JP5380233B2 - Ammonia decomposition catalyst - Google Patents

Ammonia decomposition catalyst Download PDF

Info

Publication number
JP5380233B2
JP5380233B2 JP2009232137A JP2009232137A JP5380233B2 JP 5380233 B2 JP5380233 B2 JP 5380233B2 JP 2009232137 A JP2009232137 A JP 2009232137A JP 2009232137 A JP2009232137 A JP 2009232137A JP 5380233 B2 JP5380233 B2 JP 5380233B2
Authority
JP
Japan
Prior art keywords
ammonia decomposition
decomposition catalyst
ammonia
catalyst
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009232137A
Other languages
Japanese (ja)
Other versions
JP2011078888A (en
Inventor
匠磨 森
進 日数谷
貞夫 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2009232137A priority Critical patent/JP5380233B2/en
Publication of JP2011078888A publication Critical patent/JP2011078888A/en
Application granted granted Critical
Publication of JP5380233B2 publication Critical patent/JP5380233B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明はアンモニア分解触媒に関するものである。本発明の触媒は、自動車用燃料電池の燃料としての水素を供給するためにアンモニアを分解するのに好適に使用できる。   The present invention relates to an ammonia decomposition catalyst. The catalyst of the present invention can be suitably used for decomposing ammonia in order to supply hydrogen as a fuel for an automobile fuel cell.

自動車用固体高分子型燃料電池の燃料として水素を用いるには、水素を供給するための水素ステーションを全国に設置する必要性がある上に、水素を詰めた水素圧力容器を自動車に搭載する必要があり、これらに要するコストは燃料電池車の普及を阻害している一つの原因となっている。   In order to use hydrogen as a fuel for polymer electrolyte fuel cells for automobiles, it is necessary to install hydrogen stations throughout the country to supply hydrogen, and to install hydrogen pressure vessels filled with hydrogen in automobiles. The cost required for these is one of the factors that hinder the spread of fuel cell vehicles.

一方、アンモニアは1MPa以下の圧力で液化するので、オンボードでアンモニアを分解して水素を発生させることができる触媒が開発できれば、自動車用燃料電池の水素源としてアンモニアを使用でき、コスト削減により燃料電池車の普及を図ることができる。   On the other hand, since ammonia liquefies at a pressure of 1 MPa or less, if a catalyst capable of generating hydrogen by decomposing ammonia on-board can be developed, ammonia can be used as a hydrogen source for fuel cells for automobiles. The battery car can be widely used.

従来、アンモニア分解触媒は、Al2O3などの無機質担体にルテニウムなどの活性金属およびカリウムなどの促進剤を担持させることで調製されている(特許文献1および2参照)。 Conventionally, an ammonia decomposition catalyst has been prepared by supporting an active metal such as ruthenium and an accelerator such as potassium on an inorganic carrier such as Al 2 O 3 (see Patent Documents 1 and 2).

特開平01−119341号公報Japanese Patent Laid-Open No. 01-119341 特開平08−084910号公報Japanese Patent Laid-Open No. 08-084910

上記従来のアンモニア分解触媒は、500℃以上の高温域では十分な分解率(転化率)が確認できるが、400℃以下の低温域では分解率が著しく低下して十分に確認できないという問題を有していた。このような現象は以下の原因によるものと考えられる。アンモニア分解反応は吸熱反応であるため、500℃以上のように十分に外部から熱が供給される状況においては、アンモニア分解触媒は十分な活性を維持することができる。しかし、反応温度が400℃以下になると、熱供給が十分でないために、アンモニア分解触媒はその活性を維持することができない。結果として、400℃以下の低温域においてアンモニア分解率が著しく低下する。   The above conventional ammonia decomposition catalyst has a problem that a sufficient decomposition rate (conversion rate) can be confirmed at a high temperature range of 500 ° C. or higher, but cannot be sufficiently confirmed at a low temperature range of 400 ° C. or lower. Was. Such a phenomenon is considered to be caused by the following causes. Since the ammonia decomposition reaction is an endothermic reaction, the ammonia decomposition catalyst can maintain sufficient activity in a situation where heat is sufficiently supplied from the outside such as 500 ° C. or higher. However, when the reaction temperature is 400 ° C. or lower, the ammonia decomposition catalyst cannot maintain its activity because of insufficient heat supply. As a result, the ammonia decomposition rate is significantly reduced in a low temperature range of 400 ° C. or lower.

