JP6425469B2 - Method of treating waste water containing reducing sulfur compounds - Google Patents

Method of treating waste water containing reducing sulfur compounds Download PDF

Info

Publication number
JP6425469B2
JP6425469B2 JP2014179130A JP2014179130A JP6425469B2 JP 6425469 B2 JP6425469 B2 JP 6425469B2 JP 2014179130 A JP2014179130 A JP 2014179130A JP 2014179130 A JP2014179130 A JP 2014179130A JP 6425469 B2 JP6425469 B2 JP 6425469B2
Authority
JP
Japan
Prior art keywords
waste water
aeration
treatment
sulfur
fluid carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014179130A
Other languages
Japanese (ja)
Other versions
JP2016052622A (en
Inventor
俊介 新井
俊介 新井
藍 吉屋
藍 吉屋
亨 西内
亨 西内
優 奥貫
優 奥貫
大 大山
大 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Eco Tech Corp
Original Assignee
Nippon Steel Corp
Nippon Steel and Sumikin Eco Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel and Sumikin Eco Tech Corp filed Critical Nippon Steel Corp
Priority to JP2014179130A priority Critical patent/JP6425469B2/en
Publication of JP2016052622A publication Critical patent/JP2016052622A/en
Application granted granted Critical
Publication of JP6425469B2 publication Critical patent/JP6425469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、硫黄酸化細菌を用いて、還元性硫黄化合物を含む排水を処理する排水の処理方法に関する。   TECHNICAL FIELD The present invention relates to a method for treating waste water which uses waste sulfur oxidizing bacteria to treat waste water containing reducing sulfur compounds.

硫化水素、単体硫黄、チオ硫酸塩等の還元性硫黄化合物を含む排水は、写真工業、石油精製工業、金属精錬工業、その他の化学工業等の各種化学工業を営む工場、或いは鉱山等から排出される。前記還元性硫黄化合物を含む排水は、化学的酸素要求量(chemical oxygen demand:COD)が高いため、浄化処理を行った後に下水に放流する必要がある。   Waste water containing hydrogen sulfide, elemental sulfur, and reducing sulfur compounds such as thiosulfate is discharged from factories engaged in various chemical industries such as photo industry, petroleum refining industry, metal refining industry, and other chemical industries, or mines etc. Ru. The waste water containing the reducing sulfur compound has to have a high chemical oxygen demand (COD), so it needs to be discharged to the sewage after the purification treatment.

従来、前記還元性硫黄化合物を含む排水の処理方法としては、例えば、次亜塩素酸ソーダ、過酸化水素等の酸化剤を用いて、前記還元性硫黄化合物を酸化し、前記排水を処理する方法(化学的処理方法)が知られている。前記化学的処理方法は、前記排水に前記酸化剤を投入すればよく、比較的簡便に前記排水を処理することができるという利点がある。しかし、前記化学的処理方法は、1)前記酸化剤が高価であるために、処理コストが高くなる、2)前記酸化剤が残留した処理水が下水に放流されるおそれがある、という問題がある。特に近年、化学物質に対する規制が強化される傾向にあり、環境に対する負荷が小さい処理方法が切望されている。   Conventionally, as a method of treating waste water containing the reducing sulfur compound, for example, a method of oxidizing the reducing sulfur compound using an oxidizing agent such as sodium hypochlorite, hydrogen peroxide and the like, and treating the waste water (Chemical processing methods) are known. The chemical treatment method has an advantage that the waste water can be treated relatively simply by adding the oxidizing agent to the waste water. However, the chemical treatment method has the following problems: 1) the treatment cost is high because the oxidizing agent is expensive, and 2) there is a possibility that treated water containing the oxidizing agent may be discharged to sewage. is there. In particular, in recent years, regulations on chemical substances tend to be strengthened, and a treatment method with a low environmental impact is desired.

そこで、硫黄酸化細菌を用いて、前記還元性硫黄化合物を酸化し、排水を処理する方法(生物学的処理方法)が注目されている。生物学的処理方法としては、例えば、活性汚泥法等が挙げられる。しかし、活性汚泥法は、大容量の沈殿槽を使用する必要があり、前記沈殿槽を設置可能な広大な敷地がない工場等では実施することができないという問題があった。   Then, the method (biological treatment method) which oxidizes the said reducible sulfur compound using sulfur oxidizing bacteria, and processes waste water attracts attention. As a biological treatment method, the activated sludge method etc. are mentioned, for example. However, the activated sludge method has a problem that it is necessary to use a large-capacity settling tank, and it can not be implemented in a factory without a large site where the settling tank can be installed.

前記問題を解決する方策として、前記硫黄酸化細菌を担体に固定して固定化細菌とし、前記固定化細菌を前記排水中に投入し、前記排水中において前記硫黄酸化細菌を高濃度に維持することにより、前記排水の処理効率を向上させる方法が提案されている。例えば、前記硫黄酸化細菌をサドル型セラミックス担体に固定して固定化細菌とし、前記固定化細菌をバイオリアクターの内部に充填して固定床型のバイオリアクターを構成し、前記固定床型のバイオリアクターを用いて硫化水素含有廃水を処理する生物学的処理方法が提案されている(特許文献1)。この方法においては、下水、産業廃棄物の活性汚泥から、不揮発性の還元性硫黄化合物を含有する廃水を用いて馴養した硫黄酸化細菌を用いている。   As a measure to solve the above problem, the sulfur-oxidizing bacteria are immobilized on a carrier to be immobilized bacteria, the immobilized bacteria are introduced into the drainage, and the sulfur-oxidizing bacteria are maintained at a high concentration in the drainage. Thus, a method has been proposed to improve the treatment efficiency of the drainage. For example, the sulfur-oxidizing bacteria are immobilized on a saddle-type ceramic carrier to be immobilized bacteria, and the immobilized bacteria are packed inside a bioreactor to constitute a fixed-bed bioreactor, and the fixed-bed bioreactor is constructed. A biological treatment method for treating hydrogen sulfide-containing wastewater using the following has been proposed (Patent Document 1). In this method, sulfur-oxidizing bacteria adapted from sewage, activated sludge of industrial waste, using wastewater containing non-volatile reducible sulfur compounds are used.

また、前記硫黄酸化細菌を高炉水砕スラグ微粉、硫酸カルシウム微粉、炭酸カルシウム微粉等に固定して固定化細菌とし、前記固定化細菌を用いて還元性硫黄化合物含有排水を処理する方法が提案されている(特許文献2)。この方法においては、都市下水等の有機性排水処理場から採取した活性汚泥から、硫化物イオン等の揮発性硫黄化合物を含まないチオ硫酸が主体の排水によって増殖させた、硫黄酸化機能を有するシュードモナス属の細菌を用いている。   In addition, a method is proposed in which the above-mentioned sulfur-oxidizing bacteria are fixed to ground granulated blast furnace slag powder, calcium sulfate fine powder, calcium carbonate fine powder or the like to be immobilized bacteria, and the above-mentioned immobilized bacteria are used to treat the reducing sulfur compound-containing wastewater. (Patent Document 2). In this method, the activated sludge collected from an organic wastewater treatment plant such as municipal wastewater is grown by wastewater mainly composed of thiosulfuric acid which does not contain volatile sulfur compounds such as sulfide ions, and has a sulfur oxidizing function Pseudomonas sp. We use bacteria of genus.

特許第2582695号公報Patent No. 25822695 特許第3241565号公報Patent No. 3241565

特許文献1または2に記載の方法は、活性汚泥法と比較して排水の処理効率が向上する点において有効な方法と言える。しかし、これら方法には、以下に掲げるような未解決の課題が残されていた。
1)硫黄酸化細菌が担体に定着し、安定的に排水を処理することができるまで(則ち、排水処理を立ち上げるまで)に長時間を要する。
2)排水の水理学的滞留時間(Hydraulic retention time:HRT。「曝気時間」とも言う。)を長くとる必要があり、排水の処理効率の面で不十分である。
3)還元性硫黄化合物に加えてカルシウムイオンを高濃度で含む排水を処理した場合、固定化細菌に炭酸カルシウムが沈着し、経時的に処理能力が低下する場合がある。
It can be said that the method described in Patent Literature 1 or 2 is an effective method in that the treatment efficiency of wastewater is improved as compared with the activated sludge method. However, these methods have left unsolved problems as listed below.
1) It takes a long time until sulfur-oxidizing bacteria settle on the carrier and can stably treat the wastewater (that is, to start up the wastewater treatment).
2) It is necessary to take a long hydraulic retention time (HRT, also referred to as "aeration time") of the waste water, which is insufficient in terms of waste water treatment efficiency.
3) When waste water containing a high concentration of calcium ions in addition to reducing sulfur compounds is treated, calcium carbonate may be deposited on the immobilized bacteria, and the treatment capacity may decrease with time.

