JP5680327B2 - Split winding transformer - Google Patents

Split winding transformer Download PDF

Info

Publication number
JP5680327B2
JP5680327B2 JP2010090077A JP2010090077A JP5680327B2 JP 5680327 B2 JP5680327 B2 JP 5680327B2 JP 2010090077 A JP2010090077 A JP 2010090077A JP 2010090077 A JP2010090077 A JP 2010090077A JP 5680327 B2 JP5680327 B2 JP 5680327B2
Authority
JP
Japan
Prior art keywords
winding
groove
transition groove
split
bobbin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010090077A
Other languages
Japanese (ja)
Other versions
JP2011222731A (en
Inventor
敏洋 成田
敏洋 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Parts Ind Co Ltd
Original Assignee
Tokyo Parts Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Parts Ind Co Ltd filed Critical Tokyo Parts Ind Co Ltd
Priority to JP2010090077A priority Critical patent/JP5680327B2/en
Priority to CN201110073269.9A priority patent/CN102237185B/en
Publication of JP2011222731A publication Critical patent/JP2011222731A/en
Application granted granted Critical
Publication of JP5680327B2 publication Critical patent/JP5680327B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば直流電圧を昇降圧するコンバータなどに用いられる分割巻トランスに関する。   The present invention relates to a split-winding transformer used in, for example, a converter that steps up and down a DC voltage.

分割巻トランスでは、図8に示すように、分割巻用ボビン100の巻回部101に巻線を巻き付け、巻線110を隣の巻回部101に移行させるために分割鍔102に設けられた溝103を通し、全ての巻回部101に所定の巻数巻回している。
この場合、隣の巻回部101への巻線の移行は、巻装コイル外周から溝を通り、鍔の最底部へ移行されるが、仮に鍔の高さ方向途中から巻線の巻回が行われると、レアショート(層間短絡)などの発煙発火事故につながるおそれがある。
In the split winding transformer, as shown in FIG. 8, the winding is wound around the winding portion 101 of the split winding bobbin 100, and the split winding 102 is provided to transfer the winding 110 to the adjacent winding portion 101. A predetermined number of turns are wound around all the winding portions 101 through the grooves 103.
In this case, the transition of the winding to the adjacent winding part 101 passes through the groove from the outer periphery of the winding coil and is transferred to the bottom of the saddle. Doing so may lead to smoke and fire accidents such as rare shorts (interlayer shorts).

上記のようなレアショートを防止するために、例えば特許文献1では、巻線を隣の巻回部101に移行させるための溝103の部分に、鍔102よりも薄い壁120を設けている。
このような構成によれば、図9に示すように、移行リード線111を壁120の上端にて引っかけながら隣の巻回部に移行させることができるため、各巻回部における巻装コイルの始端を壁の最底部、即ち鍔の最底部から始めることができ、レアショートによる発煙発火事故を防止することができるとされている。
In order to prevent the above-described rare short circuit, for example, in Patent Document 1, a wall 120 thinner than the flange 102 is provided in a portion of the groove 103 for transferring the winding to the adjacent winding portion 101.
According to such a configuration, as shown in FIG. 9, the transition lead wire 111 can be moved to the adjacent winding part while being hooked at the upper end of the wall 120, so that the start end of the winding coil in each winding part It can be started from the bottom of the wall, that is, the bottom of the wall, and it is said that it is possible to prevent smoke and fire accidents due to rare shorts.

特開平5−267065号公報Japanese Patent Laid-Open No. 5-267065

しかしながら、図9のような構成においても、移行リード線と巻装コイルとの絶縁距離を十分に確保することは難しく、特に各巻回部に多層に重ねて数十ターン以上巻回し、移行リード線と巻装コイルの上層部との電位差が大きくなると、レアショートを確実には防止できない。また、同様に、巻き始めリード線と最初の巻装コイルの上層部とのレアショートも防止できない。   However, even in the configuration as shown in FIG. 9, it is difficult to ensure a sufficient insulation distance between the transition lead wire and the winding coil. When the potential difference between the coil and the upper layer of the wound coil becomes large, rare shorts cannot be reliably prevented. Similarly, it is impossible to prevent a rare short-circuit between the winding start lead wire and the upper layer portion of the first wound coil.

このようなレアショートを確実に防止するため、巻き始めリード線と移行リード線に絶縁チューブや絶縁テープを施すことも行われているが、製造工程が煩雑になり、巻線の自動化の障害になると共に、巻装コイルの巻き乱れを引き起こし易く、特性のバラツキの原因ともなっていた。   In order to reliably prevent such rare shorts, insulation tubes and insulation tape are also applied to the winding start lead wire and the transition lead wire, but this complicates the manufacturing process and hinders the automation of winding. At the same time, the winding coil is likely to be disturbed, causing variations in characteristics.

そこで本発明は、レアショートの確実な防止と巻線の自動化を可能にし、より信頼性の高い分割巻トランスを提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a highly reliable split winding transformer that enables reliable prevention of rare shorts and automation of windings.

