JP5380319B2 - Power amplifier - Google Patents

Power amplifier Download PDF

Info

Publication number
JP5380319B2
JP5380319B2 JP2010021568A JP2010021568A JP5380319B2 JP 5380319 B2 JP5380319 B2 JP 5380319B2 JP 2010021568 A JP2010021568 A JP 2010021568A JP 2010021568 A JP2010021568 A JP 2010021568A JP 5380319 B2 JP5380319 B2 JP 5380319B2
Authority
JP
Japan
Prior art keywords
temperature
fet
gain
temperature sensors
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010021568A
Other languages
Japanese (ja)
Other versions
JP2011160297A (en
Inventor
亮 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010021568A priority Critical patent/JP5380319B2/en
Publication of JP2011160297A publication Critical patent/JP2011160297A/en
Application granted granted Critical
Publication of JP5380319B2 publication Critical patent/JP5380319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電力増幅装置に関する。   The present invention relates to a power amplification device.

SNG(Satellite News Gathering)システムは、人工衛星を用いてテレビニュース等の放送番組素材を収集するシステムである。放送番組素材を収集する地上拠点には、SNG車載局やFlyaway(車載用ではない可搬地球局)といったSNG可搬地球局が設置される。このようなSNG可搬地球局では、送出信号を送信電力に増幅するための電力増幅器に電界効果型トランジスタ(FET)を用いる固体化電力増幅器(SSPA;solid state power amplifier)が採用されることが多い。   The SNG (Satellite News Gathering) system is a system that collects broadcast program materials such as TV news using an artificial satellite. SNG portable earth stations such as SNG in-vehicle stations and Flyaway (portable earth stations not for in-vehicle use) are installed at ground bases for collecting broadcast program materials. In such an SNG portable earth station, a solid state power amplifier (SSPA) that uses a field effect transistor (FET) as a power amplifier for amplifying a transmission signal to transmission power may be employed. Many.

SNGシステムでは、高画質の映像素材を高ビットレートで伝送することが求められる。従って、情報量の多い放送用の映像素材の伝送は広帯域で行われ、必要とされるEIRP(Equivalent Isotropicaly Radiated Power)も高くなる。このため、窒化ガリウム系高電子移動度トランジスタ(GaN HEMT)を使用して100W級の飽和電力数を実現する大電力SSPAも放送事業者向けに提供されている。   The SNG system is required to transmit high-quality video material at a high bit rate. Therefore, the transmission of video material for broadcasting with a large amount of information is performed in a wide band, and the required EIRP (Equivalent Isotropicaly Radiated Power) is also increased. For this reason, a high power SSPA that uses a gallium nitride-based high electron mobility transistor (GaN HEMT) to realize a saturation power number of 100 W class is also provided for broadcasters.

SNGシステムにおける衛星通信は、一般にC帯(4G〜8GHz帯)やKu帯(12G〜18GHz帯)で行われるが、SNGシステムで必要とされる60dB程度の高利得を実現するためには、FETをカスケードに多段接続する必要がある。また大電力SSPAの電力増幅部は、大電力送信時に所望の無線特性を満足するよう、カスケード接続の最終段においてFETを並列に配置して信号を分配することでFETの動作点の充分なバックオフを確保している。   Satellite communication in the SNG system is generally performed in the C band (4 G to 8 GHz band) and the Ku band (12 G to 18 GHz band). In order to achieve the high gain of about 60 dB required in the SNG system, the FET Must be cascaded in cascade. In addition, the power amplification unit of the high power SSPA provides sufficient back-up of the operating point of the FET by distributing the signals by arranging the FETs in parallel at the final stage of the cascade connection so that the desired radio characteristics are satisfied during high power transmission. Secured off.

FETは周囲温度によって利得が変動するため、特にカスケード接続した場合には、利得を一定にする補償機能が必要とされる。例えば特許文献1には、主増幅回路及び歪信号増幅回路の近傍に温度センサを配置し、各回路の発熱素子及び温度による特性変化の大きい素子の温度をモニタする技術が記載されている。この技術では、各素子の温度による利得特性を予めルックアップテーブルに格納しておき、温度補償が行なわれる。   Since the gain of the FET varies depending on the ambient temperature, a compensation function for making the gain constant is required particularly when cascaded. For example, Patent Document 1 describes a technique in which a temperature sensor is disposed in the vicinity of a main amplifier circuit and a distortion signal amplifier circuit, and the temperature of a heat generating element of each circuit and an element having a large characteristic change due to temperature is monitored. In this technique, gain characteristics depending on the temperature of each element are stored in advance in a lookup table, and temperature compensation is performed.

