for growing a SiC single crystal on the surface of the seed crystal 5, and is made of, for example, graphite or graphite whose surface is coated with TaC (tantalum carbide), etc. The gas 3 is disposed on the upstream side of the flow path. By this heating container 8, the raw material gas 3 is decomposed while excluding particles contained in the raw material gas 3 until the raw material gas 3 supplied from the inlet 2 is led to the seed crystal 5.

具体的には、加熱容器8は、中空円筒状部材を有した構造とされ、本実施形態の場合は有底円筒状部材で構成されている。加熱容器8には、底部に第1断熱材7の中空部と連通させられるガス導入口8aが備えられ、第1断熱材7の中空部を通過してきた原料ガス3がガス導入口8aを通じて加熱容器8内に導入される。   Specifically, the heating container 8 has a structure having a hollow cylindrical member, and in the case of the present embodiment, the heating container 8 is composed of a bottomed cylindrical member. The heating container 8 is provided with a gas introduction port 8a that communicates with the hollow portion of the first heat insulating material 7 at the bottom, and the source gas 3 that has passed through the hollow portion of the first heat insulating material 7 is heated through the gas introduction port 8a. It is introduced into the container 8.

台座9は、例えば円柱形状とされており、加熱容器8の中心軸と同軸的に配置され、例えば黒鉛や表面をTaC(炭化タンタル)にてコーティングした黒鉛などで構成される。この台座9に、同等寸法の径を有する種結晶5が貼り付けられ、種結晶5の表面にSiC単結晶を成長させる。   The pedestal 9 has, for example, a cylindrical shape, is disposed coaxially with the central axis of the heating container 8, and is made of, for example, graphite or graphite whose surface is coated with TaC (tantalum carbide). A seed crystal 5 having a diameter of the same dimension is attached to this pedestal 9, and an SiC single crystal is grown on the surface of the seed crystal 5.

第1外周断熱材10は、加熱容器8や台座9の外周を囲みつつ、台座9側に導かれた原料ガス3の残りを流出口4側に導く。具体的には、種結晶5に供給された後の原料ガス3の残りが台座9と第1外周断熱材10との間の隙間を通過し、流出口4に導かれるようになっている。この第1外周断熱材10の内周面に後述する低抵抗部材20が備えられている。これら第1外周断熱材10および低抵抗部材20の詳細構造については後述する。   The first outer peripheral heat insulating material 10 guides the remainder of the raw material gas 3 guided to the pedestal 9 side to the outlet 4 side while surrounding the outer periphery of the heating container 8 and the pedestal 9. Specifically, the remainder of the source gas 3 after being supplied to the seed crystal 5 passes through the gap between the pedestal 9 and the first outer peripheral heat insulating material 10 and is led to the outlet 4. A low resistance member 20 described later is provided on the inner peripheral surface of the first outer peripheral heat insulating material 10. Detailed structures of the first outer peripheral heat insulating material 10 and the low resistance member 20 will be described later.

回転引上機構11は、パイプ材11aの回転および引上げを行うものである。パイプ材11aは、一端が台座9のうち種結晶5が貼り付けられる面と反対側の面に接続されており、他端が回転引上機構11の本体に接続されている。このような構造により、パイプ材11aと共に台座9、種結晶5およびSiC単結晶の回転および引き上げが行え、SiC単結晶の成長面が所望の温度分布となるようにしつつ、SiC単結晶の成長に伴って、その成長表面の温度を常に成長に適した温度に調整できる。パイプ材11aも、例えば黒鉛や表面をTaC(炭化タンタル)にてコーティングした黒鉛などで構成される。なお、パイプ材11aは回転軸や引上軸となるものであれば良いため、単なる棒状部材などであっても良い。   The rotary pulling mechanism 11 rotates and pulls up the pipe material 11a. One end of the pipe material 11 a is connected to the surface of the base 9 opposite to the surface to which the seed crystal 5 is attached, and the other end is connected to the main body of the rotary pulling mechanism 11. With such a structure, the pedestal 9, the seed crystal 5 and the SiC single crystal can be rotated and pulled together with the pipe material 11a, and the growth surface of the SiC single crystal has a desired temperature distribution, while the SiC single crystal is grown. Along with this, the temperature of the growth surface can always be adjusted to a temperature suitable for growth. The pipe material 11a is also made of, for example, graphite or graphite whose surface is coated with TaC (tantalum carbide). Note that the pipe material 11a may be a simple rod-shaped member or the like as long as it serves as a rotating shaft or a pulling-up shaft.

第2外周断熱材12は、真空容器6の側壁面に沿って配置され、中空円筒状を為している。この第2外周断熱材12と第1外周断熱材10は、加熱容器8の中心軸と同軸的に配置され、これらが同心円状に配置されている。この第2外周断熱材12により、ほぼ第1断熱材7や加熱容器8、台座9および第1外周断熱材10等が囲まれている。この第2外周断熱材12も、例えば黒鉛や表面をTaC(炭化タンタル)にてコーティングされた黒鉛などで構成される。   The 2nd outer periphery heat insulating material 12 is arrange | positioned along the side wall surface of the vacuum vessel 6, and has comprised the hollow cylinder shape. This 2nd outer periphery heat insulating material 12 and the 1st outer periphery heat insulating material 10 are arrange | positioned coaxially with the central axis of the heating container 8, and these are arrange | positioned concentrically. The second outer peripheral heat insulating material 12 substantially surrounds the first heat insulating material 7, the heating container 8, the pedestal 9, the first outer peripheral heat insulating material 10, and the like. The second outer peripheral heat insulating material 12 is also made of, for example, graphite or graphite whose surface is coated with TaC (tantalum carbide).

