JP5378029B2 - Displacement method of conductive coil and conductive coil - Google Patents

Displacement method of conductive coil and conductive coil Download PDF

Info

Publication number
JP5378029B2
JP5378029B2 JP2009082148A JP2009082148A JP5378029B2 JP 5378029 B2 JP5378029 B2 JP 5378029B2 JP 2009082148 A JP2009082148 A JP 2009082148A JP 2009082148 A JP2009082148 A JP 2009082148A JP 5378029 B2 JP5378029 B2 JP 5378029B2
Authority
JP
Japan
Prior art keywords
wire
dislocation
conductive
conductive wire
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009082148A
Other languages
Japanese (ja)
Other versions
JP2010238728A (en
Inventor
弘貴 上條
祐介 福本
敬昭 坊野
章 富岡
尚生 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Fuji Electric Co Ltd
Original Assignee
Railway Technical Research Institute
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Fuji Electric Co Ltd filed Critical Railway Technical Research Institute
Priority to JP2009082148A priority Critical patent/JP5378029B2/en
Publication of JP2010238728A publication Critical patent/JP2010238728A/en
Application granted granted Critical
Publication of JP5378029B2 publication Critical patent/JP5378029B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive coil transposition method, with which a transposition space is minimized, winding efficiency of a conductive wire with respect to a winding frame is improved and the conductive coil is miniaturized at the time of dividing the conductive wire into a plurality of wire groups so as to wind them, and a vertical magnetic field to the conductive wire is reduced, conduction current can be increased and AC loss can be reduced, and to provide the conductive coil. <P>SOLUTION: A wire A (101b) at the uppermost stage is wound to the lowermost stage while it is shifted to a winding direction of a wire group 7b. The wire A (101b) is completely wound to the lowermost stage (namely, winding frame 3), and remaining wires B to G are shifted and loaded onto the wire A. Shift of wires B (102b) to G (107b) of the wire group 7b onto the wire A is started and the adjacent wire group 7a is transposed in the same way as the wire group 7b. Shift length (C in the drawing) in a circumferential direction from a transposition start position of the wire group 7b to that of the wire group 7a is longer than "transposition length" D. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、電気機器等に用いられ、特に超電導機器に用いられる導電コイルの転位方法およびこれを用いた導電コイルに関するものである。   The present invention relates to a dislocation method of a conductive coil used for electrical equipment and the like, and particularly to superconducting equipment, and a conductive coil using the same.

従来、大きな電流を通電する必要のある超電導コイルでは、例えば高温超電導体であるテープ状の線材が複数重ねて用いられる。テープ状の線材を複数枚重ねて巻枠に巻きつけた場合、各テープ状線材の巻き位置(重ね位置)によって、インピーダンスが異なるため、各テープ状線材に電流が均一に流れない。これは、特に、電気抵抗を無視することができる超電導コイルにおいて問題となる。このため、複数のテープ状線材が重ねて用いられる場合には、それぞれのテープ状線材の巻き位置を入れ替えるための転位を行う必要がある。   Conventionally, in a superconducting coil that needs to pass a large current, for example, a plurality of tape-like wire rods that are high-temperature superconductors are used in an overlapping manner. When a plurality of tape-shaped wire rods are stacked and wound around a winding frame, since the impedance varies depending on the winding position (stacking position) of each tape-shaped wire rod, current does not flow uniformly through each tape-shaped wire rod. This is a problem particularly in a superconducting coil in which electrical resistance can be ignored. For this reason, when a plurality of tape-shaped wire rods are used in an overlapping manner, it is necessary to perform dislocation for changing the winding position of each tape-shaped wire rod.

このような超電導体の転位方法としては、例えば、巻き枠に円環状の溝を設け、溝にそって超電導導体を巻き付け、溝同士の間の土手部に設けられた切欠き部を渡り部として、渡り部で転位を行う超電導コイルがある(特許文献1)。   As such a superconductor dislocation method, for example, an annular groove is provided in the winding frame, the superconductor is wound along the groove, and the notch provided in the bank portion between the grooves is used as a crossing portion. There is a superconducting coil that performs dislocation at the transition part (Patent Document 1).

特開平2003−115405号公報Japanese Patent Laid-Open No. 2003-115405

しかし、特許文献1のような方法は、土手部に設けられた切欠き部を渡り部として、渡り部で転位を行う旨が記載されているのみであり、土手部の厚みは超電導体を巻きつけることができない。超電導体を巻きつけられないスペースは、コイルにとって無駄なスペースであるだけでなく、コイル高さを増加させることにつながり、超電導コイルの高さ制約がある場合や小型化を図る場合には、より効率良く転位を行い、巻き効率の高い導電コイルが望まれている。   However, the method as in Patent Document 1 only describes that the notch provided in the bank is used as a bridge, and that the transition is performed at the bridge, and the thickness of the bank is determined by winding a superconductor. I can't turn it on. The space where the superconductor cannot be wound is not only a wasteful space for the coil, but also leads to an increase in the coil height. There is a demand for a conductive coil that performs dislocation efficiently and has high winding efficiency.

特に、溝部には溝部幅に応じた超電導導体が一列に巻きつけられるため、超電導導体を複数列に巻きつける場合には、このような方法では転位が困難である。   In particular, since the superconducting conductors corresponding to the groove width are wound in a row around the groove, dislocation is difficult by such a method when the superconducting conductor is wound in a plurality of rows.