上記の目的を達成すべく成された本発明の分割巻トランスは、
移行溝を有する分割鍔によって複数の分割巻溝が形成されているボビンを備え、
前記移行溝を通して前記分割鍔に隣接する2つの前記分割巻溝に跨って掛け渡された導線が、アルファ巻によって各分割巻溝に2層以上巻き付けられており、
前記ボビンに磁芯が組み込まれ
前記移行溝を通る導線の上に、前記移行溝の形状に対応する絶縁部材が装着されていることを特徴とするものである。
The split-winding transformer of the present invention made to achieve the above object is
A bobbin in which a plurality of divided winding grooves are formed by a dividing rod having a transition groove;
Two or more layers are wound around each divided winding groove by alpha winding, the conductor wire straddling across the two divided winding grooves adjacent to the divided rod through the transition groove,
A magnetic core is incorporated in the bobbin ,
An insulating member corresponding to the shape of the transition groove is mounted on a conducting wire passing through the transition groove .

本発明の分割巻トランスでは、前記移行溝は、前記分割巻溝の底部に達して形成されていること、が好ましい。 In a split winding transformer of the present invention, the transition groove, Tei Rukoto formed reaches the bottom of the discrete winding grooves, are preferred.

本発明によれば、隣接する2つの分割巻溝に跨ってアルファ巻により導線を巻き付けたことにより、この巻線の両端とも最外層(最上層)から導出される。このため、従来のように巻き始めリード線や移行リード線を、上部から巻溝底部まで引き込む必要がなく、巻き始めリード線や移行リード線に絶縁テープや絶縁チューブを施すことなくレアショートを防止できると共に、巻線の自動化が可能になり、より信頼性の高い分割巻トランスを実現することができる。   According to the present invention, both ends of the winding are led out from the outermost layer (uppermost layer) by winding the conducting wire by alpha winding across two adjacent divided winding grooves. For this reason, it is not necessary to draw the winding start lead wire and transition lead wire from the top to the bottom of the winding groove as in the past, and it prevents rare shorts without applying insulating tape or insulation tube to the winding start lead wire or transition lead wire. In addition, the winding can be automated and a more reliable split winding transformer can be realized.

本発明の第1の実施形態における分割巻トランスの分解斜視図である。It is a disassembled perspective view of the division | segmentation winding transformer in the 1st Embodiment of this invention. 図2(a)は、図1の分割巻トランスの完成斜視図である。図2(b)は、図2(a)の切断線A−Aの断面図である。FIG. 2 (a) is a completed perspective view of the split winding transformer of FIG. FIG. 2B is a cross-sectional view taken along the line AA in FIG. 図1の分割巻トランスの製造に用いられる巻線装置の一例を示す概略図である。It is the schematic which shows an example of the winding apparatus used for manufacture of the division | segmentation winding transformer of FIG. 図3の巻線装置による巻線工程を説明するための図である。It is a figure for demonstrating the winding process by the winding apparatus of FIG. 図5(a)は、狭い移行溝を介して導線が掛け渡されたときの説明図である。図5(b)は、広い移行溝を介して導線が掛け渡されたときの説明図である。Fig.5 (a) is explanatory drawing when a conducting wire is spanned through the narrow transition groove. FIG.5 (b) is explanatory drawing when a conducting wire is spanned through the wide transition groove. 図6(a)は、第2の実施形態にかかるボビンの底面図を示し、可動壁が閉じていないときを示す。図6(b)は、図6(a)の切断線B−Bの断面図を示す。図6(c)は、図6(a)の可動壁が閉じたときのボビンの底面図を示す。図6(d)は、図6(c)の切断線C−Cの断面図を示す。FIG. 6A shows a bottom view of the bobbin according to the second embodiment, and shows a case where the movable wall is not closed. FIG. 6B is a cross-sectional view taken along the line BB in FIG. FIG. 6C shows a bottom view of the bobbin when the movable wall of FIG. 6A is closed. FIG. 6D is a cross-sectional view taken along the section line CC in FIG. 図7(a)は、第3の実施形態にかかるボビンの底面図を示す。図7(b)は、図7(a)の切断線D−Dの断面図を示す。Fig.7 (a) shows the bottom view of the bobbin concerning 3rd Embodiment. FIG.7 (b) shows sectional drawing of the cutting line DD of Fig.7 (a). 従来の分割巻トランスにコイルを巻回した断面図である。It is sectional drawing which wound the coil around the conventional split winding transformer. 従来の別の分割巻トランスにコイルを巻回した断面図である。It is sectional drawing which wound the coil around another conventional split winding transformer.

以下、図面に基づいて本発明の実施の形態を例示的に説明する。但し、この実施の形態に記載されている構成部品の材質、形状、その相対配置などは、特に特定的な記載がない限りはこの発明の範囲をそれのみに限定する趣旨ではない。   Hereinafter, embodiments of the present invention will be exemplarily described based on the drawings. However, the material, shape, relative arrangement, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention to that unless otherwise specified.