特開2007−82016号公報(段落0014、図1)Japanese Patent Laying-Open No. 2007-82016 (paragraph 0014, FIG. 1)

しかしながら、Ku帯等で通信を行う衛星通信用のSSPAでは、入力信号を複数系統に分配するために複数のFETを並列して配置する場合、その高い周波数のため基板精度や調整公差が原因で分配器の各出力ポートの分配損にばらつきが生じかねない。カスケード接続最終段のFETの動作点がばらつくと、それぞれのFETの発熱量にもばらつきが生じる。このため、並列されたFET間に温度差が生じてしまいかねない。特許文献1に記載の技術のように、増幅回路の近傍に1つの温度センサを配置して1点の温度を検出する方式では、温度検出を行う箇所以外の温度変化による利得変動を補正できない。   However, in the SSPA for satellite communication that performs communication in the Ku band or the like, when a plurality of FETs are arranged in parallel in order to distribute the input signal to a plurality of systems, due to the high frequency, due to substrate accuracy and adjustment tolerances. The distribution loss of each output port of the distributor may vary. If the operating points of the cascade-connected final stage FETs vary, the amount of heat generated by each FET also varies. For this reason, a temperature difference may occur between the FETs arranged in parallel. As in the technique described in Patent Document 1, in a method in which one temperature sensor is arranged in the vicinity of the amplifier circuit and the temperature at one point is detected, gain fluctuation due to a temperature change other than the location where the temperature is detected cannot be corrected.

本発明は、前記のような問題に鑑みなされたもので、温度分布の変動による利得変動を安定的に補償する電力増幅装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a power amplifying apparatus that stably compensates for gain fluctuations due to fluctuations in temperature distribution.

本発明の一実施形態に係る電力増幅装置は、カスケード接続された複数の電界効果型トランジスタであって、前記カスケード接続の最終段においては複数の電界効果型トランジスタが並列に配置されている、複数の電界効果型トランジスタと、前記カスケード接続最終段の複数の電界効果型トランジスタのうち少なくとも2以上の電界効果型トランジスタの近傍に設けられた複数の温度センサと、前記複数の電界効果型トランジスタの利得を制御する可変アッテネータと、前記複数の温度センサの温度検出結果に基づいて、前記可変アッテネータを制御する制御手段を具備する。   A power amplifying device according to an embodiment of the present invention includes a plurality of cascade-connected field effect transistors, wherein a plurality of field-effect transistors are arranged in parallel in the final stage of the cascade connection. Field effect transistors, a plurality of temperature sensors provided in the vicinity of at least two or more field effect transistors among the plurality of field effect transistors at the final stage of cascade connection, and gains of the plurality of field effect transistors And a control means for controlling the variable attenuator based on the temperature detection results of the plurality of temperature sensors.

本発明によれば、温度分布の変動による利得変動を安定的に補償する電力増幅装置を提供することができる。   According to the present invention, it is possible to provide a power amplifying apparatus that stably compensates for gain fluctuation due to temperature distribution fluctuation.

本発明の一実施形態に係る電力増幅器の構成を示すブロック図。The block diagram which shows the structure of the power amplifier which concerns on one Embodiment of this invention. 1つのFETの温度検出結果に基づいて利得補償量を算出し、小信号を増幅する場合の周波数と利得の関係の一例を示す図。The figure which shows an example of the relationship between a frequency and a gain in the case of calculating a gain compensation amount based on the temperature detection result of one FET, and amplifying a small signal. 図2と同じ1つのFETの温度検出結果に基づいて利得補償量を算出し、大信号を増幅する場合の周波数と利得の関係の一例を示す図。The figure which shows an example of the relationship between a frequency and a gain in the case of calculating a gain compensation amount based on the temperature detection result of one FET same as FIG. 2, and amplifying a large signal. 小信号の増幅時における各温度センサによるFETの温度検出結果の一例を示す図。The figure which shows an example of the temperature detection result of FET by each temperature sensor at the time of amplification of a small signal. 図4の例における信号を大信号まで増幅させた場合の温度検出結果の一例を示す図。The figure which shows an example of the temperature detection result at the time of amplifying the signal in the example of FIG. 4 to a large signal. 図5の例と同じ大信号増幅を行なう場合の温度検出結果の一例を示す図。The figure which shows an example of the temperature detection result in the case of performing the same large signal amplification as the example of FIG. 本実施形態に係る電力増幅器によって大信号を増幅する場合の周波数と利得の関係の一例を示す図。The figure which shows an example of the relationship between a frequency and a gain in the case of amplifying a large signal with the power amplifier which concerns on this embodiment.