図6(a)は、従来の方法により、超電導線材111が複数重ねて巻きつけられる場合における転位部110を示す図である。通常、超電導線材111は転位部110で転位が行われ、線材の巻き重ね位置の入れ替えが行われる。図6(a)に示すように、従来の転位部110においては、転位に伴い、超電導線材111の一列分の幅のスペース(図中X)が形成される。したがって、転位回数分だけ超電導線材111が巻きつけられないスペースが生じる。   FIG. 6A is a diagram showing the dislocation portion 110 when a plurality of superconducting wires 111 are wound in a stacked manner by a conventional method. Usually, the superconducting wire 111 undergoes dislocation at the dislocation portion 110, and the winding position of the wire is switched. As shown in FIG. 6A, in the conventional dislocation portion 110, a space (X in the drawing) having a width corresponding to one row of the superconducting wire 111 is formed along with the dislocation. Therefore, a space where the superconducting wire 111 is not wound is generated by the number of times of dislocation.

一方、図6(b)に示すように、超電導線材111を2分割し、それぞれ複数の超電導線材111aを重ねて線材群113a、113bを並列して設ける方法が考えられる。線材群113a、113bは、それぞれテープ状の超電導線材111aが複数重ねて巻きつけられたものであり、線材群113a、113bは、巻枠の軸方向に互いに隣接して、かつ、互いに独立して巻枠に巻きつけられる。複数の線材群113a、113bを用いることで、より細い超電導線材111aを用いても、太い超電導線材(図6(a)の超電導線材111)を用いた場合と同等の巻き体積を得ることができる。しかしながら、通常の転位方法では、図6(b)のように、複数の線材群に分割(図6(b)では2分割)した場合であっても、転位部110においては、超電導線材111a2本分の転位スペース(図中X)が必要となるため、巻き効率を向上させることはできなかった。   On the other hand, as shown in FIG. 6B, a method is conceivable in which the superconducting wire 111 is divided into two, and a plurality of superconducting wires 111a are overlapped to provide the wire groups 113a and 113b in parallel. The wire groups 113a and 113b are each formed by winding a plurality of tape-shaped superconducting wires 111a, and the wire groups 113a and 113b are adjacent to each other in the axial direction of the winding frame and independently of each other. Wound around a reel. By using a plurality of wire groups 113a and 113b, even if a thinner superconducting wire 111a is used, a winding volume equivalent to the case of using a thick superconducting wire (superconducting wire 111 in FIG. 6A) can be obtained. . However, in the normal dislocation method, as shown in FIG. 6 (b), even when divided into a plurality of wire groups (two in FIG. 6 (b)), the dislocation portion 110 has two superconducting wires 111a. Since a dislocation space (X in the figure) is required, the winding efficiency could not be improved.

本発明は、このような問題に鑑みてなされたもので、導電線材を複数の線材群にして巻きつける場合において、転位スペースを極小化し、巻枠に対する導電線材の巻き効率を高め、導電コイルの小型化、および、これにより導電線材への垂直磁界を減少させ、通電電流の増加および交流損失低減が可能な導電コイルの転位方法および導電コイルを提供することを目的とする。   The present invention has been made in view of such problems, and in the case of winding a conductive wire into a plurality of wire groups, the dislocation space is minimized, the winding efficiency of the conductive wire around the winding frame is increased, and the conductive coil It is an object of the present invention to provide a conductive coil dislocation method and a conductive coil that can be reduced in size and thereby reduce the vertical magnetic field applied to the conductive wire, thereby increasing the energization current and reducing the AC loss.

前述した目的を達成するため、第1の発明は、巻枠の外周に複数周螺旋状にテープ状の超電導線材である導電線材が巻きつけられる導電コイルの転位方法であって、複数の前記導電線材を、前記巻枠の径方向に複数重ねて巻きつけて導電線材群を形成し、前記導電線材群を幅方向に複数配置して、前記巻枠へ互いに隣接するように巻きつけ、隣接する前記導電線材群それぞれの転位開始位置を、前記巻枠の軸方向に互いに隣接する巻き周であり、かつ、前記巻枠の周方向において互いにずれた位置に設け、前記導電線材群内での転位は、前記導電線材群の最上段に巻きつけられていた導電線材を、前記巻枠軸方向に一列分ずらして前記巻枠に巻き付け、前記最上段に巻きつけられていた導電線材上に、転位前に2列目以下に巻き付けられていた導電線材をずらして重ねることで行われ、隣接する前記導電線材群それぞれの転位開始の前記巻枠の周方向におけるずれ長さが、前記導電線材群内における前記最上段に巻きつけられていた導電線材のずらし開始位置と前記2段目以下に巻きつけられていた導電線材のずらし開始位置との間の長さよりも大きいことを特徴とする導電コイルの転位方法である。
In order to achieve the above-described object, the first invention is a method for disposing a conductive coil in which a conductive wire material, which is a tape-like superconducting wire material, is wound around the outer periphery of a winding frame in a plurality of spirals. A plurality of wires are wound in the radial direction of the winding frame to form a conductive wire group , a plurality of the conductive wire groups are arranged in the width direction, and wound around the winding frame so as to be adjacent to each other. the dislocation starting position of the conductive wire group respectively, a winding periphery adjacent to each other in the axial direction of the bobbin, and disposed at positions displaced from each other in the circumferential direction of the bobbin, dislocations in the conductive wire within the group The conductive wire wound around the uppermost stage of the conductive wire group is wound around the winding frame by shifting by one row in the reel axis direction, and the dislocation is placed on the conductive wire wound around the uppermost stage. Before the second row Conductive wire wound around the uppermost stage in the conductive wire group is a displacement length in the circumferential direction of the winding frame of the dislocation start of each adjacent conductive wire group is shifted and overlapped The conductive coil dislocation method is characterized in that it is larger than the length between the shift start position of the wire and the shift start position of the conductive wire wound around the second stage or less.