第1、第2加熱装置13、14は、電源回路によって駆動される誘導電源からの電力供給を受けて加熱容器8を誘導加熱するための誘導加熱用コイルによって構成され、真空容器6の周囲を囲むように配置されている。これら第1、第2加熱装置13、14は、それぞれ独立して温度制御できるように構成されている。このため、より細やかな温度制御を行うことができる。第1加熱装置13は、加熱容器8と対応した位置に配置されている。第2加熱装置14は、台座9と対応した位置に配置されている。このような配置とされているため、第1、第2加熱装置13、14を制御することにより、SiC単結晶の成長表面の温度分布をSiC単結晶の成長に適した温度に調整できる。   The first and second heating devices 13 and 14 are constituted by induction heating coils for receiving the power supply from the induction power source driven by the power supply circuit and induction heating the heating vessel 8, and around the vacuum vessel 6. It is arranged to surround. These 1st, 2nd heating apparatuses 13 and 14 are comprised so that temperature control can be carried out independently, respectively. For this reason, finer temperature control can be performed. The first heating device 13 is disposed at a position corresponding to the heating container 8. The second heating device 14 is disposed at a position corresponding to the base 9. Due to this arrangement, the temperature distribution on the growth surface of the SiC single crystal can be adjusted to a temperature suitable for the growth of the SiC single crystal by controlling the first and second heating devices 13 and 14.

次に、第1外周断熱材10および低抵抗部材20の詳細構造について説明する。図2は、第1外周断熱材10および低抵抗部材20を示した図であり、図2(a)が上面図、図2(b)が斜視図である。   Next, the detailed structure of the 1st outer periphery heat insulating material 10 and the low resistance member 20 is demonstrated. 2A and 2B are views showing the first outer peripheral heat insulating material 10 and the low-resistance member 20, in which FIG. 2A is a top view and FIG. 2B is a perspective view.

図2に示すように、第1外周断熱材10は、円筒形状を為しており、中心軸に平行な分割面により分断された複数の分割部10a〜10cを備えた構成とされている。複数の分割部10a〜10cは、多孔質もしくは繊維状の組織を有する黒鉛など、数100〜1000mΩ・cm程度の電気比抵抗を有した黒鉛にて構成されている。これら複数の分割部10a〜10cが組み合わされることにより、円筒形状が構成されている。   As shown in FIG. 2, the 1st outer periphery heat insulating material 10 is carrying out the cylindrical shape, and is set as the structure provided with several division part 10a-10c divided by the division surface parallel to a central axis. The plurality of divided portions 10a to 10c are made of graphite having an electrical specific resistance of about several hundreds to 1000 mΩ · cm, such as graphite having a porous or fibrous structure. A cylindrical shape is configured by combining the plurality of divided portions 10a to 10c.

各分割部10a〜10cの周方向寸法、換言すれば第1外周断熱材10を上面から見て、中心軸を中心として各分割部10a〜10cの分割箇所に向けて引いた線の為す角度については、異なっていても構わないが、本実施形態では同寸法となるようにしている。各分割面は、段付き形状としてあり、各分割部10a〜10cの分割面同士が噛み合わさって、各分割部10a〜10cの内周面同士および外周面同士が円筒面を構成し、所定厚さの円筒形状を構成している。   Regarding the circumferential dimension of each divided portion 10a to 10c, in other words, the angle formed by the line drawn toward the divided portion of each divided portion 10a to 10c with the central axis as the center when the first outer peripheral heat insulating material 10 is viewed from the upper surface. May be different, but in the present embodiment, they have the same dimensions. Each divided surface has a stepped shape, the divided surfaces of the divided portions 10a to 10c mesh with each other, the inner peripheral surfaces and the outer peripheral surfaces of the divided portions 10a to 10c form a cylindrical surface, and have a predetermined thickness. This constitutes a cylindrical shape.

また、第1外周断熱材10のうち、各分割部10a〜10cの繋ぎ目の箇所を覆うように、低抵抗部材20が固定されている。この低抵抗部材20は、直接もしくは接着剤等を介して分割部10a〜10cの繋ぎ目の箇所に固定されることで隣り合う分割部10a〜10c同士を接続する。また、低抵抗部材20は、第1外周断熱材10を構成する黒鉛よりも比低効率が小さな材料で構成されている。例えば、低抵抗部材20は、黒鉛シートやTaC(炭化タンタル)もしくはTiC(炭化チタン)などの高融点金属炭化物などで構成される。なお、黒鉛シートの場合、分割部10a〜10cと同じ黒鉛によって構成されているが、黒鉛にも様々な結晶構造のものがあり、例えばニカフィルム(登録商標)のように700μΩ・mという低い比抵抗を有したものを低抵抗部材20として適用することができる。   Moreover, the low resistance member 20 is being fixed so that the location of the joint of each division | segmentation part 10a-10c among the 1st outer periphery heat insulating materials 10 may be covered. The low resistance member 20 is connected to the adjacent divided portions 10a to 10c by being fixed to a joint portion of the divided portions 10a to 10c directly or via an adhesive or the like. Further, the low resistance member 20 is made of a material having a lower relative efficiency than the graphite constituting the first outer peripheral heat insulating material 10. For example, the low resistance member 20 is made of a graphite sheet, a high melting point metal carbide such as TaC (tantalum carbide) or TiC (titanium carbide). In the case of a graphite sheet, it is composed of the same graphite as the divided portions 10a to 10c. However, there are graphites having various crystal structures, for example, a low ratio of 700 μΩ · m like Nika Film (registered trademark). What has resistance can be applied as the low resistance member 20.