(第1の実施形態)
図1は、本発明の第1の実施形態における分割巻トランス1の分解斜視図である。図2(a)は、図1の分割巻トランス1の完成斜視図である。図2(b)は、図2(a)の切断線A−Aの断面図である。
図1及び図2に示すように、本実施形態における分割巻トランス1は、絶縁性樹脂により成形され、巻軸方向に複数の略四角形状の分割鍔を有するボビン10と、ボビン10に巻回されるコイル40と、ボビン10に磁芯が組み込まれる2つのE型コア50とを備え、コアを寝かせるように背を低くして配置する横型タイプである。
(First embodiment)
FIG. 1 is an exploded perspective view of a split winding transformer 1 according to the first embodiment of the present invention. 2A is a completed perspective view of the split winding transformer 1 of FIG. FIG. 2B is a cross-sectional view taken along the line AA in FIG.
As shown in FIGS. 1 and 2, the split-winding transformer 1 in this embodiment is formed of an insulating resin and has a bobbin 10 having a plurality of substantially square-shaped split rods in the winding axis direction, and is wound around the bobbin 10. This is a horizontal type that includes a coil 40 and two E-type cores 50 in which a magnetic core is incorporated in the bobbin 10 and is placed with a low height so that the core is laid down.

ボビン10は、角筒状の巻回部11の両側に外鍔12を有し、外鍔12の下方には、端子台13を有する。端子台13は、図面上方に延びて植設される複数の接続端子14を有し、接続端子14には、コイル40の端末が接続される。
またボビン10は、外鍔12間に設けられた中央分割鍔15と、中央分割鍔15と外鍔12の間に設けられた両端分割鍔16を有し、これらの分割鍔により複数の分割巻溝17が形成されている。
The bobbin 10 has an outer casing 12 on both sides of a rectangular tubular winding part 11, and a terminal block 13 below the outer casing 12. The terminal block 13 has a plurality of connection terminals 14 that are planted so as to extend upward in the drawing, and the terminals of the coil 40 are connected to the connection terminals 14.
The bobbin 10 has a central dividing rod 15 provided between the outer rods 12 and a both-end divided rod 16 provided between the central dividing rod 15 and the outer rod 12, and a plurality of divided windings are formed by these dividing rods. A groove 17 is formed.

中央分割鍔15には、両側の分割巻溝17間に導線(本例では後述の1次巻線41)を掛け渡すための移行溝18が形成されている。本例の移行溝18は、中央分割鍔15の端子台13側(図1の図面上方側)の一部を分割巻溝17の底部まで方形状に切り欠いたものである。
また、中央分割鍔15には、移行溝18の両側外周部分に外周溝19が形成されている。
The central split rod 15 is formed with a transition groove 18 for passing a conductor (a primary winding 41 described later in this example) between the split winding grooves 17 on both sides. In this example, the transition groove 18 is formed by cutting out a part of the center dividing rod 15 on the terminal block 13 side (the upper side in the drawing of FIG. 1) to the bottom of the divided winding groove 17 in a rectangular shape.
Further, the central dividing rod 15 is formed with outer peripheral grooves 19 at both outer peripheral portions of the transition groove 18.

60は、樹脂成形体からなる絶縁部材である。この絶縁部材60は、移行溝18の形状に対応する方形状の挿入部61と、挿入部61の両側に延びる支持部62と、支持部62の先端に位置する係止部63を有し、中央分割鍔15と同一厚みに形成されている。
絶縁部材60は、係止部63を外周溝19に係止させることによってボビン10に装着される。これにより、移行溝18を通る導線の上に絶縁部材60の挿入部61が装着されることになる(図2参照)。
Reference numeral 60 denotes an insulating member made of a resin molded body. The insulating member 60 includes a rectangular insertion portion 61 corresponding to the shape of the transition groove 18, a support portion 62 extending on both sides of the insertion portion 61, and a locking portion 63 positioned at the tip of the support portion 62. It is formed to have the same thickness as the central dividing rod 15.
The insulating member 60 is attached to the bobbin 10 by locking the locking portion 63 to the outer peripheral groove 19. Thereby, the insertion part 61 of the insulating member 60 is mounted on the conducting wire passing through the transition groove 18 (see FIG. 2).

コイル40は、1本の1次巻線41と2本の2次巻線42からなる。1次巻線41は、本実施形態では、例えば、絶縁膜を有する導線を多数拠り合わせたリッツ線からなり、高周波による巻線の発熱の増加を抑える。1次巻線41は、絶縁膜を有する単線の導線でもよい。2次巻線42は、絶縁膜を有する単線の導線からなる。   The coil 40 includes one primary winding 41 and two secondary windings 42. In the present embodiment, the primary winding 41 is made of, for example, a litz wire in which a large number of conductive wires having an insulating film are provided, and suppresses an increase in heat generation of the winding due to a high frequency. The primary winding 41 may be a single wire having an insulating film. The secondary winding 42 is made of a single wire having an insulating film.