隣接する複数の前記導電線材群それぞれの前記導電線材幅がほぼ等しいことが望ましい。   It is desirable that the conductive wire widths of the plurality of adjacent conductive wire groups are substantially equal.

隣接する前記導電線材群それぞれの転位部が、前記巻枠の周方向において重ならず、前記転位が行われる巻き周において、隣接する前記導電線材群同士は、前記導電線材の一本分の幅に略等しい隙間のみをあけて巻きつけられることが望ましい。   In the winding circumference in which the dislocation portions of the adjacent conductive wire groups do not overlap in the circumferential direction of the winding frame and the dislocation is performed, the adjacent conductive wire groups have a width corresponding to one of the conductive wires. It is desirable that the wire is wound with only a gap substantially equal to.

第1の発明によれば、複数の導電線材が複数重ねて巻きつけられる導電線材群が形成され、複数の導電線材群が隣接して巻き付けられ、さらにそれぞれの導電線材群の転位開始位置が周方向にずれているため、転位スペースを低減することができる。また、導電線材がテープ状の超電導線材であれば特にその効果が大きい。この場合、テープ状の超電導線材が幅方向に複数配置されて線材群が形成されれば、超電導線材一本当たりの幅を小さくすることができるため、より巻き効率を高めることができる。   According to the first invention, a conductive wire group is formed in which a plurality of conductive wire rods are wound in layers, the plurality of conductive wire rod groups are wound adjacent to each other, and the dislocation start position of each conductive wire rod group is a circumference. Since they are displaced in the direction, the dislocation space can be reduced. The effect is particularly great if the conductive wire is a tape-like superconducting wire. In this case, if a plurality of tape-shaped superconducting wires are arranged in the width direction to form a wire group, the width per superconducting wire can be reduced, so that the winding efficiency can be further increased.

特に、各導電線材群それぞれの転位開始位置のずれ幅が、線材群内における線材のずらし開始位置間長さ(転位長さ)よりも大きければ、転位部同士が重ならないため、確実に転位スペースを低減することができる。また、複数の線材群それぞれの導電線材幅が同一であれば転位スペース低減効果が大きい。   In particular, if the shift width of the dislocation start position of each conductive wire group is larger than the length between the shift start positions of the wire in the wire group (dislocation length), the dislocation parts do not overlap each other, so the dislocation space is surely Can be reduced. Further, if the conductive wire widths of the plurality of wire groups are the same, the dislocation space reduction effect is great.

転位部において、それぞれの導電線材群同士が重ならず、転位スペースとして導電線材1本分の幅のみとすれば、極めて高い巻き効率を得ることができる。この場合、特に導電線材を幅方向に多数の線材群に分割して巻きつけることで、一本当たりの幅を小さくすることができるためより効果が大きい。   In the dislocation portion, the conductive wire groups do not overlap each other, and if only the width of one conductive wire is used as the dislocation space, extremely high winding efficiency can be obtained. In this case, in particular, by dividing and winding the conductive wire into a large number of wire groups in the width direction, the width per wire can be reduced, so that the effect is greater.

第2の発明は、第1の発明にかかる導電コイルの転位方法を用いて製造されることを特徴とする導電コイルである。   2nd invention is manufactured using the dislocation method of the conductive coil concerning 1st invention, It is a conductive coil characterized by the above-mentioned.

第2の発明によれば、転位スペースを低減することにより、導電コイルの軸長を短くでき、これによりコンパクトな導電コイルを得ることができる。   According to the second invention, by reducing the dislocation space, the axial length of the conductive coil can be shortened, whereby a compact conductive coil can be obtained.

本発明によれば、導電線材を複数の線材群にして巻きつける場合において、転位スペースを極小化し、巻枠に対する導電線材の巻き効率を高め、導電コイルの小型化、および、これにより導電線材への垂直磁界を減少させ、通電電流の増加および交流損失低減が可能な導電コイルの転位方法および導電コイルを提供することができる。   According to the present invention, when a conductive wire is wound as a plurality of wire groups, the dislocation space is minimized, the winding efficiency of the conductive wire around the winding frame is increased, the conductive coil is reduced in size, and thereby the conductive wire is obtained. It is possible to provide a conductive coil dislocation method and a conductive coil that can reduce the vertical magnetic field of the coil, increase the energization current, and reduce the AC loss.