本発明は、前記課題に鑑みてなされたものである。則ち、本発明は、環境に対する負荷が小さいことに加えて、排水処理を短時間で立ち上げることができ、排水の処理効率が高く、カルシウムイオンを高濃度で含む排水を処理した場合でも、安定的に排水を処理することができる排水の処理方法を提供するものである。   The present invention has been made in view of the above problems. That is, according to the present invention, in addition to the small load on the environment, the waste water treatment can be started in a short time, the treatment efficiency of the waste water is high, and even when the waste water containing high concentration of calcium ions is treated, It is an object of the present invention to provide a waste water treatment method capable of treating waste water stably.

本発明者は前記課題について鋭意検討を行った。その結果、硫黄酸化細菌をポリウレタン樹脂製の流動担体に固定して固定化細菌とし、流動床方式で曝気処理を行うことにより前記課題を解決可能であることに想到し、本発明を完成するに至った。即ち、本発明によれば、以下に示す排水の処理方法が提供される。   The present inventor diligently studied the above-mentioned subject. As a result, sulfur-oxidizing bacteria are fixed to a fluid carrier made of polyurethane resin to be immobilized bacteria, and it is considered that the above-mentioned problems can be solved by carrying out aeration treatment in a fluidized bed system, and the present invention is completed. It reached. That is, according to the present invention, the following method for treating wastewater is provided.

[1]排水の処理方法:
本発明によれば、曝気槽に、排水、及び硫黄酸化細菌を投入し、曝気処理を行う、還元性硫黄化合物を含む排水の処理方法であって、前記排水として、還元性硫黄化合物、及びカルシウムイオンを含む排水を用い、前記硫黄酸化細菌として、ポリウレタン樹脂製の流動担体に、硫黄酸化細菌が固定された固定化細菌を用い、前記曝気槽中で、前記排水のpHを5以上、8以下に維持しながら、前記固定化細菌を流動させ、流動床方式で曝気処理を行うことを特徴とする排水の処理方法;が提供される。
[1] Wastewater treatment method:
According to the present invention, there is provided a method of treating waste water containing reducible sulfur compounds, wherein waste water and sulfur-oxidizing bacteria are introduced into an aeration tank and aeration treatment is carried out, wherein the waste water includes reducible sulfur compounds and calcium. In the aeration tank, the pH of the waste water is 5 or more and 8 or less in the aeration tank, using waste water containing ions, and using the immobilized bacteria in which the sulfur oxidizing bacteria are fixed as the sulfur oxidizing bacteria, as the sulfur oxidizing bacteria. A method of treating wastewater comprising flowing the immobilized bacteria and performing aeration treatment in a fluid bed system while maintaining

本発明の排水の処理方法は、
前記硫黄酸化細菌として、ハロチオバチルス属に属するSAB−1株を用いること;
前記硫黄酸化細菌を含む培地を、前記硫黄酸化細菌の濃度が103cfu/mL以上となるように、前記曝気槽に添加し、前記曝気槽に、前記流動担体を投入して曝気処理を行うことにより、前記硫黄酸化細菌を前記流動担体の表面に固定し、前記固定化細菌を得ること;
曝気量を2m3/m3・hr以上に維持しながら、前記曝気処理を行うこと;
前記排水として、還元性硫黄化合物の濃度がCOD換算で30mg/L以上、カルシウムイオンの濃度が100mg/L以上、の排水を用いること;が好ましい。
The waste water treatment method of the present invention is
Using the SAB-1 strain belonging to the genus Halothiobacillus as said sulfur oxidizing bacteria;
The medium containing the sulfur-oxidizing bacteria is added to the aeration tank so that the concentration of the sulfur-oxidizing bacteria is 10 3 cfu / mL or more, and the fluid carrier is charged into the aeration tank to perform aeration treatment. Immobilizing said sulfur oxidizing bacteria on the surface of said fluid carrier, thereby obtaining said immobilized bacteria;
Performing the aeration treatment while maintaining the aeration amount at 2 m 3 / m 3 · hr or more;
It is preferable to use, as the waste water, a waste water having a reducing sulfur compound concentration of 30 mg / L or more and a calcium ion concentration of 100 mg / L or more in COD conversion;

本発明の処理方法は、環境に対する負荷が小さいことに加えて、排水処理を短時間で立ち上げることができ、排水の処理効率が高く、カルシウムイオンを高濃度で含む排水を処理した場合でも、安定的に排水を処理することができる。   According to the treatment method of the present invention, in addition to the small load to the environment, the waste water treatment can be started in a short time, the treatment efficiency of the waste water is high, and the waste water containing high concentration of calcium ions is treated Waste water can be treated stably.

本発明の処理方法を実施するための処理装置を模式的に示す側面図である。It is a side view which shows typically the processing apparatus for enforcing the processing method of this invention. 回分試験におけるCOD値を示すグラフである。It is a graph which shows the COD value in a batch test. 通水試験におけるCOD値を示すグラフである。It is a graph which shows the COD value in a water flow test. 固定化細菌に付着したSS量を示すグラフである。It is a graph which shows the amount of SS attached to the immobilized bacteria.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。但し、本発明は下記の実施形態に限定されず、その発明特定事項を有する全ての対象を含むものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, but includes all objects having the invention specific matters.

本発明の排水の処理方法は、曝気槽に、排水、及び硫黄酸化細菌を投入し、曝気処理を行う、還元性硫黄化合物を含む排水の処理方法である。   The method for treating waste water according to the present invention is a method for treating waste water containing reducing sulfur compounds, in which waste water and sulfur oxidizing bacteria are introduced into an aeration tank and aeration treatment is performed.

[1]排水:
「排水」とは、曝気処理に供される水を意味する。本発明においては、前記排水として、還元性硫黄化合物、及びカルシウムイオンを含む排水を用いる。なお、以下の説明において、曝気処理を施された後の水を「処理水」と称する場合がある。
[1] drainage:
"Drainage" means water to be subjected to aeration treatment. In the present invention, waste water containing reducing sulfur compounds and calcium ions is used as the waste water. In the following description, water after the aeration treatment may be referred to as "treated water".

[1−1]還元性硫黄化合物:
還元性硫黄化合物とは、二酸化硫黄(SO2)よりも還元性が高い(則ち、硫黄の酸化数が+4より小さい)硫黄化合物を意味する。例えば、硫化水素(H2S)、単体硫黄(S)、チオ硫酸塩(チオ硫酸イオン<S23 2->を含む塩)等が挙げられる。
[1-1] Reducible Sulfur Compounds:
The reducing sulfur compound means a sulfur compound having higher reducibility than sulfur dioxide (SO 2 ) (that is, the oxidation number of sulfur is smaller than +4). For example, hydrogen sulfide (H 2 S), elemental sulfur (S), thiosulfate (salt containing thiosulfate ion <S 2 O 3 2− >) and the like can be mentioned.

本発明においては、前記排水中の還元性硫黄化合物の濃度は特に限定されない。但し、前記排水として、還元性硫黄化合物の濃度がCOD換算で30mg/L以上、300mg/L以下の排水を用いることが好ましい。   In the present invention, the concentration of the reducing sulfur compound in the waste water is not particularly limited. However, it is preferable to use the waste water whose concentration of a reducible sulfur compound is 30 mg / L or more and 300 mg / L or less as COD conversion as said waste water.

[1−2]カルシウムイオン:
本発明においては、前記排水中のカルシウムイオンの濃度も特に限定されない。但し、前記排水として、カルシウムイオンの濃度が100mg/L以上、1,000mg/L以下の排水を用いることが好ましい。
[1-2] Calcium ion:
In the present invention, the concentration of calcium ions in the waste water is also not particularly limited. However, as the drainage, it is preferable to use drainage having a calcium ion concentration of 100 mg / L or more and 1,000 mg / L or less.

[1−3]具体的な排水の種類:
還元性硫黄化合物、及びカルシウムイオンを含む排水の種類は特に限定されない。例えば、写真工業、石油精製工業、金属精錬工業、その他の化学工業等の各種化学工業を営む工場、或いは鉱山等から排出される排水、特に製鉄所から排出される排水等が挙げられる。
[1-3] Specific types of drainage:
There are no particular limitations on the type of waste water containing reducing sulfur compounds and calcium ions. For example, waste water discharged from factories operating various chemical industries such as photographic industry, petroleum refining industry, metal refining industry, and other chemical industries, or waste water discharged from mines, etc., particularly waste water discharged from an iron mill.