そして、このように構成された第1外周断熱材10に備えられた各分割部10a〜10cおよび低抵抗部材20について、これらの厚み(径方向寸法)および比抵抗について、次の関係が成り立つように設計がなされている。すなわち、低抵抗部材20の厚みをt1、各分割部10a〜10cの厚みをt2、低抵抗部材20の比抵抗をρ1、各分割部10a〜10cの比抵抗をρ2とすると、t1<t2、かつ、t1・ρ1<t2・ρ2が成り立つようにしている。   And about each thickness (diameter direction dimension) and specific resistance about each division | segmentation part 10a-10c and low resistance member 20 with which the 1st outer periphery heat insulating material 10 comprised in this way was established, the following relationship is materialized. Has been designed. That is, assuming that the thickness of the low resistance member 20 is t1, the thickness of each divided portion 10a to 10c is t2, the specific resistance of the low resistance member 20 is ρ1, and the specific resistance of each divided portion 10a to 10c is ρ2, t1 <t2. In addition, t1 · ρ1 <t2 · ρ2 is established.

以上のような構造により、SiC単結晶製造装置1が構成されている。続いて、このように構成されたSiC単結晶製造装置1を用いたSiC単結晶の製造方法について説明する。   The SiC single crystal manufacturing apparatus 1 is configured by the structure as described above. Then, the manufacturing method of the SiC single crystal using the SiC single crystal manufacturing apparatus 1 comprised in this way is demonstrated.

まず、第1、第2加熱装置13、14を制御し、所望の温度分布を付ける。すなわち、種結晶5の表面において原料ガス3が再結晶化されることでSiC単結晶が成長しつつ、加熱容器8内において再結晶化レートよりも昇華レートの方が高くなる温度となるようにする。   First, the first and second heating devices 13 and 14 are controlled to give a desired temperature distribution. That is, the source gas 3 is recrystallized on the surface of the seed crystal 5, so that the SiC single crystal grows and the sublimation rate becomes higher in the heating vessel 8 than the recrystallization rate. To do.

また、真空容器6を所望圧力にしつつ、必要に応じてArガスなどの不活性ガスによるキャリアガスや水素などのエッチングガスを導入しながら原料ガス導入管7aを通じて原料ガス3を導入する。これにより、図1中の矢印で示したように、原料ガス3が流動し、種結晶5に供給されてSiC単結晶を成長させることができる。   Further, the raw material gas 3 is introduced through the raw material gas introduction pipe 7a while introducing a carrier gas or an etching gas such as hydrogen with an inert gas such as Ar gas as necessary while keeping the vacuum vessel 6 at a desired pressure. Thereby, as shown by the arrow in FIG. 1, the source gas 3 flows and is supplied to the seed crystal 5 so that a SiC single crystal can be grown.

このとき、第1、第2加熱装置13、14を構成する誘導加熱用コイルへの電力供給に基づいて加熱容器8を誘導加熱することになるが、このときに第1外周断熱材10についても誘導電流が流れることになる。この誘導電流は、第1外周断熱材10の周方向に流れようとするが、上述したように第1外周断熱材10のうちの黒鉛部分を分割部10a〜10cによって周方向において分割していることから、分割部10a〜10cの間に存在する空隙により流れ難くなる。このため、誘導電流を抑制することが可能となる。   At this time, the heating container 8 is induction-heated based on the power supply to the induction heating coils constituting the first and second heating devices 13 and 14, but at this time, the first outer peripheral heat insulating material 10 is also used. An induced current flows. Although this induced current tends to flow in the circumferential direction of the first outer peripheral heat insulating material 10, as described above, the graphite portion of the first outer peripheral heat insulating material 10 is divided in the circumferential direction by the dividing portions 10a to 10c. For this reason, it becomes difficult for the air to flow due to a gap existing between the divided portions 10a to 10c. For this reason, it is possible to suppress the induced current.

ただし、このように単に分割部10a〜10cにて分割しただけの構成では、分割部10a〜10cの間の空隙のうち比較的幅が狭い部分において局所的な放電現象が起こり誘導電力の安定な供給が阻害されることになり得る。   However, in such a configuration that is simply divided by the divided portions 10a to 10c, a local discharge phenomenon occurs in a relatively narrow portion of the gap between the divided portions 10a to 10c, and the induced power is stable. Supply can be hindered.

これに対して、本実施形態では、各分割部10a〜10cの繋ぎ目の箇所を覆うように低抵抗部材20を備えていることから、この低抵抗部材20を迂回して誘導電流が流れることが許容され、放電現象が生じないようにできる。また、低抵抗部材20の厚みが厚すぎると、低抵抗部材20が無い場合と比較して、第1外周断熱材10に流れる誘導電流を抑制することができなくなる可能性があるが、本実施形態では、t1<t2、かつ、t1・ρ1<t2・ρ2が成り立つようにしている。このため、的確に誘導電流を抑制しつつ、ある程度は誘導電流が流れるようにできる。これにより、局所的な放電現象が起こることを抑制でき、誘導電力を安定して供給することが可能となる。   On the other hand, in this embodiment, since the low resistance member 20 is provided so as to cover the joints of the divided portions 10a to 10c, an induced current flows around the low resistance member 20. Is allowed, and a discharge phenomenon can be prevented. Further, if the thickness of the low resistance member 20 is too thick, it may not be possible to suppress the induced current flowing in the first outer peripheral heat insulating material 10 as compared with the case where the low resistance member 20 is not provided. In the embodiment, t1 <t2 and t1 · ρ1 <t2 · ρ2 are established. For this reason, it is possible to allow the induced current to flow to some extent while appropriately suppressing the induced current. As a result, the occurrence of a local discharge phenomenon can be suppressed, and the induced power can be stably supplied.