超電導コイルを示す図。The figure which shows a superconducting coil. 転位部9における超電導線材5の転位状態を示す図で、(a)は斜視図、(b)は(a)のA部拡大図。It is a figure which shows the dislocation state of the superconducting wire 5 in the dislocation part 9, (a) is a perspective view, (b) is the A section enlarged view of (a). 転位部9における超電導線材の巻き位置の入れ替え状態を示す図。The figure which shows the replacement state of the winding position of the superconducting wire in the dislocation part. 転位部9における各線材群7a、7b転位位置を示す図で、(a)は各線材群の巻き上段方向から見た図、(b)は線材群7aの巻き側方から見た図。It is a figure which shows each wire rod group 7a, 7b dislocation position in the dislocation | rearrangement part 9, (a) is the figure seen from the winding upper stage direction of each wire rod group, (b) is the figure seen from the winding side of the wire rod group 7a. 転位部9における各線材群7a、7b、7c転位位置を示す図。The figure which shows each wire group 7a, 7b, 7c dislocation position in the dislocation part 9. FIG. 従来の転位方法を示す図。The figure which shows the conventional dislocation method.

以下、図面に基づいて、本発明の実施形態を詳細に説明する。図1は、導電コイルとしての超電導コイル1を示す図である。超電導コイル1は、主に巻枠3、超電導線材5等から構成される。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing a superconducting coil 1 as a conductive coil. Superconducting coil 1 is mainly composed of winding frame 3, superconducting wire 5 and the like.

巻枠3は絶縁材料からなる円筒状部材である。巻枠3の外周には超電導線材5が巻きつけられる。導電線材としての超電導線材5は、例えばテープ状の酸化物超電導体である。超電導線材5は複数本が重ねて巻きつけられる。このようにして複数本の超電導線材5が巻きつけられたものを、以後、超電導線材の「線材群」と称する。   The winding frame 3 is a cylindrical member made of an insulating material. A superconducting wire 5 is wound around the outer periphery of the winding frame 3. The superconducting wire 5 as the conductive wire is, for example, a tape-shaped oxide superconductor. A plurality of superconducting wires 5 are wound around each other. In this way, a structure in which a plurality of superconducting wires 5 are wound is hereinafter referred to as a “wire group” of superconducting wires.

超電導コイル1では、2群の線材群7a、7bが隣接して巻きつけられる。すなわち、線材群7a、7bに巻きつけられる超電導線材5は、1の線材群として巻きつけられた幅広の超電導線材を2分割したものである。したがって、線材群7a、7bは互いに隣接するように、複数本の超電導線材5が巻枠3に対して螺旋状に巻きつけられる。なお、線材群7a、7bそれぞれに巻きつけられる超電導線材5の幅は同一であることが望ましい。すなわち、幅広の基線材は等分に分割されることが望ましい。   In superconducting coil 1, two groups of wire groups 7a and 7b are wound adjacent to each other. That is, the superconducting wire 5 wound around the wire group 7a, 7b is obtained by dividing the wide superconducting wire wound around as one wire group into two. Therefore, a plurality of superconducting wires 5 are spirally wound around the winding frame 3 so that the wire groups 7a and 7b are adjacent to each other. It is desirable that the superconducting wires 5 wound around the wire groups 7a and 7b have the same width. That is, it is desirable to divide the wide base material into equal parts.

超電導線材5は、線材群7a、7bにおいて重ねられて巻きつけられるため、重ね位置によって、それぞれのインピーダンスが異なる。超電導材では、電気抵抗を無視できるため、このインピーダンスの影響を強く受け、超電導線材5の重ね位置によって流れる電流量が不均一となる。したがって、線材群7a、7bは、所定量の巻き回数ごとに設けられる転位部9において、線材群7a、7bそれぞれの上下の超電導線材の巻き重ね位置を入れ替える転位が行われる。   Since the superconducting wire 5 is overlapped and wound around the wire groups 7a and 7b, the impedance differs depending on the overlapping position. In the superconducting material, since the electric resistance can be ignored, it is strongly influenced by this impedance, and the amount of current flowing depending on the overlapping position of the superconducting wire 5 becomes non-uniform. Therefore, in the wire rod groups 7a and 7b, the dislocation portion 9 provided for each predetermined number of windings performs a dislocation that switches the upper and lower superconducting wire winding positions of the wire rod groups 7a and 7b.

転位部9が形成される巻き周においては、転位に伴い、超電導線材5(線材群7a、7b)が巻きつけられない隙間が生じる。この隙間を、以後、転位スペースと称する。すなわち、超電導コイル1には、転位部9の数だけ、転位スペース10が形成される。   In the winding circumference where the dislocation portion 9 is formed, a gap in which the superconducting wire 5 (wire group 7a, 7b) is not wound is generated along with the dislocation. This gap is hereinafter referred to as a dislocation space. That is, dislocation spaces 10 are formed in the superconducting coil 1 by the number of dislocation portions 9.

図2および図3は、転位部9を示す図であり、図2(a)は転位部9における線材群7a、7bにおける超電導線材5の入れ替え状態を示す斜視図、図2(b)は図2(a)のA部拡大図である。図3は、線材群7aでの超電導線材5の巻き重ね位置の入れ替えを示す図であり、図中上部が最上段の巻き重ね位置、図中下部が最下段の巻きかさね位置を示す図である。   2 and 3 are diagrams showing the dislocation part 9, FIG. 2 (a) is a perspective view showing a replacement state of the superconducting wire 5 in the wire group 7a, 7b in the dislocation part 9, and FIG. 2 (b) is a diagram. It is the A section enlarged view of 2 (a). FIG. 3 is a diagram showing the replacement of the winding position of the superconducting wire 5 in the wire group 7a, in which the upper part in the figure shows the uppermost winding position and the lower part in the figure shows the lowest winding hook position. .