以下、図面を参照して本発明による電力増幅装置の実施形態を説明する。   Hereinafter, embodiments of a power amplifying device according to the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る電力増幅器の構成を示すブロック図である。図1に示すように、本実施形態に係る電力増幅器10は、冷却器(ヒートシンク)20上に設けられる。この電力増幅器10は、例えばSNG可搬地球局における送信電力の増幅に用いられるSPPAとして構成される。   FIG. 1 is a block diagram showing a configuration of a power amplifier according to an embodiment of the present invention. As shown in FIG. 1, the power amplifier 10 according to the present embodiment is provided on a cooler (heat sink) 20. This power amplifier 10 is configured as an SPPA used for amplification of transmission power in an SNG portable earth station, for example.

電力増幅器10は、可変アッテネータ11、温度センサ12〜15、制御回路16、複数の電界効果型トランジスタ(FET)、及び分配器D−1〜D−7を備えている。複数のFETのそれぞれは、例えばガリウムひ素FETであり、入力された信号を増幅する機能を有する。図1には、これらのFETによる6段のカスケード接続が図示されている。分配器D−1〜D−7としては、たとえば高周波回路用のブランチライン型分配器が用いられ得る。   The power amplifier 10 includes a variable attenuator 11, temperature sensors 12 to 15, a control circuit 16, a plurality of field effect transistors (FETs), and distributors D-1 to D-7. Each of the plurality of FETs is a gallium arsenide FET, for example, and has a function of amplifying an input signal. FIG. 1 shows a six-stage cascade connection of these FETs. As the distributors D-1 to D-7, for example, branch line type distributors for high-frequency circuits can be used.

入力端子から入力した入力信号は、可変アッテネータ11を通って、FET1〜FET3に供給される。FET1〜FET3は、それぞれカスケード接続の1〜3段目に対応する。FET3から出力された信号は、分配器D−1によって2系統に分配され、4段目のFET4−1とFET4−2にそれぞれ供給される。   An input signal input from the input terminal passes through the variable attenuator 11 and is supplied to the FET1 to FET3. FET1 to FET3 correspond to the first to third stages of cascade connection, respectively. The signal output from the FET 3 is distributed to two systems by the distributor D-1, and is supplied to the fourth stage FET 4-1 and FET 4-2, respectively.

FET4−1からの出力は分配器D−2によって更に2系統に分配され、5段目のFET5−1とFET5−2にそれぞれ供給される。またFET4−2からの出力は分配器D−3によって更に2系統に分配され、5段目のFET5−3とFET5−4にそれぞれ供給される。   The output from the FET 4-1 is further divided into two systems by the distributor D- 2 and supplied to the fifth-stage FET 5-1 and the FET 5-2, respectively. Further, the output from the FET 4-2 is further divided into two systems by the distributor D- 3 and supplied to the fifth-stage FET 5-3 and the FET 5-4, respectively.

同様に、FET5−1からの出力は分配器D−4によって2系統に分配され、6段目のFET6−1とFET6−2に供給される。FET5−2からの出力は分配器D−5によって2系統に分配され、6段目のFET6−3とFET6−4に供給される。FET5−3からの出力は分配器D−6によって2系統に分配され、6段目のFET6−5とFET6−6に供給される。FET5−4からの出力は分配器D−7によって2系統に分配され、6段目のFET6−7とFET6−8に供給される。   Similarly, the output from the FET 5-1 is distributed to two systems by the distributor D-4, and is supplied to the sixth stage FET 6-1 and FET 6-2. The output from the FET 5-2 is distributed to two systems by the distributor D-5 and supplied to the sixth stage FET 6-3 and FET 6-4. The output from the FET 5-3 is distributed to two systems by the distributor D-6, and is supplied to the sixth stage FET 6-5 and FET 6-6. The output from the FET 5-4 is distributed to two systems by the distributor D-7, and is supplied to the sixth stage FET 6-7 and FET 6-8.

以上のように図1に示す電力増幅器10では、カスケードの最終段である6段目においてFET6−1〜FET6−8が並列に配置されている。入力信号は、この6段目において8系統に分配されている。8系統に分配された入力信号は、FET6−1〜FET6−8から出力された後、再び合成されて出力端子から出力される。   As described above, in the power amplifier 10 shown in FIG. 1, the FETs 6-1 to 6-8 are arranged in parallel at the sixth stage, which is the final stage of the cascade. Input signals are distributed to eight systems in the sixth stage. The input signals distributed to the eight systems are output from the FETs 6-1 to 6-8, then synthesized again and output from the output terminals.

なお、図1には一例として6段のカスケード接続が図示されているが、カスケードの段数はこれに限定されない。例えばFET2とFET3の間に、更に他のFETがカスケード接続されてもよい。また、図1には入力信号を8系統に分配して増幅する例が示されているが、分配される系統の数はこれに限定されない。入力信号は更に多数(又は少数)の系統に分配されてもよい。   Although FIG. 1 shows a six-stage cascade connection as an example, the number of cascade stages is not limited to this. For example, another FET may be cascade-connected between FET2 and FET3. FIG. 1 shows an example in which an input signal is distributed and amplified into eight systems, but the number of systems to be distributed is not limited to this. The input signal may be further distributed to a large number (or a small number) of systems.

