JP2009106005A - Stator of rotating electric machine - Google Patents

Stator of rotating electric machine Download PDF

Info

Publication number
JP2009106005A
JP2009106005A JP2007272976A JP2007272976A JP2009106005A JP 2009106005 A JP2009106005 A JP 2009106005A JP 2007272976 A JP2007272976 A JP 2007272976A JP 2007272976 A JP2007272976 A JP 2007272976A JP 2009106005 A JP2009106005 A JP 2009106005A
Authority
JP
Japan
Prior art keywords
coil
stator
stator core
core
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007272976A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nomoto
義弘 野本
Masashi Fujita
真史 藤田
Tadashi Tokumasu
正 徳増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007272976A priority Critical patent/JP2009106005A/en
Publication of JP2009106005A publication Critical patent/JP2009106005A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a stator of a rotating electric machine which can suppress an increase in current loss caused by a flow of a circulating current in an element wire conductor as a whole in an armature winding. <P>SOLUTION: A stator core 3 has a plurality of winding slots 6 which extend in the axial direction at the internal peripheral face of the core and are arranged in parallel with one another, average magnetic-body space factors at both ends of the axial direction and in the center of both the ends are made equal, the armature winding 2 is accommodated in the winding slots 6, a half-turn coil of an upper coil 2c and a half-turn coil of a lower coil 2d are constituted by binding the multiple element wire conductors, the element wire conductors are short-circuited at the half-turn coil of the upper coil 2c and the half-turn coil of the lower coil 2d, respectively, at coil ends which further extend via linear parts 2e outwardly protruding from both side ends of the stator core 3, respectively, the element wire conductors of the linear parts 2e extending to the outside from both side faces of the stator core 3 in the winding slots 6 of the stator core 3 are formed so as to be dislocated by continuously being twisted, and dislocation angles of the half-turn coils as a whole are set larger than 360°. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、回転電機の固定子に係り、特に電機子巻線の素線導体を転位するようにした回転電機の固定子に関する。   The present invention relates to a stator of a rotating electrical machine, and more particularly to a stator of a rotating electrical machine in which a wire conductor of an armature winding is displaced.

従来の回転電機の固定子は、図9及び図10に示すように、図示していない回転子の回転軸方向に延在する複数の巻線スロット6を設けた固定子鉄心3と、巻線スロット6に埋設され、かつ積み重なる多数の素線導体5でそれぞれ構成される上コイル2c、下コイル2dからなる電機子巻線2とから構成されており、冷却用に固定子鉄心3内の径方向に延びる複数の通風ダクト4を所定間隔に設けている。そして、素線導体5は、巻線スロット6内に格納された部分で、巻線スロット6の延在方向に向かって連続的に捩られて、代表的には360度転位するように形成され、固定子鉄心3の両側面より外側に突き出る電機子巻線2の両側部で素線導体5は短絡されている。   As shown in FIGS. 9 and 10, a conventional stator of a rotating electrical machine includes a stator core 3 provided with a plurality of winding slots 6 extending in the direction of the rotation axis of the rotor (not shown), and a winding The armature winding 2 is composed of an upper coil 2c and a lower coil 2d, each of which is composed of a large number of wire conductors 5 embedded in and stacked in the slot 6, and has a diameter inside the stator core 3 for cooling. A plurality of ventilation ducts 4 extending in the direction are provided at predetermined intervals. The strand conductor 5 is a portion housed in the winding slot 6 and is continuously twisted in the extending direction of the winding slot 6 and is typically formed to displace 360 degrees. The strand conductors 5 are short-circuited at both side portions of the armature winding 2 protruding outward from both side surfaces of the stator core 3.

このような構成の多重素線導体に交流電流が流れると、巻線スロット6を周方向に横切る漏れ磁束が発生し、この漏れ磁束によって多重素線導体の長手方向の各部分における素線導体5の間に電圧が誘起される。そして、任意の素線導体対において、巻線導体の全長にわたる各素線導体の誘起電圧に非常に大きな差が生じると、閉ループ状の素線導体対には大きな循環電流、すなわち素線導体対を循環する電流が流れ、電流損失が増大すると共に素線導体内部で発生する熱も増大する。  When an alternating current flows through the multi-wire conductor having such a configuration, a leakage magnetic flux crossing the winding slot 6 in the circumferential direction is generated, and this leakage magnetic flux causes the wire conductor 5 in each portion of the multi-wire conductor in the longitudinal direction. A voltage is induced during If an extremely large difference occurs in the induced voltage of each strand conductor over the entire length of the winding conductor in any strand conductor pair, a large circulating current, that is, the strand conductor pair, is generated in the closed loop strand conductor pair. The current circulating through the current flows, current loss increases, and heat generated inside the wire conductor also increases.

そこで、素線導体5の全長にわたって各素線導体5間に誘起される電圧をほぼ等しくして循環電流が流れないようにするため、素線導体5を以下の方法によって転位することが行われている。  Therefore, in order to prevent the circulating current from flowing by making the voltages induced between the strand conductors 5 substantially equal over the entire length of the strand conductor 5, the strand conductors 5 are transposed by the following method. ing.