このように外部からの熱供給が多くない400℃以下の低温域においては、十分なアンモニア分解率を得るために、アンモニア分解触媒の活性そのものを向上させる必要があり、そのためには活性金属であるルテニウム(および促進剤であるカリウム)を担体表面により高分散化すればよいと考えられる。   Thus, in a low temperature range of 400 ° C. or less where there is not much heat supply from the outside, it is necessary to improve the activity of the ammonia decomposition catalyst itself in order to obtain a sufficient ammonia decomposition rate. It is considered that ruthenium (and potassium as an accelerator) may be highly dispersed on the support surface.

本発明者らは、担体に活性金属(および促進剤)を効果的に担持させる方法を検討した結果、担体原料として特定粒径の超微粒子粉末を用いてアンモニア分解触媒を調製すれば、活性金属の効果的担持が可能であり、400℃以下の低温域においてアンモニアを高い分解率で分解できることを見出した。   As a result of studying a method for effectively supporting an active metal (and an accelerator) on a support, the present inventors have found that an active metal can be obtained by preparing an ammonia decomposition catalyst using ultrafine powder having a specific particle size as a support material. It was found that ammonia can be effectively supported and ammonia can be decomposed at a high decomposition rate in a low temperature range of 400 ° C. or lower.

本発明は下記の通りである。   The present invention is as follows.

(1):平均粒径1nm〜50nmの超微粒子粉末を所要形状に成形した担体に、ルテニウムおよび促進剤を担持してなることを特徴とするアンモニア分解触媒。 (1): An ammonia decomposing catalyst comprising ruthenium and a promoter supported on a carrier obtained by forming ultrafine powder having an average particle diameter of 1 nm to 50 nm into a required shape.

(2):担体原料がAl2O3、MgO、SiO2またはCeO2の超微粒子粉末であることを特徴とする上記(1)のアンモニア分解触媒。 (2): The ammonia decomposition catalyst according to the above (1), wherein the support material is an ultrafine particle powder of Al 2 O 3 , MgO, SiO 2 or CeO 2 .

(3):担体の形状が球形、円柱形またはハニカム構造であることを特徴とする上記(1)または(2)記載のアンモニア分解触媒。 (3) The ammonia decomposition catalyst according to the above (1) or (2), wherein the support has a spherical shape, a cylindrical shape or a honeycomb structure.

(4):促進剤がアルカリ金属またはアルカリ土類金属からなることを特徴とする上記(1)から(3)のいずれかに記載のアンモニア分解触媒。 (4): The ammonia decomposition catalyst according to any one of (1) to (3) above, wherein the promoter comprises an alkali metal or an alkaline earth metal.

(5):上記(1)から(4)のいずれかに記載のアンモニア分解触媒を用いたことを特徴とする水素発生システム。 (5): A hydrogen generation system using the ammonia decomposition catalyst according to any one of (1) to (4) above.

(6):上記(5)記載の水素発生システムを具備したことを特徴とする燃料電池。 (6): A fuel cell comprising the hydrogen generation system according to (5) above.

担体原料の超微粒子粉末の平均粒径が1nm〜50nmに限定される理由は、1nm未満の超微粒子の担体原料を製造することは工業的に困難であり、また50nmを超える超微粒子を担体原料に用いても顕著な効果が認められないからである。   The reason why the average particle size of the ultrafine powder of the carrier material is limited to 1 nm to 50 nm is that it is industrially difficult to produce an ultrafine carrier material of less than 1 nm, and ultrafine particles exceeding 50 nm are used as the carrier material. This is because a remarkable effect is not recognized even if it is used.

ハニカム構造は、ハニカム状の押出成形物、または、複数枚の平板と複数枚の波板を交互に積み上げて一体化したものであって良い。   The honeycomb structure may be a honeycomb-like extrudate or a structure in which a plurality of flat plates and a plurality of corrugated plates are alternately stacked and integrated.

超微粒子粉末の平均粒径の測定は、例えば比表面積測定装置ASAP−2010(島津製作所社製)を用いてBET法により比表面積〔m2 /g〕測定し、比表面積及び密度〔g/cm3 〕を用い次式により算出して、行うことができる。 The average particle diameter of the ultrafine particle powder is measured by, for example, measuring the specific surface area [m 2 / g] by the BET method using a specific surface area measuring apparatus ASAP-2010 (manufactured by Shimadzu Corporation), and the specific surface area and density [g / cm]. 3 ] can be calculated by the following equation.