温度センサ12は最終段のFET6−1の近傍に設けられ、FET6−1の温度を検出する。また温度センサ13はFET6−3の近傍に設けられ、FET6−3の温度を検出する。同様に温度センサ14はFET6−5の近傍に設けられ、FET6−5の温度を検出する。温度センサ15はFET6−7の近傍に設けられ、FET6−7の温度を検出する。検出された温度は、それぞれ制御回路16に送信される。   The temperature sensor 12 is provided in the vicinity of the final stage FET 6-1 and detects the temperature of the FET 6-1. The temperature sensor 13 is provided in the vicinity of the FET 6-3 and detects the temperature of the FET 6-3. Similarly, the temperature sensor 14 is provided in the vicinity of the FET 6-5 and detects the temperature of the FET 6-5. The temperature sensor 15 is provided in the vicinity of the FET 6-7 and detects the temperature of the FET 6-7. Each detected temperature is transmitted to the control circuit 16.

図1では一例として4つの温度センサが図示されているが、最終段の他のFETの温度を検出するために更に多数の温度センサが備えられてもよい。それぞれの温度センサによって検出された温度の情報は、制御回路16に送信される。   In FIG. 1, four temperature sensors are shown as an example, but a larger number of temperature sensors may be provided to detect the temperature of other FETs in the final stage. Information on the temperature detected by each temperature sensor is transmitted to the control circuit 16.

制御回路16は、温度センサ12〜15の温度検出結果に基づいて利得補償量を算出し、算出された利得補償量によって電力増幅器10全体の利得が補償されるように可変アッテネータ11を制御する。   The control circuit 16 calculates a gain compensation amount based on the temperature detection results of the temperature sensors 12 to 15 and controls the variable attenuator 11 so that the gain of the entire power amplifier 10 is compensated by the calculated gain compensation amount.

ガリウムひ素FETの利得の温度勾配が0.015[dB/℃]であることは、広く知られている。このためガリウムひ素FETの利得は、温度が低いと上昇し、温度が高いと低下する。ガリウムひ素FETに限らず、シリコン結晶や窒化ガリウム素材も同様の温度特性を有する。   It is widely known that the temperature gradient of the gain of a gallium arsenide FET is 0.015 [dB / ° C.]. For this reason, the gain of the gallium arsenide FET increases when the temperature is low and decreases when the temperature is high. Not only gallium arsenide FETs but also silicon crystals and gallium nitride materials have similar temperature characteristics.

FETをカスケードに多段接続した場合の利得変動ΔGは、一般に式(1)によって表される。

Figure 0005380319
The gain fluctuation ΔG when the FETs are connected in multiple stages in a cascade is generally expressed by equation (1).
Figure 0005380319

式(1)において、Xはカスケードの段数、ΔTは温度変化を表す。   In Equation (1), X represents the number of cascade stages, and ΔT represents a temperature change.

例えば10段のガリウムひ素FETがカスケードに接続されている場合、−20℃〜60℃の温度変化が生じれば、利得変動は式(2)から12[dB]と求まる。

Figure 0005380319
For example, in the case where 10 stages of gallium arsenide FETs are connected in cascade, if a temperature change of −20 ° C. to 60 ° C. occurs, the gain variation is obtained as 12 [dB] from the equation (2).
Figure 0005380319

このように、SSPAの利得の変動は、温度変化に応じた関数で表すことができる。このため、SSPA内部の温度変化が検出できれば、式(1)から補償すべき利得量を算出することができる。   As described above, the variation in the gain of the SSPA can be expressed by a function corresponding to the temperature change. For this reason, if the temperature change inside SSPA can be detected, the amount of gain to be compensated can be calculated from equation (1).

しかしながら、入力信号を複数系統に分配するために複数のFETを並列して配置する電力増幅器10では、高周波信号の増幅の際に、基板精度や調整公差が原因で分配器D−1〜D−7の各出力ポートの分配損にばらつきが生じかねない。   However, in the power amplifier 10 in which a plurality of FETs are arranged in parallel in order to distribute the input signal to a plurality of systems, the dividers D-1 to D- are caused due to substrate accuracy and adjustment tolerance when a high-frequency signal is amplified. The distribution loss of each output port 7 may vary.