2本の2次巻線42は、両端分割鍔16と外鍔12間の2つの分割巻溝17にそれぞれ巻回され、端末42Aは両側の各端子台13の接続端子14にそれぞれ接続される。本例では、2次巻線42が2本設けられるが、1本でもよく、2次巻線42の数は、分割巻トランス1が組み込まれるコンバータの駆動回路により適宜選択される。   The two secondary windings 42 are respectively wound around the two divided winding grooves 17 between the both-end split rod 16 and the outer rod 12, and the terminal 42A is connected to the connection terminal 14 of each terminal block 13 on both sides. . In this example, two secondary windings 42 are provided. However, the number of secondary windings 42 may be one, and the number of secondary windings 42 is appropriately selected depending on the drive circuit of the converter in which the split-winding transformer 1 is incorporated.

1本の1次巻線41は、移行溝18を通して中央分割鍔15に隣接する2つの分割巻溝17に跨って掛け渡され、アルファ巻(α巻)によって各分割巻溝17に多層に巻回され、端末41Aは両側の各端子台13の接続端子14にそれぞれ接続される。   One primary winding 41 is spanned across the two split winding grooves 17 adjacent to the central split rod 15 through the transition groove 18, and is wound around the split winding grooves 17 in multiple layers by alpha winding (α winding). The terminal 41A is connected to the connection terminals 14 of the terminal blocks 13 on both sides.

次に、ボビン10へアルファ巻によって導線を巻き付ける巻線方法について説明する。
図3は、本例の分割巻トランス1の製造に用いられる巻線装置30の一例を示す概略図である。図4は、図3の巻線装置30による巻線工程を説明するための図である。
Next, a winding method for winding a conducting wire around the bobbin 10 by alpha winding will be described.
FIG. 3 is a schematic diagram showing an example of a winding device 30 used for manufacturing the split-winding transformer 1 of the present example. FIG. 4 is a diagram for explaining a winding process by the winding apparatus 30 of FIG.

この巻線装置30は、巻治具31と供給ボビン32と補助ボビン33を備えている。
まず、中央分割鍔15に隣接する一方の分割巻溝17に巻回される巻数以上の1次巻線41が供給ボビン32から補助ボビン33に巻回される。
そして、ボビン10は巻線装置30に固定された巻治具31に装着され、1次巻線41が、移行溝18を通して中央分割鍔15に隣接する2つの分割巻溝17に跨って掛け渡される(図4(a)参照)。
The winding device 30 includes a winding jig 31, a supply bobbin 32, and an auxiliary bobbin 33.
First, the primary winding 41 having a number equal to or greater than the number of turns wound in one of the divided winding grooves 17 adjacent to the central dividing rod 15 is wound from the supply bobbin 32 to the auxiliary bobbin 33.
Then, the bobbin 10 is mounted on a winding jig 31 fixed to the winding device 30, and the primary winding 41 is stretched across the two divided winding grooves 17 adjacent to the central dividing rod 15 through the transition groove 18. (See FIG. 4A).

次に、供給ボビン32と補助ボビン33がボビン10に対し互いに逆方向に遊星回転する(図3参照)。この巻線の両端は、中央分割鍔15付近の分割巻溝17の最底部から両端分割鍔16に向かって巻回され(図4(b)参照)、両端分割鍔16まで到達すると1層巻され、その後、中央分割鍔15に向かって2層巻され、順次積層され、巻装コイルの最外層(最上層)から導出できる。この分割巻溝17に巻回される1次巻線41は、本例では、各分割巻溝17に巻軸方向に8列、巻軸直角方向に10層巻回される。
その後、最外層から導出された1次巻線41の端末41Aは、両側にある端子台13の接続端子14にそれぞれ接続される(図4(c)参照)。
Next, the supply bobbin 32 and the auxiliary bobbin 33 are planetarily rotated in opposite directions with respect to the bobbin 10 (see FIG. 3). Both ends of this winding are wound from the bottom of the split winding groove 17 near the central split rod 15 toward the double split rod 16 (see FIG. 4 (b)). After that, two layers are wound toward the central dividing rod 15 and are sequentially laminated, and can be derived from the outermost layer (uppermost layer) of the wound coil. In this example, the primary winding 41 wound around the divided winding grooves 17 is wound around each divided winding groove 17 in 8 rows in the winding axis direction and 10 layers in the direction perpendicular to the winding axis.
Thereafter, the terminal 41A of the primary winding 41 derived from the outermost layer is connected to the connection terminal 14 of the terminal block 13 on both sides (see FIG. 4C).