平均粒径(nm)=6×103 /(密度×比表面積)
つぎに、本発明によるアンモニア分解触媒の調製方法を具体的に説明する。
Average particle diameter (nm) = 6 × 10 3 / (density × specific surface area)
Next, a method for preparing an ammonia decomposition catalyst according to the present invention will be specifically described.

平均粒径1〜50nmの超微粒子γ-Al2O3(通常、平均粒径は百nmのオーダー)を、直径約1mmのペレットに成形した担体を、三塩化ルテニウム(RuCl3)などの活性金属化合物を含む溶液に浸漬し、全体を蒸発乾固することにより、担体ペレットに活性金属を担持させる。得られた活性金属化合物担持ペレットを還元熱処理することにより、活性金属担持ペレットとする。ついでカリウムなどのアルカリ金属あるいはバリウムなどのアルカリ土類金属の硝酸塩溶液に活性金属担持ペレットを浸漬し、全体を蒸発乾固することにより、同ペレットに上記金属を担持させる。このペレットを再び還元熱処理することにより、アンモニア分解触媒を得る。 An active material such as ruthenium trichloride (RuCl 3 ) made from ultrafine particles γ-Al 2 O 3 with an average particle size of 1-50 nm (usually the average particle size is in the order of 100 nm) formed into pellets with a diameter of about 1 mm. The active metal is supported on the carrier pellets by immersing in a solution containing the metal compound and evaporating and drying the whole. The obtained active metal compound-carrying pellet is subjected to a reduction heat treatment to obtain an active metal-carrying pellet. Next, the active metal-carrying pellets are immersed in a nitrate solution of an alkali metal such as potassium or an alkaline earth metal such as barium, and the whole is evaporated to dryness to carry the metal on the pellets. The pellet is again subjected to a reduction heat treatment to obtain an ammonia decomposition catalyst.

一次粒子として平均粒径1nm〜50nmの超微粒子γ-Al2O3を用いて成形した直径1mmペレットと、一次粒子として平均粒径100nm程度のγ-Al2O3を用いて成形した直径1mmのペレットとを比較すると、ペレット単位に含まれる一次粒子の個数は前者のペレットの方がはるかに多くなっている。ルテニウムなどの活性金属およびカリウムなどの促進剤を、三塩化ルテニウム(RuCl3)や硝酸カリウム(KNO3)の水溶液として、蒸発乾固あるいは含浸によりペレットに担持させる場合は、ペレットにおける水溶液が接触可能な面積が活性金属および促進剤の担持サイト数と関係があり、その担持に影響を及ぼす。水溶液が接触可能な面積は、ペレットを構成している一次粒子の個数と関係がある。このため、一次粒子として平均粒径1nm〜50nmの超微粒子を用いて成形した担体ペレットの方が、ペレットを構成する一次粒子数が多く、活性金属および促進剤の担持サイトが多いことで、担持に優位性がある。したがって、担体に同量の活性金属(および促進剤)を担持させた場合に、担体原料に平均粒径1nm〜50nmの超微粒子を使用した方が効率的に担持が行われ、結果として触媒活性が高くなる。 Diameter 1mm was molded using a diameter 1mm pellets were molded using an ultra fine γ-Al 2 O 3 having an average particle diameter of 1nm~50nm as primary particles, the average particle diameter of about 100nm γ-Al 2 O 3 as primary particles In comparison with the pellets of the former, the number of primary particles contained in the pellet unit is much larger in the former pellet. When an active metal such as ruthenium and an accelerator such as potassium are supported on a pellet as an aqueous solution of ruthenium trichloride (RuCl 3 ) or potassium nitrate (KNO 3 ) by evaporation to dryness or impregnation, the aqueous solution in the pellet can be contacted. The area is related to the number of active metal and promoter loading sites and affects the loading. The area that can be contacted with the aqueous solution is related to the number of primary particles constituting the pellet. For this reason, carrier pellets molded using ultrafine particles with an average particle size of 1 nm to 50 nm as primary particles have a larger number of primary particles constituting the pellets, and support sites for active metals and accelerators are larger. Has an advantage. Therefore, when the same amount of active metal (and promoter) is supported on the support, it is more efficient to use ultrafine particles with an average particle size of 1 nm to 50 nm as the support material, resulting in catalytic activity. Becomes higher.