以上説明したように、本実施形態では、第1外周断熱材10を円筒形状で構成すると共に、中心軸に平行に円筒形状を複数に分断した分割部10a〜10cを備えた構成とし、かつ、各分割部10a〜10cの繋ぎ目の箇所を覆うように低抵抗部材20を備えた構造としている。これにより、複数の分割部10a〜10cの間の空隙のうち比較的幅が狭い部分において局所的な放電現象が起こることを抑制でき、誘導電力を安定して供給することが可能となる。   As described above, in the present embodiment, the first outer peripheral heat insulating material 10 is configured in a cylindrical shape, and has a configuration including the divided portions 10a to 10c that are divided into a plurality of cylindrical shapes parallel to the central axis, and It has the structure provided with the low resistance member 20 so that the location of the joint of each division | segmentation part 10a-10c may be covered. Thereby, it is possible to suppress a local discharge phenomenon from occurring in a relatively narrow portion of the gaps between the plurality of divided portions 10a to 10c, and it is possible to stably supply induced power.

(第2実施形態)
本発明の第2実施形態について説明する。本実施形態は、第1実施形態に対して低抵抗部材20の構成を変更したものであり、その他に関しては第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Second Embodiment)
A second embodiment of the present invention will be described. In the present embodiment, the configuration of the low-resistance member 20 is changed with respect to the first embodiment, and the other parts are the same as those in the first embodiment. Therefore, only the parts different from the first embodiment will be described.

図3は、本実施形態にかかるSiC単結晶製造装置1に備えられる第1外周断熱材10および低抵抗部材20を示した図であり、図3(a)が上面図、図3(b)が斜視図である。   FIG. 3 is a view showing the first outer peripheral heat insulating material 10 and the low-resistance member 20 provided in the SiC single crystal manufacturing apparatus 1 according to the present embodiment. FIG. 3 (a) is a top view, and FIG. 3 (b). Is a perspective view.

図3に示すように、本実施形態では、第1外周断熱材10の内周面側に配置した低抵抗部材20をその内周面に沿う円筒形状とし、第1外周断熱材10の内周面全域が低抵抗部材20にて覆われるようにしてある。低抵抗部材20は少なくとも各分割部10a〜10cに直接もしくは接着剤などを介して固定されており、第1外周断熱材10に流される誘導電流が各分割部10a〜10cの繋ぎ目の箇所において低抵抗部材20に流れるようになっている。低抵抗部材20の材質については、第1外周断熱材10を構成する黒鉛よりも比抵抗が低く、かつ、ガス浸透性も低い材料を用いるようにしている。これらの条件を満たす材料としては、第1実施形態で説明した黒鉛シートや高融点金属炭化物を用いることができる。このように、低抵抗部材20を黒鉛シートや高融点金属炭化物にて構成できるが、高融点金属炭化物で構成する場合には、次のようにして低抵抗部材20を形成すると好ましい。   As shown in FIG. 3, in this embodiment, the low resistance member 20 disposed on the inner peripheral surface side of the first outer peripheral heat insulating material 10 has a cylindrical shape along the inner peripheral surface, and the inner periphery of the first outer peripheral heat insulating material 10. The entire surface is covered with the low resistance member 20. The low resistance member 20 is fixed to at least each of the divided portions 10a to 10c directly or via an adhesive or the like, and the induced current flowing through the first outer peripheral heat insulating material 10 is at the joint of the divided portions 10a to 10c. It flows to the low resistance member 20. As for the material of the low resistance member 20, a material having a lower specific resistance and lower gas permeability than graphite constituting the first outer peripheral heat insulating material 10 is used. As a material satisfying these conditions, the graphite sheet and refractory metal carbide described in the first embodiment can be used. Thus, although the low resistance member 20 can be comprised with a graphite sheet or a high melting point metal carbide, when comprising with a high melting point metal carbide, it is preferable to form the low resistance member 20 as follows.

具体的には、まず、円筒状の高融点金属を第1外周断熱材10の内周面に配置した状態でSiC単結晶製造装置1内に収容する。そして、この状態で第1、第2加熱装置13、14による誘導加熱を行いながら真空容器6内に炭化用のガスを導入する。これにより、円筒状の高融点金属のうちの内周面側が炭化されることで高融点金属炭化物が形成される。このように、低抵抗部材20を内周面側が高融点金属炭化物で構成され、それよりも外周面側が高融点金属で構成されるようにすることができる。低抵抗部材20をすべて高融点金属炭化物で構成する場合には比較的脆くなりがちであるが、本実施形態の構造とすることで、低抵抗部材20を物理的に強い構造とすることが可能となる。   Specifically, first, a cylindrical refractory metal is accommodated in the SiC single crystal manufacturing apparatus 1 in a state of being arranged on the inner peripheral surface of the first outer peripheral heat insulating material 10. In this state, carbonizing gas is introduced into the vacuum vessel 6 while performing induction heating by the first and second heating devices 13 and 14. Thereby, a refractory metal carbide is formed by carbonizing the inner peripheral surface side of the cylindrical refractory metal. Thus, the low resistance member 20 can be configured such that the inner peripheral surface side is made of a refractory metal carbide and the outer peripheral surface side is made of a refractory metal. When all of the low resistance member 20 is made of a refractory metal carbide, it tends to be relatively brittle. However, the structure of this embodiment allows the low resistance member 20 to have a physically strong structure. It becomes.

このように、低抵抗部材20を円筒形状の第1外周断熱材10の内周面全域を覆うように配置しても良い。このようにすれば、第1実施形態の効果を得つつ、第1外周断熱材10の内周面にSiC原料ガスが浸透することによる固体SiCの析出を抑制することが可能となる。   As described above, the low resistance member 20 may be arranged so as to cover the entire inner peripheral surface of the cylindrical first outer peripheral heat insulating material 10. If it does in this way, it will become possible to suppress precipitation of solid SiC by SiC material gas osmose | permeating the inner peripheral surface of the 1st outer periphery heat insulating material 10, obtaining the effect of 1st Embodiment.

なお、第1外周断熱材10を複数の分割部10a〜10cにて構成する場合、複数の分割部10a〜10cの外壁面をTaCコーティングすることにより低抵抗部材20を構成することも考えられる。しかしながら、このような構造だとTaCコーティングの間に空隙が存在することから、結局各分割部10a〜10cの間の空隙において局所的な放電現象が起こる可能性がある。このため、本実施形態のように、低抵抗部材20を円筒形状にしつつ、かつ、各分割部10a〜10cに対して低抵抗部材20が直接もしくは接着剤等を介して固定されるようにすることが必要である。   In addition, when comprising the 1st outer periphery heat insulating material 10 by the some division | segmentation part 10a-10c, it is also considered that the low resistance member 20 is comprised by TaC coating the outer wall surface of the some division | segmentation part 10a-10c. However, with such a structure, since a gap exists between the TaC coatings, a local discharge phenomenon may occur in the gap between the divided portions 10a to 10c. For this reason, as in the present embodiment, the low resistance member 20 is formed in a cylindrical shape, and the low resistance member 20 is fixed to each of the divided portions 10a to 10c directly or via an adhesive or the like. It is necessary.

(第3実施形態)
本発明の第3実施形態について説明する。本実施形態は、第2実施形態に対して低抵抗部材20の構成を変更したものであり、その他に関しては第2実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Third embodiment)
A third embodiment of the present invention will be described. In the present embodiment, the configuration of the low-resistance member 20 is changed with respect to the second embodiment, and the other aspects are the same as those of the second embodiment. Therefore, only the portions different from the first embodiment will be described.

図4は、本実施形態にかかるSiC単結晶製造装置1の断面図である。また、図5は、本実施形態にかかるSiC単結晶製造装置1に備えられる第1外周断熱材10および低抵抗部材20を示した図であり、図5(a)が上面図、図5(b)が斜視図である。   FIG. 4 is a cross-sectional view of the SiC single crystal manufacturing apparatus 1 according to the present embodiment. FIG. 5 is a view showing the first outer peripheral heat insulating material 10 and the low resistance member 20 provided in the SiC single crystal manufacturing apparatus 1 according to the present embodiment. FIG. 5 (a) is a top view, and FIG. b) is a perspective view.

図4および図5に示すように、本実施形態でも、第1外周断熱材10の内周面側に配置した低抵抗部材20をその内周面に沿う円筒形状としているが、第1外周断熱材10の内周面の全域ではなく一部、具体的には第1外周断熱材10のうちの軸方向中間位置が低抵抗部材20にて覆われるようにしてある。本実施形態のSiC単結晶製造装置1では、図4に示すように、加熱容器8のうち台座9側の先端部において原料ガスが径方向外側に導かれ、それが第1外周断熱材10に衝突することになる。このとき原料ガスが第1外周断熱材10に最初に衝突する場所、つまり原料ガスのガス分圧が高くなる場所において、低抵抗部材20が配置されるようにしている。   As shown in FIG. 4 and FIG. 5, also in this embodiment, the low resistance member 20 disposed on the inner peripheral surface side of the first outer peripheral heat insulating material 10 has a cylindrical shape along the inner peripheral surface. A part of the inner peripheral surface of the material 10 is covered with the low resistance member 20 instead of the entire inner peripheral surface, specifically, the intermediate position in the axial direction of the first outer peripheral heat insulating material 10. In the SiC single crystal manufacturing apparatus 1 of the present embodiment, as shown in FIG. 4, the raw material gas is guided radially outward at the tip portion on the pedestal 9 side of the heating container 8, which is supplied to the first outer peripheral heat insulating material 10. It will collide. At this time, the low-resistance member 20 is arranged in a place where the source gas first collides with the first outer peripheral heat insulating material 10, that is, a place where the gas partial pressure of the source gas becomes high.

このように、低抵抗部材20を円筒形状の第1外周断熱材10の内周面の一部に配置することもできる。そして、本実施形態では、原料ガスが第1外周断熱材10に最初に衝突する場所、つまり原料ガスのガス分圧が高くなる場所に、低抵抗部材20が配置されるようにしている。このような構成とすれば、最も固体SiCが析出し易い場所を低抵抗部材20にて覆うことができるため、固体SiCの析出を抑制することが可能となる。   Thus, the low resistance member 20 can also be disposed on a part of the inner peripheral surface of the cylindrical first outer peripheral heat insulating material 10. In the present embodiment, the low resistance member 20 is arranged at a location where the source gas first collides with the first outer peripheral heat insulating material 10, that is, a location where the gas partial pressure of the source gas becomes high. With such a configuration, the place where the solid SiC is most likely to precipitate can be covered with the low-resistance member 20, so that the precipitation of solid SiC can be suppressed.

(第4実施形態)
本発明の第4実施形態について説明する。本実施形態は、第2実施形態に対して低抵抗部材20の構成を変更したものであり、その他に関しては第2実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
(Fourth embodiment)
A fourth embodiment of the present invention will be described. In the present embodiment, the configuration of the low-resistance member 20 is changed with respect to the second embodiment, and the other aspects are the same as those of the second embodiment. Therefore, only the portions different from the first embodiment will be described.

図6は、本実施形態にかかるSiC単結晶製造装置1に備えられる第1外周断熱材10および低抵抗部材20を示した図であり、図6(a)が上面図、図6(b)が斜視図である。   FIG. 6 is a view showing the first outer peripheral heat insulating material 10 and the low-resistance member 20 provided in the SiC single crystal manufacturing apparatus 1 according to the present embodiment. FIG. 6 (a) is a top view, and FIG. 6 (b). Is a perspective view.

図6に示すように、本実施形態では、第1外周断熱材10の内周面側だけでなく、外周面側についても、その外周面に沿う円筒形状とした低抵抗部材20を配置し、第1外周断熱材10を構成する複数の分割部10a〜10cそれぞれに対して直接もしくは接着剤等を介して固定された構造としている。このように、第1外周断熱材10の内周面側に加えて外周面側にも低抵抗部材20が配置される構造としても良い。   As shown in FIG. 6, in the present embodiment, not only the inner peripheral surface side of the first outer peripheral heat insulating material 10 but also the outer peripheral surface side is arranged with a low resistance member 20 having a cylindrical shape along the outer peripheral surface, The first peripheral heat insulating material 10 is fixed to each of the plurality of divided portions 10a to 10c directly or via an adhesive or the like. As described above, the low resistance member 20 may be arranged on the outer peripheral surface side in addition to the inner peripheral surface side of the first outer peripheral heat insulating material 10.

このような構造としつつ、かつ、低抵抗部材20をガス浸透性の低い材質で構成するようにすれば、第1外周断熱材10の内周面側だけでなく外周面側への原料ガスの浸透を防ぐことが可能となり、より第1外周断熱材10内での固体SiCの析出を抑制することが可能となる。   If the low resistance member 20 is made of a material having low gas permeability while having such a structure, the raw material gas is not only supplied to the outer peripheral surface side but also to the outer peripheral surface side of the first outer peripheral heat insulating material 10. Penetration can be prevented, and precipitation of solid SiC in the first outer peripheral heat insulating material 10 can be further suppressed.

(他の実施形態)
上記第1実施形態では、第1外周断熱材10に備えた低抵抗部材20にて、各分割部10a〜10cの繋ぎ目の箇所を全域覆うようにしているが、繋ぎ目の箇所の少なくとも一部を覆うように低抵抗部材20が備えられていれば良い。また、第1実施形態では、低抵抗部材20を第1外周断熱材10の内周面側に配置した構造としているが、外周面側に配置するようにしても良い。
(Other embodiments)
In the first embodiment, the low resistance member 20 provided in the first outer peripheral heat insulating material 10 covers the whole area of the joints of the divided portions 10a to 10c. However, at least one of the joint parts is not covered. The low resistance member 20 should just be provided so that a part may be covered. In the first embodiment, the low resistance member 20 is arranged on the inner peripheral surface side of the first outer peripheral heat insulating material 10, but may be arranged on the outer peripheral surface side.

また、第3実施形態では、第1外周断熱材10における内周面の一部を覆うように低抵抗部材20を配置した。具体的には、第1外周断熱材10のうちの軸方向中間位置が低抵抗部材20にて覆われるようにしている。しかしながら、低抵抗部材20にて覆う部位についてはSiC単結晶製造装置1の形態によって決まり、必ずしも第1外周断熱材10のうちの軸方向中間位置である必要はない。すなわち、第1外周断熱材10のうち原料ガスが最初に衝突する場所、つまり原料ガスのガス分圧が高くなる場所において、低抵抗部材20が配置されるようにすれば良い。   In the third embodiment, the low resistance member 20 is disposed so as to cover a part of the inner peripheral surface of the first outer peripheral heat insulating material 10. Specifically, an intermediate position in the axial direction of the first outer peripheral heat insulating material 10 is covered with the low resistance member 20. However, the portion covered with the low resistance member 20 is determined by the form of the SiC single crystal manufacturing apparatus 1 and does not necessarily have to be an intermediate position in the axial direction of the first outer peripheral heat insulating material 10. That is, the low resistance member 20 may be disposed in a location where the source gas first collides in the first outer peripheral heat insulating material 10, that is, a location where the gas partial pressure of the source gas becomes high.

なお、第1外周断熱材10のうち原料ガスが最初に衝突する場所については、SiC単結晶製造装置1の形態によって異なるが、SiC単結晶製造装置1の形態に応じて固体SiCが析出し易い場所を選択し、その場所を覆うように低抵抗部材20を配置すれば良い。   In addition, although the place where source gas collides first among the 1st outer periphery heat insulating materials 10 changes with forms of the SiC single crystal manufacturing apparatus 1, solid SiC tends to precipitate according to the form of the SiC single crystal manufacturing apparatus 1. A low-resistance member 20 may be disposed so as to select a place and cover the place.

また、上記各実施形態では、第1外周断熱材10について中心軸と平行方向に切断して複数の分割部10a〜10cに分割した構造としたが、第1外周断熱材10に限らず、第2外周断熱材12についても第1外周断熱材10と同じ構造とすることができる。また、加熱容器8の周囲を囲む外周断熱材として第1、第2外周断熱材10、12の2つを備える場合を挙げたが、1つだけであっても構わない。   Moreover, in each said embodiment, although it was set as the structure which cut | disconnected in the direction parallel to the center axis | shaft about the 1st outer periphery heat insulating material 10, and was set as the some division | segmentation part 10a-10c, not only the 1st outer periphery heat insulating material 10 but the 1st The same structure as that of the first outer peripheral heat insulating material 10 can be used for the two outer peripheral heat insulating materials 12. Moreover, although the case where the 1st, 2nd outer periphery heat insulating materials 10 and 12 were provided as an outer periphery heat insulating material surrounding the circumference | surroundings of the heating container 8, only one may be sufficient.

1 SiC単結晶製造装置
3 原料ガス
5 種結晶
6 真空容器
8 加熱容器
8a ガス導入口
9 台座
10 第1外周断熱材
12 第2外周断熱材
13 第1加熱装置
14 第2加熱装置
20 低抵抗部材
DESCRIPTION OF SYMBOLS 1 SiC single crystal manufacturing apparatus 3 Raw material gas 5 Seed crystal 6 Vacuum container 8 Heating container 8a Gas inlet 9 Base 10 1st outer periphery heat insulating material 12 2nd outer periphery heat insulating material 13 1st heating device 14 2nd heating device 20 Low resistance member

Claims (6)

台座(9)に対して炭化珪素単結晶基板にて構成された種結晶(5)を配置し、該種結晶(5)の下方から炭化珪素の原料ガス(3)を供給することにより、前記種結晶(5)の表面に炭化珪素単結晶を成長させる炭化珪素単結晶の製造装置において、
前記台座(9)よりも前記原料ガス(3)の流動経路上流側に配置され、前記原料ガス(3)の加熱を行う加熱容器(8)と、
前記加熱容器(8)を誘導加熱する加熱装置(13、14)と、
前記加熱容器(8)の外周を囲んで配置された黒鉛にて構成される円筒形状の外周断熱材(10)とを有し、
前記外周断熱材(10)は、該外周断熱材(10)の中心軸に沿った方向に分割する分割面にて分割された複数の分割部(10a〜10c)を有し、複数の分割部(10a〜10c)が組み合わされることで円筒形状を構成し、
さらに、前記外周断熱材(10)を構成する黒鉛よりも低抵抗材料で構成され、前記複数の分割部(10a〜10c)の繋ぎ目の箇所に固定されることで隣り合う分割部(10a〜10c)同士を接続する低抵抗部材(20)が備えられていることを特徴とする炭化珪素単結晶の製造装置。
By disposing a seed crystal (5) composed of a silicon carbide single crystal substrate on the pedestal (9) and supplying a silicon carbide source gas (3) from below the seed crystal (5), In the silicon carbide single crystal manufacturing apparatus for growing a silicon carbide single crystal on the surface of the seed crystal (5),
A heating container (8) disposed on the upstream side of the flow path of the source gas (3) relative to the pedestal (9) and heating the source gas (3);
A heating device (13, 14) for induction heating the heating vessel (8);
A cylindrical outer peripheral heat insulating material (10) composed of graphite arranged around the outer periphery of the heating vessel (8),
The outer peripheral heat insulating material (10) has a plurality of divided portions (10a to 10c) divided by a dividing surface that is divided in a direction along the central axis of the outer peripheral heat insulating material (10). (10a to 10c) are combined to form a cylindrical shape,
Furthermore, it is comprised with a low resistance material rather than the graphite which comprises the said outer periphery heat insulating material (10), and it fixes to the location of the joint of the said some division | segmentation part (10a-10c), and adjacent division | segmentation part (10a- 10c) An apparatus for producing a silicon carbide single crystal, comprising a low resistance member (20) for connecting each other.
前記低抵抗部材(20)は、前記外周断熱材(10)の内周面もしくは外周面に沿う円筒形状とされ、前記外周断熱材(10)の内周面もしくは外周面の少なくとも一部を覆っていることを特徴とする請求項1に記載の炭化珪素単結晶の製造装置。   The low resistance member (20) has a cylindrical shape along the inner peripheral surface or outer peripheral surface of the outer peripheral heat insulating material (10), and covers at least a part of the inner peripheral surface or outer peripheral surface of the outer peripheral heat insulating material (10). The apparatus for producing a silicon carbide single crystal according to claim 1. 前記低抵抗部材(20)は、前記外周断熱材(10)の内周面もしくは外周面に沿う円筒形状とされ、前記外周断熱材(10)の内周面および外周面の少なくとも一方の全域を覆っていることを特徴とする請求項1に記載の炭化珪素単結晶の製造装置。   The low resistance member (20) has an inner peripheral surface of the outer peripheral heat insulating material (10) or a cylindrical shape along the outer peripheral surface, and covers at least one whole region of the inner peripheral surface and the outer peripheral surface of the outer peripheral heat insulating material (10). The silicon carbide single crystal manufacturing apparatus according to claim 1, wherein the silicon carbide single crystal manufacturing apparatus is covered. 前記低抵抗部材(20)は、前記外周断熱材(10)のうち、前記台座(9)と前記加熱容器(8)の間を流動する前記原料ガス(3)が最初に衝突する位置を覆っていることを特徴とする請求項2に記載の炭化珪素単結晶の製造装置。   The low resistance member (20) covers a position where the source gas (3) flowing between the pedestal (9) and the heating vessel (8) first collides among the outer peripheral heat insulating material (10). The apparatus for producing a silicon carbide single crystal according to claim 2, wherein: 前記低抵抗部材(20)は、黒鉛シートもしくは高融点金属炭化物にて構成されていることを特徴とする請求項1ないし3のいずれか1つに記載の炭化珪素単結晶の製造装置。   The said low resistance member (20) is comprised with the graphite sheet or the high melting point metal carbide, The manufacturing apparatus of the silicon carbide single crystal as described in any one of Claim 1 thru | or 3 characterized by the above-mentioned. 台座(9)に対して炭化珪素単結晶基板にて構成された種結晶(5)を配置し、炭化珪素の原料ガス(3)を下方から供給することで上方に位置する前記種結晶(5)に供給し、前記種結晶(5)の表面に炭化珪素単結晶を成長させる炭化珪素単結晶の製造方法において、
中空円筒状部材にて構成される加熱容器(8)の中空部をガス供給経路として、該加熱容器(8)の外周を囲むように円筒形状の外周断熱材(10)を配置し、
前記外周断熱材(10)を、該外周断熱材(10)の中心軸に沿った方向に分割する分割面にて分割された複数の分割部(10a〜10c)にて構成して、複数の分割部(10a〜10c)が組み合わされることで円筒形状が構成されるようにすると共に、該外周断熱材(10)を構成する前記複数の分割部(10a〜10c)の繋ぎ目の箇所に該外周断熱材(10)を構成する黒鉛よりも低抵抗材料で構成される低抵抗部材(20)を固定することで隣り合う分割部(10a〜10c)同士を接続した状態とし、
この状態で、前記加熱容器(8)を加熱装置(13、14)にて誘導加熱しつつ、前記加熱容器(8)の一端側から前記原料ガス(3)を導入し、前記加熱容器(8)の他端側から前記原料ガス(3)を導出することで前記種結晶(5)に対して供給して前記炭化珪素単結晶を成長させることを特徴とする炭化珪素単結晶の製造方法。
The seed crystal (5) composed of a silicon carbide single crystal substrate is arranged on the pedestal (9), and the seed crystal (5) located above by supplying the silicon carbide source gas (3) from below. In the method for producing a silicon carbide single crystal, the silicon carbide single crystal is grown on the surface of the seed crystal (5).
Using the hollow part of the heating container (8) constituted by a hollow cylindrical member as a gas supply path, the cylindrical outer peripheral heat insulating material (10) is disposed so as to surround the outer periphery of the heating container (8),
The outer peripheral heat insulating material (10) is constituted by a plurality of divided portions (10a to 10c) divided by a dividing surface that is divided in a direction along the central axis of the outer peripheral heat insulating material (10). A cylindrical shape is configured by combining the divided portions (10a to 10c), and the joints of the plurality of divided portions (10a to 10c) constituting the outer peripheral heat insulating material (10) By fixing the adjacent divided parts (10a to 10c) by fixing the low resistance member (20) made of a material having a lower resistance than the graphite constituting the outer peripheral heat insulating material (10),
In this state, the source gas (3) is introduced from one end of the heating vessel (8) while induction heating the heating vessel (8) with a heating device (13, 14), and the heating vessel (8 ) Is led out from the other end of the source gas (3) to supply the seed crystal (5) to grow the silicon carbide single crystal.
JP2010240958A 2010-10-27 2010-10-27 Silicon carbide single crystal manufacturing apparatus and manufacturing method Active JP5381957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010240958A JP5381957B2 (en) 2010-10-27 2010-10-27 Silicon carbide single crystal manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010240958A JP5381957B2 (en) 2010-10-27 2010-10-27 Silicon carbide single crystal manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JP2012091967A JP2012091967A (en) 2012-05-17
JP5381957B2 true JP5381957B2 (en) 2014-01-08

Family

ID=46385788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010240958A Active JP5381957B2 (en) 2010-10-27 2010-10-27 Silicon carbide single crystal manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP5381957B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5392236B2 (en) * 2010-10-27 2014-01-22 株式会社デンソー Silicon carbide single crystal manufacturing apparatus and manufacturing method
JP6398640B2 (en) * 2014-11-18 2018-10-03 住友電気工業株式会社 Silicon carbide single crystal manufacturing method and silicon carbide single crystal manufacturing apparatus
JP7057014B2 (en) 2020-08-31 2022-04-19 セニック・インコーポレイテッド A method for manufacturing a silicon carbide ingot and a silicon carbide ingot manufactured by the method.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11209199A (en) * 1998-01-26 1999-08-03 Sumitomo Electric Ind Ltd Synthesis method of gallium nitride single crystal
JP2003234296A (en) * 2002-02-07 2003-08-22 Denso Corp Device for producing silicon carbide single crystal
JP2005001934A (en) * 2003-06-11 2005-01-06 Daiichi Kiden:Kk Apparatus for pulling and growing sapphire single crystal

Also Published As

Publication number Publication date
JP2012091967A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
KR101447476B1 (en) Apparatus for manufacturing silicon carbide single crystal
JP4992965B2 (en) Silicon carbide single crystal manufacturing equipment
JP2009040637A (en) Manufacturing method and manufacturing apparatus for silicon carbide single crystal
JP4888548B2 (en) Silicon carbide single crystal manufacturing apparatus and manufacturing method
JP5556761B2 (en) Silicon carbide single crystal manufacturing equipment
JP5381957B2 (en) Silicon carbide single crystal manufacturing apparatus and manufacturing method
JP5392236B2 (en) Silicon carbide single crystal manufacturing apparatus and manufacturing method
JP4535116B2 (en) Silicon carbide single crystal manufacturing apparatus and manufacturing method
JP5287840B2 (en) Silicon carbide single crystal manufacturing equipment
JP6798139B2 (en) Semiconductor crystal manufacturing equipment
JP5648604B2 (en) Silicon carbide single crystal manufacturing equipment
JP5910442B2 (en) Silicon carbide single crystal manufacturing equipment
JP5831339B2 (en) Method for producing silicon carbide single crystal
JP5278302B2 (en) Method and apparatus for producing silicon carbide single crystal
JP6052051B2 (en) Silicon carbide single crystal manufacturing equipment
JP4941475B2 (en) Manufacturing method of silicon carbide single crystal and manufacturing apparatus suitable therefor
JP5900238B2 (en) Silicon carbide single crystal manufacturing apparatus and manufacturing method
JP5407899B2 (en) Silicon carbide single crystal manufacturing apparatus and manufacturing method
JP2014055077A (en) Silicon carbide single crystal producing apparatus and method for producing silicon carbide single crystal using the same
JP6187372B2 (en) Silicon carbide single crystal manufacturing equipment
JP5482669B2 (en) Silicon carbide single crystal manufacturing equipment
JP5696804B2 (en) Silicon carbide single crystal manufacturing equipment
JP5867335B2 (en) Silicon carbide single crystal manufacturing apparatus and manufacturing method
JP5578146B2 (en) Silicon carbide single crystal manufacturing equipment
JP5842725B2 (en) Silicon carbide single crystal manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R151 Written notification of patent or utility model registration

Ref document number: 5381957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250