このように本例の分割巻トランスでは、隣接する2つの分割巻溝に跨ってアルファ巻により巻線を巻き付けられることにより、巻線の両端とも巻装コイルの最外層(最上層)から導出される。このため、従来のように巻き始めリード線や移行リード線を、上層部から巻溝底部まで引き込む必要がなく、巻き始めリード線や移行リード線に絶縁テープや絶縁チューブを施すことなくレアショートを防止できると共に、巻線の自動化が可能になり、より信頼性の高い分割巻トランスを実現することができる。
また、分割巻溝底部に巻き始めリード線や移行リード線を最下層に引き込む必要がないため、巻装コイルの巻き乱れが起きにくく特性のバラツキが低減できる。
また、隣接する2つの分割巻溝に跨って、各分割巻溝にそれぞれ導線が巻き付けられるため、供給ボビンと補助ボビンを同時に遊星回転させると、従来に比べ半分の時間で巻回でき、巻線工程の時間が大幅に短縮できる。
Thus, in the split winding transformer of this example, the winding is wound by alpha winding across two adjacent split winding grooves, so that both ends of the winding are derived from the outermost layer (uppermost layer) of the winding coil. The For this reason, it is not necessary to draw the winding start lead wire and the transition lead wire from the upper layer portion to the bottom of the winding groove as in the prior art, and a rare short can be achieved without applying insulating tape or insulating tube to the winding start lead wire or the transition lead wire. In addition to being able to prevent this, the winding can be automated, and a more reliable split winding transformer can be realized.
Further, since it is not necessary to draw the lead wire or the transition lead wire at the bottom of the divided winding groove into the lowermost layer, the winding coil is hardly disturbed, and variations in characteristics can be reduced.
In addition, since the conductive wire is wound around each divided winding groove across two adjacent divided winding grooves, if the supply bobbin and the auxiliary bobbin are rotated on the planet at the same time, the winding can be wound in half the time compared to the conventional case. Process time can be greatly reduced.

また、本例の分割巻トランス1では、移行溝18を通る導線の上に、移行溝18の形状に対応する絶縁部材60(挿入部61)を装着しているため、次のような効果がある。
中央分割鍔15は、巻装コイルの最外層より高く形成されているため、巻軸方向の厚みが十分厚い場合には、中央分割鍔15に隣接する2つの分割巻溝17に巻回された巻装コイル間の絶縁対策は不要である。
しかし、分割巻トランス1の小型化を図るために中央分割鍔15の厚みを薄くすると、巻装コイル間の距離が近くなり、特に、本発明のようにアルファ巻による巻線の場合には、隣接する2つの巻装コイルの最外層同士の電位差は従来の巻線方法よりも高くなるため、移行溝18の部分で十分な絶縁距離を確保することが難しくなる。
このため、本例のように特に絶縁耐圧が低下する移行溝の部分に絶縁部材を装着することによって、レアショートをより確実に防止することができる。
Moreover, in the split winding transformer 1 of this example, since the insulating member 60 (insertion portion 61) corresponding to the shape of the transition groove 18 is mounted on the conducting wire passing through the transition groove 18, the following effects are obtained. is there.
Since the central split rod 15 is formed higher than the outermost layer of the wound coil, when the thickness in the winding axis direction is sufficiently thick, the central split rod 15 was wound around the two divided winding grooves 17 adjacent to the central split rod 15. There is no need for insulation between winding coils.
However, if the thickness of the central split rod 15 is reduced in order to reduce the size of the split-winding transformer 1, the distance between the winding coils is reduced. In particular, in the case of winding by alpha winding as in the present invention, Since the potential difference between the outermost layers of two adjacent wound coils is higher than that of the conventional winding method, it is difficult to secure a sufficient insulation distance in the transition groove 18 portion.
For this reason, a rare short-circuit can be prevented more reliably by attaching the insulating member to the transition groove portion where the withstand voltage is lowered particularly as in this example.

本例のような絶縁部材60を用いる場合には、挿入部61の形状は、移行溝への挿入方向に対し、先端側ほど狭まったテーパ形状が好ましい。このような形状であれば、巻装コイルが多少移行溝に入り込んでも、移行溝に容易に挿入できる。それに加え、電位差の生じる最外層部分ほど絶縁部材60の厚みが厚くなるため、絶縁対策が強化できる。
本例では、絶縁部材60がボビン10に装着されると、挿入部61の下方に、移行溝18底部から導線1層分の空間H1が形成される(図2(b)参照)。しかし、最下層間に発生する電位差はほとんどなくレアショートは発生しない。
また、絶縁部材60は、係止部63が中央分割鍔の外周溝19に係止されることにより、ボビンへの取り付けが容易にできる。
When the insulating member 60 as in this example is used, the shape of the insertion portion 61 is preferably a tapered shape that narrows toward the distal end side with respect to the insertion direction into the transition groove. With such a shape, even if the wound coil slightly enters the transition groove, it can be easily inserted into the transition groove. In addition, since the thickness of the insulating member 60 becomes thicker in the outermost layer portion where the potential difference occurs, the insulation measure can be strengthened.
In this example, when the insulating member 60 is mounted on the bobbin 10, a space H1 corresponding to one layer of the conductive wire is formed below the insertion portion 61 from the bottom of the transition groove 18 (see FIG. 2B). However, there is almost no potential difference generated between the lowest layers, and rare shorts do not occur.
Further, the insulating member 60 can be easily attached to the bobbin because the engaging portion 63 is engaged with the outer peripheral groove 19 of the central split rod.