図2(b)に示すように、転位部9にさしかかる前の状態での線材群7aにおける超電導線材5を、重ね位置毎に、上段から下段にかけて線材A(101a)〜線材G(107a)とする。同様に、図示を省略するが、転位部9にさしかかる前の状態での線材群7bにおいても、重ね位置毎の超電導線材5を、上段から下段にかけて線材A(101b)〜線材G(107b)とする。   As shown in FIG. 2 (b), the superconducting wire 5 in the wire group 7a in the state before reaching the dislocation portion 9 is, for each overlapping position, from the wire A (101a) to the wire G (107a) from the top to the bottom. To do. Similarly, although not shown, also in the wire group 7b in a state before reaching the dislocation portion 9, the superconducting wire 5 at each overlap position is changed from the wire A (101b) to the wire G (107b) from the upper stage to the lower stage. To do.

転位部9では、まず、例えば線材群7bの最上段に巻きつけられている線材A(101b)が、線材群7bの側方(巻き方向)へずらされて、巻枠3(図1)に巻きつけられる。次いで、線材A(101b)を除く線材B(102b)〜線材G(107b)が、線材A(101b)の上方にずらされながら重ねられる。この状態においては、線材群7bの線材B(102b)〜線材G(107b)が、線材群7aから離れるようにずらされていく。   In the dislocation portion 9, first, for example, the wire A (101b) wound around the uppermost stage of the wire group 7b is shifted to the side (winding direction) of the wire group 7b and is wound on the winding frame 3 (FIG. 1). Wrapped. Next, the wire B (102b) to the wire G (107b) excluding the wire A (101b) are stacked while being shifted above the wire A (101b). In this state, the wire B (102b) to the wire G (107b) of the wire group 7b are shifted away from the wire group 7a.

さらに、線材群7aの最上段に巻きつけられている線材A(101a)が、線材群7b方向(巻き方向)へずらされて、巻枠3(図1)に巻きつけられる。次いで、線材A(101a)を除く線材B(102a)〜線材G(107a)が、線材A(101a)の上方にずらされながら重ねられる。   Furthermore, the wire A (101a) wound around the uppermost stage of the wire group 7a is shifted in the direction of the wire group 7b (winding direction) and wound around the winding frame 3 (FIG. 1). Next, the wire B (102a) to the wire G (107a) excluding the wire A (101a) are stacked while being shifted above the wire A (101a).

すなわち、転位部9においては、図3に示すように最上段の線材Aが最下段へ移動し、最下段に移動した線材A上に、線材B〜線材Gがそのまま乗せられる。したがって、転位部9において、線材群内での線材の入れ替えが行われる。   That is, in the dislocation portion 9, as shown in FIG. 3, the uppermost wire A moves to the lowermost stage, and the wires B to G are put on the wire A moved to the lowermost as they are. Therefore, in the dislocation portion 9, the wire rods are exchanged within the wire rod group.

なお、本実施の形態においては、線材群7a、7bは線材A〜線材Gまでの7枚重ねの例を示したが、本発明はこれに限らず、複数枚の超電導線材5が巻きつけられれば何枚重ねであってもよい。   In the present embodiment, the wire group 7a, 7b is an example of seven layers of the wire A to the wire G, but the present invention is not limited to this, and a plurality of superconducting wires 5 are wound. Any number of sheets can be used.

次に、転位部9における各線材群7a、7bの転位位置について説明する。図4(a)は、図1における転位部9の拡大図であり、図4(b)は図4(a)のB部を側方(巻枠3の軸方向)から見た図である。   Next, the dislocation position of each wire group 7a, 7b in the dislocation portion 9 will be described. 4A is an enlarged view of the dislocation portion 9 in FIG. 1, and FIG. 4B is a view of the B portion in FIG. 4A viewed from the side (axial direction of the reel 3). .

前述の通り、線材群7a、7bは隣接して独立して巻枠3に巻きつけられる。線材群7aの巻き周を、・・・n−1、n、n+1・・・とし、線材群7bの巻き周を、・・・m−1、m、m+1・・・とすると、図4(a)に示すように、巻枠3には巻き方向に対して、n−1、m−1、n、m、n+1、m+1、・・・の順に線材群7a、7bが交互に巻きつけられる。   As described above, the wire groups 7a and 7b are wound around the winding frame 3 adjacently and independently. Assuming that the winding circumference of the wire group 7a is... N-1, n, n + 1... And the winding circumference of the wire group 7b is ... m-1, m, m + 1. As shown in a), the wire rod groups 7a and 7b are alternately wound around the winding frame 3 in the order of n-1, m-1, n, m, n + 1, m + 1,. .

まず、巻枠3に対する巻き方向(図4では上方から下方に向かって(かつ、左側から右側に向かって)巻きつけられるとする)に位置する巻き周mの線材群7bから転位が行われる。前述の通り、最上段の線材A(101b)が、線材群7bの巻き方向にずらされながら最下段に巻きつけられる。線材A(101b)が完全に最下段(すなわち巻枠3)に巻きつけられた後、残りの線材B〜線材Gが線材A上にずらされて乗せられる。   First, a dislocation is performed from the wire group 7b of the winding circumference m located in the winding direction with respect to the winding frame 3 (assumed to be wound from the upper side to the lower side (and from the left side to the right side in FIG. 4)). As described above, the uppermost wire rod A (101b) is wound around the lowermost wire while being shifted in the winding direction of the wire rod group 7b. After the wire A (101b) is completely wound around the lowermost stage (that is, the winding frame 3), the remaining wire B to wire G are shifted and placed on the wire A.