よって、この方法で調製されたアンモニア分解触媒は従来のそれより触媒活性が高く、400℃以下という低温域においても高いアンモニア分解率を示すことができる。   Therefore, the ammonia decomposition catalyst prepared by this method has higher catalytic activity than that of the conventional catalyst, and can exhibit a high ammonia decomposition rate even in a low temperature range of 400 ° C. or lower.

触媒のアンモニア分解能力を示すフローシートである。It is a flow sheet which shows the ammonia decomposition ability of a catalyst.

つぎに、本発明を具体的に説明するために、本発明の実施例およびこれとの比較を示すための比較例をいくつか挙げる。   Next, in order to specifically explain the present invention, some examples of the present invention and comparative examples for showing comparison with the examples will be given.

実施例1
担体原料として、平均粒径34nmの超微粒子γ-Al2O3(シーアイ化成社製「ナノテックNanoTek」)を用い、これを直径1mmのペレット(球状)に成形した。
Example 1
Ultrafine particles γ-Al 2 O 3 having an average particle size of 34 nm (“Nanotech NanoTek” manufactured by C-I Kasei Co., Ltd.) were used as a carrier material, and this was formed into pellets (spherical shape) having a diameter of 1 mm.

得られたAl2O3ペレットを塩化ルテニウム水溶液に浸漬し、全体を蒸発乾固させ、Al2O3ペレットに塩化ルテニウムを担持させた(Ruとして5.0wt%)。 The obtained Al 2 O 3 pellets were immersed in an aqueous ruthenium chloride solution, the whole was evaporated to dryness, and ruthenium chloride was supported on the Al 2 O 3 pellets (5.0 wt% as Ru).

塩化ルテニウム担持Al2O3ペレットを反応管内に置き、水素還元処理(600℃、2時間)することにより、ルテニウム担持Al2O3ペレットを得た(Ru(5.0)/Al2O3)。 Ruthenium chloride-supported Al 2 O 3 pellets were placed in a reaction tube and subjected to hydrogen reduction treatment (600 ° C., 2 hours) to obtain ruthenium-supported Al 2 O 3 pellets (Ru (5.0) / Al 2 O 3 ).

還元処理後、ルテニウム担持Al2O3ペレットを水素雰囲気下で室温まで降温させ、反応管より取出してKNO3水溶液に浸漬し、全体を蒸発乾固させ、ルテニウム担持Al2O3ペレットにKNO3を担持させた(Kとして5.0wt%)。 After the reduction treatment, the ruthenium Al 2 O 3 pellet was cooled to room temperature under a hydrogen atmosphere, taken out from the reaction tube was immersed in KNO 3 aqueous solution, evaporated to dryness whole, ruthenium Al 2 O 3 pellets KNO 3 (5.0 wt% as K).

その後、同ペレットを再度水素還元(600℃、2h)することにより、ルテニウム担持Al2O3ペレットに促進剤としてカリウムを担持させた(K(5.0)-Ru(5.0)/Al2O3)。 Thereafter, the pellet was again reduced with hydrogen (600 ° C., 2 h) to support potassium as an accelerator on the ruthenium-supported Al 2 O 3 pellet (K (5.0) -Ru (5.0) / Al 2 O 3 ) .

こうして得られたアンモニア分解触媒を、図1に示すアンモニア分解能力測定装置の垂直の反応管(1)(10mm角のステンレス鋼製)内のグラスウール(4)の上に充填長40mmになるように充填した(4ml)。   The ammonia decomposition catalyst obtained in this way is placed on the glass wool (4) in the vertical reaction tube (1) (made of 10 mm square stainless steel) of the ammonia decomposition ability measuring apparatus shown in FIG. Filled (4 ml).

次いで、反応管(1)の触媒充填部(3)をヒーター(2)で下記温度に加熱し、これに100%アンモニアガスを0.1MPaの圧力で下記流量で供給しながら、アンモニア分解能力の測定を行った。図1中、 (5)(6)は流量調節器、(7)はアンモニアトラップ、(8)は流量検知器である。   Next, the catalyst filling section (3) of the reaction tube (1) is heated to the following temperature with the heater (2), and ammonia decomposition capacity is measured while supplying 100% ammonia gas at a pressure of 0.1 MPa at the following flow rate. Went. In FIG. 1, (5) and (6) are flow rate regulators, (7) is an ammonia trap, and (8) is a flow rate detector.

