JP4790243B2 - Method for treating wastewater containing sulfur compounds - Google Patents

Method for treating wastewater containing sulfur compounds Download PDF

Info

Publication number
JP4790243B2
JP4790243B2 JP2004287394A JP2004287394A JP4790243B2 JP 4790243 B2 JP4790243 B2 JP 4790243B2 JP 2004287394 A JP2004287394 A JP 2004287394A JP 2004287394 A JP2004287394 A JP 2004287394A JP 4790243 B2 JP4790243 B2 JP 4790243B2
Authority
JP
Japan
Prior art keywords
wastewater
acid
sulfur
oxidation
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004287394A
Other languages
Japanese (ja)
Other versions
JP2006095478A (en
Inventor
理 三木
公夫 伊藤
昭 具島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004287394A priority Critical patent/JP4790243B2/en
Publication of JP2006095478A publication Critical patent/JP2006095478A/en
Application granted granted Critical
Publication of JP4790243B2 publication Critical patent/JP4790243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、廃水中に含まれる硫黄化合物を効率的かつ安定処理する水処理方法に関する。   The present invention relates to a water treatment method for efficiently and stably treating a sulfur compound contained in wastewater.

硫黄化合物を含有する廃水として代表的なものに排煙脱硫廃水がある。排煙脱硫廃水は、発電所や製鐵所などの湿式排煙脱硫装置から排出される。燃焼排ガスに含まれる硫黄化合物の大部分は二酸化硫黄(SO2)である。一般的に、排ガス湿式処理では、排ガス中の二酸化硫黄をアルカリスラリーやアルカリ吸収剤に吸収させ処理するが、この結果として、亜硫酸(SO3 2-)や重亜硫酸(HSO3 -)などの還元性硫黄化合物を含有する、いわゆる排煙脱硫廃水が発生する。 A typical example of wastewater containing sulfur compounds is flue gas desulfurization wastewater. Flue gas desulfurization wastewater is discharged from wet flue gas desulfurization equipment such as power plants and ironworks. Most of the sulfur compounds contained in the combustion exhaust gas are sulfur dioxide (SO 2 ). Generally, in the exhaust gas wet processing is processing to absorb the sulfur dioxide in the exhaust gas in an alkaline slurry and an alkaline absorbent, this result, sulfite (SO 3 2-) and bisulfite - reduction, such as (HSO 3) So-called flue gas desulfurization waste water containing a reactive sulfur compound is generated.

例えば、アルカリ吸収剤が水酸化ナトリウムの場合、以下の反応により、亜硫酸ナトリウム(Na2SO3)や亜酸水素ナトリウム(NaHSO3)を生成する。 For example, when the alkali absorbent of sodium hydroxide, by the following reaction, to produce sodium sulfite (Na 2 SO 3) and nitrite sulfate sodium hydrogen (NaHSO 3).

2NaOH + SO2 → Na2SO3 + H2O (1)
Na2SO3 + H2O + SO2 → 2NaHSO3 (2)
2NaOH + SO 2 → Na 2 SO 3 + H 2 O (1)
Na 2 SO 3 + H 2 O + SO 2 → 2NaHSO 3 (2)

また、排煙脱硫方法として、NaOHより安価な水酸化カルシウム(Ca(OH)2)や水酸化マグネシウム(Mg(OH)2)を5〜10%含むスラリーを用いる方法が広く採用されている。水酸化カルシウム(Ca(OH)2)の場合、脱硫廃水中には、亜硫酸カルシウム(CaSO3)や亜酸水素カルシウム(CaHSO3)が生成する。水酸化マグネシウム(Mg(OH)2)の場合、亜硫酸マグネシウム(MgSO3)や亜酸水素マグネシウム(MgHSO3)が生成する。亜硫酸マグネシウム(MgSO3)や亜酸水素マグネシウム(MgHSO3)は、溶解度が比較的大きいため、配管等の閉塞が生じにくい等の利点がある。ただし、これらの物質の溶解度はpHが上昇すると低下し、スケールが発生しやすくなるので、pH=5.5〜6.0が望ましいとされている(非特許文献1参照)。 As a flue gas desulfurization method, a method using a slurry containing 5 to 10% of calcium hydroxide (Ca (OH) 2 ) or magnesium hydroxide (Mg (OH) 2 ), which is cheaper than NaOH, is widely adopted. If calcium hydroxide (Ca (OH) 2), during the desulfurization waste water, calcium sulfite (CaSO 3) and nitrite sulfate Calcium hydrogen (CaHSO 3) is produced. When magnesium hydroxide (Mg (OH) 2), magnesium sulfite (MgSO 3) and nitrite sulfate magnesium hydrogen (MgHSO 3) is produced. Magnesium sulfite (MgSO 3) and nitrite sulfate magnesium hydrogen (MgHSO 3), since the solubility is relatively large, clogging of the piping or the like has advantages such as less likely to occur. However, the solubility of these substances decreases with an increase in pH, and scale tends to be generated. Therefore, it is considered that pH is preferably 5.5 to 6.0 (see Non-Patent Document 1).

また、廃水の種類によっては、硫黄化合物としてチオ硫酸(S2O3 2-)やジチオン酸(S2O6 2-)を含む場合がある。 Further, depending on the type of wastewater, thiosulfuric acid (S 2 O 3 2− ) and dithionic acid (S 2 O 6 2− ) may be included as sulfur compounds.

廃水中のこのような硫黄化合物は、排水基準で規制されているCOD(Chemical Oxygen Demand;化学的酸素要求量、過マンガン酸カリウムを用いて定量)として計測される。例えば、SO3 2-の場合、理論CODは、16/80=0.2g-COD/g- SO3 2-である。したがって、排水基準を満足できない場合、このままでは放流できない。 Such sulfur compounds in wastewater are measured as COD (Chemical Oxygen Demand; determined using chemical oxygen demand, potassium permanganate) regulated by wastewater standards. For example, in the case of SO 3 2- , the theoretical COD is 16/80 = 0.2 g-COD / g-SO 3 2- . Therefore, if the drainage standard cannot be satisfied, it cannot be discharged as it is.

そこで、廃水中の硫黄化合物を酸化処理して硫酸イオン(SO4 2-)とし、Ca(OH)2と反応させ、石膏(CaSO4)として回収したり、あるいは、酸化処理後、無害な硫酸イオン(SO4 2-)として放流する必要がある。 Therefore, the sulfur compounds in the wastewater are oxidized to sulfate ions (SO 4 2− ), reacted with Ca (OH) 2 and recovered as gypsum (CaSO 4 ), or harmless sulfuric acid after oxidation treatment. It must be released as ions (SO 4 2- ).