したがって、図4(b)に示すように、最上段の線材A(101b)が最下段に移動し、転位前に線材A(101b)の下側に位置する線材B(102b)が最上段へ移動する。また、転位前に最下段であった線材G(107b)は線材A(101b)上に移動する。   Therefore, as shown in FIG. 4B, the uppermost wire A (101b) moves to the lowermost stage, and the wire B (102b) located below the wire A (101b) before the dislocation moves to the uppermost stage. Moving. Moreover, the wire G (107b) which was the lowest step before the dislocation moves to the wire A (101b).

ここで、最上段の線材A(101b)を側方にずらし始めてから、残りの線材B(102b)〜線材G(107b)を線材A(101b)上に移動させる(ずらし始める)までの長さ(図中矢印D)を、以後「転位長さ」と称する。すなわち、「転位長さ」とは、一の線材群の転位内において最上段およびそれ以外の線材のずらし開始位置のずれ幅を指す。   Here, the length from when the uppermost wire A (101b) starts to be shifted to the side until the remaining wires B (102b) to G (107b) are moved onto the wire A (101b) (being shifted). (Arrow D in the figure) is hereinafter referred to as “dislocation length”. That is, the “dislocation length” refers to the shift width of the shift start position of the uppermost stage and other wire rods within the dislocation of one wire group.

線材群7bの線材B(102b)〜線材G(107b)の線材A上へのずらしが開始された後、隣接する巻き周nの線材群7aの転位が線材群7bと同様に行われる。前述のとおり、巻き周nは、巻き周mに対して巻枠3の軸方向に隣接する。ここで、線材群7bの転位開始位置から、線材群7aの転位開始位置までの周方向のずれ長さ(図中矢印C)は、「転位長さ」Dよりも長い。すなわち、隣接する線材群それぞれの転位開始位置の周方向のずれ幅は、「転位長さ」よりも長い。したがって、線材群7aを構成する線材が、線材群7bを構成する線材と重なり合うことがない。   After shifting of the wire rod B (102b) to the wire rod G (107b) of the wire rod group 7b onto the wire rod A is started, dislocation of the wire rod group 7a of the adjacent winding circumference n is performed in the same manner as the wire rod group 7b. As described above, the winding circumference n is adjacent to the winding circumference m in the axial direction of the winding frame 3. Here, the circumferential shift length (arrow C in the figure) from the dislocation start position of the wire group 7 b to the dislocation start position of the wire group 7 a is longer than the “dislocation length” D. That is, the circumferential shift width of the dislocation start position of each adjacent wire group is longer than the “dislocation length”. Therefore, the wire constituting the wire group 7a does not overlap with the wire constituting the wire group 7b.

転位部9においては、線材群7aと線材群7bとの間に、転位スペース(図中E)が形成される。図4(a)においては、巻き周m−1と巻き周nとの間、または、巻き周mと巻き周n+1との間に転位スペースが形成される。   In the dislocation portion 9, a dislocation space (E in the figure) is formed between the wire group 7a and the wire group 7b. In FIG. 4A, a dislocation space is formed between the winding circumference m-1 and the winding circumference n or between the winding circumference m and the winding circumference n + 1.

本発明においては、線材群7a、7bそれぞれを独立させて形成し、隣接する巻き周において、それぞれの転位開始位置を周方向にずらして形成するため、線材群同士が重ならず、このため、転位スペースは超電導線材5の幅一列分と略同等の幅のみとなる。   In the present invention, the wire groups 7a and 7b are formed independently, and in the adjacent winding circumference, the respective dislocation start positions are shifted in the circumferential direction, so the wire groups do not overlap each other. The dislocation space has only a width substantially equivalent to the width of the superconducting wire 5.

以上説明したように、本実施形態にかかる超電導コイル1によれば、複数の超電導線材5が複数重ねて巻きつけられる線材群7a、7bを巻枠3の軸方向に隣接するように巻き付け、さらにそれぞれの線材群7a、7b内での転位開始位置が周方向にずれているため、転位スペースを低減することができる。   As described above, according to the superconducting coil 1 according to the present embodiment, the wire groups 7a and 7b around which a plurality of superconducting wires 5 are stacked and wound are wound so as to be adjacent to each other in the axial direction of the winding frame 3. Since the dislocation start position in each wire group 7a, 7b is shifted in the circumferential direction, the dislocation space can be reduced.

特に、線材群7a、7bそれぞれの転位開始位置の周方向におけるずれ幅が、「転位長さ」よりも大きいため、各線材群の転位部同士が重なることがない。このため、転位スペースを超電導線材5の1本分の幅のみとすることができ、極めて高い巻き効率を得ることができる。   In particular, since the shift width in the circumferential direction of the dislocation start position of each of the wire groups 7a and 7b is larger than the “dislocation length”, the dislocation portions of each wire group do not overlap each other. For this reason, the dislocation space can be limited to the width of only one superconducting wire 5, and extremely high winding efficiency can be obtained.

また、転位スペースを低減することにより、超電導コイル1の軸長を短くできるため、コンパクトな超電導コイル1を得ることができる。   Moreover, since the axial length of the superconducting coil 1 can be shortened by reducing the dislocation space, a compact superconducting coil 1 can be obtained.