温度(℃):600、500、400、350、300
流量(ml/min) :333、200、66.7、33.3
(空間速度(hr-1):5000、3000、1000、500)
比較例1〜2
担体原料として、走査電子顕微鏡(SEM)により直接観察・測定した平均粒径100nm、300nmのγ-Al2O3を使用した以外、実施例1と同様の方法でアンモニア分解触媒を得た。次いでこれらの触媒の分解能力の測定を実施例1と同様の方法で行った。
Temperature (℃): 600, 500, 400, 350, 300
Flow rate (ml / min): 333, 200, 66.7, 33.3
(Space velocity (hr -1 ): 5000, 3000, 1000, 500)
Comparative Examples 1-2
An ammonia decomposition catalyst was obtained in the same manner as in Example 1, except that γ-Al 2 O 3 having an average particle diameter of 100 nm and 300 nm directly observed and measured with a scanning electron microscope (SEM) was used as the carrier material. Subsequently, the decomposition ability of these catalysts was measured in the same manner as in Example 1.

実施例2〜4
担体原料として平均粒径44nmの超微粒子MgO、平均粒径29nmの超微粒子SiO2、平均粒径12nmの超微粒子CeO2(シーアイ化成社製、商品名「ナノテックNanoTek」)を用いた以外、実施例1と同様の方法でアンモニア分解触媒を得た。次いでこれらの触媒の分解能力の測定を実施例1と同様の方法で行った。
Examples 2-4
Ultrafine particles MgO having an average particle diameter of 44nm as a carrier material, average particle size ultrafine particles of SiO 2 29 nm, average particle diameter 12nm ultrafine particles CeO 2 except for using (CI Kasei Co., trade name "NanoTek NanoTek"), carried out An ammonia decomposition catalyst was obtained in the same manner as in Example 1. Subsequently, the decomposition ability of these catalysts was measured in the same manner as in Example 1.

実施例5〜7
促進剤としてNa、Cs、Baを担持させた以外、実施例1と同様の方法でアンモニア分解触媒を得た。次いでこれらの触媒の分解能力の測定を実施例1と同様の方法で行った。
Examples 5-7
An ammonia decomposition catalyst was obtained in the same manner as in Example 1 except that Na, Cs, and Ba were supported as promoters. Subsequently, the decomposition ability of these catalysts was measured in the same manner as in Example 1.

実施例8〜9
超微粒子γ-Al2O3を成形する形状を円柱形、ハニカム構造(複数枚の薄平板と複数枚の薄波板を交互に積み上げて一体化したもの)とした以外、実施例1と同様の方法でアンモニア分解触媒を得た。次いでこれらの触媒の分解能力の測定を実施例1と同様の方法で行った。
Examples 8-9
Same as Example 1 except that the shape of the ultrafine particles γ-Al 2 O 3 is cylindrical and has a honeycomb structure (multiple thin flat plates and multiple thin wave plates are alternately stacked and integrated) Ammonia decomposition catalyst was obtained by this method. Subsequently, the decomposition ability of these catalysts was measured in the same manner as in Example 1.

得られたアンモニア分解能力測定結果を表1に示す。

Figure 0005380233
The obtained ammonia decomposition ability measurement results are shown in Table 1.
Figure 0005380233

実施例1と比較例1を比較すると、Ru担持量は同量であるにも拘わらず、400℃以下の低温域におけるアンモニア分解率に顕著な差異が認められる。これは、担体原料であるγ-Al2O3の平均粒径の差異に由来する、担体ペレット上の金属担持サイト数の差異がRu分散度に影響を及ぼし、調製触媒の活性の差異につながっていると考えられる。つまり、実施例1では担体原料のγ-Al2O3が平均粒径34nmと超微粒子であるのに対し、比較例1〜2ではγ-Al2O3は平均粒径100nmあるいは300nmの粒子であり、実施例1の担体上の金属担持サイト数は比較例1〜2のそれの数十〜数百倍であるため、(低温域における)触媒活性も高くなっていると考えられる。 When Example 1 and Comparative Example 1 are compared, a remarkable difference is observed in the ammonia decomposition rate in a low temperature range of 400 ° C. or lower, even though the amount of Ru supported is the same. This is because the difference in the number of metal support sites on the support pellets, which is derived from the difference in the average particle size of the support raw material γ-Al 2 O 3 , affects the Ru dispersion, leading to a difference in the activity of the prepared catalyst. It is thought that. That is, in Example 1, the carrier raw material γ-Al 2 O 3 is an ultrafine particle having an average particle size of 34 nm, whereas in Comparative Examples 1 and 2, γ-Al 2 O 3 is a particle having an average particle size of 100 nm or 300 nm. Since the number of metal supporting sites on the support of Example 1 is several tens to several hundred times that of Comparative Examples 1 and 2, it is considered that the catalytic activity (in a low temperature range) is also high.

また、実施例1では、アンモニア分解反応における空間速度を変えている。SV=3,000と比較して、空間速度を大きくしたSV=5,000では触媒のアンモニア分解率が低下し、逆に空間速度を小さくしたSV=1,000または500ではアンモニア分解率が上昇することがわかる。先行技術文献として挙げた特許文献2におけるデータでは、アンモニア分解反応における空間速度はSV=142または710と小さいものであり、これと比較すると、本発明による触媒は高いアンモニア分解性能を示すことがわかる。   In Example 1, the space velocity in the ammonia decomposition reaction is changed. Compared to SV = 3,000, it can be seen that when the space velocity is increased, SV = 5,000, the ammonia decomposition rate of the catalyst decreases, and conversely, when the space velocity is decreased, SV = 1,000 or 500, the ammonia decomposition rate increases. According to the data in Patent Document 2 cited as the prior art document, the space velocity in the ammonia decomposition reaction is as small as SV = 142 or 710. Compared with this, it can be seen that the catalyst according to the present invention exhibits high ammonia decomposition performance. .

実施例2〜4では、担体の種類を検討した。担体原料として実施例1のγ-Al2O3以外にMgO、SiO2、CeO2を用いたが、400℃以下の温度範囲で比較すると、担体原料としてγ-Al2O3を使用した場合に最もよくアンモニアを分解することがわかる。 In Examples 2 to 4, the type of carrier was examined. In addition to γ-Al 2 O 3 of Example 1, MgO, SiO 2 , and CeO 2 were used as carrier materials, but when compared in a temperature range of 400 ° C. or lower, when γ-Al 2 O 3 was used as a carrier material It can be seen that it decomposes ammonia best.

実施例5〜7では、促進剤の影響を検討した。アルカリ金属およびアルカリ土類金属の中から、実施例1のK以外でNa、Cs、Baを用いた。実施例1と実施例5〜7を比較すると、アンモニア分解触媒の促進剤としてKを用いた場合が低温域において最もよくアンモニアを分解することがわかる。   In Examples 5-7, the influence of the accelerator was examined. Na, Cs, and Ba other than K in Example 1 were used from among alkali metals and alkaline earth metals. Comparing Example 1 and Examples 5 to 7, it can be seen that when K is used as an accelerator for the ammonia decomposition catalyst, ammonia is decomposed best in the low temperature range.

実施例8〜9では、担体の形状による影響を検討した。実施例1の球形との比較で、円柱形、ハニカム構造の担体を使用して触媒調製を行っており、ハニカム構造において低温域における優位性が認められた。これはハニカム構造の方が球形よりも、触媒の反応面積が大きいことによると考えられる。   In Examples 8 to 9, the influence of the shape of the carrier was examined. In comparison with the spherical shape of Example 1, a catalyst was prepared using a support having a cylindrical shape and a honeycomb structure, and superiority in a low temperature region was recognized in the honeycomb structure. This is probably because the honeycomb structure has a larger reaction area of the catalyst than the spherical shape.

以上の結果より、本発明の効果が確認された。   From the above results, the effect of the present invention was confirmed.