前記排水は、還元性硫黄化合物の濃度がCOD換算で30〜300mg/L程度、カルシウムイオンの濃度が100〜1,000mg/L程度であり、還元性硫黄化合物、カルシウムイオンとも濃度が高い点に特徴がある。また、前記排水は、pHが12〜13程度と高いアルカリ性を示すことがあるため、後述するようなpH調整を行った後に、曝気処理に供することが好ましい。   In the above waste water, the concentration of reducing sulfur compounds is about 30 to 300 mg / L in terms of COD, the concentration of calcium ions is about 100 to 1,000 mg / L, and the concentrations of both reducing sulfur compounds and calcium ions are high. There is a feature. Moreover, since the said waste_water | drain may show high alkalinity with pH about 12-13, after performing pH adjustment which is mentioned later, it is preferable to use for an aeration process.

[2]硫黄酸化細菌:
本発明の処理方法は、硫黄酸化細菌を用いて排水を処理する生物学的処理方法である。硫黄酸化細菌とは、硫黄または無機硫黄化合物を酸化して獲得したエネルギーにより生活する細菌を意味する。硫黄酸化細菌を用いることによって、排水中の還元性硫黄化合物(H2S、S、S23 2-等)を硫酸イオン(SO4 2-)に酸化することができ、排水のCOD値を低減することができる。このような処理方法は、環境に対する負荷が小さい点において好ましい。
[2] Sulfur-oxidizing bacteria:
The treatment method of the present invention is a biological treatment method in which waste water is treated using sulfur oxidizing bacteria. Sulfur-oxidizing bacteria mean bacteria that live by energy obtained by oxidizing sulfur or inorganic sulfur compounds. By using sulfur oxidizing bacteria, reducing sulfur compounds (H 2 S, S, S 2 O 3 2- etc.) in waste water can be oxidized to sulfate ion (SO 4 2- ), and COD value of waste water Can be reduced. Such a treatment method is preferable in that the load on the environment is small.

本発明においては、硫黄酸化細菌として、ポリウレタン樹脂製の流動担体に、硫黄酸化細菌が固定された固定化細菌を用いる。前記硫黄酸化細菌を流動担体に固定することにより、後述する流動床方式で曝気処理を行うことが可能となる。   In the present invention, as sulfur oxidizing bacteria, immobilized bacteria in which sulfur oxidizing bacteria are immobilized are used as a fluid carrier made of polyurethane resin. By fixing the sulfur-oxidizing bacteria to a fluid carrier, it becomes possible to perform aeration treatment in a fluid bed system described later.

[2−1]SAB−1株:
本発明においては、硫黄酸化細菌の菌種は特に限定されない。但し、前記硫黄酸化細菌として、ハロチオバチルス属に属するSAB−1株を用いることが好ましい。前記SAB−1株は、グラム陰性の独立栄養細菌であり、その16SrDNAについてBLAST相同性検索をした結果、ハロチオバチルス(Halothiobacillus)属に属する菌株であることが判明している。また、前記SAB−1株は、2013年2月20日(寄託日)付けで、独立行政法人製品評価技術基盤機構 特許微生物寄託センターに寄託書が受領され、受託番号「NITE P−1543」が付与された菌株である。前記SAB−1株は、他の菌株と比較して流動担体に定着し易く、安定的に排水を処理することができるまで(則ち、排水処理を立ち上げるまで)の時間を短縮することができる。
[2-1] SAB-1 strain:
In the present invention, the species of sulfur oxidizing bacteria is not particularly limited. However, it is preferable to use a SAB-1 strain belonging to the genus Halothiobacillus as the sulfur-oxidizing bacteria. The SAB-1 strain is a gram-negative, autotrophic bacterium, and as a result of BLAST homology search for its 16S rDNA, it has been found to be a strain belonging to the genus Halothiobacillus. In addition, on February 20, 2013 (the date of deposit), the SAB-1 strain receives a deposit statement at the Patent Microorganisms Depositary Center of the National Institute of Technology and Evaluation, National Institute of Technology and Evaluation, and the accession number "NITE P-1543" It is a given strain. The SAB-1 strain can be fixed on a fluid carrier more easily than other strains, and can shorten the time until the wastewater can be treated stably (that is, until the wastewater treatment is started). it can.

[2−2]流動担体:
「流動担体」とは、排水中で流動させながら用いる担体を意味する。則ち、曝気槽中に固定して用いる固定担体とは異なるものである。
[2-2] Fluid carrier:
By "fluid carrier" is meant a carrier used while flowing in the waste water. In other words, it is different from the fixed carrier used by being fixed in the aeration tank.

本発明においては、ポリウレタン樹脂製の流動担体を用いる。流動床方式においては、流動担体(ひいては固定化細菌)の流動性が処理効率に直結する。ポリウレタン樹脂製の流動担体は、炭酸カルシウムが沈着し難く、また、沈着した炭酸カルシウムが剥離され易い。従って、ポリウレタン樹脂製の流動担体は、流動担体の流動性を維持することができ、カルシウムイオンを高濃度で含む排水を処理した場合でも、経時的に処理能力が低下することがなく、安定的に排水を処理することができる点において好ましい。一方、セラミックス製の流動担体は、原材料中のカルシウム化合物が炭酸カルシウムの沈着を促進する場合がある。また、ポリウレタン樹脂以外の樹脂(例えば、ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂)製の流動担体は、セラミックス製の流動担体と比較すれば、炭酸カルシウムが沈着し難く、また、沈着した炭酸カルシウムが剥離され易いものの、その効果はポリウレタン樹脂製の流動担体には及ばない。   In the present invention, a fluid carrier made of polyurethane resin is used. In the fluid bed system, the flowability of the fluid carrier (and hence the immobilized bacteria) is directly linked to the processing efficiency. The fluid carrier made of polyurethane resin is less likely to deposit calcium carbonate, and the deposited calcium carbonate is likely to be exfoliated. Therefore, the fluid carrier made of polyurethane resin can maintain the fluidity of the fluid carrier, and even when treated with waste water containing calcium ions in high concentration, the processing capacity does not decrease with time, and is stable. It is preferable in that the waste water can be treated. On the other hand, in the fluid carrier made of ceramics, the calcium compound in the raw material may accelerate the deposition of calcium carbonate. In addition, the fluid carrier made of resin other than polyurethane resin (for example, polyolefin resin such as polyethylene resin and polypropylene resin) is less likely to deposit calcium carbonate as compared with the fluid carrier made of ceramic, and calcium carbonate deposited is Although easily exfoliated, its effect does not reach the fluid carrier made of polyurethane resin.

「ポリウレタン樹脂」とは、ウレタン結合を有する樹脂の総称である。通常は、ポリイソシアナートと、ポリオールとの縮合物であるが、ポリイソシアナートと、ポリアミン、又はポリカルボン酸との縮合物も含まれる。例えば、重量平均分子量3,000のアルキレンオキサイド付加ポリエーテルポリオールと、トリレンジイソシアネート(2,4−トリレンジイソシアネートや2,6−トリレンジイソシアネートなど)との縮合物等を挙げることができる。   "Polyurethane resin" is a generic term for resins having a urethane bond. Usually, it is a condensate of a polyisocyanate and a polyol, but a condensate of a polyisocyanate and a polyamine or a polycarboxylic acid is also included. Examples thereof include condensates of alkylene oxide-added polyether polyols having a weight average molecular weight of 3,000 and tolylene diisocyanate (such as 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate).

排水中での流動性を有する限り、流動担体の形状や構造は特に限定されない。例えば、立方体状、粒状、チューブ状等の形状が挙げられる。中でも、一辺が5〜20mmの立方体状の担体が好ましい。より具体的には、商品名「AQ−1」(関東イノアック製、一辺10mmの立方体状、空孔率97%、セル数47個/25mm、セル径0.6mm、真比重1.136g/cm3)等を挙げることができる。 The shape and structure of the fluid carrier are not particularly limited as long as it has fluidity in waste water. For example, shapes such as cubic, granular, tubular and the like can be mentioned. Among them, a cubic carrier having a side of 5 to 20 mm is preferable. More specifically, product name "AQ-1" (Kanto Inoac, cube-shaped 10 mm side, porosity 97%, number of cells 47/25 mm, cell diameter 0.6 mm, true specific gravity 1.136 g / cm 3 ) etc. can be mentioned.

硫黄酸化細菌は、流動担体の表面に固定される。従って、比表面積が大きい形状の方が硫黄酸化細菌の固定量を増やすことができ、好ましい。例えば、スポンジ状、網状のような多孔体、表面に突起や凹部が形成された形状等が挙げられる。流動担体の比表面積は特に限定されない。但し、500m2/m3以上の範囲とすることが好ましい。500m2/m3以上とすると、硫黄酸化細菌の固定量を増加させることができる。上限は特に限定されないが、5,000m2/m3以下、好ましくは4,000m2/m3以下、更に好ましくは3,000m2/m3以下の範囲である。 Sulfur oxidizing bacteria are immobilized on the surface of the fluid carrier. Therefore, the shape with a large specific surface area can increase the amount of fixed sulfur oxidizing bacteria, which is preferable. For example, a porous body such as sponge-like or net-like shape, a shape in which projections and recesses are formed on the surface, and the like can be mentioned. The specific surface area of the fluid carrier is not particularly limited. However, the range of 500 m 2 / m 3 or more is preferable. If it is 500 m 2 / m 3 or more, the fixed amount of sulfur oxidizing bacteria can be increased. The upper limit is not particularly limited, but is in the range of 5,000 m 2 / m 3 or less, preferably 4,000 m 2 / m 3 or less, and more preferably 3,000 m 2 / m 3 or less.