電力増幅器10におけるカスケード接続最終段のFET(FET6−1〜FET6−8)の動作点がばらつくと、それぞれのFETの発熱量にもばらつきが生じる。また、フランジ-ジャンクション間の熱抵抗、電力効率などといったFETの特性差などを原因としても、発熱量の個体差が生じる。更に、高周波回路パターンとFETには周波数特性があるため、発熱量のばらつきの傾向は、周波数にも依存して変動する。   If the operating points of the cascade-connected final stage FETs (FET6-1 to FET6-8) in the power amplifier 10 vary, the amount of heat generated by each FET also varies. In addition, individual differences in the amount of heat generated also occur due to differences in FET characteristics such as thermal resistance between flange and junction, power efficiency, and the like. Furthermore, since the high-frequency circuit pattern and the FET have frequency characteristics, the tendency of variation in the amount of generated heat varies depending on the frequency.

カスケードの最終段において複数のFETを並列に配置する電力増幅器では、装置の個体差や周波数に依存する発熱量のばらつきが顕著となりやすい。従って、電力増幅器10内の1点の温度変化のみを検出して、可変アッテネータ11を変化させる方式では、利得を短時間で安定化することができない。また、周波数や回路の設定を変更することによっても各FETの発熱量が変動するため、適切な温度検出点を一意に定めることも困難である。   In a power amplifier in which a plurality of FETs are arranged in parallel in the final stage of the cascade, variations in the amount of heat generated depending on the individual differences of devices and the frequency tend to be significant. Therefore, in the method in which only the temperature change at one point in the power amplifier 10 is detected and the variable attenuator 11 is changed, the gain cannot be stabilized in a short time. Also, since the amount of heat generated by each FET varies by changing the frequency and circuit settings, it is difficult to uniquely determine an appropriate temperature detection point.

発熱量の少ないFETのみの温度を検出して利得補償を行う場合、特定の周波数については式(1)に基づいて適切な利得補償量が算出できたとしても、異なる周波数についてはFETの周波数特性に依存して利得が劣化することがある。   When gain compensation is performed by detecting the temperature of only an FET with a small amount of heat generation, even if an appropriate gain compensation amount can be calculated based on the formula (1) for a specific frequency, the frequency characteristics of the FET are different for different frequencies. Depending on the gain, the gain may deteriorate.

図2は、1つのFETの温度検出結果に基づいて利得補償量を算出し、小信号を増幅する場合の周波数と利得の関係の一例を示す図である。また図3は、図2と同じ1つのFETの温度検出結果に基づいて利得補償量を算出し、大信号を増幅する場合の周波数と利得の関係の一例を示す図である。   FIG. 2 is a diagram illustrating an example of a relationship between frequency and gain when a gain compensation amount is calculated based on a temperature detection result of one FET and a small signal is amplified. FIG. 3 is a diagram illustrating an example of the relationship between frequency and gain when a gain compensation amount is calculated based on the temperature detection result of the same FET as in FIG. 2 and a large signal is amplified.

図2に示すように、小信号の増幅時には、発熱量の少ない周波数f1でも発熱量の多い周波数f2でも同様に適切な利得G1が得られる。しかしながら大信号を増幅する場合には、温度検出の対象となるFETの周波数特性に従って利得の劣化が生じる。すなわち、発熱量の少ない周波数f1では利得補償によって適切な利得G1が得られるが、発熱量の多い周波数f2では利得補償量が足りなくなり、G1より小さい利得G2しか得られなくなる。   As shown in FIG. 2, at the time of amplification of a small signal, an appropriate gain G1 can be obtained similarly at the frequency f1 with a small amount of heat generation and the frequency f2 with a large amount of heat generation. However, when a large signal is amplified, gain degradation occurs according to the frequency characteristics of the FET that is the target of temperature detection. That is, an appropriate gain G1 can be obtained by gain compensation at a frequency f1 with a small amount of heat generation, but a gain compensation amount becomes insufficient at a frequency f2 with a large amount of heat generation, and only a gain G2 smaller than G1 can be obtained.

これに対し、本実施形態に係る電力増幅器10では、複数の温度センサ12〜15を具備するため、複数の温度検出点において温度変化を検出することができる。従って、並列配置されたFETそれぞれの固体差に応じたFETの温度変化をより高感度に検出することができる。   On the other hand, since the power amplifier 10 according to the present embodiment includes the plurality of temperature sensors 12 to 15, temperature changes can be detected at a plurality of temperature detection points. Therefore, it is possible to detect the temperature change of the FET according to the individual difference between the FETs arranged in parallel with higher sensitivity.