以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of this invention was described referring an accompanying drawing, the technical scope of this invention is not influenced by embodiment mentioned above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

たとえば、本実施の形態においては、導電線材としてテープ状の超電導線材を用いる例を示したが、これに限られない。すなわち、超電導線材以外の導電線材を用いてもよく、その形態は問わない。また、本実施の形態においては、線材群7a、7bの2群の場合(すなわち基線材を2分割した場合)を示したが、これに限られない。図5は、線材群7a、7b、7cの3群である場合における転位部9’を示す図である。   For example, in the present embodiment, an example in which a tape-shaped superconducting wire is used as the conductive wire has been described. That is, a conductive wire other than the superconducting wire may be used, and its form is not limited. In the present embodiment, the case of two groups of wire rod groups 7a and 7b (that is, the case where the base wire rod is divided into two) is shown, but the present invention is not limited to this. FIG. 5 is a diagram showing the dislocation portion 9 ′ in the case of three groups of wire rod groups 7 a, 7 b, and 7 c.

線材群が3群となった場合(すなわち基線材を3分割した場合)であっても、同様に、線材群7cの転位を行うとともに、線材群7cと隣接する線材群7bの転位を行う。この際、線材群7c、7bの周方向の転位開始位置のずれ幅C’を、それぞれの線材群の「転位長さ」よりも長くすれば良い。同様に、線材群7bとこれに隣接する線材群7aの周方向の転位位置のずれ幅C’’を、それぞれの線材群の「転位長さ」よりも長くすれば良い。   Even when the number of wire groups is three (that is, when the base wire is divided into three), the wire group 7c is similarly dislocated and the wire group 7b adjacent to the wire group 7c is dislocated. At this time, the shift width C ′ of the dislocation start position in the circumferential direction of the wire groups 7 c and 7 b may be made longer than the “dislocation length” of each wire group. Similarly, the shift width C ″ of the dislocation position in the circumferential direction between the wire group 7b and the wire group 7a adjacent thereto may be made longer than the “dislocation length” of each wire group.

このようにすることで、線材群7a、7b、7cそれぞれの転位部が巻枠軸方向に隣接する巻き周で行われ、かつ、転位開始位置が周方向にずれており、互いに重なり合うことがないため、転位スペースとしては、超電導線材5の1本分の幅のみとなる。このように、線材群の群数は、同一周回内(隣接する線材群のそれぞれの同一周回内)で全ての線材群の転位が完了できる限り、いくつであってもよい。   By doing in this way, each dislocation part of wire group 7a, 7b, 7c is performed by the winding circumference which adjoins the reel axis direction, and the dislocation start position has shifted in the peripheral direction, and does not overlap mutually. Therefore, the dislocation space is only the width of one superconducting wire 5. Thus, the number of groups of wire rod groups may be any number as long as dislocation of all wire rod groups can be completed within the same lap (within the same lap of each of the adjacent wire rod groups).

また、超電導コイル軸方向の略中央位置で、線材群内の線材全部を入れ替える全転位を行ってもよい。たとえば、最上段からA、B、・・・、F、Gという重ね位置を、G、F、・・・、B、Aというように入れ替えを行ってもよい。   Moreover, you may perform all the dislocations which replace all the wires in a wire group in the approximate center position of a superconducting coil axial direction. For example, the overlapping positions of A, B,..., F, G may be switched from G, F,.

1………超電導コイル
3………巻枠
5………超電導線材5
7a、7b、7c………線材群
9………転位部
10………転位スペース
110………転位部
111………超電導線材
113a、113b………線材群
1 ... Superconducting coil 3 ... Winding frame 5 ... Superconducting wire 5
7a, 7b, 7c ......... Wire group 9 ......... Dislocation portion 10 ......... Dislocation space 110 ......... Dislocation portion 111 ......... Superconducting wire 113a, 113b ......... Wire group

Claims (4)