また、排水の処理効率や処理速度を維持する観点から、流動担体の表面積は、曝気槽の容量に対して一定の範囲内にあることが好ましい。具体的には、曝気槽の容積1m3あたり50m2以上であることが好ましい。50m2以上とすると、排水の処理効率や処理速度を維持することができる。上限は特に限定されないが、1,000m2以下、好ましくは800m2以下、更に好ましくは600m2以下の範囲である。 Further, from the viewpoint of maintaining the treatment efficiency and treatment rate of the drainage, it is preferable that the surface area of the fluid carrier be within a certain range with respect to the volume of the aeration tank. Specifically, it is preferably 50 m 2 or more per 1 m 3 of volume of the aeration tank. If it is 50 m 2 or more, the treatment efficiency and treatment speed of the drainage can be maintained. Although the upper limit is not particularly limited, it is 1,000 m 2 or less, preferably 800 m 2 or less, more preferably 600 m 2 or less.

本発明においては、前記固定化細菌を得るための方法については特に限定されない。但し、前記硫黄酸化細菌を前培養する等して、前記硫黄酸化細菌を108cfu/mL以上、1012cfu/mL以下の範囲で含む培地を用意することが好ましい。また、前記硫黄酸化細菌を含む培地を、前記硫黄酸化細菌の濃度が103cfu/mL以上の範囲となるように、前記曝気槽に添加し、前記曝気槽に、前記流動担体を投入して曝気処理を行うことにより、前記硫黄酸化細菌を前記流動担体の表面に固定し(則ち、生物膜を形成し)、前記固定化細菌を得ることが好ましい。 In the present invention, the method for obtaining the immobilized bacteria is not particularly limited. However, it is preferable to prepare a culture medium containing the sulfur-oxidizing bacteria in the range of 10 8 cfu / mL or more and 10 12 cfu / mL or less by preculturing the sulfur-oxidizing bacteria. In addition, a medium containing the sulfur-oxidizing bacteria is added to the aeration tank such that the concentration of the sulfur-oxidizing bacteria is in the range of 10 3 cfu / mL or more, and the fluid carrier is charged into the aeration tank. It is preferable to fix the sulfur-oxidizing bacteria on the surface of the fluid carrier (that is, to form a biofilm) by performing aeration treatment to obtain the fixed bacteria.

培地における前記硫黄酸化細菌の濃度を108cfu/mL以上とすることにより、曝気層中における前記硫黄酸化細菌の濃度を106cfu/mL以上に調整することができる。また、曝気槽中における前記硫黄酸化細菌の濃度を103cfu/mL以上、好ましくは104cfu/mL以上とすることにより、排水の処理効率や処理速度を維持することができる。上限は特に限定されないが、108cfu/mL以下、好ましくは107cfu/mL以下の範囲である。 By setting the concentration of the sulfur-oxidizing bacteria in the medium to 10 8 cfu / mL or more, the concentration of the sulfur-oxidizing bacteria in the aeration layer can be adjusted to 10 6 cfu / mL or more. Further, by setting the concentration of the sulfur-oxidizing bacteria in the aeration tank to 10 3 cfu / mL or more, preferably 10 4 cfu / mL or more, the treatment efficiency and treatment rate of the waste water can be maintained. The upper limit is not particularly limited, but is in the range of 10 8 cfu / mL or less, preferably 10 7 cfu / mL or less.

[3]曝気処理:
本発明においては、曝気槽中で、前記排水のpHを5以上、8以下(好ましくは6以上、7以下)に維持しながら、前記固定化細菌を流動させ、流動床方式で曝気処理を行う。このような方法は、前記排水と前記硫黄酸化細菌との接触効率を高めることができ、固定床方式よりも排水の処理効率を向上させることができる。
[3] Aeration treatment:
In the present invention, while the pH of the waste water is maintained at 5 or more and 8 or less (preferably 6 or more and 7 or less) in the aeration tank, the immobilized bacteria are caused to flow and the aeration treatment is performed in a fluid bed system. . Such a method can increase the contact efficiency between the waste water and the sulfur oxidizing bacteria, and can improve the treatment efficiency of waste water more than the fixed bed method.

[3−1]流動床方式:
本発明において、前記固定化細菌を流動させる方法は、特に限定されない。専ら曝気により行ってもよいし、撹拌を併用してもよい。前記固定化細菌の流動状態は、例えば、後述する曝気量等により調整することができる。曝気槽の容量は、処理対象である排水の量や設置スペースに応じて適宜決定すればよい。
[3-1] Fluidized bed method:
In the present invention, the method of causing the immobilized bacteria to flow is not particularly limited. It may be carried out exclusively by aeration, or stirring may be used in combination. The flow state of the immobilized bacteria can be adjusted by, for example, an aeration amount described later. The capacity of the aeration tank may be appropriately determined in accordance with the amount of drainage to be treated and the installation space.

[3−2]pH:
前記排水のpHを5以上、好ましくは6以上とすることにより、水に対する硫化水素の溶解度が上がり、還元性硫黄化合物に由来する硫化水素ガスが放出される不具合を防止することができる。一方、前記排水のpHを8以下(酸性から弱塩基性域)、好ましくは7以下(酸性域から中性域)とすることにより、曝気の際に供給される空気中の二酸化炭素(酸性物質)が排水中に溶け込み難くなる。これにより、排水中のカルシウムイオンと二酸化炭素が反応して炭酸カルシウムが形成され、前記炭酸カルシウムが流動担体に沈着する不具合を防止することができ、流動担体の流動性(排水を処理する能力)を維持することができる。このような構成は、製鉄所から排出される排水等、カルシウムイオンを多く含む排水を処理する場合に、特に有効である。
[3-2] pH:
By setting the pH of the waste water to 5 or more, preferably 6 or more, the solubility of hydrogen sulfide in water can be increased, and the problem of releasing hydrogen sulfide gas derived from reducing sulfur compounds can be prevented. On the other hand, by setting the pH of the waste water to 8 or less (acidic to weakly basic region), preferably 7 or less (acidic to neutral region), carbon dioxide in the air supplied during aeration (acidic substance ) Is difficult to dissolve in the drainage. As a result, calcium ions in the waste water react with carbon dioxide to form calcium carbonate, and the calcium carbonate can be prevented from depositing on the fluid carrier, so that the fluidity of the fluid carrier (the ability to process the waste water) Can be maintained. Such a configuration is particularly effective when treating wastewater containing a large amount of calcium ions, such as wastewater discharged from a steel mill.

本発明においては、前記排水を前記曝気槽に投入する前に、前記排水の中和処理を行い、そのpHを5以上、8以下に調整することも好ましい。前記のように、製鉄所から排出される排水等は、pHが12〜13程度と高いアルカリ性を示すことがある。このような場合には、中和槽において、前記排水に塩酸や硫酸等の中和剤を添加し、本発明の処理方法を適用する前に、予めpHを前記範囲に調整しておくことが好ましい。なお、排水等のpHは、例えば、ガラス電極法によりpHを測定するpHセンサー(商品名「ポータブルイオン・pH計 IM−32P」、東亜ディーケーケー製)を用いて検出することができる。   In the present invention, it is also preferable to carry out the neutralization treatment of the waste water and adjust the pH thereof to 5 or more and 8 or less before introducing the waste water into the aeration tank. As described above, the waste water and the like discharged from a steelmaking plant may exhibit high alkalinity such as pH 12-13. In such a case, in the neutralization tank, a neutralizing agent such as hydrochloric acid or sulfuric acid may be added to the waste water, and the pH may be adjusted to the above range before applying the treatment method of the present invention. preferable. In addition, pH, such as waste water, can be detected, for example using pH sensor (brand name "portable ion * pH meter IM-32P", Toa DK make) which measures pH by a glass electrode method.

[3−3]酸化還元電位(Oxidation-reduction Potential;ORP):
本発明においては、曝気処理を行う際の前記排水の酸化還元電位は特に限定されない。但し、酸化還元電位を−60mV以上(更に好ましくは−50mV以上)に維持しながら、前記曝気処理を行うことが好ましい。酸化還元電位の上限は特に限定されないが、+150mV以下(更に好ましくは+0mV以下)とすることが好ましい。なお、ORPは、白金電極法によりORPを測定するORPセンサー(商品名「ポータブルORP計 RM−30P」、東亜ディーケーケー製)を用いて測定することができる。
[3-3] Oxidation-reduction Potential (ORP):
In the present invention, the redox potential of the waste water at the time of aeration treatment is not particularly limited. However, it is preferable to perform the aeration treatment while maintaining the redox potential at -60 mV or more (more preferably -50 mV or more). The upper limit of the redox potential is not particularly limited, but is preferably +150 mV or less (more preferably +0 mV or less). In addition, ORP can be measured using the ORP sensor (brand name "portable ORP meter RM-30P", Toa DK make) which measures ORP by a platinum electrode method.

[3−4]曝気量:
本発明においては、曝気処理を行う際の曝気量は特に限定されない。但し、曝気量を2m3/m3・hr以上、10m3/m3・hr以下に維持しながら、前記曝気処理を行うことが好ましい。曝気量を2m3/m3・hr以上とすることにより、曝気槽中で排水が適度に流動し、排水と固定化細菌が良好に接触するため、十分な処理能力が確保される。一方、曝気量を10m3/m3・hr以下とすることにより、固定化細菌の流動が過剰となり、流動担体の表面に形成された生物膜が剥離したり、脱落したりする不具合を有効に防止することができる。
[3-4] Aeration amount:
In the present invention, the aeration amount at the time of performing the aeration treatment is not particularly limited. However, it is preferable to carry out the aeration treatment while maintaining the aeration amount at 2 m 3 / m 3 · hr or more and 10 m 3 / m 3 · hr or less. By setting the aeration amount to 2 m 3 / m 3 · hr or more, the waste water appropriately flows in the aeration tank, and the waste water and the immobilized bacteria come into good contact, so that a sufficient treatment capacity is secured. On the other hand, by setting the aeration amount to 10 m 3 / m 3 · hr or less, the flow of immobilized bacteria becomes excessive, effectively causing the biofilm formed on the surface of the fluid carrier to exfoliate or fall off. It can be prevented.

[3−5]処理フロー:
曝気処理は、例えば以下のような処理フローにより行うことができる。以下、図1に示す処理装置の例により具体的に説明する。
(1)排水タンク1中の排水を送液ポンプ2により中和槽3に送液する。
(2)中和槽3中の排水のpHをpHセンサー5により確認する。
(3)排水のpHが5以上、8以下の範囲を外れている場合には、中和槽3中の排水を撹拌機4により撹拌しながら、HClタンク7中の塩酸を送液ポンプ6により中和槽3に送液し、排水のpHを5以上、8以下に調整する。
(4)中和槽3中のpH調整された排液を曝気槽18に移す。
(5)曝気槽18中の排水に、流動担体、及び硫黄酸化細菌の培地を投入する。
(6)ブロワー17から散気管8を通じて曝気槽18中に空気を送り込み、曝気処理を行う。これにより、流動担体の表面に硫黄酸化細菌が固定された固定化細菌が得られ、排水の曝気処理が行われる。この際、pHセンサー12、ORPセンサー15、及びDOセンサー16(DO:Dissolved Oxygen。溶存酸素量)により、排水の状態を随時確認する。排水のpHが5以上、8以下の範囲を外れた場合には、HClタンク11中の塩酸を送液ポンプ10により曝気槽18に送液し、或いは、NaOHタンク14中の水酸化ナトリウム水溶液を送液ポンプ13により曝気槽18に送液し、排水のpHを5以上、8以下に調整する。
(7)曝気処理を施された後の処理水は放水口22から放水する。
[3-5] Processing flow:
The aeration process can be performed, for example, by the following process flow. Hereinafter, the present invention will be specifically described by way of the example of the processing apparatus shown in FIG.
(1) The drainage in the drainage tank 1 is sent to the neutralization tank 3 by the feed pump 2.
(2) The pH of the waste water in the neutralization tank 3 is confirmed by the pH sensor 5.
(3) When the pH of the waste water is out of the range of 5 or more and 8 or less, the hydrochloric acid in the HCl tank 7 is fed by the feed pump 6 while the waste water in the neutralization tank 3 is stirred by the stirrer 4 The solution is sent to the neutralization tank 3 to adjust the pH of the waste water to 5 or more and 8 or less.
(4) The pH-adjusted drainage in the neutralization tank 3 is transferred to the aeration tank 18.
(5) The drainage carrier in the aeration tank 18 is charged with a fluid carrier and a medium for sulfur oxidizing bacteria.
(6) Air is sent from the blower 17 into the aeration tank 18 through the aeration pipe 8 to perform aeration processing. As a result, immobilized bacteria in which sulfur-oxidizing bacteria are immobilized on the surface of the fluid carrier are obtained, and aeration of the waste water is performed. At this time, the state of the drainage is checked at any time by the pH sensor 12, the ORP sensor 15, and the DO sensor 16 (DO: Dissolved Oxygen; the amount of dissolved oxygen). When the pH of the waste water is out of the range of 5 or more and 8 or less, the hydrochloric acid in the HCl tank 11 is sent to the aeration tank 18 by the feed pump 10, or the sodium hydroxide aqueous solution in the NaOH tank 14 is The liquid is fed to the aeration tank 18 by the feed pump 13 to adjust the pH of the waste water to 5 or more and 8 or less.
(7) The treated water after the aeration treatment is discharged from the water outlet 22.

以下、実施例および比較例により、本発明の処理方法を更に具体的に説明する。なお、以下の実施例等においては、図1に示す構成の処理装置を使用した。曝気槽18の容量は520L、中和槽3の容量は24Lとした。   Hereinafter, the processing method of the present invention will be more specifically described by examples and comparative examples. In the following examples and the like, the processing apparatus shown in FIG. 1 was used. The volume of the aeration tank 18 was 520 L, and the volume of the neutralization tank 3 was 24 L.

<回分試験>
以下の実施例1、比較例1及び2においては、回分試験により処理方法の評価を行った。「回分試験」とは、試験開始時に曝気槽を排水で満たし、以後、新たな排水を曝気槽に導入することなく、曝気処理を行い、処理水の水質を評価する試験である。
<Batch test>
In Example 1 and Comparative Examples 1 and 2 below, the treatment method was evaluated by a batch test. The "batch test" is a test in which the aeration tank is filled with drainage at the start of the test, and thereafter aeration treatment is performed without introducing new drainage into the aeration tank to evaluate the quality of treated water.

[実施例1]
実施例1においては、排水として、製鉄所から排出された工場排水を使用した。この排水は、還元性硫黄化合物に由来する成分として、S2-、S23 2-を含み、Ca2+も多量に含むものである。その水質は表1に示す通りであった。なお、表中、「S23 2-−S」は、チオ硫酸態硫黄を示し、「SO4 2-−S」は、硫酸態硫黄を示し、「T−S」は、全硫黄を示す。
Example 1
In Example 1, factory drainage discharged from a steel mill was used as drainage. This waste water contains S 2− and S 2 O 3 2− as components derived from reducing sulfur compounds, and also contains Ca 2+ in a large amount. The water quality was as shown in Table 1. In the table, "S 2 O 3 2- -S" represents thiosulfuric acid sulfur, "SO 4 2- -S" represents sulfuric acid sulfur, and "T-S" represents total sulfur. Show.

Figure 0006425469
Figure 0006425469

前記排水を、図1に示す処理装置の中和槽3に送液し、前記排水のpHを8.0に調整した後、曝気槽18に送液した。次いで、曝気槽18中に流動担体を投入した。前記流動担体としては、ポリウレタン製の流動担体(商品名「AQ−1」、関東イノアック製)を用いた。前記流動担体は、10mm×10mm×10mmの立方体状で、比表面積が3,000m2/m3のものであった。前記流動担体は、曝気槽18の容量1m3あたり表面積が600m2となるように曝気槽18中に投入した。 The waste water was sent to the neutralization tank 3 of the treatment apparatus shown in FIG. 1 to adjust the pH of the waste water to 8.0, and then sent to the aeration tank 18. Next, the fluid carrier was charged into the aeration tank 18. As the fluid carrier, a fluid carrier made of polyurethane (trade name "AQ-1", manufactured by Kanto Inoac) was used. The fluid carrier had a cubic shape of 10 mm × 10 mm × 10 mm and a specific surface area of 3,000 m 2 / m 3 . The fluid carrier was introduced into the aeration tank 18 so that the surface area was 600 m 2 per 1 m 3 of volume of the aeration tank 18.

更に、曝気槽18中に、予め前培養したSAB−1株の培地を投入した。前記培地は、前記SAB−1株を1010cfu/mLの濃度で含む培地であった。前記培地を、前記SAB−1株の濃度が107cfu/mLとなるように、曝気槽18に投入し、曝気処理を行った。曝気槽18中の排水は、pHが6以上、7以下、酸化還元電位(ORP)を−50mV以上、+0mV以下となるように制御した。また、曝気量は2m3/m3・hr以上、6m3/m3・hr以下に制御した。曝気処理の過程で流動担体の表面に前記SAB−1株および無機物が徐々に付着し、生物膜が形成された。則ち、流動担体の表面に前記SAB−1株が固定された固定化細菌を得た。 Furthermore, the culture medium of the SAB-1 strain pre-cultured in advance was charged into the aeration tank 18. The medium was a medium containing the SAB-1 strain at a concentration of 10 10 cfu / mL. The medium was introduced into the aeration tank 18 such that the concentration of the SAB-1 strain was 10 7 cfu / mL, and aeration treatment was performed. The drainage in the aeration tank 18 was controlled such that the pH was 6 or more and 7 or less, and the redox potential (ORP) was -50 mV or more and +0 mV or less. Also, the aeration amount was controlled to 2 m 3 / m 3 · hr or more and 6 m 3 / m 3 · hr or less. In the process of aeration treatment, the SAB-1 strain and the inorganic substance were gradually attached to the surface of the fluid carrier to form a biofilm. In other words, immobilized bacteria in which the SAB-1 strain was immobilized on the surface of the fluid carrier were obtained.

曝気処理を開始した後、定期的に処理水のCOD値を測定し、COD値の経時変化を確認した。その結果を図2に示す。図2に示すように、曝気処理を開始した後、処理水のCOD値は下がり続け、曝気処理を開始してから約1時間で10mg/L程度に下がり、定常状態となった。   After the aeration treatment was started, the COD value of the treated water was periodically measured to confirm the change with time of the COD value. The results are shown in FIG. As shown in FIG. 2, the COD value of the treated water continued to decrease after the aeration treatment started, and fell to about 10 mg / L in about one hour after the aeration treatment started, and became a steady state.

[比較例1]
曝気槽18中に、予め前培養したSAB−1株の培地を投入することに代えて、都市下水の下水処理場の活性汚泥混合液を投入したこと以外は実施例1と同様にして、曝気処理を行った。前記活性汚泥は、前記活性汚泥の濃度が1,000mg/Lとなるように、曝気槽18に投入した。実施例1と同様に、COD値の経時変化を確認した結果を図2に示す。図2に示すように、処理水のCOD値は、実施例1よりも低下するのが遅く、実施例1の約20倍の20時間後に定常状態に達した。
Comparative Example 1
The aeration was carried out in the same manner as in Example 1, except that the activated sludge mixed solution of the sewage treatment plant of municipal sewage was introduced instead of the culture medium of the SAB-1 strain pre-cultured in advance into the aeration tank 18. I did the processing. The activated sludge was introduced into the aeration tank 18 such that the concentration of the activated sludge was 1,000 mg / L. Similar to Example 1, the results of confirming the change with time of the COD value are shown in FIG. As shown in FIG. 2, the COD value of the treated water was slower to lower than in Example 1, and reached a steady state after 20 hours, about 20 times that of Example 1.

[比較例2]
曝気槽18中に流動担体を投入することに代えて、固定担体を投入したこと以外は実施例1と同様にして、曝気処理を行った。前記固定担体としては、ポリプロピレン製の固定担体を用いた。前記固定担体は、波のピッチ(波の頂部と頂部の間隔)が320mm、板の厚みが4mmの波板状で、比表面積が100m2/m3のものであった。前記固定担体は、曝気槽18の容量1m3あたり表面積が60m2となるように曝気槽18中に投入した。実施例1と同様に、COD値の経時変化を確認した結果を図2に示す。図2に示すように、処理水のCOD値は、実施例1よりも低下するのが遅く、実施例1の約3倍の3時間後に定常状態に達した。
Comparative Example 2
The aeration treatment was performed in the same manner as in Example 1 except that the fixed carrier was charged instead of the fluid carrier being charged into the aeration tank 18. As the fixed carrier, a fixed carrier made of polypropylene was used. The fixed carrier was a corrugated plate having a wave pitch of 320 mm (the distance between the wave top and the top) and a plate thickness of 4 mm, and had a specific surface area of 100 m 2 / m 3 . The fixed carrier was introduced into the aeration tank 18 so as to have a surface area of 60 m 2 per 1 m 3 of volume of the aeration tank 18. Similar to Example 1, the results of confirming the change with time of the COD value are shown in FIG. As shown in FIG. 2, the COD value of the treated water was slower to lower than that of Example 1, and reached a steady state after about 3 times of that of Example 1.

以上の結果より、SAB−1株を固定した固定化細菌を使用し、流動床方式で曝気処理することにより、排水処理を短時間で立ち上げることができると言える。
<通水試験>
From the above results, it can be said that waste water treatment can be started in a short time by carrying out the aeration treatment by the fluidized bed method using the immobilized bacteria on which the SAB-1 strain is fixed.
<Water flow test>

以下の実施例2、比較例3においては、通水試験により処理方法の評価を行った。「通水試験」とは、処理装置の系内に排水を連続的に導入しながら曝気処理を行い、処理水の水質を評価する試験である。前記通水試験においては、曝気処理を施された水(処理水)は、処理装置の系外に連続的に排出される。   In Example 2 and Comparative Example 3 below, the treatment method was evaluated by a water flow test. The "water flow test" is a test to evaluate the water quality of treated water by performing aeration treatment while continuously introducing drainage into the system of the treatment apparatus. In the water passing test, the aerated water (treated water) is continuously discharged out of the system of the treatment apparatus.

[実施例2]
実施例1と同様の条件で48時間の回分試験を行った後、続けて通水試験を行った。則ち、実施例1で得た固定化細菌をそのまま使用した。連続的に導入する排水としては、製鉄所から排出された工場排水を使用した。その水質は表2に示す通りであった。
Example 2
After a batch test for 48 hours was performed under the same conditions as in Example 1, a water flow test was subsequently performed. In other words, the immobilized bacteria obtained in Example 1 were used as they were. As wastewater introduced continuously, factory wastewater discharged from a steel mill was used. The water quality was as shown in Table 2.

Figure 0006425469
Figure 0006425469

実施例1の回分試験と同様に、前記排水を、図1に示す処理装置の中和槽3に送液し、前記排水のpHを8.0に調整した後、曝気槽18に送液した。曝気槽18における排水の水理学的滞留時間(HRT)を初めは12時間とし、1日ごとに、6時間、4時間、2時間、1時間と短縮し、その後は、HRTを1時間に固定して1週間、通水を行った。曝気処理を開始した後、定期的に処理水のCOD値を測定し、COD値の経時変化を確認した。その結果を図3に示す。図3に示すように、HRTを1時間とした5日後以降も、COD値は10mg/L以下で推移し、安定して水処理をすることができた。   Similar to the batch test of Example 1, the waste water was sent to the neutralization tank 3 of the treatment apparatus shown in FIG. 1, and the pH of the waste water was adjusted to 8.0, and then sent to the aeration tank 18 . The hydraulic retention time (HRT) of the waste water in the aeration tank 18 is initially set to 12 hours, shortened to 6 hours, 4 hours, 2 hours, 1 hour every day, and thereafter HRT is fixed to 1 hour Then, I did water supply for one week. After the aeration treatment was started, the COD value of the treated water was periodically measured to confirm the change with time of the COD value. The results are shown in FIG. As shown in FIG. 3, the COD value remained at 10 mg / L or less even after 5 days after setting HRT to 1 hour, and the water treatment could be performed stably.

[比較例3]
比較例1と同様の条件で48時間の回分試験を行った後、続けて通水試験を行ったこと以外は比較例2と同様にして、曝気処理を行った。実施例2と同様に、COD値の経時変化を確認した結果を図3に示す。図3に示すように、HRTを1時間とした5日後以降はCOD値が上昇し、19〜37mg/Lで推移した。
Comparative Example 3
After performing a batch test for 48 hours under the same conditions as Comparative Example 1, the aeration treatment was performed in the same manner as Comparative Example 2 except that a water flow test was subsequently performed. As in Example 2, the results of confirming the change with time of the COD value are shown in FIG. As shown in FIG. 3, the COD value increased after 5 days when HRT was 1 hour, and it remained at 19 to 37 mg / L.

以上の結果より、SAB−1株を固定した固定化細菌を使用し、流動床方式で曝気処理することにより、排水の処理効率を向上させることができ、安定的に排水を処理することができると言える。   From the above results, it is possible to improve the treatment efficiency of the waste water by using the immobilized bacteria fixed with the SAB-1 strain and carrying out the aeration treatment by the fluidized bed method, and the waste water can be treated stably. It can be said.

<担体の材質の評価>
以下の実施例3、比較例4〜6おいては、流動担体の材質について評価を行った。
<Evaluation of material of carrier>
In the following Example 3 and Comparative Examples 4 to 6, the material of the fluid carrier was evaluated.

[実施例3]
実施例3においては、排水として、製鉄所から排出された工場排水を使用した。その水質は前記表1に示す通りであった。
[Example 3]
In Example 3, factory drainage discharged from a steel mill was used as drainage. The water quality was as shown in Table 1 above.

前記排水を、図1に示す処理装置の中和槽3に送液し、前記排水のpHを8.0に調整した後、曝気槽18に送液した。次いで、曝気槽18中に流動担体を投入した。前記流動担体としては、実施例1で使用したのと同じポリウレタン製の流動担体(商品名「AQ−1」、関東イノアック製)を用いた。前記流動担体は、曝気槽18の容量1m3あたり表面積が600m2となるように曝気槽18中に投入した。 The waste water was sent to the neutralization tank 3 of the treatment apparatus shown in FIG. 1 to adjust the pH of the waste water to 8.0, and then sent to the aeration tank 18. Next, the fluid carrier was charged into the aeration tank 18. As the fluid carrier, the same polyurethane fluid carrier (trade name "AQ-1", manufactured by Kanto Inoac Co., Ltd.) as used in Example 1 was used. The fluid carrier was introduced into the aeration tank 18 so that the surface area was 600 m 2 per 1 m 3 of volume of the aeration tank 18.

更に、曝気槽18中に、予め前培養したSAB−1株の培地を投入した。前記培地は、前記SAB−1株を1010cfu/mLの濃度で含む培地であった。前記培地を、前記SAB−1株の濃度が107cfu/mLとなるように、曝気槽18に投入し、曝気処理を行った。曝気槽18中の排水は、pHが6以上、7以下となるように制御した。そして、実施例1と同様の条件で48時間の回分試験を行った。 Furthermore, the culture medium of the SAB-1 strain pre-cultured in advance was charged into the aeration tank 18. The medium was a medium containing the SAB-1 strain at a concentration of 10 10 cfu / mL. The medium was introduced into the aeration tank 18 such that the concentration of the SAB-1 strain was 10 7 cfu / mL, and aeration treatment was performed. The drainage in the aeration tank 18 was controlled to have a pH of 6 or more and 7 or less. Then, a batch test for 48 hours was performed under the same conditions as in Example 1.

その後、前記表2に示す排水の導入を開始した。この際、曝気槽18中のORPが+100mV以上となるように、前記排水の導入量を制御しながら、HRTが1時間になるまで、排水の導入量を徐々に増加させた。この間、流動担体にはSAB−1株、及びカルシウムに由来する無機物が徐々に付着し、生物膜が形成された。則ち、流動担体の表面に前記SAB−1株が固定された固定化細菌を得た。曝気処理を開始した後、1日から20日までの処理水の平均CODは9mg/Lであった。   Thereafter, the introduction of the drainage shown in Table 2 was started. At this time, while controlling the introduction amount of the drainage such that the ORP in the aeration tank 18 is +100 mV or more, the introduction amount of the drainage was gradually increased until the HRT becomes 1 hour. During this time, SAB-1 strain and calcium-derived inorganic substances were gradually attached to the fluid carrier to form a biofilm. In other words, immobilized bacteria in which the SAB-1 strain was immobilized on the surface of the fluid carrier were obtained. After the aeration treatment was started, the average COD of the treated water from day 1 to day 20 was 9 mg / L.

曝気処理を開始して1週間後からHRTを1時間として2ヶ月間通水した後、流動担体を回収し、流動担体に付着したSS量、SS中の有機成分量および無機成分量を測定した。その結果を表3及び図4に示す。なお、流動担体の生物膜から微生物を単離し、16S RNA解析を行ったところ、主にSAB−1株が存在していることが確認された。   After one week from the start of the aeration treatment, HRT was allowed to flow for 1 month and water was allowed to flow for 2 months, then the fluid carrier was recovered, and the amount of SS attached to the fluid carrier, the amount of organic components and the amount of inorganic components in SS were measured . The results are shown in Table 3 and FIG. In addition, when microorganisms were isolated from the biological membrane of a fluid carrier and 16S RNA analysis was performed, it was confirmed that the SAB-1 strain mainly exists.

Figure 0006425469
Figure 0006425469

[比較例4]
ポリウレタン製の流動担体に代えて、ポリエステル製の流動担体を用いたこと以外は、実施例3と同様にして曝気処理を行った。前記流動担体は、直径8mmの粒状のものであった。前記流動担体は、曝気槽18の容量1m3あたり表面積が600m2となるように曝気槽18中に投入した。曝気処理を開始した後、1日から20日までの処理水の平均CODは13mg/Lであった。その後、実施例3と同様に、流動担体を回収し、流動担体に付着したSS量、SS中の有機成分量および無機成分量を測定した。その結果を表3及び図4に示す。
Comparative Example 4
The aeration treatment was performed in the same manner as in Example 3 except that a fluid carrier made of polyester was used instead of the fluid carrier made of polyurethane. The fluid carrier was in the form of granules having a diameter of 8 mm. The fluid carrier was introduced into the aeration tank 18 so that the surface area was 600 m 2 per 1 m 3 of volume of the aeration tank 18. After the aeration treatment was initiated, the average COD of treated water from day 1 to day 20 was 13 mg / L. Thereafter, in the same manner as in Example 3, the fluid carrier was recovered, and the amount of SS attached to the fluid carrier, the amount of organic components and the amount of inorganic components in the SS were measured. The results are shown in Table 3 and FIG.

[比較例5]
ポリウレタン製の流動担体に代えて、ポリプロピレン製の流動担体を用いたこと以外は、実施例3と同様にして曝気処理を行った。前記流動担体は、10mm×10mm×10mmの立方体状のものであった。前記流動担体は、曝気槽18の容量1m3あたり表面積が600m2となるように曝気槽18中に投入した。曝気処理を開始した後、1日から20日までの処理水の平均CODは13mg/Lであった。その後、実施例3と同様に、流動担体を回収し、流動担体に付着したSS量、SS中の有機成分量および無機成分量を測定した。その結果を表3及び図4に示す。
Comparative Example 5
The aeration treatment was performed in the same manner as in Example 3 except that a fluid carrier made of polypropylene was used instead of the fluid carrier made of polyurethane. The fluid carrier was a cube of 10 mm × 10 mm × 10 mm. The fluid carrier was introduced into the aeration tank 18 so that the surface area was 600 m 2 per 1 m 3 of volume of the aeration tank 18. After the aeration treatment was initiated, the average COD of treated water from day 1 to day 20 was 13 mg / L. Thereafter, in the same manner as in Example 3, the fluid carrier was recovered, and the amount of SS attached to the fluid carrier, the amount of organic components and the amount of inorganic components in the SS were measured. The results are shown in Table 3 and FIG.

[比較例6]
ポリウレタン製の流動担体に代えて、ポリエチレン製の流動担体を用いたこと以外は、実施例3と同様にして曝気処理を行った。前記流動担体は、10mm×10mm×10mmの立方体状ものであった。前記流動担体は、曝気槽18の容量1m3あたり表面積が600m2となるように曝気槽18中に投入した。曝気処理を開始した後、1日から20日までの処理水の平均CODは11mg/Lであった。その後、実施例3と同様に、流動担体を回収し、流動担体に付着したSS量、SS中の有機成分量および無機成分量を測定した。その結果を表3及び図4に示す。
Comparative Example 6
The aeration treatment was performed in the same manner as in Example 3 except that instead of the fluid carrier made of polyurethane, a fluid carrier made of polyethylene was used. The fluid carrier was a cube of 10 mm × 10 mm × 10 mm. The fluid carrier was introduced into the aeration tank 18 so that the surface area was 600 m 2 per 1 m 3 of volume of the aeration tank 18. After the aeration treatment was started, the average COD of the treated water from day 1 to day 20 was 11 mg / L. Thereafter, in the same manner as in Example 3, the fluid carrier was recovered, and the amount of SS attached to the fluid carrier, the amount of organic components and the amount of inorganic components in the SS were measured. The results are shown in Table 3 and FIG.

以上の結果より、ポリウレタン製の流動担体を使用することにより、カルシウムイオンを高濃度で含む排水を処理した場合でも、安定的に排水を処理することができると言える。また、ポリウレタン製の流動担体は、無機成分由来のSS量が最も少なく、有機成分由来のSS量が最も多い。則ち、カルシウムの沈着が少なく、SAB−1株を多量に固定することができたため、カルシウムイオンを高濃度で含む排水を処理した場合でも、安定的に排水を処理することができたと考えられる。   From the above results, it can be said that by using a fluid carrier made of polyurethane, waste water can be treated stably even when waste water containing calcium ions in high concentration is treated. In addition, the fluid carrier made of polyurethane has the smallest amount of SS derived from the inorganic component and the largest amount of SS derived from the organic component. In other words, because it was possible to fix a large amount of SAB-1 strain with little calcium deposition, it is considered that the waste water could be treated stably even when treated with waste water containing a high concentration of calcium ions. .

一方、ポリウレタン以外の樹脂からなる流動担体は、無機成分由来のSS量が多く、その結果として、有機成分由来のSS量が少なくなっている。これは、カルシウムの沈着が多いために、SAB−1株を多量に固定することができなかったためと考えられる。   On the other hand, the fluid carrier composed of a resin other than polyurethane has a large amount of SS derived from the inorganic component, and as a result, the amount of SS derived from the organic component is reduced. This is considered to be due to the inability to fix a large amount of SAB-1 strain due to high calcium deposition.

本発明の処理方法は、還元性硫黄化合物、及びカルシウムイオンを含む排水を処理する際に利用することができる。特に敷地面積が狭く、大規模な沈殿槽を設置することができない工場等において特に好適に利用することができる。   The treatment method of the present invention can be used in treating waste water containing reducing sulfur compounds and calcium ions. In particular, the present invention can be suitably used particularly in a factory where the area of the site is narrow and a large scale sedimentation tank can not be installed.

1:排水タンク、2:送液ポンプ、3:中和槽、4:攪拌機、5:pHセンサー、6:送液ポンプ、7:HClタンク、8:散気管、10:送液ポンプ、11:HClタンク、12:pHセンサー、13:送液ポンプ、14:NaOHタンク、15:ORPセンサー、16:DOセンサー、17:ブロワー、18:曝気槽、22:放水口。 1: Drainage tank, 2: Transport pump, 3: Neutralization tank, 4: Stirrer, 5: pH sensor, 6: Transport pump, 7: HCl tank, 8: Diffuser, 10: Transport pump, 11: HCl tank, 12: pH sensor, 13: feed pump, 14: NaOH tank, 15: ORP sensor, 16: DO sensor, 17: blower, 18: aeration tank, 22: water outlet.

NITE P−1543   NITE P-1543

Claims (3)

曝気槽に、排水、及び硫黄酸化細菌を投入し、曝気処理を行う、還元性硫黄化合物を含む排水の処理方法であって、
前記排水として、還元性硫黄化合物、及びカルシウムイオンを含む排水を用い、
前記硫黄酸化細菌として、ポリウレタン樹脂製の流動担体に、硫黄酸化細菌が固定された固定化細菌を用い、
前記曝気槽中で、前記排水のpHを5以上、8以下に維持しながら、前記固定化細菌を流動させ、流動床方式で曝気処理を行うことを特徴とする排水の処理方法。
A method for treating wastewater containing reducible sulfur compounds, comprising: discharging wastewater and sulfur oxidizing bacteria into an aeration tank and performing aeration treatment,
As the waste water, waste water containing reducing sulfur compounds and calcium ions is used,
As the sulfur-oxidizing bacteria, an immobilized bacterium in which the sulfur-oxidizing bacteria are immobilized is used as a polyurethane resin fluid carrier,
A method for treating wastewater, comprising allowing the immobilized bacteria to flow while maintaining the pH of the wastewater at 5 or more and 8 or less in the aeration tank, and performing aeration treatment in a fluid bed system.
曝気量を2m3/m3・hr以上に維持しながら、前記曝気処理を行う請求項1に記載の処理方法。 The treatment method according to claim 1, wherein the aeration treatment is performed while maintaining the aeration amount at 2 m 3 / m 3 · hr or more. 前記排水として、還元性硫黄化合物の濃度がCOD換算で30mg/L以上、カルシウムイオンの濃度が100mg/L以上の排水を用いる請求項1又は2に記載の処理方法。 The treatment method according to claim 1 or 2 , wherein the waste water has a concentration of reducible sulfur compound of 30 mg / L or more and a calcium ion concentration of 100 mg / L or more in COD conversion.
JP2014179130A 2014-09-03 2014-09-03 Method of treating waste water containing reducing sulfur compounds Active JP6425469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014179130A JP6425469B2 (en) 2014-09-03 2014-09-03 Method of treating waste water containing reducing sulfur compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014179130A JP6425469B2 (en) 2014-09-03 2014-09-03 Method of treating waste water containing reducing sulfur compounds

Publications (2)

Publication Number Publication Date
JP2016052622A JP2016052622A (en) 2016-04-14
JP6425469B2 true JP6425469B2 (en) 2018-11-21

Family

ID=55744530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014179130A Active JP6425469B2 (en) 2014-09-03 2014-09-03 Method of treating waste water containing reducing sulfur compounds

Country Status (1)

Country Link
JP (1) JP6425469B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111170447B (en) * 2020-01-15 2021-11-02 浙江永续环境工程有限公司 Fluidized bed biofilm reactor based on composite desulfurization bacteria
CN116813153B (en) * 2023-08-25 2023-11-10 技源生物科技(山东)有限公司 Method for treating acidic wastewater

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582695B2 (en) * 1991-12-02 1997-02-19 新日本製鐵株式会社 Biological treatment method for wastewater containing hydrogen sulfide
JP3184947B2 (en) * 1994-03-15 2001-07-09 新日本製鐵株式会社 Method for treating wastewater containing reducing sulfur compounds
JP3241565B2 (en) * 1995-05-30 2001-12-25 新日本製鐵株式会社 Treatment of wastewater containing reducing sulfur compounds by microorganisms
JP2002018479A (en) * 2000-07-03 2002-01-22 Nippon Steel Corp Method for removing nitrogen from water
JP3477187B2 (en) * 2001-09-28 2003-12-10 独立行政法人農業・生物系特定産業技術研究機構 Method and apparatus for decolorizing wastewater

Also Published As

Publication number Publication date
JP2016052622A (en) 2016-04-14

Similar Documents

Publication Publication Date Title
Di Capua et al. Impacts of sulfur source and temperature on sulfur-driven denitrification by pure and mixed cultures of Thiobacillus
Di Capua et al. Electron donors for autotrophic denitrification
Di Capua et al. Chemolithotrophic denitrification in biofilm reactors
Kostrytsia et al. Elemental sulfur-based autotrophic denitrification and denitritation: microbially catalyzed sulfur hydrolysis and nitrogen conversions
Tong et al. Effect of oyster shell medium and organic substrate on the performance of a particulate pyrite autotrophic denitrification (PPAD) process
Dapena-Mora et al. Monitoring the stability of an Anammox reactor under high salinity conditions
US8163181B2 (en) Apparatus and method for treating FGD blowdown or similar liquids
Hu et al. Toward energy neutrality: novel wastewater treatment incorporating acidophilic ammonia oxidation
Zhang et al. Elemental sulfur as an electron acceptor for organic matter removal in a new high-rate anaerobic biological wastewater treatment process
Iorhemen et al. Submerged aerobic granular sludge membrane bioreactor (AGMBR): Organics and nutrients (nitrogen and phosphorus) removal
JP4625508B2 (en) Nitrate waste liquid treatment method and apparatus
US10059610B2 (en) Reduction of the amount of sulphur compounds in a sulphur compounds contaminated wastewater stream using a granular sludge treatment system
Wen et al. Enhancing simultaneous nitritation and anammox in recirculating biofilters: effects of unsaturated zone depth and alkalinity dissolution of packing materials
Qiu et al. Achieving a novel polysulfide-involved sulfur-based autotrophic denitrificationprocess for high-rate nitrogen removal in elemental sulfur-packed bed reactors
Suárez et al. Influence of operating conditions on sulfate reduction from real mining process water by membrane biofilm reactors
Bhuvanesh et al. Start-up and performance of a hybrid anoxic reactor for biological denitrification
Fulazzaky et al. Mass transfer kinetics of phosphorus biosorption by aerobic granules
Tan et al. Effect of elevated nitrate and sulfate concentrations on selenate removal by mesophilic anaerobic granular sludge bed reactors
JP4774120B2 (en) Apparatus and method for treating radioactive nitrate waste liquid
Anjali et al. Development of enhanced SNAD process in a down-flow packed bed reactor for removal of higher concentrations of NH4–N and COD
Costa et al. Anaerobic batch reactor treating acid mine drainage: Kinetic stability on sulfate and COD removal
JP6425469B2 (en) Method of treating waste water containing reducing sulfur compounds
EP3114089B1 (en) Apparatus comprising a trace element dosage device and method for treating raw water in biofilter
Tsuneda et al. High-rate nitrification using aerobic granular sludge
KR20100008185A (en) A aerobic deammonification method of sbr type sewage, waste, livestock waste water treatment plant by use of micro sand bio mass, chemical and apparatus therof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181023

R150 Certificate of patent or registration of utility model

Ref document number: 6425469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250