制御回路16は、最終段の複数のFETを並列的に監視し、複数のFETの検出温度の平均値を算出する。そして、算出した平均温度に基づいて式(1)より利得補償量を算出する。可変アッテネータ11は、各FETの平均温度に基づいて算出された利得補償量に応じて制御される。従って、本実施形態に係る電力増幅器10では、回路パターン、FETの個体差、又は周波数による温度変化のばらつきの影響を受けずに、温度利得補償を行なうことができる。更に、温度センサ12〜15の温度検出結果を平均化することで、温度センサの検出精度のばらつきの影響も取り除くことができる。   The control circuit 16 monitors the plurality of FETs in the final stage in parallel, and calculates an average value of the detected temperatures of the plurality of FETs. Then, the gain compensation amount is calculated from the equation (1) based on the calculated average temperature. The variable attenuator 11 is controlled according to the gain compensation amount calculated based on the average temperature of each FET. Therefore, in the power amplifier 10 according to the present embodiment, temperature gain compensation can be performed without being affected by variations in temperature changes due to circuit patterns, individual differences in FETs, or frequencies. Furthermore, by averaging the temperature detection results of the temperature sensors 12 to 15, it is possible to remove the influence of variations in the detection accuracy of the temperature sensors.

温度センサ12〜15によって検出されるそれぞれのFETの温度は、電力増幅器10の回路パターンやFETの個体差によるばらつき、周波数によるばらつき、あるいは温度検出精度のばらつきにより、通常は互いに異なる値を取る。   The temperatures of the respective FETs detected by the temperature sensors 12 to 15 usually take different values due to variations due to circuit patterns of the power amplifier 10 and individual differences among the FETs, variations due to frequencies, and variations in temperature detection accuracy.

図4は、小信号の増幅時における各温度センサによるFETの温度検出結果の一例を示す図である。図4に示すようにFETごとに検出温度にばらつきが生じている。図5は、図4の例における信号を大信号まで増幅させた場合の温度検出結果の一例を示す図である。図5に示すように、大信号増幅時にはFET間の温度差が拡大する。   FIG. 4 is a diagram illustrating an example of the temperature detection result of the FET by each temperature sensor when a small signal is amplified. As shown in FIG. 4, the detected temperature varies for each FET. FIG. 5 is a diagram illustrating an example of a temperature detection result when the signal in the example of FIG. 4 is amplified to a large signal. As shown in FIG. 5, the temperature difference between the FETs increases during large signal amplification.

図6は、図5の例とは異なる周波数で、図5の例と同じ大信号増幅を行なう場合の温度検出結果の一例を示す図である。周波数が変動すると、回路の周波数特性やFETの周波数特性に応じて各FETの発熱量も変動する。このため、同じ大信号増幅時でも、図5及び図6に示すように、温度検出結果も周波数によって異なる。すなわち、同じカスケードの6段目内の温度分布が変動し、それぞれのFETで温度が異なることとなる。   FIG. 6 is a diagram illustrating an example of a temperature detection result when the same large signal amplification as that of the example of FIG. 5 is performed at a frequency different from that of the example of FIG. When the frequency varies, the amount of heat generated by each FET also varies according to the frequency characteristics of the circuit and the frequency characteristics of the FET. For this reason, even when the same large signal is amplified, the temperature detection result varies depending on the frequency as shown in FIGS. That is, the temperature distribution in the sixth stage of the same cascade varies, and the temperature differs for each FET.

本実施形態に係る電力増幅器10では、制御回路16が温度センサ12〜15の検出温度の平均値を算出して、利得補償量を決定する。従って、例えば図4に示す例では、平均温度T1に基づいて利得補償量が決定される。また、図5の例と図6の例では、温度分布は異なるものの、平均温度は同じT2である。制御回路16は、どちらの例でも平均温度T2に基づいて利得補償量を決定することができる。図5及び図6の例のように、1つの温度検出点では温度分布の変動に応じて温度検出結果がばらつくような場合でも、本実施形態では最終段のFETの平均温度に基づく補償を行なうので、補償量のばらつきを抑えることが可能となる。   In the power amplifier 10 according to the present embodiment, the control circuit 16 calculates the average value of the detected temperatures of the temperature sensors 12 to 15 and determines the gain compensation amount. Therefore, for example, in the example shown in FIG. 4, the gain compensation amount is determined based on the average temperature T1. Further, the example of FIG. 5 and the example of FIG. 6 have the same temperature T2 although the temperature distribution is different. In either example, the control circuit 16 can determine the gain compensation amount based on the average temperature T2. Even in the case where the temperature detection result varies depending on the temperature distribution variation at one temperature detection point as in the examples of FIGS. 5 and 6, in this embodiment, compensation is performed based on the average temperature of the final stage FET. Therefore, it is possible to suppress variations in compensation amount.