巻枠の外周に複数周螺旋状にテープ状の超電導線材である導電線材が巻きつけられる導電コイルの転位方法であって、
複数の前記導電線材を、前記巻枠の径方向に複数重ねて巻きつけて導電線材群を形成し、
前記導電線材群を幅方向に複数配置して、前記巻枠へ互いに隣接するように巻きつけ、
隣接する前記導電線材群それぞれの転位開始位置を、前記巻枠の軸方向に互いに隣接する巻き周であり、かつ、前記巻枠の周方向において互いにずれた位置に設け、
前記導電線材群内での転位は、前記導電線材群の最上段に巻きつけられていた導電線材を、前記巻枠軸方向に一列分ずらして前記巻枠に巻き付け、前記最上段に巻きつけられていた導電線材上に、転位前に2列目以下に巻き付けられていた導電線材をずらして重ねることで行われ、
隣接する前記導電線材群それぞれの転位開始の前記巻枠の周方向におけるずれ長さが、前記導電線材群内における前記最上段に巻きつけられていた導電線材のずらし開始位置と前記2段目以下に巻きつけられていた導電線材のずらし開始位置との間の長さよりも大きいことを特徴とする導電コイルの転位方法。
A conductive coil dislocation method in which a conductive wire, which is a tape-like superconducting wire, is wound around the outer periphery of a winding frame in a spiral shape,
A plurality of the conductive wire materials are wound in a plurality of times in the radial direction of the winding frame to form a conductive wire material group,
A plurality of the conductive wire groups are arranged in the width direction , wound around the winding frame so as to be adjacent to each other,
The dislocation start position of each of the adjacent conductive wire group is a winding circumference adjacent to each other in the axial direction of the winding frame, and provided at a position shifted from each other in the circumferential direction of the winding frame,
The dislocation within the conductive wire group is wound around the reel by shifting the conductive wire wound around the uppermost stage of the conductive wire group by one line in the reel axis direction and wound around the uppermost stage. It is done by shifting and overlapping the conductive wire wound around the second row before the dislocation on the conductive wire that had been
The shift length in the circumferential direction of the winding frame of the dislocation start of each adjacent conductive wire group is the shift start position of the conductive wire wound around the uppermost stage in the conductive wire group and the second and lower stages. A conductive coil dislocation method characterized in that it is larger than the length between the shift start position of the conductive wire wound around the wire.
隣接する複数の前記導電線材群それぞれの前記導電線材幅がほぼ等しいことを特徴とする請求項に記載の導電コイルの転位方法。 The conductive coil dislocation method according to claim 1 , wherein the conductive wire widths of the plurality of adjacent conductive wire groups are substantially equal. 隣接する前記導電線材群それぞれの転位部が、前記巻枠の周方向において重ならず、前記転位が行われる巻き周において、隣接する前記導電線材群同士は、前記導電線材の一本分の幅に略等しい隙間のみをあけて巻きつけられることを特徴とする請求項1または請求項のいずれかに記載の導電コイルの転位方法。 In the winding circumference in which the dislocation portions of the adjacent conductive wire groups do not overlap in the circumferential direction of the winding frame and the dislocation is performed, the adjacent conductive wire groups have a width corresponding to one of the conductive wires. approximately equal dislocation method of the conductive coil according to claim 1 or claim 2, characterized in that the wound open only gap. 請求項1から請求項のいずれかに記載の導電コイルの転位方法を用いて製造されることを特徴とする導電コイル。
A conductive coil manufactured using the conductive coil dislocation method according to any one of claims 1 to 3 .
JP2009082148A 2009-03-30 2009-03-30 Displacement method of conductive coil and conductive coil Expired - Fee Related JP5378029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009082148A JP5378029B2 (en) 2009-03-30 2009-03-30 Displacement method of conductive coil and conductive coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009082148A JP5378029B2 (en) 2009-03-30 2009-03-30 Displacement method of conductive coil and conductive coil

Publications (2)

Publication Number Publication Date
JP2010238728A JP2010238728A (en) 2010-10-21
JP5378029B2 true JP5378029B2 (en) 2013-12-25

Family

ID=43092830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009082148A Expired - Fee Related JP5378029B2 (en) 2009-03-30 2009-03-30 Displacement method of conductive coil and conductive coil

Country Status (1)

Country Link
JP (1) JP5378029B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5724328B2 (en) * 2010-11-30 2015-05-27 富士電機株式会社 Superconducting coil
CN103578741B (en) * 2013-10-31 2015-12-30 华北电力大学 The interchanging method of a kind of two superconducting tape magnetic plugs in parallel coiling
JP6917243B2 (en) * 2017-08-10 2021-08-11 東芝産業機器システム株式会社 Seat coil
CN113284666B (en) * 2020-02-19 2022-05-17 中国科学院高能物理研究所 Multilayer-packaged superconducting transposed cable and cabling method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2539669Y2 (en) * 1988-11-25 1997-06-25 富士電機株式会社 Helical coil
JPH10172824A (en) * 1996-10-09 1998-06-26 Fuji Electric Co Ltd Superconducting coil for induction electric equipment
JP2001257122A (en) * 2000-03-13 2001-09-21 Hitachi Ltd Structure of winding of transformer
JP4558517B2 (en) * 2005-01-12 2010-10-06 成卓 岩熊 Superconducting coil

Also Published As

Publication number Publication date
JP2010238728A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
EP2362526B1 (en) Method for manufacturing a stator for an energy converting apparatus
JP5532319B2 (en) Stator for rotating electric machine and method for manufacturing the same
JP4558517B2 (en) Superconducting coil
US10574111B2 (en) Rotating electric machine with lane-changed coils
JP6389501B2 (en) Coil for rotating machine and rotating machine
JP5378029B2 (en) Displacement method of conductive coil and conductive coil
US6281614B1 (en) Multiple phase electric machine with a space-optimized turn-to-turn winding
JP2007185004A (en) Rotary electric machine
US7911106B2 (en) Rotary electric machine
JP4774494B2 (en) Superconducting coil
KR20150100425A (en) Stator and winding method for stator coil
JP5680327B2 (en) Split winding transformer
JP6511274B2 (en) Superconducting coil and superconducting rotary electric machine stator
CN110556956B (en) Stator assembly and motor with same
US8169289B2 (en) Reactor
JP2009106005A (en) Stator of rotating electric machine
JP2012114230A (en) Superconducting coil
JP4177462B2 (en) Winding method in two cutting planes for rotating electrical equipment
JP5704418B2 (en) Rotating electric machine stator
JP2010226812A (en) Stator and wave-winding coil
JP2009148084A (en) Armature
JP2010109043A (en) Method of dislocating superconducting coil, and superconducting coil
JP2012227178A (en) Superconducting coil device and manufacturing method therefor
JP3006258B2 (en) Dislocation conductor helical coil
RU2349980C1 (en) Current-limiting reactor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Ref document number: 5378029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees