JP5381231B2 - Apparatus and method for treating wastewater containing sulfur-based COD component - Google Patents

Apparatus and method for treating wastewater containing sulfur-based COD component Download PDF

Info

Publication number
JP5381231B2
JP5381231B2 JP2009082101A JP2009082101A JP5381231B2 JP 5381231 B2 JP5381231 B2 JP 5381231B2 JP 2009082101 A JP2009082101 A JP 2009082101A JP 2009082101 A JP2009082101 A JP 2009082101A JP 5381231 B2 JP5381231 B2 JP 5381231B2
Authority
JP
Japan
Prior art keywords
sulfur
water
wastewater
treated water
long space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009082101A
Other languages
Japanese (ja)
Other versions
JP2010234180A (en
Inventor
俊明 局
浩司 渕上
英一郎 土場
康隆 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009082101A priority Critical patent/JP5381231B2/en
Publication of JP2010234180A publication Critical patent/JP2010234180A/en
Application granted granted Critical
Publication of JP5381231B2 publication Critical patent/JP5381231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、硫黄系COD成分を含有する廃水の処理装置及び処理方法、特に、微生物が固定化された少なくとも1つの担体を具える長尺空間中に、硫黄系COD成分を含有する廃水を通過させ、生物学的に処理する装置及び方法に関する。   The present invention relates to a treatment apparatus and a treatment method for wastewater containing sulfur-based COD components, and in particular, the wastewater containing sulfur-based COD components is passed through a long space including at least one carrier on which microorganisms are immobilized. And a biological treatment apparatus and method.

高炉から排出された高炉スラグは、CaOや、SiO2を主成分としているが、高炉内は強還元雰囲気であることから、鉄鉱石やコークスに含有されていた硫黄の大半がスラグに移行し、高炉スラグは1〜2質量%程度の硫黄を含有している。前記高炉から排出された溶融状態の前記高炉スラグは、通常、スラグ冷却場(スラグヤード)で所定の温度となるまで冷却・固化させた後、ブルドーザーや、パワーショベルなどによって掘り起こされ、一旦、仮置きされた後に、人口砕石、地盤改良材などの土木建築材料として利材化されている。 The blast furnace slag discharged from the blast furnace is mainly composed of CaO and SiO 2 , but since the inside of the blast furnace is a strong reducing atmosphere, most of the sulfur contained in iron ore and coke is transferred to the slag. Blast furnace slag contains about 1-2% by mass of sulfur. The molten blast furnace slag discharged from the blast furnace is usually cooled and solidified to a predetermined temperature in a slag cooling field (slag yard), and then dug up by a bulldozer or a power shovel. After being placed, it is used as a civil engineering building material such as artificial crushed stone and ground improvement material.

ここで、前記冷却中に冷却水が前記高炉スラグに接触する場合や、前記仮置き中に雨水が高炉スラグに接触する場合に、前記高炉スラグ中に含有される硫黄等の成分が接触した水へと浸出することが知られている。また、前記高炉スラグと同様に、転炉スラグや溶銑脱硫スラグなどの製鋼スラグにおいても、前記硫黄等の成分が雨水や冷却水中へと浸出することが知られている。前記硫黄等の成分が浸出した水のことを、ここでは「廃水」と呼ぶ。   Here, when the cooling water comes into contact with the blast furnace slag during the cooling, or when rainwater comes into contact with the blast furnace slag during the temporary placement, the water contacted with components such as sulfur contained in the blast furnace slag It is known to leach into Similarly to the blast furnace slag, it is known that components such as sulfur are leached into rainwater and cooling water in steelmaking slag such as converter slag and hot metal desulfurization slag. The water in which the components such as sulfur are leached is referred to herein as “waste water”.

この廃水中に含有される硫黄成分は、硫化物イオン(S2−)、チオ硫酸イオン(S2O3 2−)又は亜硫酸イオン(SO3 2−)等の形態で存在し、これら還元性の硫黄成分は、排水基準の中で、COD(Chemical Oxygen Demand:化学的酸素要求量:過マンガン酸カリウムを用いて定量)として計測される。基準を満足できない場合には、前記廃水を放流することができず、酸化処理して硫酸イオン(SO4 2−)としたり、Ca(OH)2と反応させて石膏(CaSO4)として回収することが必要となる。 The sulfur component contained in the wastewater is present in the form of sulfide ions (S 2− ), thiosulfate ions (S 2 O 3 2− ), sulfite ions (SO 3 2− ), and the like. The sulfur component is measured as COD (Chemical Oxygen Demand: determined using potassium permanganate) in the wastewater standard. If the standard cannot be satisfied, the waste water cannot be discharged and oxidized to sulfate ions (SO 4 2− ), or reacted with Ca (OH) 2 to be recovered as gypsum (CaSO 4 ). It will be necessary.

また、前記廃水中の硫黄系成分を処理する別の方法として、硫黄酸化細菌などの細菌を用いて生物学的に処理する方法、例えば、特許文献1に開示されているように、カルシウムを配合した、硫黄酸化細菌に好適な固定化担体に、硫黄酸化細菌を馴養・増殖し、この固定化担体からなる固定床型バイオリアクターを用いて生物学的に処理する方法が挙げられる。さらに、特許文献2に開示されているように、pHが中性の条件下で硫黄酸化機能を有するシュードモナス属の細菌を用いて処理する方法や、特許文献3に開示されているように、廃水を生物学的に処理するための設備の曝気槽に活性汚泥混合水を入れ、この曝気槽に硫黄系COD成分を含む廃水と有機化合物とを供給し、曝気槽内の酸化還元電位(ORP)を指標にして曝気槽の曝気を制御し、且つ、曝気槽内のpHを4.0〜7.5の範囲に制御して、硫黄酸化細菌を馴養・増殖させながら、廃水を処理する方法や、特許文献4に開示されているように、硫黄酸化細菌の有機栄養源として、米糠またはフイチン酸含有有機化合物を定期的に添加しながら、硫黄酸化細菌によって廃水を処理する方法などがある。   Further, as another method for treating the sulfur-based components in the wastewater, a method of biological treatment using bacteria such as sulfur-oxidizing bacteria, for example, calcium is incorporated as disclosed in Patent Document 1. Examples of such an immobilized carrier suitable for sulfur-oxidizing bacteria include a method in which sulfur-oxidizing bacteria are acclimatized and propagated and biologically processed using a fixed bed bioreactor composed of this immobilized carrier. Furthermore, as disclosed in Patent Document 2, a method of treating with a Pseudomonas bacterium having a sulfur oxidation function under a neutral pH condition, or as disclosed in Patent Document 3, waste water Activated sludge mixed water is put into an aeration tank of a facility for biological treatment of wastewater, waste water containing sulfur-based COD components and organic compounds are supplied to this aeration tank, and oxidation-reduction potential (ORP) in the aeration tank And a method of treating wastewater while acclimatizing and growing sulfur-oxidizing bacteria by controlling the aeration in the aeration tank using the above as an index and controlling the pH in the aeration tank to a range of 4.0 to 7.5, and Patent Document 4 As an organic nutrient source for sulfur-oxidizing bacteria, there is a method of treating wastewater with sulfur-oxidizing bacteria while periodically adding rice bran or a phytic acid-containing organic compound.

特開平6−15294号公報JP-A-6-15294 特開平8−323390号公報JP-A-8-323390 特開平6−106187号公報JP-A-6-106187 特開平7−251195号公報JP 7-251195 A

さらに、近年では、多量の廃水を迅速に処理することを目的として、例えば水路等に、特許文献1〜4に示されているような微生物を固定化した担体を設け、廃水を連続的又は断続的に水路中に通過させる廃水の処理方法が開発されている。   Furthermore, in recent years, for the purpose of quickly treating a large amount of wastewater, for example, a water channel or the like is provided with a carrier on which microorganisms are immobilized as shown in Patent Documents 1 to 4, and the wastewater is continuously or intermittently provided. A method for treating wastewater that is allowed to pass through waterways has been developed.

しかしながら、上述の水路等を用いた廃水の処理方法を用いた場合、低濃度のCOD成分を含む廃水については有効に処理できるものの、高濃度のCOD成分を含む廃水については、処理の途中で廃水中の溶存酸素が消費しつくされるため、水路の下流側では溶存酸素濃度が低くなり、水路の下流側では前記微生物によるCOD成分の分解処理が行なわれないという問題や、前記微生物によるCOD成分の酸化処理に伴って硫酸イオンが発生し、水路の下流側ではpHが低くなるため、通常、中性から弱酸性の範囲で活発化する前記微生物は、COD成分の処理を十分に行うことができないという問題があった。そのため、高濃度のCOD成分を含む廃水に対して、従来の廃水の処理方法では廃水基準を満たすことはできず、多量の廃水を迅速に処理する方法の開発が望まれている。   However, when the above-described wastewater treatment method using a water channel or the like is used, wastewater containing low-concentration COD components can be treated effectively, but wastewater containing high-concentration COD components is treated in the middle of treatment. Since the dissolved oxygen is consumed up, the dissolved oxygen concentration is low on the downstream side of the water channel, and the COD component is not decomposed by the microorganisms on the downstream side of the water channel. Sulfate ions are generated along with the oxidation treatment, and the pH is lowered on the downstream side of the water channel. Therefore, the microorganisms activated normally in the neutral to weakly acidic range may sufficiently treat the COD component. There was a problem that I could not. Therefore, with respect to wastewater containing high-concentration COD components, the conventional wastewater treatment method cannot meet the wastewater standard, and development of a method for rapidly treating a large amount of wastewater is desired.

本発明の目的は、高濃度のCOD成分を含有する場合であっても、確実かつ迅速に処理できる硫黄系COD成分を含有する廃水の処理方法及び処理装置を提供することにある。   The objective of this invention is providing the processing method and processing apparatus of the wastewater containing the sulfur type COD component which can be processed reliably and rapidly, even when it contains a high concentration COD component.

本発明者らは、上記の課題を解決すべく鋭意研究を行った結果、微生物の担持が可能な少なくとも1つの微生物担持材を具える水路又は水槽等の長尺空間内に、硫黄系COD成分を含有する廃水を通過させて、該廃水中のCOD成分を生物学的に処理する方法であって、前記廃水が前記長尺空間内を通過した後の処理水の一部を取り出し、前記廃水と混合した後、再度、前記長尺空間内を通過させることで、前記廃水を前記処理水の一部と混合し、COD濃度を処理可能な濃度まで低減することができるため、廃水中のCOD成分の確実な処理が行えること、また、廃水中のCOD濃度が極度に高く、前記長尺空間内を一度通過させるだけでは完全に処理しきれない場合であっても、処理した水を、再度前記長尺空間内を通過させることができるため、高濃度のCOD成分を処理できないまま外部へ排出することを防ぐことができること、さらに、pH及び溶存酸素の低下についての問題は、処理水のpH及び酸素の調整を図った後、前記長尺空間内へ再度流入させることで解決できることを見出した。   As a result of diligent research to solve the above problems, the present inventors have found that a sulfur-based COD component is contained in a long space such as a water channel or a water tank having at least one microorganism-supporting material capable of supporting microorganisms. A method of biologically treating a COD component in the wastewater by passing wastewater containing the wastewater, wherein a part of the treated water after the wastewater has passed through the long space is taken out, and the wastewater Then, the waste water is mixed with a part of the treated water by passing through the long space again, so that the COD concentration can be reduced to a treatable concentration. Even if the COD concentration in the wastewater is extremely high and cannot be completely treated by only passing through the long space once, the treated water can be treated again. By passing through the long space Therefore, it is possible to prevent the high-concentration COD component from being discharged to the outside without being treated, and further, the problem about the decrease in pH and dissolved oxygen is that after adjusting the pH and oxygen of the treated water, It has been found that this problem can be solved by re-flowing into the long space.

本発明は、このような知見に基づきなされたもので、その要旨は以下の通りである。
(1)微生物の担持が可能な少なくとも1つの微生物担持材を具える長尺空間内に、硫黄系COD成分を含有する廃水を通過させて、該廃水中のCOD成分を生物学的に処理する方法であって、前記長尺空間内を通過した後の処理水の一部を取り出し、該処理水のpHを、前記長尺空間内の下流域において測定したpHの測定結果に基づいて中性から弱酸性の範囲に調整した後、前記廃水と混合、前記長尺空間内を通過させることを特徴とする硫黄系COD成分を含有する廃水の処理方法。
The present invention has been made based on such findings, and the gist thereof is as follows.
(1) A waste water containing a sulfur-based COD component is passed through a long space including at least one microorganism-supporting material capable of supporting microorganisms, and the COD component in the waste water is biologically treated. A method, wherein a portion of treated water after passing through the long space is taken out, and the pH of the treated water is neutralized based on a measurement result of pH measured in a downstream region in the long space. A method for treating a wastewater containing a sulfur-based COD component , wherein the wastewater is mixed with the wastewater and passed through the long space after being adjusted to a weakly acidic range .

(2)前記取り出した処理水は、前記廃水と混合する前に、酸素含有ガスを吹き込んで、溶存酸素濃度を上昇させる上記(1)記載の硫黄系COD成分を含有する廃水の処理方法。 (2) The method for treating a wastewater containing a sulfur-based COD component according to (1), wherein the extracted treated water is blown with an oxygen-containing gas before being mixed with the wastewater to increase the dissolved oxygen concentration.

(3)前記酸素含有ガスの吹き込みは、エアリフトポンプを用いる上記(2)記載の硫黄系COD成分を含有する廃水の処理方法。 (3) The method for treating wastewater containing a sulfur-based COD component according to (2) above, wherein the oxygen-containing gas is blown in using an air lift pump.

)前記取り出す処理水の水量は、前記廃水と混合する前に、前記長尺空間内の下流域でのpH及び/又は溶存酸素濃度を測定し、その測定結果をもとに調整する上記(1)〜()のいずれか1項記載の硫黄系COD成分を含有する廃水の処理方法。 ( 4 ) The amount of the treated water to be taken out is adjusted based on the measurement result by measuring the pH and / or dissolved oxygen concentration in the downstream area in the long space before mixing with the waste water. The processing method of the waste water containing the sulfur type COD component of any one of (1)-( 3 ).

)微生物の担持が可能な少なくとも1つの微生物担持材を具える長尺空間内に、硫黄系COD成分を含有する廃水を通過させて、該廃水中のCOD成分を生物学的に処理する装置であって、前記廃水を供給する廃水供給手段と、前記長尺空間内を通過した処理水の一部を取り出す返送手段と、該処理水のpHを調整するためのpH調整槽と、該処理水のpHを前記長尺空間内の下流域において測定したpHの測定結果に基づいて中性から弱酸性の範囲に制御する制御手段と、pHが調整された処理水と前記廃水とを混合した後、前記混合した水を前記長尺空間内へ流入させる混合槽とを具えることを特徴とする硫黄系COD成分を含有する廃水の処理装置。 ( 5 ) A waste water containing a sulfur-based COD component is passed through a long space including at least one microorganism-supporting material capable of supporting microorganisms to biologically treat the COD component in the waste water. A waste water supply means for supplying the waste water, a return means for taking out a part of the treated water that has passed through the long space, a pH adjusting tank for adjusting the pH of the treated water, Control means for controlling the pH of the treated water from a neutral to a weakly acidic range based on the measurement result of the pH measured in the downstream area within the long space, and the treated water adjusted to the pH and the waste water are mixed. And a wastewater treatment apparatus containing a sulfur-based COD component, comprising: a mixing tank for allowing the mixed water to flow into the long space.

)前記取り出した処理水に酸素含有ガスを吹き込こむ酸素吹込み手段をさらに具える上記()記載の硫黄系COD成分を含有する廃水の処理装置。 ( 6 ) The apparatus for treating wastewater containing a sulfur-based COD component according to the above ( 5 ), further comprising oxygen blowing means for blowing oxygen-containing gas into the extracted treated water.

)前記酸素吹込み手段は、エアリフトポンプである上記()記載の硫黄系COD成分を含有する廃水の処理装置。 ( 7 ) The wastewater treatment apparatus containing a sulfur-based COD component according to ( 6 ), wherein the oxygen blowing means is an air lift pump.

)前記取り出す処理水の水量を制御するための制御手段をさらに具える上記()〜()のいずれか1項記載の硫黄系COD成分を含有する廃水の処理装置。 ( 8 ) The treatment apparatus for wastewater containing a sulfur-based COD component according to any one of ( 5 ) to ( 7 ), further comprising a control means for controlling the amount of the treated water to be taken out.

)前記長尺空間は、前記長尺空間中を通過する廃水を攪拌する攪拌手段をさらに具える上記()〜()のいずれか1項記載の硫黄系COD成分を含有する廃水の処理装置。 ( 9 ) The waste water containing the sulfur-based COD component according to any one of ( 5 ) to ( 8 ), wherein the long space further includes stirring means for stirring waste water passing through the long space. Processing equipment.

本発明によれば、高濃度のCOD成分を含有する場合であっても、確実かつ迅速に処理できる硫黄系COD成分を含有する廃水の処理方法及び処理装置の提供が可能となった。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where a high concentration COD component is contained, it became possible to provide a treatment method and a treatment apparatus for wastewater containing a sulfur-based COD component that can be reliably and rapidly treated.

本発明による硫黄系COD成分を含有する廃水の処理装置の側断面である。It is a side cross section of the processing apparatus of the wastewater containing the sulfur type COD component by this invention. 本発明の微生物担持材の形状を示した斜視図であり、 (a)は、図1の廃水の処理装置で用いられる微生物担持材の形状、(b)は、他の廃水の処理装置で用いられる微生物担持材の形状を示す。It is the perspective view which showed the shape of the microorganisms carrier material of this invention, (a) is the shape of the microorganisms carrier material used with the wastewater treatment apparatus of FIG. 1, (b) is used with the other wastewater treatment apparatus. The shape of the microorganism-supporting material obtained is shown. 本発明による硫黄系COD成分を含有する廃水の処理装置の別の実施形態についての側断面である。It is a side cross section about another embodiment of the processing apparatus of the wastewater containing the sulfur type COD component by this invention. 本発明による長尺空間の別の実施形態についての側断面である。It is a side cross section about another embodiment of elongate space by this invention. (a)は、実施例及び比較例に用いる長尺空間の微生物担持材の配置を示した斜視図であり、(b)は、(a)の微生物担持材を、上方から見たときの断面図である。(a) is the perspective view which showed arrangement | positioning of the microorganisms supporting material of long space used for an Example and a comparative example, (b) is a cross section when the microorganisms supporting material of (a) is seen from upper direction. FIG. 従来の硫黄系COD成分を含有する廃水の処理装置を示した断面図であり、(a)は比較例1、(b)は比較例2に用いられる処理装置を示す。It is sectional drawing which showed the processing apparatus of the waste water containing the conventional sulfur type COD component, (a) shows the processing apparatus used for the comparative example 1 and (b) for the comparative example 2. FIG.

以下、図を参照して、本発明の構成と限定理由を説明する。
図1は、本発明による硫黄系COD成分を含有する廃水の処理装置の断面を側方から見た図である。
また、図2(a)は、図1の廃水の処理装置で用いられる微生物担持材の形状を示した図であり、図2(b)は、他の生物反応タンクで用いられる担体の形状を示した図である。
図3は、本発明による廃水の処理装置の別の実施形態についての断面を側方から見た図である。
Hereinafter, the configuration of the present invention and the reasons for limitation will be described with reference to the drawings.
FIG. 1 is a side view of a cross section of a treatment apparatus for wastewater containing a sulfur-based COD component according to the present invention.
FIG. 2 (a) is a diagram showing the shape of the microorganism-supporting material used in the wastewater treatment apparatus of FIG. 1, and FIG. 2 (b) is the shape of the carrier used in another biological reaction tank. FIG.
FIG. 3 is a side view of a cross section of another embodiment of the wastewater treatment apparatus according to the present invention.

本発明による硫黄系COD成分を含有する廃水の処理方法は、微生物の担持が可能な少なくとも1つの微生物担持材11を具える水路又は水槽等の長尺空間10内に、硫黄系COD成分を含有する廃水20を通過させて、該廃水20中のCOD成分を生物学的に処理する方法である。   The method for treating wastewater containing a sulfur-based COD component according to the present invention contains a sulfur-based COD component in a long channel 10 such as a water channel or a water tank having at least one microorganism-supporting material 11 capable of supporting microorganisms. This is a method of biologically treating COD components in the wastewater 20 by passing the wastewater 20 to be passed.

本発明に用いられる微生物担持材11は、COD成分を処理するための微生物が固定化できるものであれば特に限定はしないが、例えば図2(a)及び(b)に示すように、ひも状の微生物担持材11a(図2(a))や、粒状の微生物担持材11b(図2(b))のものなどが挙げられる。また、前記微生物担持材11に用いられる材料としては、材料によって前記微生物の付着度が大きく異なることはないため、特に限定はしないが、例えば、ナイロン系、ビニロン系、ポリビニリデン系、ポリプロピレン系、又はそれらの複合材料等を用いることができる。   The microorganism-supporting material 11 used in the present invention is not particularly limited as long as microorganisms for treating the COD component can be immobilized. For example, as shown in FIGS. 2 (a) and 2 (b), a string-like material is used. Microbial support material 11a (FIG. 2 (a)) and granular microbial support material 11b (FIG. 2 (b)). In addition, the material used for the microorganism-supporting material 11 is not particularly limited because the degree of adhesion of the microorganism does not vary greatly depending on the material. For example, nylon, vinylon, polyvinylidene, polypropylene, Or those composite materials etc. can be used.

また、前記微生物担持材11に固定される微生物は、前記硫黄系COD成分を処理できる微生物であればよく、主に、硫黄酸化細菌等が挙げられる。硫黄酸化細菌は、自然環境に広く分布する菌であり、スラグヤードなど硫黄系化合物が存在する場所に存在しているため、前記微生物の前記微生物担持材11への固定は、例えば、COD成分を含有する廃水中に、前記微生物担持材11を一定期間接触させることにより、自然発生的に前記微生物を固定化することができる。また、前記微生物担持材11に、直接、前記微生物の培養液等を接触させることにより固定化する方法を用いることも可能である。   The microorganisms fixed to the microorganism-supporting material 11 may be microorganisms that can treat the sulfur-based COD component, and mainly include sulfur-oxidizing bacteria. Since the sulfur-oxidizing bacteria are bacteria widely distributed in the natural environment and are present in places where sulfur-based compounds such as slag yards are present, the microorganism is fixed to the microorganism-supporting material 11 by, for example, using a COD component. By bringing the microorganism-supporting material 11 into contact with the contained waste water for a certain period of time, the microorganisms can be spontaneously immobilized. It is also possible to use a method of immobilizing the microorganism-supporting material 11 by directly bringing it into contact with a culture solution of the microorganism.

さらに、前記長尺空間10とは、前記廃水20等が通過し、COD成分の処理を行う空間のことであり、例えば、図1に示すような水路や、水槽等が挙げられるが、多量の廃水20を廃水を連続的又は断続的に処理できる空間であれば特に限定はしない。
また、前記長尺空間10は、前記微生物担持材11を、少なくとも1つ具える必要があり、前記長尺空間20の形状等に従って、図1に示すように、複数の微生物担持材11を具えることも可能である。
Furthermore, the long space 10 is a space through which the waste water 20 or the like passes and processes the COD component, and includes, for example, a water channel and a water tank as shown in FIG. The waste water 20 is not particularly limited as long as it is a space where the waste water can be treated continuously or intermittently.
In addition, the long space 10 needs to include at least one microorganism-supporting material 11, and includes a plurality of microorganism-supporting materials 11 as shown in FIG. It is also possible.

また、前記長尺空間10内での、前記微生物担持材11の設置方法としては、特に限定はしないが、例えば枠組みを作り、該枠組みの中に前記微生物担持材11を固定化させた後、流れ方向に対して並行あるいは垂直に前記枠組みを設置する方法等が挙げられる。長期間の使用後の、前記微生物担持材11の交換や洗浄を考慮すると、前記枠組みごと、水路外に取り出せる構造とすることが好ましく、水より比重が小さい微生物担持材11を用い、浮き状の部材等に固定し、浮かべた状態でCODの処理を行うことも可能である。   In addition, the method for installing the microorganism-supporting material 11 in the long space 10 is not particularly limited. For example, after creating a framework and immobilizing the microorganism-supporting material 11 in the framework, For example, a method of installing the frame in parallel or perpendicular to the flow direction may be used. In consideration of replacement and washing of the microorganism-supporting material 11 after long-term use, it is preferable that the framework is structured so that it can be taken out of the water channel, and the microorganism-supporting material 11 having a specific gravity smaller than that of water is used. It is also possible to perform COD processing in a floating state by fixing to a member or the like.

さらに、前記長尺空間10は、前記長尺空間10中を通過する廃水20を攪拌するための攪拌手段を具えることが好ましい。この攪拌手段により、前記廃水20の攪拌を行うことで、廃水20中のCOD濃度が一定となり、安定した処理が行える。前記攪拌手段とは、前記長尺空間10内の廃水20を攪拌できるものであれば特に限定はしないが、例えば、図4に示すようなバッフルや、攪拌器等を用いることができる。ここで、図4に示す攪拌手段12(バッフル)は、開口部13を有する仕切り壁となっており、長尺空間10内における水の短絡流の発生抑制と死水域の発生抑制の効果を有する。そのため、前記長尺空間10の全体の空間をCOD処理のために効果的に使用できる。   Furthermore, it is preferable that the long space 10 includes a stirring means for stirring the waste water 20 passing through the long space 10. By stirring the waste water 20 by this stirring means, the COD concentration in the waste water 20 becomes constant, and stable treatment can be performed. The stirring means is not particularly limited as long as it can stir the waste water 20 in the long space 10. For example, a baffle as shown in FIG. 4, a stirrer, or the like can be used. Here, the stirring means 12 (baffle) shown in FIG. 4 is a partition wall having an opening 13 and has the effect of suppressing the occurrence of a short-circuit flow of water in the long space 10 and the occurrence of a dead water area. . Therefore, the entire space of the long space 10 can be effectively used for COD processing.

そして、本発明による硫黄系COD成分を含有する廃水の処理方法は、図1に示すように、前記長尺空間10内を通過した後の処理水30の一部を取り出し、前記廃水20と混合した後、前記長尺空間10内を通過させることを特徴とする。   And the processing method of the wastewater containing the sulfur type | system | group COD component by this invention takes out a part of the treated water 30 after passing through the inside of the said long space 10, and mixes with the said wastewater 20 as shown in FIG. Then, the inside of the long space 10 is passed.

ここで、下式(1)及び(2)は、硫黄系COD成分の前記微生物による反応の一例を示したものであるが、両式とも、酸化反応であり、硫酸が発生している。
H2S+2O2→H2SO4・・・(1)
Na2S2O3+2O2+H2O→Na2SO4+H2SO4・・・(2)
そのため、前記廃水20中のCOD成分を処理し続けることによって、前記長尺空間10内の下流域においては、酸化反応によって酸素が低下し、硫酸の発生によってpHが低下することになる。イオウ酸化菌等の前記微生物は、その生育に酸素を必用とする菌であるために、溶存酸素濃度の低い条件では生息できず、加えて、イオウ酸化菌の最適pHについては、中性から弱酸性とされており、pHが低下することによって、微生物自体の活性が低下し、COD成分の処理ができないという問題がある。
本発明は、上記構成を採用することによって、前記廃水20と前記処理水の一部31とを混合した水40のCOD濃度を、処理可能な濃度まで低減し、廃水20中のCOD成分を確実に処理できる。さらに、前記廃水20中のCOD濃度が極度に高く、前記長尺空間10内を一度通過させるだけでは完全にCOD成分を処理でない場合であっても、処理した水の一部31を、前記長尺空間10内に再度通過させることができるため、高濃度のCOD成分を含有する廃水20についても有効に処理できる。
Here, the following formulas (1) and (2) show an example of the reaction of the sulfur-based COD component by the microorganism, but both formulas are oxidation reactions and sulfuric acid is generated.
H 2 S + 2O 2 → H 2 SO 4 (1)
Na 2 S 2 O 3 + 2O 2 + H 2 O → Na 2 SO 4 + H 2 SO 4 (2)
Therefore, by continuing to process the COD component in the waste water 20, in the downstream region in the long space 10, oxygen is reduced by an oxidation reaction, and pH is lowered by generation of sulfuric acid. Since the microorganisms such as sulfur-oxidizing bacteria require oxygen for their growth, they cannot live under conditions of low dissolved oxygen concentration. In addition, the optimum pH of sulfur-oxidizing bacteria is neutral to weak. There is a problem that the activity of the microorganism itself is lowered and the COD component cannot be treated because the pH is lowered due to being acidic.
By adopting the above configuration, the present invention reduces the COD concentration of the water 40 obtained by mixing the waste water 20 and the part 31 of the treated water to a treatable concentration, thereby ensuring the COD component in the waste water 20. Can be processed. Further, even if the COD concentration in the waste water 20 is extremely high and the COD component is not completely treated by passing through the long space 10 once, the treated water part 31 is treated with the long water. Since it can be made to pass through the shank space 10 again, the waste water 20 containing a high concentration COD component can also be treated effectively.

また、前記取り出した処理水31は、前記廃水20と混合する前に、酸素含有ガス51を吹き込んで、溶存酸素濃度を上昇させることが好ましい。前記長尺空間10の下流域においては、COD処理のための酸化反応によって酸素が低下するため、前記取り出した処理水31に酸素含有ガス51を吹き込んで、溶存酸素濃度を上昇させれば、前記長尺空間10内の下流側でも、前記微生物が生息でき、十分にCOD成分の処理ができるためである。なお、前記酸素含有ガスの吹き込みは、酸素含有ガス吹込み専用又は後述する処理水の移送も可能な返送手段としても用いられるエアリフトポンプ等の酸素吹込み手段50を用いることが好ましい。また、前記酸素含有ガスの吹き込みは、図1に示すように、pH調整前に行っても良いし、図3に示すように、pHの調整と同時に行っても良い。   Further, it is preferable that the extracted treated water 31 is blown with an oxygen-containing gas 51 to increase the dissolved oxygen concentration before being mixed with the waste water 20. In the downstream area of the long space 10, oxygen is reduced by an oxidation reaction for COD treatment. Therefore, if the oxygen-containing gas 51 is blown into the extracted treated water 31 to increase the dissolved oxygen concentration, This is because the microorganisms can live on the downstream side of the long space 10 and the COD component can be sufficiently processed. The oxygen-containing gas is preferably blown by using an oxygen blowing means 50 such as an air lift pump that is also used as a returning means that can also be used for oxygen-containing gas blowing or to transfer treated water described later. Further, the blowing of the oxygen-containing gas may be performed before the pH adjustment as shown in FIG. 1, or may be performed simultaneously with the pH adjustment as shown in FIG.

ここで、前記酸素含有ガス51を吹き込むための酸素吹込み手段50としては、酸素含有ガス51を吹き込むことで前記取り出した処理水31の溶存酸素濃度を上昇させることができるものであれば特に限定はせず、任意の手段を用いることができるが、前記酸素含有ガス51を吹き込みつつ、処理水の一部31について取り出すこともできる点から、前記酸素吹込み手段50は、エアリフトポンプを用いることが好ましい。   Here, the oxygen blowing means 50 for blowing the oxygen-containing gas 51 is particularly limited as long as it can raise the dissolved oxygen concentration of the extracted treated water 31 by blowing the oxygen-containing gas 51. However, any means can be used, but the oxygen blowing means 50 can be taken out of the treated water 31 while blowing in the oxygen-containing gas 51, so that the oxygen blowing means 50 uses an air lift pump. Is preferred.

さらに、前記取り出した処理水31は、前記廃水20と混合する前に、そのpHを調整する前記廃水20のpHは一般的に高く(10〜12.5程度)、前記取り出した処理水31と混合した後、pHを中性から弱酸性の範囲に調整すると、前記長尺空間10内では、前記微生物の活性が低下することなく、十分にCOD成分の処理ができるからである。また、pH調整に用いられるpH調整剤71は、通常、硫酸等の酸である場合が多く、前記廃水20と混合した後、又は混合すると同時に前記pH調整剤71を添加した場合、前記廃水20が前記取り出した処理水31によって十分に希釈されていないため、硫化物イオンとpH調整剤71とが反応し、硫化水素ガスが発生する恐れがあるためである。
ここで、pHの調整に用いられる前記pH調整剤71としては、硫酸以外にも、塩酸等の酸でも良く、廃水20のイオウ系COD成分の濃度が高い場合には、取り出した処理水31のpHが低くなるため、水酸化ナトリウム等のアルカリを用いることもできる。前記取り出した処理水31の水質が変動する場合に備えて、酸とアルカリの両方を準備することがより好適である。
Further, the pH of the treated treated water 31 taken out is adjusted before mixing with the waste water 20 . The pH of the wastewater 20 is generally high (about 10 to 12.5), and after mixing with the treated water 31 that has been taken out, when the pH is adjusted from neutral to weakly acidic, This is because the COD component can be sufficiently treated without reducing the activity of the microorganism. Further, the pH adjuster 71 used for pH adjustment is usually an acid such as sulfuric acid. When the pH adjuster 71 is added after mixing with the wastewater 20 or at the same time as mixing, the wastewater 20 This is because the sulfide ions and the pH adjusting agent 71 may react with each other and hydrogen sulfide gas may be generated because the treated water 31 is not sufficiently diluted.
Here, the pH adjuster 71 used for adjusting the pH may be an acid such as hydrochloric acid in addition to sulfuric acid. If the concentration of the sulfur-based COD component of the wastewater 20 is high, Since pH becomes low, alkalis, such as sodium hydroxide, can also be used. It is more preferable to prepare both acid and alkali in preparation for the case where the quality of the extracted treated water 31 fluctuates.

なお、前述のとおり、前記取り出した処理水31のpHの調整は、図1に示すように、混合槽50内で前記廃水20と混合する前に、pH調整槽70内で行われるpH調整槽70とは、前記取り出した処理水31を溜めて、前記pH調整剤71を添加する作業を行うための槽であり、前記取り出した処理水31のpHの効果的な調整が可能であればよく、その大きさや形状等は特に限定されない。 As described above, the pH of the extracted treated water 31 is adjusted in the pH adjusting tank 70 before being mixed with the waste water 20 in the mixing tank 50 as shown in FIG . The pH adjusting tank 70 is a tank for storing the extracted treated water 31 and performing the operation of adding the pH adjusting agent 71, and can effectively adjust the pH of the extracted treated water 31. The size, shape, etc. are not particularly limited.

さらに、前記取り出した処理水31のpHは、図1に示すように、前記長尺空間10内の下流域でのpHをpH計61で測定し、その測定結果をもとに調整する前記長尺空間10内の下流域でのpHを測定すれば、pHを調整する直前の前記取り出した処理水31のpHを把握できるため、容易かつ確実なpHの調整が可能となるからである。なお、前記取り出した処理水31のpHの調整は、具体的には、図1に示すように、制御手段60を用いて行うことができる。前記長尺空間10内の下流域に設けられたpH計61によって測定したpHの結果をもとに、前記取り出した処理水31に添加するpH調整剤71の量の調整を図ることができる。 Further, the pH of the extracted treated water 31 is adjusted based on the measurement result obtained by measuring the pH in the downstream area in the long space 10 with a pH meter 61 as shown in FIG . This is because if the pH in the downstream area in the long space 10 is measured, the pH of the extracted treated water 31 immediately before the pH adjustment can be grasped, so that the pH can be easily and reliably adjusted. . Specifically, the pH of the extracted treated water 31 can be adjusted using a control means 60 as shown in FIG. Based on the result of the pH measured by the pH meter 61 provided in the downstream area in the long space 10, the amount of the pH adjusting agent 71 added to the extracted treated water 31 can be adjusted.

また、溶存酸素濃度が反応の制限因子とならない条件で、前記長尺空間10内の下流域端でのpHが低すぎる場合には、一般的な放流基準が5.8〜8.6であるので、生物活性上また、放流水質上好ましくないので、取り出す水量を増大する、あるいはpH調整槽70におけるpHの設定値を上げてpH調整剤71として酸を用いる場合の投入量を減ずればよい。一方、前記長尺空間10内の下流域端でのpHが高すぎる場合には、一般的な放流基準を満たすべく、取り出し処理水量を減少する、あるいはpH調整槽70におけるpH設定値を下げてpH調整剤71として酸を用いる場合の投入量を増大すればよい。   In addition, when the pH at the downstream end of the long space 10 is too low under the condition that the dissolved oxygen concentration is not a limiting factor for the reaction, the general discharge standard is 5.8 to 8.6, and thus the biological activity In addition, since it is not preferable in terms of the quality of the discharged water, the amount of water to be taken out may be increased, or the input amount in the case of using an acid as the pH adjusting agent 71 by increasing the set value of pH in the pH adjusting tank 70 may be reduced. On the other hand, if the pH at the end of the downstream area in the long space 10 is too high, the amount of water to be taken out is reduced or the pH set value in the pH adjustment tank 70 is lowered to satisfy a general discharge standard. What is necessary is just to increase the input amount in the case of using an acid as the pH adjuster 71.

なお、前記処理水の一部31は、前記長尺空間10内を通過した処理水30から取り出され、廃水20と混合された後、長尺空間10内の上流域へと戻され、長尺空間10内を再度通過する。また、処理水の一部31を取り出すための返送手段90としては、例えば、図1に示すように、水路91及びエアリフトポンプ50、図3に示すように、ポンプ92等を用いることができる。   A part 31 of the treated water is taken out from the treated water 30 that has passed through the long space 10, mixed with the waste water 20, and then returned to the upstream region in the long space 10. It passes through the space 10 again. Moreover, as the return means 90 for taking out the part 31 of treated water, the water channel 91 and the air lift pump 50, as shown in FIG. 1, the pump 92 etc. can be used as shown in FIG.

また、前記取り出す処理水31の水量は、前記廃水20と混合する前に、前記長尺空間10内の下流域でのpH及び/又は溶存酸素濃度を測定し、その測定結果をもとに調整することが好ましい。前記長尺空間10内の下流域でのpH及び/又は溶存酸素濃度を測定すれば、取り出される直前の前記取り出す処理水31のpH及び/又は溶存酸素濃度を把握できるため、容易かつ確実な水量の調整が可能となるからである。
具体的には、前記取り出す処理水31の水量は、廃水20の水量に対して1〜50倍の範囲であることがより好ましい。前記取り出す処理水31の水量が廃水20の水量に対して1倍以上の場合、本発明の効果が十分に得られ、一方、廃水20の水量に対して50倍以下とすると、本発明の効果が十分に得られ、必要以上に取り出す処理水を上昇させて運転を行うこともなく、省エネルギーの観点で有効だからである。なお、前記取り出す処理水31の水量の調整は、図1に示すように、制御手段60を用いて行うことができる。前記長尺空間10内の下流域に設けられたpH計61及び/又は溶存酸素濃度計64によって測定したpH及び/又は溶存酸素濃度をもとに、前記廃水20と混合するための取り出す処理水31の水量の調整を図る。
Further, the amount of the treated water 31 to be taken out is adjusted based on the measurement result by measuring the pH and / or dissolved oxygen concentration in the downstream area in the long space 10 before mixing with the waste water 20. It is preferable to do. If the pH and / or dissolved oxygen concentration in the downstream area in the long space 10 is measured, the pH and / or dissolved oxygen concentration of the treated water 31 to be taken out immediately before being taken out can be ascertained. This is because it becomes possible to make adjustment.
Specifically, the amount of the treated water 31 to be taken out is more preferably in the range of 1 to 50 times the amount of the waste water 20. The effect of the present invention is sufficiently obtained when the amount of the treated water 31 to be taken out is 1 time or more with respect to the amount of the waste water 20, while the effect of the present invention is obtained when the amount of the waste water 20 is 50 times or less. Is sufficiently obtained, and it is effective from the viewpoint of energy saving without increasing the treated water to be taken out more than necessary. In addition, adjustment of the amount of the treated water 31 to be taken out can be performed using a control means 60 as shown in FIG. Process water to be taken out for mixing with the waste water 20 based on the pH and / or dissolved oxygen concentration measured by the pH meter 61 and / or the dissolved oxygen concentration meter 64 provided in the downstream area in the long space 10. Adjust the water volume of 31.

また、pHが反応の制限因子とならない条件で、前記長尺空間内10の下流域での溶存酸素が低すぎる(例えば1mg/L以下)場合には、生物活性上好ましくないので、酸素含有ガス51の吹き込み量の増大及び/又は取り出す処理水31の水量の増大が有効である。   In addition, if the dissolved oxygen in the downstream region of the long space 10 is too low (for example, 1 mg / L or less) under conditions where pH is not a limiting factor for the reaction, it is not preferable for biological activity. It is effective to increase the blowing amount of 51 and / or increase the amount of treated water 31 to be taken out.

例えば、前記取り出す処理水31の水量を制御する方法としては、前記長尺空間10内の上流側から下流側への一回の移動当りの処理量を利用する方法もある。溶存酸素濃度は、水温や共存物質の影響を受けるため、厳密な論議はできないが、前記長尺空間10に流入させる、廃水20と取り出した処理水31との混合した水40の溶存酸素濃度を5mg/L程度まで上昇させ、長尺空間10内の下流域での溶存酸素濃度が1mg/L程度となる条件にするためには、4mg/L程度の溶存酸素が消費されることになり、COD成分は4mg/L酸化されたとすると、一循環当り、4mg/LのCOD成分の除去が可能ということになる。よって、廃水20のCODを50mg/L、処理水30のCODを10mg/Lとすれば、40mg/LのCODを除去することになるが、これは、10回の循環で処理できることになる。よって、前記取り出す処理水31の水量を廃水20の水量に対して9倍程度とすればよい計算になる。なお、実際には、空気(大気)からの酸素溶解もあるので、上述の計算値よりは前記取り出す処理水の水量を少なく設定できる場合が多い。   For example, as a method of controlling the amount of the treated water 31 to be taken out, there is a method of using a treated amount per one movement from the upstream side to the downstream side in the long space 10. Since the dissolved oxygen concentration is affected by the water temperature and coexisting substances, it cannot be discussed strictly. However, the dissolved oxygen concentration of the mixed water 40 of the waste water 20 and the extracted treated water 31 that flows into the long space 10 is determined. In order to increase the concentration to about 5 mg / L and make the dissolved oxygen concentration in the downstream area in the long space 10 about 1 mg / L, about 4 mg / L of dissolved oxygen will be consumed. If the COD component is oxidized at 4 mg / L, 4 mg / L of COD component can be removed per cycle. Therefore, if the COD of the waste water 20 is 50 mg / L and the COD of the treated water 30 is 10 mg / L, 40 mg / L of COD can be removed, but this can be processed in 10 cycles. Therefore, the calculation can be performed by setting the amount of the treated water 31 to be taken out to about nine times the amount of the waste water 20. Actually, since there is also oxygen dissolution from the air (atmosphere), the amount of treated water to be taken out can often be set smaller than the calculated value described above.

また、前記取り出した処理水31を、前記長尺空間10内を通過させる前に、前記廃水20と混合することが必須となる。前記取り出した処理水31と前記廃水20との混合は、混合槽80内で行われ、該混合槽80から前記長尺空間10内へ前記取り出した処理水31と廃水20とを混合した水40を流入させる。   Further, it is essential to mix the extracted treated water 31 with the waste water 20 before passing through the long space 10. Mixing of the extracted treated water 31 and the waste water 20 is performed in a mixing tank 80, and water 40 obtained by mixing the extracted treated water 31 and the waste water 20 from the mixing tank 80 into the long space 10. Inflow.

さらに、前記混合槽80では、前記取り出した処理水31と廃水20との混合によって、硫化水素ガスが発生しやすい条件となっていることから、前記混合槽80の上部を開放とせず、発生した硫化水素ガスを少しずつ抜き出し、処理することが好ましい。硫化水素ガスの処理方法としては、アルカリ吸収や、アルカリ吸収後の液を次亜塩素酸酸化させる方法等の市販、公知の技術を活用すればよい。なお、前記pH調整槽70においても、同様に硫化水素ガスが発生する可能性がある場合には、上部を開放とせず、発生した硫化水素の処理を行うことが好ましい。さらに、処理設備の立ち上げ時などの長尺空間10における微生物処理が不十分な場合には、エアリフトポンプ50を用いた際、ポンプからの排ガスに含まれる硫化水素ガスの濃度が上昇する可能性がある。前記エアリフトポンプ50は、排ガス量が大きいため、この排ガスについても硫化水素の処理を行うことが好ましい。ただし、エアリフトポンプ50の排ガス中の硫化水素発生は、前述の微生物処理能力が低い場合に限られる問題である。また、処理量の絶対量である負荷を徐々に上昇させるなどの運転上の方策で、硫化水素ガスの発生を抑制することも可能である。   Furthermore, in the mixing tank 80, since it is in a condition that hydrogen sulfide gas is likely to be generated by mixing the treated treated water 31 and the waste water 20, the upper part of the mixing tank 80 was not opened and was generated. The hydrogen sulfide gas is preferably extracted little by little and treated. As a method for treating hydrogen sulfide gas, commercially available and known techniques such as alkali absorption and a method of oxidizing the liquid after alkali absorption with hypochlorous acid may be used. In the pH adjusting tank 70 as well, when hydrogen sulfide gas is likely to be generated, it is preferable that the generated hydrogen sulfide is processed without opening the upper part. Furthermore, when the microbial treatment in the long space 10 is insufficient, such as when the treatment facility is started up, the concentration of hydrogen sulfide gas contained in the exhaust gas from the pump may increase when the air lift pump 50 is used. There is. Since the air lift pump 50 has a large amount of exhaust gas, it is preferable to treat hydrogen sulfide with respect to the exhaust gas. However, the generation of hydrogen sulfide in the exhaust gas of the air lift pump 50 is a problem that is limited to the case where the above-described microorganism processing ability is low. In addition, it is possible to suppress the generation of hydrogen sulfide gas by an operational measure such as gradually increasing the load that is the absolute amount of the processing amount.

なお、前記処理水30の外部への搬送は、図1に示すように、前記エアリフトポンプ50によって溶存酸素濃度を高めた後としても、図2に示すように、前記長尺空間10から直接としても構わない。さらに、図示はしていないが、外部に搬送する前記処理水30を監視するための水槽を設置し、処理水が放流基準を満足していることを確認してから放流することが好ましく、監視水槽にpH調整機能を持たせたり、監視水槽の前段にpH調整槽を設けても構わない。   As shown in FIG. 1, the treated water 30 is transported directly from the long space 10 as shown in FIG. 2 even after the dissolved oxygen concentration is increased by the air lift pump 50. It doesn't matter. Further, although not shown in the figure, it is preferable to install a water tank for monitoring the treated water 30 to be transported to the outside, and discharge it after confirming that the treated water satisfies the discharge standard. You may give a pH adjustment function to a water tank, or you may provide a pH adjustment tank in the front | former stage of a monitoring water tank.

また、上述の本発明による廃水の処理方法を実現するための、本発明による硫黄系COD成分を含有する廃水の処理装置は、図1に示すように、微生物の担持が可能な少なくとも1つの微生物担持材11を具える水路又は水槽等の長尺空間10内に、硫黄系COD成分を含有する廃水20を通過させて、該廃水20中のCOD成分を生物学的に処理する装置1であって、前記廃水20を供給する例えばポンプ等の廃水供給手段21と、前記長尺空間10内を通過した処理水30の一部を取り出す返送手段90と、取り出した処理水31と廃水20とを混合した後、混合した水を前記長尺空間10内へ流入させる混合槽80とを具えることを特徴とする。   Moreover, the wastewater treatment apparatus containing the sulfur-based COD component according to the present invention for realizing the above-described wastewater treatment method according to the present invention includes at least one microorganism capable of supporting microorganisms as shown in FIG. An apparatus 1 for biologically treating COD components in waste water 20 by passing waste water 20 containing a sulfur-based COD component through a long space 10 such as a water channel or a water tank provided with a support material 11. The waste water supply means 21 for supplying the waste water 20 such as a pump, the return means 90 for taking out a part of the treated water 30 that has passed through the long space 10, the treated water 31 and the waste water 20 taken out are It is characterized by comprising a mixing tank 80 for allowing the mixed water to flow into the long space 10 after mixing.

上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。   The above description is merely an example of the embodiment of the present invention, and various modifications can be made within the scope of the claims.

本発明の実施例及び比較例について説明する。
(実施例1)
実施例1は、図5に示す、81本の微生物担持材11を具える水路(長尺空間)10(全長:7m、幅:0.9m、水深:0.3m)と、図1に示すように、廃水20を供給するポンプ(廃水供給手段)21と、前記水路10内を通過した処理水30の一部を前記水路10より取り出し、水路10の上流側へと返送する返送手段90と、取り出した処理水31と廃水20とを混合し、混合した水40を前記水路10内へ流入させる混合槽80と、前記取り出した処理水31に酸素含有ガスを吹き込こむエアポンプリフト50と、前記取り出した処理水31のpHを調整するためのpH調整槽70と、前記pHの調整及び取り出した処理水31の水量の調整を図るための制御手段60とを具える処理装置1を用いて、廃水20の処理を4週間に亘って実施した。
なお、前記廃水20は、実際のスラグヤードの廃水を用いた。この廃水のCOD濃度は65mg/L、pHは11.9、廃水の供給量は15L/分であった。
また、取り出す処理水31の水量は、75L/分とし、後述する評価については、前記取り出す処理水の水量を75L/分を確保できるようになった後、つまり処理が安定状態に達した後に、評価を行った。
Examples of the present invention and comparative examples will be described.
Example 1
In Example 1, a water channel (long space) 10 (total length: 7 m, width: 0.9 m, water depth: 0.3 m) including 81 microorganism-supporting materials 11 shown in FIG. 5 and as shown in FIG. A pump (waste water supply means) 21 for supplying the waste water 20; a return means 90 for taking out a part of the treated water 30 that has passed through the water channel 10 from the water channel 10 and returning it to the upstream side of the water channel 10; The treated water 31 and the waste water 20 are mixed, the mixing tank 80 into which the mixed water 40 flows into the water channel 10, the air pump lift 50 that blows oxygen-containing gas into the removed treated water 31, and the removal Waste water using a treatment apparatus 1 comprising a pH adjusting tank 70 for adjusting the pH of the treated water 31 and a control means 60 for adjusting the pH and adjusting the amount of the treated water 31 taken out. Twenty treatments were carried out over 4 weeks.
The waste water 20 was an actual slag yard waste water. The COD concentration of this wastewater was 65 mg / L, the pH was 11.9, and the supply amount of wastewater was 15 L / min.
Further, the amount of the treated water 31 to be taken out is 75 L / min. For the evaluation to be described later, after the amount of the treated water to be taken out can be secured at 75 L / min, that is, after the treatment reaches a stable state, Evaluation was performed.

(比較例1)
比較例1は、図6(a)に示すように、81本の微生物担持材11(図5)を具える水路(長尺空間)100(全長:7m、幅:0.9m、水深:0.3m)と、廃水20のpHを調整するためのpH調整槽700と、pH調整槽700中の前記廃水20に酸素含有ガスを吹き込こむエアポンプリフト500とを具えるCOD成分を含有する廃水の処理装置を用いて、廃水20の処理を4週間に亘って実施した。
なお、前記廃水20は、実施例1と同様に、実際のスラグヤードから廃水を用い、COD濃度は65mg/L、pHは11.9、廃水の供給量は15L/分であった。
(Comparative Example 1)
In Comparative Example 1, as shown in FIG. 6 (a), a water channel (long space) 100 (total length: 7 m, width: 0.9 m, water depth: 0.3 m) including 81 microorganism-supporting materials 11 (FIG. 5). ), A pH adjustment tank 700 for adjusting the pH of the waste water 20, and an air pump lift 500 for blowing oxygen-containing gas into the waste water 20 in the pH adjustment tank 700. Using the apparatus, the treatment of the waste water 20 was carried out for 4 weeks.
As in Example 1, the waste water 20 was waste water from an actual slag yard. The COD concentration was 65 mg / L, the pH was 11.9, and the amount of waste water supplied was 15 L / min.

(比較例2)
比較例2は、図6(b)に示すように、81本の微生物担持材11(図5)を具える水路(長尺空間)100(全長:7m、幅:0.9m、水深:0.3m)と、廃水20のpHを調整するためのpH調整槽700と、エアポンプリフト500によって前記廃水20に酸素含有ガスを吹き込こむ酸素溶解槽600とを具えるCOD成分を含有する廃水の処理装置を用いて、廃水20の処理を4週間に亘って実施した。
なお、前記廃水20は、実施例1と同様に、実際のスラグヤードから廃水を用い、COD濃度は65mg/L、pHは11.9、廃水の供給量は15L/分であった。
(Comparative Example 2)
In Comparative Example 2, as shown in FIG. 6 (b), a water channel (long space) 100 (total length: 7 m, width: 0.9 m, water depth: 0.3 m) including 81 microorganism-supporting materials 11 (FIG. 5). ), A pH adjusting tank 700 for adjusting the pH of the wastewater 20, and an oxygen dissolving tank 600 for blowing an oxygen-containing gas into the wastewater 20 by an air pump lift 500. The wastewater 20 was treated for 4 weeks using
As in Example 1, the waste water 20 was waste water from an actual slag yard. The COD concentration was 65 mg / L, the pH was 11.9, and the amount of waste water supplied was 15 L / min.

実施例及び各比較例の結果について評価を行った。
(評価方法)
(1)水路10に流入させる直前、水路10中を3.5m通過したとき、及び、水路10を通過した直後の、廃水20、混合水40、処理水30、300を回収し、COD濃度(mg/L)を測定した。測定結果を表1に示す。
(2)水路10に流入させる直前、水路10中を3.5m通過したとき、及び、水路10を通過した直後の、廃水20、混合水40、処理水30、300を回収し、pHを測定した。測定結果を表1に示す。
(3)水路10に流入させる直前、水路10中を3.5m通過したとき、及び、水路10を通過した直後の、廃水20、混合水40、処理水30、300を回収し、溶存酸素濃度(mg/L)を測定した。測定結果を表1に示す。
(4)廃水の処理中に、混合槽、pH調整槽又は酸素溶解槽で発生した硫化水素の量(容量ppm)を測定した。測定結果を表1に示す。
The results of Examples and Comparative Examples were evaluated.
(Evaluation method)
(1) The waste water 20, the mixed water 40, the treated water 30 and 300 immediately after flowing through the water channel 10 immediately before flowing into the water channel 10 and after passing through the water channel 10 are collected, and the COD concentration (mg / L) was measured. The measurement results are shown in Table 1.
(2) The waste water 20, the mixed water 40, the treated water 30 and 300 immediately after passing through the water channel 10 just before flowing into the water channel 10 and after passing through the water channel 10 were collected, and the pH was measured. . The measurement results are shown in Table 1.
(3) The waste water 20, the mixed water 40, the treated water 30 and 300 are recovered immediately before flowing into the water channel 10, 3.5m through the water channel 10 and immediately after passing through the water channel 10, and the dissolved oxygen concentration ( mg / L) was measured. The measurement results are shown in Table 1.
(4) During the treatment of wastewater, the amount of hydrogen sulfide (volume ppm) generated in the mixing tank, pH adjusting tank or oxygen dissolving tank was measured. The measurement results are shown in Table 1.

Figure 0005381231
Figure 0005381231

表1の結果より、COD濃度(mg/L)については、実施例1では、水路を進むにつれてCOD濃度(mg/L)が低下し(15.8→8.7→4.1)、有効にCOD成分が処理されていることがわかった。一方、比較例1及び2については、水路中を3.5m通過するまではCOD濃度(mg/L)が低下している(55→39、61→41)ものの、水路3.5m通過時点から通路を出るまでの間では、ほとんど変化がなく(39→38、41→40)、水路の下流側で微生物による処理がほとんど行われていないことがわかった。
また、pH及び溶存酸素濃度(mg/L)については、実施例1では、水路の通過前から通過後まで、ほぼ一定の値を示すのに対して、比較例1及び2では、pH及び溶存酸素濃度のいずれについても通路を通過した後では、大きく低下していることがわかった。このpH及び溶存酸素濃度の低下により、微生物によるCOD成分の処理が行われず、実施例1のCOD濃度の結果と比べて大きな差が出たものと考えられる。
さらに、硫化水素の発生については、実施例1については、有効に低減できているものの、比較例1及び2については、pH調整層において多くの硫化水素が発生していることがわかった。
また、各実施例及び比較例では、いずれも、水路に投入した廃水が15L/分、廃水のCOD濃度が65mg/Lであるが、実施例1では、取り出す処理水を75L/分としているため、比較例1及び2の約4倍の速度で廃水を含んだ混合水を処理していることになる。
From the results in Table 1, with respect to the COD concentration (mg / L), in Example 1, the COD concentration (mg / L) decreased (15.8 → 8.7 → 4.1) as the water channel was advanced, and the COD component was effectively treated. I found out. On the other hand, in Comparative Examples 1 and 2, although the COD concentration (mg / L) decreased (55 → 39, 61 → 41) until it passed through the water channel for 3.5 m, the passage from the time when the water channel passed through 3.5 m. There was almost no change until it came out (39 → 38, 41 → 40), and it was found that there was almost no treatment with microorganisms on the downstream side of the waterway.
Further, with respect to pH and dissolved oxygen concentration (mg / L), Example 1 shows almost constant values from before passing through the water channel to after passing, whereas in Comparative Examples 1 and 2, pH and dissolved oxygen concentration are shown. It was found that both oxygen concentrations were greatly reduced after passing through the passage. It is considered that due to the decrease in pH and dissolved oxygen concentration, the treatment of the COD component by the microorganism was not performed, and a large difference was produced as compared with the result of the COD concentration in Example 1.
Furthermore, although it was able to reduce effectively about generation | occurrence | production of hydrogen sulfide about Example 1, it turned out that much hydrogen sulfide has generate | occur | produced in the pH adjustment layer about Comparative Examples 1 and 2.
In each of the examples and comparative examples, the wastewater introduced into the channel is 15 L / min and the COD concentration of the wastewater is 65 mg / L. However, in Example 1, the treated water to be taken out is 75 L / min. Thus, the mixed water containing waste water is being processed at a rate about 4 times that of Comparative Examples 1 and 2.

本発明によれば、高濃度のCOD成分を含有する場合であっても、確実かつ迅速に処理できる硫黄系COD成分を含有する廃水の処理方法及び処理装置を提供することが可能である。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where a high concentration COD component is contained, it is possible to provide the processing method and processing apparatus of the wastewater containing the sulfur type COD component which can be processed reliably and rapidly.

1 硫黄系COD成分を含有する廃水の処理装置
10、100 長尺空間、水路
11 微生物担持材
12 攪拌手段
13 開口部
20 廃水
21 廃水供給手段
30 処理水
31 処理水の一部、取り出した処理水
40 廃水と取り出した処理水を混合した水
50、500 酸素吹込み手段、エアリフトポンプ
51 酸素含有ガス
60、600 返送手段
61、63 pH計
64 溶存酸素計
70、700 pH調整槽
71 pH調整剤
80 混合槽
90 返送手段
91 水路
92 ポンプ
100 制御装置
120 硫化水素濃度計
DESCRIPTION OF SYMBOLS 1 Treatment apparatus 10/100 for waste water containing sulfur COD component Long space, water channel 11 Microorganism support material 12 Stirring means 13 Opening part 20 Waste water 21 Waste water supply means 30 Treated water 31 A part of treated water, extracted treated water 40 Water 50, 500 mixed with waste water and extracted treated water, oxygen blowing means, air lift pump 51 oxygen-containing gas 60, 600 return means 61, 63 pH meter 64 Dissolved oxygen meter 70, 700 pH adjustment tank 71 pH adjuster 80 Mixing tank 90 Return means 91 Water channel 92 Pump 100 Controller 120 Hydrogen sulfide concentration meter

Claims (9)