本発明において、移行溝18の形状は特に限定されるものではないが、本例の移行溝18のように中央分割鍔15の一部を分割巻溝17の底部まで切り欠いて形成するのが良い。これにより、導線を大きく曲げることなく移行溝を通して隣接する2つの分割巻溝に跨って掛け渡すことができ、導線表面の損傷を防止することができると共に、従来のような移行リード線の最上層から最下層への引き込みがなくなり、分割巻溝間の導線の掛け渡し距離が短くなるため、導線の使用量を削減できる。   In the present invention, the shape of the transition groove 18 is not particularly limited. However, as in the transition groove 18 of the present example, a part of the central dividing rod 15 is cut out to the bottom of the divided winding groove 17. good. As a result, the conductor can be bridged over the adjacent two divided winding grooves through the transition groove without bending the conductor, and the surface of the conductor can be prevented from being damaged. Since the lead-in to the lowermost layer is eliminated and the distance of the conductor wire between the divided winding grooves is shortened, the amount of the conductor wire used can be reduced.

また、移行溝18の幅W0は、少なくとも導線が通過できる幅であればよいが、移行溝18の幅W0が狭すぎる場合には、導線表面が、移行溝18の側壁20の角部に強く当接しやすく傷つく可能性がある(図5(a)参照)。一方、移行溝18の幅W0が広すぎる場合には、中央分割鍔15自体の強度が弱くなり易い(図5(b)参照)。このため、移行溝の幅W0は、ボビン10の巻回部11の幅Wの2/3以下で導線径の2倍以上であるのが好ましく、ボビン10の巻回部11の幅Wの1/2以下で導線径の3倍以上であるのが特に好ましい。   Further, the width W0 of the transition groove 18 may be at least a width through which the conductor can pass. However, when the width W0 of the transition groove 18 is too narrow, the surface of the conductor is strongly against the corner of the side wall 20 of the transition groove 18. There is a possibility of contact and damage (see FIG. 5A). On the other hand, when the width W0 of the transition groove 18 is too wide, the strength of the center split rod 15 itself tends to be weak (see FIG. 5B). For this reason, the width W0 of the transition groove is preferably 2/3 or less of the width W of the winding part 11 of the bobbin 10 and twice or more the conductor diameter, and is 1 of the width W of the winding part 11 of the bobbin 10 It is particularly preferable that it is not more than / 2 and is not less than 3 times the conductor diameter.

(第2の実施形態)
図6(a)は、第2の実施形態にかかるボビン10の底面図を示し、可動壁21が閉じていないときを示す。図6(b)は、図6(a)の切断線B−Bの断面図を示す。図6(c)は、図6(a)の可動壁21が閉じたときのボビン10の底面図を示す。図6(d)は、図6(c)の切断線C−Cの断面図を示す。
図6において第1の実施形態と同一構成部分には同一符号を付して重複する説明を省略する。
(Second Embodiment)
Fig.6 (a) shows the bottom view of the bobbin 10 concerning 2nd Embodiment, and shows the time when the movable wall 21 is not closed. FIG. 6B is a cross-sectional view taken along the line BB in FIG. FIG. 6C shows a bottom view of the bobbin 10 when the movable wall 21 of FIG. 6A is closed. FIG. 6D is a cross-sectional view taken along the section line CC in FIG.
In FIG. 6, the same components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

本実施形態において第1の実施形態と異なる点は、中央分割鍔15の移行溝18の側壁20に可動壁21が一体成形されている点である。
この可動壁21は、移行溝18の側壁20との間に薄肉部22を有し、導線が中央分割鍔15の移行溝18を通り隣接する2つの分割巻溝17に跨って掛け渡された後、薄肉部22を介し移行溝18の開口を閉じるものである。
The present embodiment is different from the first embodiment in that a movable wall 21 is integrally formed on the side wall 20 of the transition groove 18 of the central dividing rod 15.
This movable wall 21 has a thin portion 22 between the side wall 20 of the transition groove 18, and the conductive wire passes over the two divided winding grooves 17 passing through the transition groove 18 of the central split rod 15. Then, the opening of the transition groove 18 is closed via the thin portion 22.

本例においても、絶縁耐圧が低下する移行溝18の部分に絶縁部材60(可動壁21)が装着されるため、レアショートを確実に防止することができる。それに加え、ボビンと絶縁部材60が一体成形されているため、部品点数が少なく製造工程の簡素化とコスト低減ができる。   Also in this example, since the insulating member 60 (movable wall 21) is attached to the transition groove 18 where the withstand voltage decreases, it is possible to reliably prevent a rare short. In addition, since the bobbin and the insulating member 60 are integrally formed, the number of parts is small and the manufacturing process can be simplified and the cost can be reduced.

(第3の実施形態)
図7(a)は、第3の実施形態にかかるボビン10の底面図を示す。図7(b)は、図7(a)の切断線D−Dの断面図を示す。
図7において第1の実施形態と同一構成部分には同一符号を付して重複する説明を省略する。
(Third embodiment)
Fig.7 (a) shows the bottom view of the bobbin 10 concerning 3rd Embodiment. FIG.7 (b) shows sectional drawing of the cutting line DD of Fig.7 (a).
In FIG. 7, the same components as those of the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

本実施形態において第1の実施形態と異なる点は、移行溝23は、隣接する2つの分割巻溝17に跨って一直線状に掛け渡された導線が通過できるように形成され、移行溝23の側壁24がそれぞれ巻軸方向に非接触に重ねられるように形成されるものである。   In the present embodiment, the difference from the first embodiment is that the transition groove 23 is formed so that a conducting wire stretched in a straight line across two adjacent divided winding grooves 17 can pass. The side walls 24 are formed so as to overlap each other in the winding axis direction in a non-contact manner.

本例は、絶縁耐圧が低下する移行溝23について、移行溝23の側壁24がそれぞれ巻軸方向に非接触に重ねられる形状であるため、絶縁距離を確保できレアショートを防止できる。それに加え、ボビンに上述の側壁20が形成されるため、絶縁部材を追加することがなく部品点数が少なくなり製造工程の簡素化とコスト低減ができる。
また、隣接する分割巻溝17間の導線の掛け渡し距離が最短となるため、導線の使用量を削減できる。
また、移行溝23の幅は導線が通過できる幅であればよく、移行溝の幅は狭く形成できるため、中央分割鍔自体の強度はほとんど損ねることがない。
In this example, the transition groove 23 having a reduced withstand voltage has a shape in which the side walls 24 of the transition groove 23 are stacked in a non-contact manner in the winding axis direction, so that an insulation distance can be secured and a rare short circuit can be prevented. In addition, since the above-mentioned side wall 20 is formed on the bobbin, the number of parts is reduced without adding an insulating member, and the manufacturing process can be simplified and the cost can be reduced.
Moreover, since the span of the conducting wire between the adjacent divided winding grooves 17 is the shortest, the amount of conducting wire used can be reduced.
Further, the width of the transition groove 23 only needs to be a width that allows the conducting wire to pass therethrough, and the width of the transition groove can be formed narrow, so that the strength of the central split rod itself is hardly impaired.

1 分割巻トランス
10 ボビン
11 巻回部
12 外鍔
13 端子台
14 接続端子
15 中央分割鍔
16 両端分割鍔
17 分割巻溝
18 移行溝
19 外周溝
20 側壁
21 可動壁
22 薄肉部
23 移行溝
24 側壁
30 巻線装置
31 巻治具
32 供給ボビン
33 補助ボビン
40 コイル
41 1次巻線
41A 1次巻線の端末
42 2次巻線
42A 2次巻線の端末
50 E型コア
60 絶縁部材
61 挿入部
62 支持部
63 係止部
H1 空間
W ボビンの巻回部の幅
W0 移行溝の幅
DESCRIPTION OF SYMBOLS 1 Divided winding transformer 10 Bobbin 11 Winding part 12 Outer cage 13 Terminal block 14 Connection terminal 15 Central division cage 16 Both ends division cage 17 Divided winding groove 18 Transition groove 19 Peripheral groove 20 Side wall 21 Movable wall 22 Thin part 23 Transition groove 24 Side wall 30 Winding Device 31 Winding Jig 32 Supply Bobbin 33 Auxiliary Bobbin 40 Coil 41 Primary Winding 41A End of Primary Winding 42 Secondary Winding 42A End of Secondary Winding 50 E Type Core 60 Insulating Member 61 Insertion Portion 62 Supporting part 63 Locking part H1 Space W Bobbin winding width W0 Transition groove width

Claims (5)

移行溝を有する分割鍔によって複数の分割巻溝が形成されているボビンを備え、
前記移行溝を通して前記分割鍔に隣接する2つの前記分割巻溝に跨って掛け渡された導線が、アルファ巻によって各分割巻溝に2層以上巻き付けられており、
前記ボビンに磁芯が組み込まれ
前記移行溝を通る導線の上に、前記移行溝の形状に対応する絶縁部材が装着されていることを特徴とする分割巻トランス。
A bobbin in which a plurality of divided winding grooves are formed by a dividing rod having a transition groove;
Two or more layers are wound around each divided winding groove by alpha winding, the conductor wire straddling across the two divided winding grooves adjacent to the divided rod through the transition groove,
A magnetic core is incorporated in the bobbin ,
An insulating member corresponding to the shape of the transition groove is mounted on a conducting wire passing through the transition groove .
前記移行溝は、前記分割巻溝の底部に達して形成されていることを特徴とする請求項1に記載の分割巻トランス。 The transition groove is constructed from a discrete winding transformer according to claim 1, wherein the bottom Tei Rukoto formed reached the discrete winding groove. 前記絶縁部材は、前記移行溝の形状に対応する挿入部と、前記挿入部の両側に延びる支持部と、前記支持部の先端に位置する係止部を有し、The insulating member has an insertion part corresponding to the shape of the transition groove, a support part extending on both sides of the insertion part, and a locking part located at the tip of the support part,
前記分割鍔には、前記移行溝の外周部分に外周溝が形成され、An outer peripheral groove is formed in the outer peripheral portion of the transition groove in the split rod,
前記絶縁部材は、前記係止部を前記外周溝に係止させることによって前記ボビンに装着されることを特徴とする請求項1または2に記載の分割巻トランス。The split winding transformer according to claim 1, wherein the insulating member is attached to the bobbin by locking the locking portion to the outer peripheral groove.
前記挿入部の形状は、前記移行溝への挿入方向に対して、先端側ほど狭まったテーパ形状であることを特徴とする請求項3に記載の分割巻トランス。The split winding transformer according to claim 3, wherein a shape of the insertion portion is a taper shape narrower toward a distal end side with respect to an insertion direction into the transition groove. 前記絶縁部材は、前記分割鍔の前記移行溝の側壁に一体成形された可動壁からなることを特徴とする請求項1または2に記載の分割巻トランス。3. The split winding transformer according to claim 1, wherein the insulating member includes a movable wall integrally formed on a side wall of the transition groove of the split rod.
JP2010090077A 2010-04-09 2010-04-09 Split winding transformer Active JP5680327B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010090077A JP5680327B2 (en) 2010-04-09 2010-04-09 Split winding transformer
CN201110073269.9A CN102237185B (en) 2010-04-09 2011-03-25 split winding transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010090077A JP5680327B2 (en) 2010-04-09 2010-04-09 Split winding transformer

Publications (2)

Publication Number Publication Date
JP2011222731A JP2011222731A (en) 2011-11-04
JP5680327B2 true JP5680327B2 (en) 2015-03-04

Family

ID=44887738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010090077A Active JP5680327B2 (en) 2010-04-09 2010-04-09 Split winding transformer

Country Status (2)

Country Link
JP (1) JP5680327B2 (en)
CN (1) CN102237185B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779631A (en) * 2012-07-30 2012-11-14 昆山达功电子有限公司 Induction coil winding protecting structure
CN103151155A (en) * 2013-03-13 2013-06-12 湖南海福来科技有限公司 Coiling method of low-voltage winding of ignition coil
JP6210403B2 (en) * 2013-03-29 2017-10-11 Fdk株式会社 Winding parts
JP2021086953A (en) * 2019-11-28 2021-06-03 株式会社デンソー Coil assembly and transformer with the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3125623A1 (en) * 1981-06-30 1983-02-03 Standard Elektrik Lorenz Ag, 7000 Stuttgart AUTOMATED BOBBIN
US5250921A (en) * 1990-10-19 1993-10-05 Dana Corporation Field assembly for an electromagnet
JP2638373B2 (en) * 1992-01-21 1997-08-06 松下電器産業株式会社 High voltage transformer
JP3393222B2 (en) * 1995-04-24 2003-04-07 ティーディーケイ株式会社 Method and apparatus for split winding of inductance element
JP3397069B2 (en) * 1997-03-03 2003-04-14 松下電器産業株式会社 Trance
JP3755729B2 (en) * 2000-03-21 2006-03-15 Tdk株式会社 Power transformer
JP2005123523A (en) * 2003-10-20 2005-05-12 Sumida Corporation High-voltage transformer
WO2007029594A1 (en) * 2005-09-08 2007-03-15 Sumida Corporation Coil device, composite coil device and transformer device
JP5097569B2 (en) * 2008-02-14 2012-12-12 株式会社日立製作所 Coil manufacturing method and manufacturing apparatus

Also Published As

Publication number Publication date
CN102237185A (en) 2011-11-09
JP2011222731A (en) 2011-11-04
CN102237185B (en) 2016-01-20

Similar Documents

Publication Publication Date Title
KR102407673B1 (en) Nested flat wound coils forming windings for transformers and inductors
US10658897B2 (en) Stator for rotary electric machine
KR101044373B1 (en) Coil device, composite coil device and transformer device
JP2010129692A (en) Inductance part
JP4845199B2 (en) Trance
US20150097646A1 (en) Coil component
WO2014041979A1 (en) Coil device
JP5680327B2 (en) Split winding transformer
JP2009134891A (en) Wire for coil, winding structure of wire for coil, partitioning stator, and stator
US20160268037A1 (en) Stationary Induction Electric Apparatus and Method for Making the Same
JP4595312B2 (en) Trance
US8169289B2 (en) Reactor
JP2005310980A (en) Inductor and transformer
KR20160042559A (en) Coil component
JP2018207060A (en) Non-contact power feeding device, coil and manufacturing method for coil
JP2008205212A (en) Transformer
JP6171384B2 (en) Trance
JP6308036B2 (en) Reactor
JP4930809B2 (en) Trance
JP2014049681A (en) Transformer
JP2012222246A (en) Coil and winding method of coil
WO2020059781A1 (en) Current transformer
JP2009272438A (en) Switching transformer
JP6418758B2 (en) Trance
JP2007174787A (en) Stator of rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150107

R150 Certificate of patent or registration of utility model

Ref document number: 5680327

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250