硫黄化合物の酸化処理方法としては、空気を用いた酸化方法、酸化剤を用いた化学酸化方法が公知である。還元性硫黄化合物を酸化する化学酸化剤としては、過酸化水素,次亜塩素酸,オゾン,過マンガン酸カリウム等が広く知られている(非特許文献2参照)。あるいは硫黄酸化細菌を用いた生物酸化法も一部で実施されている(非特許文献3、特許文献1参照)。
特開平3−341757号公報(表1) 特開平7−265876号公報(第1頁、第1図) 通商産業省環境立地局監修四訂「公害防止の技術と法規-大気編-」丸善、1995年、p105-117 化学工学協会著「物理および化学的水処理技術と装置(下)」倍風館出版、1978年、p70-125 「活性汚泥からの硫黄酸化細菌の馴養とチオ硫酸の除去特性」、水環境学会誌、第18巻、第3号、p231-p239、1995年
Known oxidation methods for sulfur compounds include an oxidation method using air and a chemical oxidation method using an oxidizing agent. As chemical oxidants that oxidize reducing sulfur compounds, hydrogen peroxide, hypochlorous acid, ozone, potassium permanganate, and the like are widely known (see Non-Patent Document 2). Alternatively, some biooxidation methods using sulfur-oxidizing bacteria have also been implemented (see Non-Patent Document 3 and Patent Document 1).
JP-A-3-341757 (Table 1) Japanese Patent Laid-Open No. 7-265876 (first page, FIG. 1) 4th edition supervised by Ministry of International Trade and Industry, Environmental Location Bureau, "Pollution Prevention Technology and Regulations-Atmosphere", Maruzen, 1995, p105-117 “Physical and chemical water treatment technology and equipment (below)” published by the Society of Chemical Engineering, published by Baifukan, 1978, p70-125 "Acclimation of sulfur-oxidizing bacteria from activated sludge and removal characteristics of thiosulfate", Journal of Japan Society on Water Environment, Vol. 18, No. 3, p231-p239, 1995

しかしながら、このような方法は以下のような課題がある。
まず、空気酸化方法について説明する。亜硫酸(SO3 2-)、重亜硫酸(HSO3 -)の場合、反応式は以下の通りである。
However, such a method has the following problems.
First, the air oxidation method will be described. In the case of sulfurous acid (SO 3 2− ) and bisulfite (HSO 3 ), the reaction formula is as follows.

SO3 2- + 1/2O2 → SO4 2- (3)
HSO3 - + OH-+1/2O2 → SO4 2- +H2O (4)
SO 3 2- + 1 / 2O 2 → SO 4 2- (3)
HSO 3 - + OH - + 1 / 2O 2 → SO 4 2- + H 2 O (4)

この場合、1mM(80mg)の亜硫酸(SO3 2-)を酸化するのに必要な溶存酸素は、0.5mM(16mg)である。水中での酸素の溶解度は、せいぜい9mg/L(水温20℃)程度であるため、亜硫酸(SO3 2-)の濃度が高くなると、溶存酸素の供給が律速となり、空気を用いた酸化にはかなりの時間が必要となる。また、空気酸化の終了点のリアルタイムでの指標が無く、CODの測定で酸化程度を知る運転がなされている。 In this case, the dissolved oxygen required to oxidize 1 mM (80 mg) sulfurous acid (SO 3 2− ) is 0.5 mM (16 mg). Since the solubility of oxygen in water is at most about 9 mg / L (water temperature: 20 ° C), when the concentration of sulfurous acid (SO 3 2- ) increases, the supply of dissolved oxygen becomes rate-limiting, and oxidation using air Considerable time is required. In addition, there is no real-time index of the end point of air oxidation, and operation is performed to know the degree of oxidation by measuring COD.

また、硫黄化合物の中には空気酸化が困難な物質がある。例えば、チオ硫酸(S2O3 2-)やジチオン酸(S2O6 2-)は、空気で酸化することは困難である。 Some sulfur compounds are difficult to oxidize in the air. For example, thiosulfuric acid (S 2 O 3 2− ) and dithionic acid (S 2 O 6 2− ) are difficult to oxidize with air.

なお、(3)、(4)式から、廃水のCOD値を容易に推定できる。例えば、亜硫酸(SO3 2-)の場合、理論CODは、16/80=0.2g-COD/g- SO3 2-である。 In addition, the COD value of wastewater can be easily estimated from equations (3) and (4). For example, in the case of sulfurous acid (SO 3 2- ), the theoretical COD is 16/80 = 0.2 g-COD / g-SO 3 2- .

次に、化学酸化剤を用いた薬品酸化方法について説明する。   Next, a chemical oxidation method using a chemical oxidizing agent will be described.

前述したように、化学酸化剤としては過酸化水素,次亜塩素酸,オゾン等が広く知られている。空気酸化が困難なチオ硫酸(S2O3 2-)やジチオン酸(S2O6 2-)にも適用できる。これらの反応式は亜硫酸(SO3 2- )の場合、以下の通りとなる。 As described above, hydrogen peroxide, hypochlorous acid, ozone, and the like are widely known as chemical oxidants. It can also be applied to thiosulfuric acid (S 2 O 3 2− ) and dithionic acid (S 2 O 6 2− ), which are difficult to be oxidized by air. These reaction formulas are as follows in the case of sulfurous acid (SO 3 2- ).

SO3 2- + H2O2 → SO4 2- + H2O (5)
SO3 2- + NaOCl → SO4 2- + NaCl (6)
SO3 2- + O3 → SO4 2- + O2 (7)
SO 3 2- + H 2 O 2 → SO 4 2- + H 2 O (5)
SO 3 2- + NaOCl → SO 4 2- + NaCl (6)
SO 3 2- + O 3 → SO 4 2- + O 2 (7)

以上の反応は、化学酸化剤を用いた場合、容易に生じるため、反応時間の短縮に効果的である。しかし、これらの反応式から、1gのSO3 2- を酸化するのに必要な薬品量を計算すると表1の結果となる。これらの結果から明らかなように、化学酸化剤は、O2と比較すると使用量が大きく、廃水中の還元性硫黄化合物の濃度が高い場合、ランニングコストが上昇してしまう。また、廃水中に硫黄以外の還元性物質(有機物、還元鉄など)があれば、この酸化にも薬品が消費され、ランニングコストが上昇する。 Since the above reaction occurs easily when a chemical oxidant is used, it is effective for shortening the reaction time. However, when the amount of chemicals required to oxidize 1 g of SO 3 2− is calculated from these reaction equations, the results shown in Table 1 are obtained. As is clear from these results, the chemical oxidant is used in a larger amount than O 2, and the running cost increases when the concentration of the reducing sulfur compound in the wastewater is high. In addition, if there is a reducing substance (organic matter, reduced iron, etc.) other than sulfur in the wastewater, chemicals are consumed for this oxidation, and the running cost increases.

Figure 0004790243
Figure 0004790243

また、さらに、化学酸化剤が処理水に残留すると、環境中の生物に悪影響がでるため、処理水への酸化剤の残存を防ぐ制御(還元剤の添加)が必要となる。   Furthermore, if the chemical oxidant remains in the treated water, the living organisms in the environment are adversely affected. Therefore, control (addition of a reducing agent) is required to prevent the oxidant from remaining in the treated water.

最後に、硫黄酸化細菌を用いた微生物による酸化方法を説明する。硫黄酸化細菌は、硫黄を酸化する際に生ずるエネルギーを用いて、菌体合成を行なう独立栄養(CO2利用)あるいは従属栄養(有機物利用)の細菌群の総称である。硫黄酸化細菌を用いる方法は空気酸化が困難なチオ硫酸(S2O3 2-)やジチオン酸(S2O6 2-)に適用できる特徴がある(非特許文献3)。また、必要な空気量も空気酸化法とかわらない利点がある。しかしながら、空気酸化が可能な硫黄化合物、例えば亜硫酸(SO3 2-)を多く含む廃水の場合には、微生物反応に必要な酸素が優先して空気酸化として亜硫酸(SO3 2-)に消費されてしまう。この為、亜硫酸(SO3 2-)とチオ硫酸(S2O3 2-)を同時に大量に含むような廃水に対しては、硫黄酸化細菌の活性の低下がおきやすく、微生物酸化法を単独で適用することは好ましくない。 Finally, an oxidation method using microorganisms using sulfur-oxidizing bacteria will be described. Sulfur-oxidizing bacteria is a general term for a group of autotrophic (CO 2 utilization) or heterotrophic (organic utilization) bacteria that synthesize cells using the energy produced when sulfur is oxidized. The method using sulfur-oxidizing bacteria is applicable to thiosulfuric acid (S 2 O 3 2− ) and dithionic acid (S 2 O 6 2− ), which are difficult to be oxidized by air (Non-patent Document 3). In addition, there is an advantage that the required air amount is not different from the air oxidation method. However, in the case of wastewater containing a large amount of sulfur compounds capable of air oxidation, such as sulfurous acid (SO 3 2- ), oxygen necessary for microbial reaction is preferentially consumed by sulfurous acid (SO 3 2- ) as air oxidation. End up. For this reason, wastewater containing a large amount of sulfurous acid (SO 3 2- ) and thiosulfuric acid (S 2 O 3 2- ) at the same time can easily reduce the activity of sulfur-oxidizing bacteria. It is not preferable to apply the above.

本発明の要旨とするところは、廃水中に含まれる硫黄化合物を処理するに際し、酸化槽においてORP(酸化還元電位、Oxidation Reduction Potential)を指標として硫黄化合物を酸化する方法であり、以下の(1)〜()に示すとおりのものである。 The gist of the present invention is a method of oxidizing a sulfur compound using ORP (Oxidation Reduction Potential) as an index in an oxidation tank when treating a sulfur compound contained in wastewater. ) To ( 6 ).

(1)廃水中に含まれる硫黄化合物を、空気を供給して、又は、亜硝酸イオンを添加すると共に空気を供給して酸化する廃水の処理方法であって、前記廃水のpHを測定し、該廃水中に酸又はアルカリを添加して、該pHが7以上8以下となるように制御しながら、該廃水のORP(酸化還元電位、銀/塩化銀基準値)を測定して硫黄化合物の酸化程度を推定し、該ORPが所定範囲となるように該廃水への空気供給量を制御することを特徴とする廃水の処理方法。 (1) A sulfur compound contained in wastewater is a treatment method of wastewater that supplies air or oxidizes by adding nitrite ions and supplying air, and measuring the pH of the wastewater, While adding acid or alkali to the waste water and controlling the pH to be 7 or more and 8 or less, the ORP (redox potential, silver / silver chloride standard value) of the waste water is measured to determine the sulfur compound. A wastewater treatment method characterized by estimating an oxidation degree and controlling an air supply amount to the wastewater so that the ORP falls within a predetermined range.

)前記(1)に記載の方法により廃水処理を行なった後、廃水中に残存する硫黄化合物を硫黄酸化細菌により酸化することを特徴とする硫黄化合物を含む廃水の処理方法。 ( 2 ) A wastewater treatment method containing a sulfur compound, characterized by oxidizing a sulfur compound remaining in the wastewater with a sulfur-oxidizing bacterium after the wastewater treatment by the method according to ( 1) .

)前記硫黄酸化細菌による酸化の際、前記廃水中に酸又はアルカリを添加して該廃水のpHを6〜8に制御すると共に、該廃水中に空気を供給して該廃水のORP(酸化還元電位、銀/塩化銀基準値)が所定範囲となるように制御することを特徴とする前記()に記載の方法。 ( 3 ) During oxidation by the sulfur-oxidizing bacteria, acid or alkali is added to the wastewater to control the pH of the wastewater to 6-8, and air is supplied to the wastewater to provide an ORP ( The method according to ( 2 ), wherein the oxidation-reduction potential and the silver / silver chloride reference value are controlled to be within a predetermined range.

)前記廃水中に含まれる硫黄化合物が、亜硫酸、重亜硫酸、チオ硫酸、ジチオン酸の1種又は2種以上であることを特徴とする前記(1)〜()のいずれか1項に記載の方法。 ( 4 ) The sulfur compound contained in the wastewater is one or more of sulfurous acid, bisulfurous acid, thiosulfuric acid, and dithionic acid, any one of (1) to ( 3 ) above The method described in 1.

)前記廃水が製鐵所又は発電所の脱硫廃水であることを特徴とする前記(1)〜()のいずれか1項に記載の方法。 ( 5 ) The method according to any one of (1) to ( 4 ), wherein the wastewater is desulfurization wastewater from a steelworks or a power plant.

)前記亜硝酸イオンとしてアンモニアを含む廃水の生物学的廃水処理により発生する亜硝酸イオン含有処理水又は発電所の脱硝廃水を用いることを特徴とする前記(1)〜()のいずれか1項に記載の方法。 ( 6 ) Any one of the above (1) to ( 5 ), wherein treated water containing nitrite ions generated by biological wastewater treatment of wastewater containing ammonia as nitrite ions or denitration wastewater from a power plant is used. The method according to claim 1.

本発明により、硫黄化合物を含有する廃水から、効率的かつ安定して硫黄化合物を酸化処理することが可能となる。   By this invention, it becomes possible to oxidize a sulfur compound efficiently and stably from the wastewater containing a sulfur compound.

以下、本発明を詳細に説明する。本発明の処理フローの1例を図1に示す。   Hereinafter, the present invention will be described in detail. An example of the processing flow of the present invention is shown in FIG.

まず、廃水中に含まれる硫黄化合物を、空気を供給して酸化処理する廃水の処理プロセスにおいて、酸化槽(2)で廃水(1)に含まれる硫黄化合物を酸化する際に、酸化槽(2)のORPをORP計(8)にて測定し、酸化槽(2)のORPが一定値以上となるように酸化槽(2)へのブロアー(10)による空気供給量を制御する。例えば、発明者らは、酸化槽(2)のORPと廃水中の亜硫酸(SO3 2-)濃度の間には、明確な関係があり、ORPによって亜硫酸(SO3 2-)の酸化率を容易に推定できることを知見した。 First, the sulfur compounds contained in the waste water, the treatment process of wastewater oxidation by supplying air, when oxidizing the sulfur compounds contained in the waste water (1) by oxidation tank (2), oxidation tank ( Measure the ORP of 2) with an ORP meter (8), and control the air supply amount by the blower (10) to the oxidation tank (2) so that the ORP of the oxidation tank (2) becomes a certain value or more. For example, the inventors have a clear relationship between the ORP in the oxidation tank (2) and the concentration of sulfurous acid (SO 3 2- ) in the wastewater, and the oxidation rate of sulfurous acid (SO 3 2- ) is determined by ORP. It was found that it can be easily estimated.

図2にpH=6、7、8の場合の酸化槽(2)のORPと亜硫酸(SO3 2-)濃度の関係を示す。この結果から、例えば、処理目標の亜硫酸(SO3 2-)濃度を100mg/L(CODとして、廃水基準値の20mg/L)とした場合、制御目標のORP値は-20mVから+50mV程度であることがわかる。 FIG. 2 shows the relationship between the ORP in the oxidation tank (2) and the sulfurous acid (SO 3 2− ) concentration when the pH is 6, 7, or 8. From this result, for example, when the sulfurous acid (SO 3 2− ) concentration of the treatment target is 100 mg / L (COD, 20 mg / L of the wastewater standard value), the ORP value of the control target is about −20 mV to +50 mV. I understand that.

実際には、酸化槽(2)の制御目標のORP値は、目標とする排水基準値(COD規制値)やpH値の影響によってかわってくるため、各廃水を採取し、実験により、制御ORP値を設定することが望ましい。   Actually, the ORP value of the control target of the oxidation tank (2) changes depending on the target drainage standard value (COD regulation value) and the pH value. It is desirable to set a value.

更に、酸化槽(2)のpH(9)の制御は、極めて重要である。すなわち、発明者らの知見では、酸化槽(2)のpHが6を下回ると、廃水(1)から毒性の強い亜硫酸ガスが発生しやすくなることが認められた。このため、酸化槽(2)のpH(9)は6以上に制御することが望ましいと判断した。また、酸化槽(2)のpH(9)が8超であれば、沈澱物が発生しやすく、配管閉塞等のスケール障害が生じやすい事もわかった。さらに、図2から酸化槽(2)のORPは、pH(9)の影響を大きく受け、pH(9)が低くなるほど亜硫酸(SO3 2-)濃度相関が低下する傾向があることがわかった。これらの結果から、酸化槽のpHは、7以上8以下に制御する。 Furthermore, the control of the pH (9) of the oxidation tank (2) is extremely important. That is, according to the knowledge of the inventors, it was recognized that when the pH of the oxidation tank (2) is less than 6, highly toxic sulfurous acid gas is easily generated from the wastewater (1). For this reason, it was judged that it is desirable to control the pH (9) of the oxidation tank (2) to 6 or more. It was also found that if the pH (9) of the oxidation tank (2) exceeds 8, precipitates are likely to be generated, and scale failures such as piping blockage are likely to occur. Furthermore, it was found from FIG. 2 that the ORP of the oxidation tank (2) was greatly influenced by pH (9), and the concentration of sulfurous acid (SO 3 2- ) tended to decrease as pH (9) decreased. . These results, pH of the oxidation tank, that controls the 7 to 8.

加えて、発明者らは、廃水(1)中の硫黄化合物を酸化処理するに際して、亜硝酸イオン(NO2 -)を酸化槽(2)に添加すると酸化速度が向上することを新たに発見した。 In addition, we, when oxidizing the sulfur compounds in the waste water (1), nitrite ion - the oxidation rate addition was newly discovered that to improve the oxidation tank (2) (NO 2) .

これまでに、亜硝酸イオン(NO2 -)を用いた廃水処理方法としては、前記特許文献2に、pH=8〜12の条件下でアンモニアを含む排水を加熱条件・金属触媒併用下で、アンモニアを酸化する発明が開示されている。しかし、この方法は、高温・高アルカリ下で、しかも、金属触媒を併用する方法である。 Up to now, as a wastewater treatment method using nitrite ions (NO 2 ), in Patent Document 2, wastewater containing ammonia under the condition of pH = 8 to 12 under heating conditions / metal catalyst combination, An invention for oxidizing ammonia is disclosed. However, this method is a method in which a metal catalyst is used in combination under high temperature and high alkali.

これに対して本発明は、常温かつ中性のpH条件下で、廃水中の硫黄化合物を酸化する方法であり、内容が異なる新たな発見である。   On the other hand, the present invention is a method for oxidizing sulfur compounds in wastewater under normal and neutral pH conditions, and is a new discovery with different contents.

以下、硫黄化合物として、亜酸(SO3 2-)を代表種と表記して説明する。亜硝酸イオン(NO2 -)と亜硫酸(SO3 2-)の酸化還元反応の経路は、次のような式が推定される。 Hereinafter, a sulfur compound, is described nitrous sulfuric acid (SO 3 2-) is indicated as representative species. The following equation is estimated for the route of the oxidation-reduction reaction between nitrite ions (NO 2 ) and sulfite (SO 3 2− ).

2NO2 - +3SO3 2-+2H+ → 3SO4 2- +N2 +H2O (8) 2NO 2 - + 3SO 3 2- + 2H + → 3SO 4 2- + N 2 + H 2 O (8)

この場合、亜流酸(SO3 2-)1gを酸化するのに必要な亜硝酸イオン(NO2 -)は、0.38g- NO2 -/g- SO3 2-と計算される。例えば、亜硫酸(SO3 2-)1000mg/Lを亜硝酸イオンで酸化しようとすると380mg/Lの亜硝酸イオンを添加すればよいことになる。 In this case, the nitrite ion (NO 2 ) required to oxidize 1 g of sulfite (SO 3 2− ) is calculated as 0.38 g−NO 2 / g−SO 3 2− . For example, if sulfite (SO 3 2- ) 1000 mg / L is to be oxidized with nitrite ions, 380 mg / L nitrite ions may be added.

本反応も、pH依存性が大きく、低いpHで進行しやすい。しかし、酸化槽(2)のpHを6以下に低下させると、亜硝酸ガスや亜硫酸ガスを発生しやすくなる。また、前述したように酸化槽(2)のpHが8超であれば、沈澱物が発生しやすく、スケール障害が生じやすい。また、反応速度も低下しやすい。これらの結果から、亜硝酸イオン(NO2 -)を用いる場合でも酸化槽のpHは、6以上8以下、より詳細には6.5以上7.5以下に制御することが望ましいと考えられる。 This reaction is also highly pH dependent and is likely to proceed at low pH. However, when the pH of the oxidation tank (2) is lowered to 6 or less, nitrous acid gas and sulfurous acid gas are likely to be generated. Further, as described above, if the pH of the oxidation tank (2) is more than 8, precipitates are likely to be generated and scale failure is likely to occur. Also, the reaction rate tends to decrease. From these results, even when nitrite ions (NO 2 ) are used, it is considered desirable to control the pH of the oxidation tank to 6 or more and 8 or less, more specifically 6.5 or more and 7.5 or less.

以下の表2に亜硫酸1gを酸化するために必要な亜硝酸イオン(NO2 -)の量を他の薬品と比較して示す。これから、亜硝酸イオン(NO2 -)は、他の薬品と比較すると添加量が少なくてすむ事がわかる。また、亜硝酸イオン自体は、空気で酸化されないため、酸化槽(2)へ空気とともに亜硝酸イオンを併用して供給することがコスト上の観点から望ましい。 Table 2 below shows the amount of nitrite ion (NO 2 ) required to oxidize 1 g of sulfite in comparison with other chemicals. Now, nitrite ion (NO 2 -) is found that requires less amount as compared with other drugs. Further, since nitrite ions themselves are not oxidized by air, it is desirable from the viewpoint of cost to supply nitrite ions together with air to the oxidation tank (2).

Figure 0004790243
Figure 0004790243

亜硝酸イオンを供給する薬品としては、亜硝酸ナトリウム(NaNO2)等がある。亜硝酸イオンは、薬注ポンプ(5)を用い、酸化槽(2)に添加すればよい。 Examples of chemicals that supply nitrite ions include sodium nitrite (NaNO 2 ). Nitrite ions may be added to the oxidation tank (2) using a chemical pump (5).

しかしながら、数百mg/Lレベルの高濃度の亜硝酸イオンを含む水が近辺にある場合、これを用いて亜硫酸を酸化してもかまわない。数百mg/Lレベルの高濃度の亜硝酸イオンを含む排水としては、製鐵所コークス工場廃水(一般に、安水と呼称されている)の活性汚泥処理水が考えられる。製鐵所コークス工場廃水は、高濃度のアンモニアを含んでいるが、このアンモニアを活性汚泥で処理する場合、アンモニアは、アンモニア酸化細菌および亜硝酸酸化細菌により、以下の(9)、(10)式により、亜硝酸イオン、続いて、硝酸イオンまで酸化されることが多い。しかし、亜硝酸酸化細菌は、アンモニア酸化細菌よりも機能が低下しやすく、亜硝酸イオンで反応が停止しやすいため、大量の亜硝酸イオン含有した処理水が発生する。   However, when water containing a high concentration of nitrite ion at a level of several hundred mg / L is in the vicinity, it may be used to oxidize sulfite. As wastewater containing high-concentration nitrite ions at a level of several hundred mg / L, activated sludge treated water such as smelter coke factory wastewater (generally referred to as "ansen") can be considered. Steelworks coke factory wastewater contains a high concentration of ammonia. When this ammonia is treated with activated sludge, ammonia is oxidised by ammonia-oxidizing bacteria and nitrite-oxidizing bacteria. Often, the formula oxidizes to nitrite ions, followed to nitrate ions. However, since the function of nitrite-oxidizing bacteria is lower than that of ammonia-oxidizing bacteria and the reaction is likely to stop with nitrite ions, a large amount of treated water containing nitrite ions is generated.

2NH4 + + 3O2 → 2NO2 -+2H2O+4H+ (9)
2NO2 - + O2 → 2NO3 - (10)
2NH 4 + + 3O 2 → 2NO 2 + 2H 2 O + 4H + (9)
2NO 2 - + O 2 → 2NO 3 - (10)

このような場合、あらかじめ、脱硫廃水と亜硝酸イオン含有処理水を混合した後、酸化槽(2)に通水して、空気酸化すればよい。本方法によって空気酸化のみの場合に比べて空気量の削減が可能となる。   In such a case, desulfurization waste water and nitrite ion-containing treated water may be mixed in advance and then passed through the oxidation tank (2) for air oxidation. This method makes it possible to reduce the amount of air compared to the case of only air oxidation.

この他、亜硝酸イオンを含む廃水として、発電所の湿式脱硝装置から発生する脱硝廃水に含まれる亜硝酸イオンの適用が考えられる。   In addition, as effluent containing nitrite ions, application of nitrite ions contained in denitration wastewater generated from wet denitration equipment of a power plant is conceivable.

2NO2+2NaOH → NaNO3+NaNO2+H2O (11) 2NO 2 + 2NaOH → NaNO 3 + NaNO 2 + H 2 O (11)

最後に、廃水中に含まれる硫黄化合物を酸化処理するプロセスにおいて、空気または空気及び亜硝酸イオンで硫黄化合物の酸化処理を行なった後、残存する硫黄化合物を微生物を用いて酸化する方法について説明する。   Finally, in the process of oxidizing sulfur compounds contained in wastewater, a method of oxidizing the remaining sulfur compounds using microorganisms after oxidizing the sulfur compounds with air or air and nitrite ions will be described. .

廃水の種類によっては、空気による酸化が極めて困難な硫黄化合物を含む場合がある。例えば、チオ硫酸(S2O3 2-)やジチオン酸(S2O6 2-)は、空気酸化が困難であり、酸化槽(2)で酸化処理を行なっても、ほとんどが処理水中に残存し、CODとして測定されてしまう。したがって、このような硫黄酸化物が含まれる廃水の場合には、空気酸化単独による処理は困難であり、更なる酸化処理が必要であるが、薬品酸化法はコストが増大してしまう。 Some types of wastewater may contain sulfur compounds that are extremely difficult to oxidize with air. For example, thiosulfuric acid (S 2 O 3 2- ) and dithionic acid (S 2 O 6 2- ) are difficult to oxidize in the air, and most of them are in the treated water even when oxidized in the oxidation tank (2). It remains and is measured as COD. Therefore, in the case of wastewater containing such sulfur oxides, treatment by air oxidation alone is difficult and further oxidation treatment is required, but the chemical oxidation method increases the cost.

このようなチオ硫酸(S2O3 2-)やジチオン酸(S2O6 2-)を酸化するためには、硫黄酸化細菌を用いた生物酸化法が有効である。 In order to oxidize such thiosulfuric acid (S 2 O 3 2− ) and dithionic acid (S 2 O 6 2− ), a biological oxidation method using sulfur-oxidizing bacteria is effective.

pHが6-8で活性のある硫黄酸化細菌は、チオバチルス・チオパラス(Thiobacillus thioparus)、チオバチルス・ネアポリタナス(Thiobacillus neapolitanus)、チオバチルス・テピダリウス(Thiobacillus tepidarius)、チオバチルス・ノベラス(Thiobacillus novellus)、チオバチルス・ベルスタス(Thiobacillus versutus)、チオバチルス・デニトリフィカンス(Thiobacillus denitrificans)などが公知であり、これらの硫黄酸化細菌またはこれらの硫黄細菌を含んだ活性汚泥を用いて、以下のような反応でチオ硫酸(S2O3 2-)やジチオン酸(S2O6 2-)を酸化する。これらの硫黄酸化細菌は、都市下水の活性汚泥を種汚泥として、チオ硫酸(S2O3 2-)やジチオン酸(S2O6 2-)を用いて簡単に増殖させることが可能である。また、製鐵所のコークス工場廃水(一般に安水と呼称されている)を処理している活性汚泥は、コークス工場廃水が多くの硫黄化合物を含む関係から硫黄酸化細菌を含有していることが多いため、そのまま用いることも可能である。 Sulfur-oxidizing bacteria having an active pH of 6-8 are Thiobacillus thioparus, Thiobacillus neapolitanus, Thiobacillus tepidarius, Thiobacillus novelus (Thiobacillus novellus) Thiobacillus versutus), Thiobacillus denitrificans and the like are known. Using these sulfur oxidizing bacteria or activated sludge containing these sulfur bacteria, thiosulfuric acid (S 2) O 3 2- ) and dithionic acid (S 2 O 6 2- ) are oxidized. These sulfur-oxidizing bacteria can be easily grown using activated sludge from municipal sewage as seed sludge using thiosulfuric acid (S 2 O 3 2- ) or dithionic acid (S 2 O 6 2- ). . In addition, activated sludge that treats coke factory effluent (generally referred to as "ansui") at a steelworks is likely to contain sulfur-oxidizing bacteria because the coke factory effluent contains many sulfur compounds. Since there are many, it can also be used as it is.

S2O3 2- + 2O2+ H2O → 2SO4 2-+ 2H+ (12)
2S2O6 2- + O2+ 2H2O → 4SO4 2-+ 4H+ (13)
S 2 O 3 2- + 2O 2 + H 2 O → 2SO 4 2- + 2H + (12)
2S 2 O 6 2- + O 2 + 2H 2 O → 4SO 4 2- + 4H + (13)

これらの反応は硫黄酸化細菌と空気の存在下ですみやかに進行する。しかし、式(11)、(12)から明らかなように、微生物反応槽(3)のpH(9)は、反応の進行とともに低下しやすいので、硫黄酸化細菌の活性を維持するために、微生物反応槽(3)のpH(9)を硫黄酸化細菌の活性を維持できるpHに維持する必要がある。希硫酸または水酸化ナトリウム溶液を用いて、pHを6以上8以下に制御してやればよい。pHが6未満や8を超えるとでは活性低下が大きい。また、微生物反応槽(3)のORP(8)を測定し、ORPを指標として、曝気を行なうことが望ましい。ORP値が+100mV以上あれば、チオ硫酸(S2O3 2-)やジチオン酸(S2O6 2-)はほぼ完全に酸化されている。なお、廃水に有機物が含まれている場合にも本処理方法は有効である。例えば、微生物反応槽(9)を2槽に分割し、有機物分解細菌群と硫黄酸化細菌群の同時並存が可能な方式をとればよい。 These reactions proceed quickly in the presence of sulfur-oxidizing bacteria and air. However, as is clear from the equations (11) and (12), the pH (9) of the microbial reactor (3) tends to decrease with the progress of the reaction. It is necessary to maintain the pH (9) of the reaction tank (3) at a pH at which the activity of the sulfur-oxidizing bacteria can be maintained. What is necessary is just to control pH to 6-8, using a dilute sulfuric acid or sodium hydroxide solution. If the pH is less than 6 or more than 8, the activity decreases greatly. It is also desirable to measure the ORP (8) of the microbial reactor (3) and perform aeration using the ORP as an index. If the ORP value is +100 mV or more, thiosulfuric acid (S 2 O 3 2− ) and dithionic acid (S 2 O 6 2− ) are almost completely oxidized. This treatment method is also effective when the waste water contains organic matter. For example, the microorganism reaction tank (9) may be divided into two tanks, and a system capable of coexisting organic matter-decomposing bacteria and sulfur-oxidizing bacteria can be used.

実施例1亜硫酸(SO 3 2- )の空気酸化の検討
製鐵所の湿式排煙脱硫装置から排出される排煙脱硫廃水を用いて、廃水中の亜硫酸の酸化性能をビーカー試験により検討した。排煙脱硫廃水の亜硫酸濃度は、平均10000mg/Lで3000mg/Lから20000mg/Lまで大きく変動した。
Example 1 : Examination of air oxidation of sulfurous acid (SO 3 2- ) Using the flue gas desulfurization wastewater discharged from the wet flue gas desulfurization equipment of the steelworks, the oxidation performance of sulfurous acid in the wastewater was examined by a beaker test. . The concentration of sulfurous acid in the flue gas desulfurization waste water varied greatly from 3000 mg / L to 20000 mg / L with an average of 10000 mg / L.

1Lビーカーに廃水を500mL添加し、水温25℃、pHを7.0一定に制御し、ブロワ−によって0.5L/分空気を供給した。その後、数時間毎に採水し、ORPおよび亜硫酸濃度を測定し、ORP値と亜硫酸濃度の関係を検討した。さらに、pHを6.0または8.0一定に制御し、同様の実験を実施し、pHのORPに与える影響について検討した。
この結果を図2に示す。
500 mL of waste water was added to a 1 L beaker, the water temperature was controlled at 25 ° C. and the pH was kept constant at 7.0, and 0.5 L / min air was supplied by a blower. Thereafter, water was sampled every several hours, the ORP and sulfite concentrations were measured, and the relationship between the ORP value and the sulfite concentration was examined. Furthermore, the same experiment was conducted by controlling the pH at 6.0 or 8.0 constant, and the influence of pH on the ORP was examined.
The results are shown in FIG.

pHが一定の条件下では、ORPと亜硫酸濃度は強い相関が認められた。したがって、酸化槽(2)のORPにより、廃水中の亜硫酸の酸化程度を推定することが可能と考えられた。   A strong correlation was observed between ORP and sulfite concentration under constant pH conditions. Therefore, it was considered possible to estimate the oxidation degree of sulfurous acid in wastewater by ORP in the oxidation tank (2).

また、ORP値は、pHの影響を強く受けるため、酸化槽のpH値を把握しておくことが重要であると考えられた。本実験の場合、目標の亜硫酸濃度が100mg/L(CODとして20mg/L)とすると、pHが6.0の場合で-20mV以上、pHが7.0の場合で、ORPが0mV以上、pHが8.0の場合で50mVを目安として、空気曝気を行なえばよい。より厳密には6.5以上7.5以下に制御することが望ましいと考えられる。   Further, since the ORP value is strongly influenced by pH, it was considered important to grasp the pH value of the oxidation tank. In the case of this experiment, if the target sulfite concentration is 100 mg / L (20 mg / L as COD), -20 mV or more when pH is 6.0, pH is 7.0, ORP is 0 mV or more, and pH is 8.0 The air aeration should be performed with 50 mV as a guide. More strictly, it is considered desirable to control at 6.5 or more and 7.5 or less.

ただし、pHとORPの相関関係は、pHが上昇するほど強くなるので、より厳密な管理を行なう上では、pH=7以上とすることが望ましい。   However, since the correlation between pH and ORP increases as pH increases, it is desirable that pH = 7 or more for more strict management.

なお、pH=8.5の条件でも本実験を実施したが、大量の沈澱物が生成し、ORP測定は困難であった。   In addition, although this experiment was implemented also on the conditions of pH = 8.5, a lot of precipitates produced | generated and ORP measurement was difficult.

実施例2亜硝酸イオンと空気を用いた亜硫酸(SO 3 2- )酸化の検討
製鐵所の湿式排煙脱硫装置から排出される排煙脱硫廃水を用いて、廃水中の亜硫酸の酸化性能をビーカー試験により検討した。
Example 2 : Examination of sulfite (SO 3 2- ) oxidation using nitrite ions and air Oxidation performance of sulfite in wastewater using flue gas desulfurization wastewater discharged from a wet flue gas desulfurization unit Were examined by a beaker test.

1Lビーカーに廃水を500mL添加し、水温25℃、pHを8一定に制御し、ブロワ−によって0.5L/分空気を供給した。その後、2.5時間後に採水し、亜硫酸濃度を測定した。
一方で、1Lビーカーに廃水を500mLと亜硝酸イオンを20mM(920mg/L)を添加し、同様の実験を行なった。この結果を図3に示す。
500 mL of waste water was added to a 1 L beaker, the water temperature was controlled at 25 ° C., the pH was kept constant at 8, and 0.5 L / min air was supplied by a blower. Thereafter, water was collected after 2.5 hours, and the concentration of sulfurous acid was measured.
On the other hand, 500 mL of waste water and 20 mM (920 mg / L) of nitrite ions were added to a 1 L beaker, and a similar experiment was performed. The results are shown in FIG.

この結果から、亜硝酸イオンによる亜硫酸の酸化は、空気による酸化より先行して生じており、2400mg/Lが亜硝酸イオンにより酸化されたと推定された。これから亜硫酸の酸化効率を計算すると920/2400=0.38となり、(6)式から得られた0.38g- NO2 -/g- SO3 2-の計算値とほぼ一致した。 From this result, it was estimated that oxidation of sulfite by nitrite ions occurred prior to oxidation by air, and 2400 mg / L was oxidized by nitrite ions. 920/2400 = 0.38 If now calculates the oxidation efficiency of sulfite, 0.38g- NO 2 obtained from (6) - was almost the same as / g- SO 3 2- calculated values.

亜硝酸イオンを添加した場合、処理時間が5時間で、亜酸は、目標の100mg/L以下となった(CODとして20mg/L)。一方、無添加の場合は処理時間が7.5時間でも250mg/Lの亜酸が残留した。 If the addition of nitrite ions, the treatment time is 5 hours, phosphorous sulfuric acid, (20 mg / L as COD) which was equal to or less than the target of 100 mg / L. On the other hand, nitrous sulfuric acid 250 mg / L treatment time even 7.5 hours for no addition remained.

したがって、亜硝酸イオンが容易に得られる場合には、亜硝酸イオンを空気と併用して用いれば、酸化効率を向上でき、処理時間の短縮が可能となる。   Therefore, when nitrite ions are easily obtained, if nitrite ions are used in combination with air, the oxidation efficiency can be improved and the processing time can be shortened.

実施例3空気酸化と微生物酸化の併用による硫黄化合物を含む廃水の処理
図1に示す処理プロセスによって、多種類の硫黄化合物を含有する廃水の処理実験を実施した。実験には硫黄化合物として、亜硫酸を1000mg/L、チオ硫酸を200mg/L、ジチオン酸を200mg/L含む人工廃水を用いた。
Example 3 Treatment of Waste Water Containing Sulfur Compounds by Combined Use of Air Oxidation and Microbial Oxidation Treatment experiments for waste water containing various types of sulfur compounds were carried out by the treatment process shown in FIG. In the experiment, an artificial wastewater containing 1000 mg / L of sulfurous acid, 200 mg / L of thiosulfuric acid, and 200 mg / L of dithionic acid was used as a sulfur compound.

まず、酸化槽(2)によって、亜硫酸を酸化した。廃水(1)を酸化槽(2)に通水しながら、酸化槽(2)のpH(9)を7.0-7.5の範囲で制御し、酸化槽(2)の出口付近のORP(8)が0mVから+10mVとなるように空気曝気を行なった。この結果、廃水(1)に含まれる亜硫酸は酸化槽(2)の滞留時間が2時間の条件で100mg/L以下となった。   First, sulfurous acid was oxidized in the oxidation tank (2). While passing wastewater (1) through the oxidation tank (2), the pH (9) of the oxidation tank (2) is controlled within the range of 7.0-7.5, and the ORP (8) near the outlet of the oxidation tank (2) Air aeration was performed from 0 mV to +10 mV. As a result, the sulfurous acid contained in the waste water (1) became 100 mg / L or less under the condition that the residence time of the oxidation tank (2) was 2 hours.

続いて、微生物反応槽(3)によって、チオ硫酸およびジチオン酸を酸化した。硫黄酸化細菌としては、製鐵所安水活性汚泥に含まれている硫黄酸化細菌を種汚泥として2000mg/L、微生物反応槽(3)に添加した。硫黄酸化細菌を保持した微生物反応槽(3)のpH(9)を7.0-8.0の範囲で制御し、微生物反応槽(3)の出口付近のORP(8)が+100mVから+150mVとなるように空気曝気を行なった。この結果、廃水(1)に含まれるチオ硫酸およびジチオン酸は滞留時間2時間の条件で検出限界以下となった。亜硫酸も検出限界以下となった。   Subsequently, thiosulfuric acid and dithionic acid were oxidized in the microbial reactor (3). As the sulfur-oxidizing bacteria, 2000 mg / L of sulfur-oxidizing bacteria contained in the waterworks activated sludge in the steelworks was added to the microbial reactor (3) as seed sludge. Control the pH (9) of the microbial reactor (3) holding sulfur-oxidizing bacteria within the range of 7.0-8.0, and adjust the ORP (8) near the outlet of the microbial reactor (3) to +100 mV to +150 mV. Aeration was performed. As a result, thiosulfuric acid and dithionic acid contained in the wastewater (1) were below the detection limit under the condition of residence time of 2 hours. Sulfurous acid was also below the detection limit.

したがって、廃水が亜硫酸、チオ硫酸、ジチオン酸を含むような場合には、硫黄酸化細菌による生物処理を空気酸化と併用して用いれば、硫黄化合物の酸化処理を完全に行なうことができる。   Therefore, when the waste water contains sulfurous acid, thiosulfuric acid, and dithionic acid, the sulfur compound can be completely oxidized by using a biological treatment with sulfur-oxidizing bacteria in combination with air oxidation.

本発明の硫黄化合物を含む廃水の処理フローである。It is a processing flow of the wastewater containing the sulfur compound of the present invention. 本発明の空気を用いた亜硫酸の酸化において、反応槽(2)のORPと亜硫酸濃度の関係を示す図である。(pH=6または7または8)In the oxidation of sulfurous acid using the air of the present invention, it is a diagram showing the relationship between the ORP of the reaction tank (2) and the concentration of sulfurous acid. (PH = 6 or 7 or 8) 本発明の亜硝酸イオン添加による亜硫酸の酸化効率向上を示す図である。It is a figure which shows the oxidation efficiency improvement of a sulfurous acid by nitrite ion addition of this invention.

符号の説明Explanation of symbols

1 硫黄化合物含有廃水
2 酸化槽
3 微生物反応槽
4 亜硝酸タンク
5 薬注ポンプ
6 酸又はアルカリタンク
7 薬注ポンプ
8 ORP計
9 pH計
10 ブロアー
11 処理水
1 Waste water containing sulfur compounds
2 Oxidation tank
3 Microbial reactor
4 Nitrite tank
5 Chemical injection pump
6 Acid or alkali tank
7 Chemical injection pump
8 ORP meter
9 pH meter
10 Blower
11 treated water

Claims (6)

廃水中に含まれる硫黄化合物を、空気を供給して、又は、亜硝酸イオンを添加すると共に空気を供給して酸化する廃水の処理方法であって、前記廃水のpHを測定し、該廃水中に酸又はアルカリを添加して、該pHが7以上8以下となるように制御しながら、該廃水のORP(酸化還元電位、銀/塩化銀基準値)を測定して硫黄化合物の酸化程度を推定し、該ORPが所定範囲となるように該廃水への空気供給量を制御することを特徴とする廃水の処理方法。 A wastewater treatment method for oxidizing sulfur compounds contained in wastewater by supplying air, or adding nitrite ions and supplying air, and measuring the pH of the wastewater, While adding acid or alkali to the solution and controlling the pH to be 7 or more and 8 or less, the ORP (redox potential, silver / silver chloride reference value) of the wastewater is measured to determine the degree of oxidation of the sulfur compound. A method for treating wastewater, characterized in that the amount of air supplied to the wastewater is controlled so that the ORP falls within a predetermined range. 請求項1に記載の方法により廃水処理を行なった後、廃水中に残存する硫黄化合物を硫黄酸化細菌により酸化することを特徴とする硫黄化合物を含む廃水の処理方法。 A method for treating a wastewater containing a sulfur compound, characterized by oxidizing a sulfur compound remaining in the wastewater with a sulfur-oxidizing bacterium after the wastewater treatment by the method according to claim 1 . 前記硫黄酸化細菌による酸化の際、前記廃水中に酸又はアルカリを添加して該廃水のpHを6〜8に制御すると共に、該廃水中に空気を供給して該廃水のORP(酸化還元電位、銀/塩化銀基準値)が所定範囲となるように制御することを特徴とする、請求項に記載の方法。 During oxidation by the sulfur-oxidizing bacteria, acid or alkali is added to the wastewater to control the pH of the wastewater to 6-8, and air is supplied to the wastewater to provide an ORP (redox potential) of the wastewater. , silver / silver reference value chloride) characterized in that the control such that the predetermined range, the method according to claim 2. 前記廃水中に含まれる硫黄化合物が、亜硫酸、重亜硫酸、チオ硫酸、ジチオン酸の1種又は2種以上であることを特徴とする、請求項1〜のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3 , wherein the sulfur compound contained in the wastewater is one or more of sulfurous acid, bisulfurous acid, thiosulfuric acid, and dithionic acid. 前記廃水が製鐵所又は発電所の脱硫廃水であることを特徴とする、請求項1〜のいずれか1項に記載の方法。 It characterized in that the waste water is a desulfurization waste water SeiTetsusho or power plant, the method according to any one of claims 1-4. 前記亜硝酸イオンとして、アンモニアを含む廃水の生物学的廃水処理により発生する亜硝酸イオン含有処理水又は発電所の脱硝廃水を用いることを特徴とする、請求項1〜のいずれか1項に記載の方法。 The nitrite ion is treated with nitrite ion-containing treated water generated by biological wastewater treatment of wastewater containing ammonia or denitration wastewater from a power plant, according to any one of claims 1 to 5. The method described.
JP2004287394A 2004-09-30 2004-09-30 Method for treating wastewater containing sulfur compounds Active JP4790243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004287394A JP4790243B2 (en) 2004-09-30 2004-09-30 Method for treating wastewater containing sulfur compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004287394A JP4790243B2 (en) 2004-09-30 2004-09-30 Method for treating wastewater containing sulfur compounds

Publications (2)

Publication Number Publication Date
JP2006095478A JP2006095478A (en) 2006-04-13
JP4790243B2 true JP4790243B2 (en) 2011-10-12

Family

ID=36235794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004287394A Active JP4790243B2 (en) 2004-09-30 2004-09-30 Method for treating wastewater containing sulfur compounds

Country Status (1)

Country Link
JP (1) JP4790243B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5259964B2 (en) * 2007-02-28 2013-08-07 三菱重工業株式会社 Seawater flue gas desulfurization system
KR20090005976A (en) * 2007-07-09 2009-01-14 도쿄 오카 고교 가부시키가이샤 Photosensitive resin composition and microlens formed with use thereof
JP2009168357A (en) * 2008-01-17 2009-07-30 Chugoku Electric Power Co Inc:The Attachment washing method and washing apparatus for air preheater
JP6299620B2 (en) * 2015-02-02 2018-03-28 住友金属鉱山株式会社 Method for producing nickel sulfate
JP7380118B2 (en) 2019-11-18 2023-11-15 住友金属鉱山株式会社 Method for producing nickel sulfate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5176854A (en) * 1974-12-26 1976-07-03 Taoka Chemical Co Ltd HAIEKINOYOSOSHOHIRYOTEIGENHOHO
JPS61167494A (en) * 1985-01-18 1986-07-29 Asahi Chem Ind Co Ltd Treatment of waste water of silicon wafer polishing
JPH0824914B2 (en) * 1992-04-01 1996-03-13 株式会社荏原製作所 Method and apparatus for treating reducing agent-containing wastewater
JPH07251195A (en) * 1994-03-16 1995-10-03 Nippon Steel Corp Treatment of waste water containing reductive sulfur compound
JPH091165A (en) * 1995-06-22 1997-01-07 Nippon Shokubai Co Ltd Treatment of ammonia-containing waste water
JP4177521B2 (en) * 1999-06-30 2008-11-05 関西電力株式会社 Method for treating wastewater containing metal and ammonia
JP2003062583A (en) * 2001-08-29 2003-03-04 Nkk Corp Treating method for sewage containing decomposition resistant organic material and bromine, and equipment therefor

Also Published As

Publication number Publication date
JP2006095478A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
KR101307089B1 (en) Method of treating emission gas
EP2559667B1 (en) Method and system for the treatment of wastewater containing persistent substances
JP5637713B2 (en) Wastewater treatment method and treatment apparatus
JP4703370B2 (en) Nitrogen-containing wastewater treatment method
WO2015186590A1 (en) Method for treating liquid containing organic amine compound
JP6789779B2 (en) Wastewater treatment method, wastewater treatment system and coal gasification combined cycle equipment equipped with it
JP4862314B2 (en) Method and apparatus for desulfurization of gas containing hydrogen sulfide
JP4790243B2 (en) Method for treating wastewater containing sulfur compounds
JP5637796B2 (en) Method and apparatus for treating wastewater containing persistent materials
JP5637797B2 (en) Method and apparatus for treating wastewater containing persistent materials
JP2005211832A (en) Method for removing ammonia nitrogen from waste water
JP2019063768A (en) Water treatment method and water treatment apparatus
JP4223799B2 (en) Biosensor type water quality monitoring system and apparatus
JP2018083172A (en) Wastewater treatment method, wastewater treatment apparatus and coal gasification power generation equipment with the same
JP2021506563A (en) Wastewater treatment method
JP4433268B2 (en) Wet flue gas desulfurization method and apparatus
JP4666275B2 (en) Treatment method for wastewater containing sulfite ions
JP5591446B2 (en) Exhaust gas treatment method
JP7341077B2 (en) Method for controlling chemical oxygen demand in wastewater in wet exhaust gas desulfurization equipment and sterilization evaluation method for wet exhaust gas desulfurization equipment
JP4639309B2 (en) Treatment method of wastewater containing cyanide
Einarsen et al. Biological prevention and removal of hydrogen sulphide in sludge at Lillehammer wastewater treatment plant
US20090065446A1 (en) Process of treating selenium-containing liquid
Hao et al. Development of cost-effective and long-lasting integrated technology for H 2 S control from sludge in wastewater treatment plants
JP6165898B1 (en) Method for treating water containing reducing sulfur component
JPH0255118B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4790243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350