(1) 反応管
(2) ヒーター
(3) 触媒充填部
(4) グラスウール
(5)(6) 流量調節器
(7) アンモニアトラップ
(8) 流量検知器
(1) Reaction tube
(2) Heater
(3) Catalyst filling part
(4) Glass wool
(5) (6) Flow controller
(7) Ammonia trap
(8) Flow rate detector

Claims (6)

平均粒径1nm〜50nmの超微粒子粉末を所要形状に成形した担体に、ルテニウムおよび促進剤を担持してなることを特徴とするアンモニア分解触媒。 An ammonia decomposition catalyst comprising ruthenium and a promoter supported on a carrier obtained by shaping ultrafine powder having an average particle diameter of 1 nm to 50 nm into a required shape. 担体原料がAl2O3、MgO、SiO2またはCeO2の超微粒子粉末であることを特徴とする請求項1記載のアンモニア分解触媒。 Carrier material is Al 2 O 3, MgO, ammonia decomposition catalyst according to claim 1, characterized in that the ultrafine particles powder SiO 2 or CeO 2. 担体の形状が球形、円柱形またはハニカム構造であることを特徴とする請求項1または2記載のアンモニア分解触媒。 The ammonia decomposition catalyst according to claim 1 or 2, wherein the support has a spherical shape, a cylindrical shape, or a honeycomb structure. 促進剤がアルカリ金属またはアルカリ土類金属からなることを特徴とする請求項1から3のいずれかに記載のアンモニア分解触媒。 The ammonia decomposition catalyst according to any one of claims 1 to 3, wherein the promoter comprises an alkali metal or an alkaline earth metal. 請求項1から4のいずれかに記載のアンモニア分解触媒を用いたことを特徴とする水素発生システム。 A hydrogen generation system using the ammonia decomposition catalyst according to any one of claims 1 to 4. 請求項5記載の水素発生システムを具備したことを特徴とする燃料電池。 A fuel cell comprising the hydrogen generation system according to claim 5.
JP2009232137A 2009-10-06 2009-10-06 Ammonia decomposition catalyst Active JP5380233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009232137A JP5380233B2 (en) 2009-10-06 2009-10-06 Ammonia decomposition catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009232137A JP5380233B2 (en) 2009-10-06 2009-10-06 Ammonia decomposition catalyst

Publications (2)

Publication Number Publication Date
JP2011078888A JP2011078888A (en) 2011-04-21
JP5380233B2 true JP5380233B2 (en) 2014-01-08

Family

ID=44073532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009232137A Active JP5380233B2 (en) 2009-10-06 2009-10-06 Ammonia decomposition catalyst

Country Status (1)

Country Link
JP (1) JP5380233B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11697108B2 (en) 2021-06-11 2023-07-11 Amogy Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US11764381B2 (en) 2021-08-17 2023-09-19 Amogy Inc. Systems and methods for processing hydrogen
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia
US11834985B2 (en) 2021-05-14 2023-12-05 Amogy Inc. Systems and methods for processing ammonia
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6228727B2 (en) 2012-02-22 2017-11-08 日立造船株式会社 Processing apparatus including catalyst-supporting honeycomb structure and method for manufacturing the same
JP5909436B2 (en) 2012-12-17 2016-04-26 日立造船株式会社 Method for manufacturing treatment apparatus having catalyst-supporting honeycomb structure
CN111229213A (en) * 2018-11-28 2020-06-05 中国科学院大连化学物理研究所 Preparation method of ruthenium-based catalyst
KR102304406B1 (en) * 2019-11-01 2021-09-23 (주)원익머트리얼즈 Ruthenium-based ammonia decomposition catalyst and preparation method thereof
KR102247197B1 (en) * 2020-06-24 2021-05-04 (주)원익머트리얼즈 Ammonia reformer
KR102247199B1 (en) * 2020-12-28 2021-05-04 (주)원익머트리얼즈 Method for producing high purity hydrogen from ammonia, apparatus therefor and on-site type module system thereof
KR102309466B1 (en) * 2021-04-06 2021-10-07 삼성엔지니어링 주식회사 Ammonia decomposition catalyst and process for decomposition of ammonia using the catalyst
KR102598843B1 (en) * 2021-09-29 2023-11-08 한국생산기술연구원 An ammonia decomposition and hydrogen production system using liquid metal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1085601A (en) * 1996-09-12 1998-04-07 Showa Denko Kk Ammonia decomposition catalyst, its production and method for decomposing ammonia
UA82110C2 (en) * 2003-06-13 2008-03-11 Яра Интернешнл Аса Method to prepare supported catalyst
JP4897669B2 (en) * 2005-03-30 2012-03-14 ズードケミー触媒株式会社 Ammonia decomposition method
JP2009035458A (en) * 2007-08-03 2009-02-19 Tama Tlo Kk Hydrogen generator
JP5263677B2 (en) * 2009-03-12 2013-08-14 株式会社豊田中央研究所 Ammonia decomposition catalyst, ammonia decomposition method using the same, and ammonia decomposition reaction apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11994061B2 (en) 2021-05-14 2024-05-28 Amogy Inc. Methods for reforming ammonia
US12000333B2 (en) 2021-05-14 2024-06-04 AMOGY, Inc. Systems and methods for processing ammonia
US11834985B2 (en) 2021-05-14 2023-12-05 Amogy Inc. Systems and methods for processing ammonia
US11994062B2 (en) 2021-05-14 2024-05-28 AMOGY, Inc. Systems and methods for processing ammonia
US11697108B2 (en) 2021-06-11 2023-07-11 Amogy Inc. Systems and methods for processing ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
US11764381B2 (en) 2021-08-17 2023-09-19 Amogy Inc. Systems and methods for processing hydrogen
US11769893B2 (en) 2021-08-17 2023-09-26 Amogy Inc. Systems and methods for processing hydrogen
US11843149B2 (en) 2021-08-17 2023-12-12 Amogy Inc. Systems and methods for processing hydrogen
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11912574B1 (en) 2022-10-06 2024-02-27 Amogy Inc. Methods for reforming ammonia
US11975968B2 (en) 2022-10-06 2024-05-07 AMOGY, Inc. Systems and methods of processing ammonia
US11840447B1 (en) 2022-10-06 2023-12-12 Amogy Inc. Systems and methods of processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia

Also Published As

Publication number Publication date
JP2011078888A (en) 2011-04-21

Similar Documents

Publication Publication Date Title
JP5380233B2 (en) Ammonia decomposition catalyst
US8883118B2 (en) Hydrocarbon-decomposing porous catalyst body and process for producing the same, process for producing hydrogen-containing mixed reformed gas from hydrocarbons, and fuel cell system
JP5531615B2 (en) Catalyst for cracking hydrocarbons
US20220395810A1 (en) Systems and methods for processing ammonia
JP2016159209A (en) Ammonia decomposition catalyst, production method of catalyst, and ammonia decomposition method using catalyst
JP5477561B2 (en) Porous catalyst body for decomposing hydrocarbon and method for producing the same, method for producing mixed reformed gas containing hydrogen from hydrocarbon, and fuel cell system
JP2018144016A (en) Dehydrogenation catalyst and method for producing the same, and dehydrogenation treatment method using the same
JP2015196110A (en) Catalyst for hydrogen production and hydrogen production method using the same
JP2008155147A (en) Catalyst for methanating carbon monoxide and method for methanating carbon monoxide by using the same
US20120237432A1 (en) Co2 reforming catalyst, method of preparing the same, and method of reforming co2 using the catalyst
JP2008155181A (en) Catalyst for removing carbon monoxide and method for preparing the same
US8822369B2 (en) Method for producing hydrocarbon-producing catalyst, hydrocarbon-producing catalyst, and method for producing hydrocarbon
WO2017130937A1 (en) Heterogeneous-system catalyst structure and manufacturing method therefor
JP4120862B2 (en) Catalyst for CO shift reaction
KR101392996B1 (en) Mesoporous nickel-alumina-zirconia xerogel catalyst and production method of hydrogen by steam reforming of ethanol using said catalyst
KR101269621B1 (en) Mesoporous nickel-M-alumina aerogel catalyst and preparation method thereof
CN111468155A (en) Synthetic method of alcohol compound
JP2001179097A (en) Method for manufacturing catalyst for removing co in hydrogen-containing gas, catalyst manufactured thereby and method for removing co in hydrogen gas
KR102627993B1 (en) Catalyst for Decomposing Ammonia, Method of Preparing the Same and Method for Generating Hydrogen Using the Same
JP4777190B2 (en) Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst
TW202247900A (en) Platinum-supporting alumina catalyst, method for producing same, and method for dehydrogenating hydrogenated aromatic compounds using platinum-supporting alumina catalyst
JP5351089B2 (en) Steam reforming catalyst, hydrogen production apparatus and fuel cell system
CN111468125A (en) Synthetic method of alcohol compound
KR20230021799A (en) Catalyst for preparing synthesis gas, method for preparing the same, and method for preparing synthesis gas using the same
CN111468156A (en) Synthetic method of alcohol compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5380233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250