微生物の担持が可能な少なくとも1つの微生物担持材を具える長尺空間内に、硫黄系COD成分を含有する廃水を通過させて、該廃水中のCOD成分を生物学的に処理する方法であって、
前記長尺空間内を通過した後の処理水の一部を取り出し、該処理水のpHを、前記長尺空間内の下流域において測定したpHの測定結果に基づいて中性から弱酸性の範囲に調整した後、前記廃水と混合、前記長尺空間内を通過させることを特徴とする硫黄系COD成分を含有する廃水の処理方法。
A method of biologically treating COD components in waste water by passing waste water containing sulfur-based COD components through a long space comprising at least one microorganism-supporting material capable of supporting microorganisms. And
A portion of the treated water after passing through the long space is taken out, and the pH of the treated water is in a neutral to weakly acidic range based on the measurement result of the pH measured in the downstream region in the long space. A method for treating wastewater containing a sulfur-based COD component , wherein the wastewater is mixed with the wastewater and passed through the long space.
前記取り出した処理水は、前記廃水と混合する前に、酸素含有ガスを吹き込んで、溶存酸素濃度を上昇させる請求項1記載の硫黄系COD成分を含有する廃水の処理方法。   The method for treating wastewater containing sulfur-based COD components according to claim 1, wherein the treated water taken out is blown with an oxygen-containing gas before being mixed with the wastewater to increase the dissolved oxygen concentration. 前記酸素含有ガスの吹き込みは、エアリフトポンプを用いる請求項2記載の硫黄系COD成分を含有する廃水の処理方法。   The method for treating a wastewater containing a sulfur-based COD component according to claim 2, wherein an air lift pump is used for blowing the oxygen-containing gas. 前記取り出す処理水の水量は、前記廃水と混合する前に、前記長尺空間内の下流域でのpH及び/又は溶存酸素濃度を測定し、その測定結果をもとに調整する請求項1〜のいずれか1項記載の硫黄系COD成分を含有する廃水の処理方法。 The amount of the treated water to be taken out is adjusted based on the measurement result by measuring pH and / or dissolved oxygen concentration in the downstream region in the long space before mixing with the waste water. method of processing waste water containing a sulfur-based COD components according to any one of 3. 微生物の担持が可能な少なくとも1つの微生物担持材を具える長尺空間内に、硫黄系COD成分を含有する廃水を通過させて、該廃水中のCOD成分を生物学的に処理する装置であって、
前記廃水を供給する廃水供給手段と、前記長尺空間内を通過した処理水の一部を取り出す返送手段と、該処理水のpHを調整するためのpH調整槽と、該処理水のpHを前記長尺空間内の下流域において測定したpHの測定結果に基づいて中性から弱酸性の範囲に制御する制御手段と、pHが調整された処理水と前記廃水とを混合した後、前記混合した水を前記長尺空間内へ流入させる混合槽とを具えることを特徴とする硫黄系COD成分を含有する廃水の処理装置。
An apparatus for biologically treating COD components in waste water by passing waste water containing sulfur-based COD components through a long space having at least one microorganism-supporting material capable of supporting microorganisms. And
Waste water supply means for supplying the waste water, return means for taking out a part of the treated water that has passed through the long space, a pH adjustment tank for adjusting the pH of the treated water, and the pH of the treated water. After mixing the control means for controlling from neutral to weakly acidic range based on the measurement result of pH measured in the downstream area in the long space, the treated water adjusted to pH and the wastewater, the mixing An apparatus for treating wastewater containing a sulfur-based COD component, comprising: a mixing tank for allowing the treated water to flow into the long space.
前記取り出した処理水に酸素含有ガスを吹き込こむ酸素吹込み手段をさらに具える請求項記載の硫黄系COD成分を含有する廃水の処理装置。 6. The apparatus for treating wastewater containing sulfur-based COD components according to claim 5 , further comprising oxygen blowing means for blowing oxygen-containing gas into the extracted treated water. 前記酸素吹込み手段は、エアリフトポンプである請求項記載の硫黄系COD成分を含有する廃水の処理装置。 The apparatus for treating wastewater containing a sulfur-based COD component according to claim 6 , wherein the oxygen blowing means is an air lift pump. 前記取り出す処理水の水量を制御するための制御手段をさらに具える請求項5〜7のいずれか1項記載の硫黄系COD成分を含有する廃水の処理装置。 The apparatus for treating wastewater containing sulfur-based COD components according to any one of claims 5 to 7 , further comprising control means for controlling the amount of treated water to be taken out. 前記長尺空間は、前記長尺空間中を通過する廃水を攪拌する攪拌手段をさらに具える請求項5〜8のいずれか1項記載の硫黄系COD成分を含有する廃水の処理装置。 The said long space is a wastewater processing apparatus containing the sulfur type COD component of any one of Claims 5-8 further equipped with the stirring means which stirs the wastewater which passes through the said long space.
JP2009082101A 2009-03-30 2009-03-30 Apparatus and method for treating wastewater containing sulfur-based COD component Active JP5381231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009082101A JP5381231B2 (en) 2009-03-30 2009-03-30 Apparatus and method for treating wastewater containing sulfur-based COD component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009082101A JP5381231B2 (en) 2009-03-30 2009-03-30 Apparatus and method for treating wastewater containing sulfur-based COD component

Publications (2)

Publication Number Publication Date
JP2010234180A JP2010234180A (en) 2010-10-21
JP5381231B2 true JP5381231B2 (en) 2014-01-08

Family

ID=43089060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009082101A Active JP5381231B2 (en) 2009-03-30 2009-03-30 Apparatus and method for treating wastewater containing sulfur-based COD component

Country Status (1)

Country Link
JP (1) JP5381231B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5488166B2 (en) * 2010-04-26 2014-05-14 Jfeスチール株式会社 Biological treatment method and apparatus for waste water containing sulfur-based COD components
JP6181386B2 (en) * 2013-03-08 2017-08-16 新日鐵住金株式会社 Method for treating waste water containing reducing sulfur compound and biological treatment tank

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874189A (en) * 1981-10-29 1983-05-04 Mitsubishi Heavy Ind Ltd Treatment for waste water containing dithionic acid and polythionic acid
JPS62204896A (en) * 1986-03-03 1987-09-09 Daiwa Kasei Kk Household combined purifying tank
JP3056361B2 (en) * 1993-11-08 2000-06-26 シャープ株式会社 Wastewater treatment device and wastewater treatment method
JP2769973B2 (en) * 1994-03-29 1998-06-25 シャープ株式会社 Method and apparatus for treating water to be treated containing organic sulfur compounds
JP3491474B2 (en) * 1996-12-05 2004-01-26 Jfeエンジニアリング株式会社 Water treatment equipment
JP2002079034A (en) * 2000-09-08 2002-03-19 Kurita Water Ind Ltd Biological desulfurization method and apparatus
JP2005013927A (en) * 2003-06-27 2005-01-20 Ebara Corp Method and apparatus for water treatment by aerobic filter bed

Also Published As

Publication number Publication date
JP2010234180A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
ES2362211T3 (en) PROCEDURE FOR THE TREATMENT OF WASTEWATER CONTAINING AMMONIUM BY REGULATION OF PH.
SA516371602B1 (en) Reduction of the amount of sulphur compounds in a sulphur compounds contaminated wastewater stream, using a granular sludge treatment system
JP2008168201A (en) Wastewater treatment method
Zhang et al. Hydrogen sulfide control in sewer systems: A critical review of recent progress
ES2606346T3 (en) Process to extract iron from an acidic aqueous solution
JP5381231B2 (en) Apparatus and method for treating wastewater containing sulfur-based COD component
CN105036317B (en) Method for simultaneously removing organic matters, heavy metals and sulfate in beneficiation wastewater
CN105722796B (en) The control program of organic waste-water treating apparatus, the processing method of organic wastewater and organic waste-water treating apparatus
JP4735561B2 (en) Method for treating wastewater containing sulfur-based COD components
CN115244012A (en) Method for treating water, sediment and/or sludge
KR20190051340A (en) A method and apparatus for effectively purifying the radioactive wastewater containing multi-nuclides
JP5267190B2 (en) Method for treating wastewater containing sulfur-based COD components
JP2009291668A (en) Water area environment improving material and its use
JP2622649B2 (en) Immobilized carrier suitable for sulfur oxidizing bacteria, method of immobilizing sulfur oxidizing bacteria on immobilized carrier, method of acclimating and growing sulfur oxidizing bacteria in fixed bed bioreactor, and biology of wastewater containing reducing sulfur compounds Processing method
Mazuelos et al. A new thiosalt depuration bioprocess for water-recycling in metallic sulphide mineral processing
CN111533319B (en) Device and method for treating COD (chemical oxygen demand) in desulfurization wastewater by ozone oxidation method
TW202202454A (en) Aerobic biological processing method and device
JP6425469B2 (en) Method of treating waste water containing reducing sulfur compounds
JP2618164B2 (en) Conditioning and propagation of sulfur oxidizing bacteria by addition of inorganic coagulant and biological treatment of wastewater containing reducing sulfur compounds
JP4790243B2 (en) Method for treating wastewater containing sulfur compounds
JP5488166B2 (en) Biological treatment method and apparatus for waste water containing sulfur-based COD components
CN205472940U (en) Sewage treatment plant through monitoring N2O automatic control
JP2582695B2 (en) Biological treatment method for wastewater containing hydrogen sulfide
El Awady et al. Sulfate Reduction in an Upflow Anaerobic Sludge Blanket Bioreactor and Optimization of Operational Conditions: pH, Hydraulic Retention Time, Sulfate Loading Rate, COD/SO42-Ratio
Schwarz et al. A steady-state pH-control model for the biological production of elemental sulfur from sulfate in mining-influenced water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Ref document number: 5381231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250