図7は、本実施形態に係る電力増幅器10によって大信号を増幅する場合の周波数と利得の関係の一例を示す図である。図3に示す例では、大信号の増幅時には発熱量の多い周波数f2では利得補償量に不足が生じていた。しかしながら、本実施形態に係る電力増幅器10では、発熱量の少ない周波数f1でも発熱量の多い周波数f2でも適切な利得補償量G´が適切に算出され、精度良く利得補償が行なえる。   FIG. 7 is a diagram illustrating an example of the relationship between frequency and gain when a large signal is amplified by the power amplifier 10 according to the present embodiment. In the example shown in FIG. 3, when the large signal is amplified, the gain compensation amount is insufficient at the frequency f2 where the heat generation amount is large. However, in the power amplifier 10 according to the present embodiment, an appropriate gain compensation amount G ′ is appropriately calculated at the frequency f1 with a small amount of heat generation and the frequency f2 with a large amount of heat generation, and gain compensation can be performed with high accuracy.

また制御回路16は、温度センサ12〜15による検出温度のうち、最大値と最小値を除外して平均温度を算出し、この平均温度に基づいて利得補償量を決定してもよい。あるいは制御回路16は、所定の温度範囲から外れた検出温度を除外して平均温度を算出し、この平気温度に基づいて利得補償量を決定してもよい。また制御回路16は、他の温度センサの検出結果とは大きくかけ離れた検出温度を除外して平均温度を算出し、この平均温度に基づいて利得補償量を決定してもよい。このような構成によれば、温度センサがノイズ等によって誤った温度(異常温度)を検知した場合でも、当該異常温度に基づく誤った利得補償が行なわれないような制御が可能となる。   The control circuit 16 may calculate the average temperature by excluding the maximum value and the minimum value from the temperatures detected by the temperature sensors 12 to 15 and determine the gain compensation amount based on the average temperature. Alternatively, the control circuit 16 may calculate the average temperature by excluding the detected temperature outside the predetermined temperature range, and determine the gain compensation amount based on this normal air temperature. In addition, the control circuit 16 may calculate an average temperature by excluding a detected temperature that is greatly different from the detection results of other temperature sensors, and determine the gain compensation amount based on the average temperature. According to such a configuration, even when the temperature sensor detects an erroneous temperature (abnormal temperature) due to noise or the like, it is possible to perform control so that erroneous gain compensation based on the abnormal temperature is not performed.

本発明は、前記各実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。さらに、前記各実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。例えば、1つの実施形態に示される全構成要件から幾つかの構成要件が削除されたり、幾つかの実施形態に示される構成要件が組み合わされても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除されたり組み合わされた構成が発明として抽出され得るものである。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention at the stage of implementation. Further, each of the embodiments includes inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some constituent elements are deleted from all the constituent elements shown in one embodiment or the constituent elements shown in some embodiments are combined, they are described in the column of the problem to be solved by the invention. In the case where the problems described above can be solved and the effects described in the “Effects of the Invention” can be obtained, a configuration in which these constituent requirements are deleted or combined can be extracted as an invention.

10…電力増幅器、11…可変アッテネータ、12〜15…温度センサ、16…制御回路、FET1〜FET3…電界効果型トランジスタ、FET4−1〜FET4−2…電界効果型トランジスタ、FET5−1〜FET5−4…電界効果型トランジスタ、FET6−1〜FET6−9…電界効果型トランジスタ、D−1〜D7…分配器、20…冷却器。   DESCRIPTION OF SYMBOLS 10 ... Power amplifier, 11 ... Variable attenuator, 12-15 ... Temperature sensor, 16 ... Control circuit, FET1-FET3 ... Field effect transistor, FET4-1-FET4-2 ... Field effect transistor, FET5-1-FET5- 4. Field effect transistor, FET6-1 to FET6-9, field effect transistor, D-1 to D7, distributor, 20 ... cooler.

Claims (4)

入力信号の入力レベルを可変する可変アッテネータと、
複数の電界効果トランジスタが複数段、カスケード接続され、各分配系統の最終段の電界効果トランジスタが並列に配置され、前記可変アッテネータの出力信号を各系統の電界効果トランジスタで順次電力増幅して最終段の出力を合成出力する増幅手段と、
前記最終段の電界効果トランジスタのうち、2以上の電界効果トランジスタの近傍に配置され、それぞれの周囲温度を計測する複数の温度センサと、
前記複数の温度センサの温度検出結果に基づいて前記増幅手段の全体の利得補償量を算出し、算出された利得補償量に基づいて前記可変アッテネータを制御する制御手段と
を具備する電力増幅装置。
A variable attenuator that varies the input level of the input signal;
Multiple stages of field effect transistors are cascade-connected, and the final stage field effect transistors of each distribution system are arranged in parallel. Amplifying means for combining and outputting the output of
A plurality of temperature sensors that are arranged in the vicinity of two or more field effect transistors of the final stage field effect transistors and measure the respective ambient temperatures;
Control means for calculating an overall gain compensation amount of the amplifying means based on temperature detection results of the plurality of temperature sensors and controlling the variable attenuator based on the calculated gain compensation amount. Power amplification device.
記制御手段は、前記複数の温度センサが検出した温度の平均値を算出し、算出した平均値に基づいて前記利得補償量を算出する請求項1に記載の電力増幅装置。 Before SL control means, the power amplifier according to claim 1, wherein the plurality of temperature sensors to calculate the average value of the temperatures detected, calculates the gain compensation amount based on the calculated average value. 前記制御手段は、前記複数の温度センサが検出した温度から特異値を除外して前記平均値を算出する請求項2に記載の電力増幅装置。   The power amplifying apparatus according to claim 2, wherein the control unit calculates the average value by excluding a singular value from temperatures detected by the plurality of temperature sensors. 前記制御手段は、前記複数の温度センサが検出した温度から最大値及び最小値の少なくとも一方を前記特異値として除外する請求項3に記載の電力増幅装置。 The power amplifying apparatus according to claim 3, wherein the control unit excludes at least one of a maximum value and a minimum value from the temperatures detected by the plurality of temperature sensors as the singular value .
JP2010021568A 2010-02-02 2010-02-02 Power amplifier Active JP5380319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010021568A JP5380319B2 (en) 2010-02-02 2010-02-02 Power amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010021568A JP5380319B2 (en) 2010-02-02 2010-02-02 Power amplifier

Publications (2)

Publication Number Publication Date
JP2011160297A JP2011160297A (en) 2011-08-18
JP5380319B2 true JP5380319B2 (en) 2014-01-08

Family

ID=44591854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010021568A Active JP5380319B2 (en) 2010-02-02 2010-02-02 Power amplifier

Country Status (1)

Country Link
JP (1) JP5380319B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6208413B2 (en) * 2012-07-06 2017-10-04 日本無線株式会社 Amplifier control device
JP6526385B2 (en) * 2014-04-04 2019-06-05 三菱電機株式会社 Amplification apparatus and amplification method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399503A (en) * 1989-09-12 1991-04-24 Mitsubishi Electric Corp Fet power amplifier
JPH03266512A (en) * 1990-03-15 1991-11-27 Nec Corp Gain control circuit
JPH04170206A (en) * 1990-11-02 1992-06-17 Fujitsu Ltd Temperature rise limit circuit
JPH0588760A (en) * 1991-09-26 1993-04-09 Kokusai Electric Co Ltd Method and device for controlling heater average temperature
JPH11234050A (en) * 1998-02-13 1999-08-27 Mitsubishi Electric Corp Power amplifier
JP2001326540A (en) * 2000-05-16 2001-11-22 Fujitsu Ltd Semiconductor circuit
JP3982620B2 (en) * 2002-08-21 2007-09-26 株式会社ケンウッド Amplifying device, radio device and signal amplification method
JP2004112707A (en) * 2002-09-20 2004-04-08 Sony Corp Sound reproducing apparatus
JP2008244595A (en) * 2007-03-26 2008-10-09 Toshiba Corp Power amplifier and transmission/reception system

Also Published As

Publication number Publication date
JP2011160297A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
USRE47399E1 (en) Method and apparatus for protecting radio frequency power amplifiers
US9391565B2 (en) Amplifier phase distortion correction based on amplitude distortion measurement
RU2434317C2 (en) Radio-frequency power amplifiers
EP2128997B1 (en) Distortion compensating apparatus, wireless communication apparatus, and distortion compensating method
US8183927B2 (en) Power amplifier
JP2015089130A (en) Adaptive adjustment of power splitter
WO2008002787A2 (en) Dynamic performance control of broadband tuner
US9667198B2 (en) Power amplifier
JP2013533713A (en) High frequency power amplifier with Doherty extension
US20160315586A1 (en) Power amplifying apparatus and method for controlling power amplifying apparatus
US7385541B2 (en) Power amplifying apparatus, power combining system and delay measuring method for power combining system
JP5380319B2 (en) Power amplifier
JP2007060455A (en) Transmitter
US8884816B2 (en) Temperature compensating device and satellite signal receiving system
JP2007082015A (en) Distortion compensator
EP1367711A1 (en) Power amplifier with pre-distorter
EP3863190A1 (en) Temperature-compensation circuit and phased array device
US20020017955A1 (en) Phase correction amplifier and a feed-forward amplifier using the same
JPWO2019003617A1 (en) Distortion compensation device
JP2000223960A (en) Distortion compensator
JP2006135528A (en) Power amplifier and power amplifying method
US20110227654A1 (en) Power amplifying apparatus and power amplifying method
US8384481B2 (en) Signal amplification device and signal amplification method
JP4259143B2 (en) Feed forward amplifier
JPH08256018A (en) Power consumption control circuit for high-frequency linear amplifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R151 Written notification of patent or utility model registration

Ref document number: 5380319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151