ここで、従来の技術である、素線導体5の転位について説明する。この素線導体5の転位とは、素線導体5を巻線スロット6の延在方向に向かって捩じることである。この結果、各素線導体5の位置を順次変更させることになり、ある素線導体が断面中心の周りを円状に移動すると考え、その回転の角度で転位の程度を表す。各素線導体5が、素線導体5の断面において全ての位置を経て巻線スロット6の反対端で出発した位置と同じ位置になる転位は、360度転位という。  Here, the dislocation of the strand conductor 5 which is a conventional technique will be described. The dislocation of the strand conductor 5 is to twist the strand conductor 5 toward the extending direction of the winding slot 6. As a result, the position of each strand conductor 5 is sequentially changed, and it is considered that a certain strand conductor moves in a circle around the center of the cross section, and the degree of dislocation is expressed by the angle of rotation. The dislocation in which each strand conductor 5 is located at the same position as the starting position at the opposite end of the winding slot 6 through all positions in the cross section of the strand conductor 5 is called a 360-degree dislocation.

図10には2つの代表的な素線導体5a、5b間に鎖交する磁束を示しており、図では、固定子鉄心3のスロット6部分における鎖交磁束を9a〜9cと示しているが、例えば鎖交磁束9aと9cの和は9bと絶対値が等しく逆向きになるので、巻線スロット6内で鎖交する磁束による素線導体5a、5b間の誘起電圧が相殺されるような構成となっている。  FIG. 10 shows the magnetic flux interlinking between two typical wire conductors 5a and 5b. In the figure, the interlinkage magnetic flux in the slot 6 portion of the stator core 3 is shown as 9a to 9c. For example, since the sum of the interlinkage magnetic fluxes 9a and 9c is equal to 9b and has the opposite absolute value, the induced voltage between the strand conductors 5a and 5b due to the interlinkage magnetic flux in the winding slot 6 is canceled. It has a configuration.

しかし、巻線スロット6内では360度転位が施されているが、巻線スロット6外、つまり固定子鉄心3の側面から軸方向に延在するコイル端部では転位されていないので、回転電機の固定子の端部側の漏れ磁束9v、9w、9x、9yによって不平衡電圧が発生し、素線導体5a、5b内には循環電流が生じる。  However, although 360 ° dislocation is performed in the winding slot 6, it is not dislocated outside the winding slot 6, that is, at the end of the coil extending in the axial direction from the side surface of the stator core 3. An unbalanced voltage is generated by the leakage magnetic flux 9v, 9w, 9x, 9y on the end side of the stator, and a circulating current is generated in the wire conductors 5a, 5b.

図11は図10の回転電機の固定子を回転軸方向から見た図であり、上コイル2c、下コイル2dにおける固定子鉄心の両側面から突出する端部長さは等しく、かつ、埋設された各巻線スロット6と中心点(O)を結ぶ角度を2分する線上で端部を接続している(La=Lb)。言い換えれば、コイルの端部ピッチa、bを等しくしている。また、上コイル2c端部に入射する端部磁束は下コイル2dの端部よりも大きく、上コイル2cでは下コイル2dより誘起電圧が大きく、循環電流が流れターン損失が大きくなる。   FIG. 11 is a view of the stator of the rotating electric machine of FIG. 10 as viewed from the direction of the rotation axis. The upper coil 2c and the lower coil 2d have the same end length protruding from both side surfaces of the stator core and are embedded. The ends are connected on a line that bisects the angle connecting each winding slot 6 and the center point (O) (La = Lb). In other words, the end pitches a and b of the coil are made equal. Further, the end magnetic flux incident on the end of the upper coil 2c is larger than that of the lower coil 2d, and the induced voltage is larger in the upper coil 2c than in the lower coil 2d, the circulating current flows and the turn loss increases.

この素線導体内の循環電流を低減する対策は、特許文献1〜4、非特許文献1などに述べられている。  Measures for reducing the circulating current in the wire conductor are described in Patent Documents 1 to 4, Non-Patent Document 1, and the like.

このうちの特許文献1には、導体素線をスロット内においてわたりの間隔を不均一にし、かつ周方向及び半径方向に位置的に転位した部分と転位しない部分とを設けてスロット内の導体素線に不平衡電圧を発生させ、この不平衡電圧によってスロット外の導体素線に発生する不平衡電圧を補償するようにした点が記載されている。  Among these, Patent Document 1 provides a conductor element in a slot by providing a portion where the conductor strands are not evenly spaced in the slot, and a portion where the conductor is displaced in the circumferential direction and the radial direction and a portion where the dislocation does not occur. It is described that an unbalanced voltage is generated in the line and the unbalanced voltage generated in the conductor wire outside the slot is compensated by this unbalanced voltage.

非特許文献1や特許文献2には、素線導体の端部の漏れ磁束による誘起電圧が発生することで生じる循環電流損失を低減する方法について記載されている。このうち、非特許文献1は転位角を360度から小さくするものであり、さらに特許文献2は450度転位の場合に転位勾配を変える位置を変えるものである。  Non-Patent Document 1 and Patent Document 2 describe a method of reducing circulating current loss caused by the generation of an induced voltage due to leakage magnetic flux at the end of a wire conductor. Among them, Non-Patent Document 1 is to reduce the dislocation angle from 360 degrees, and Patent Document 2 is to change the position at which the dislocation gradient is changed in the case of 450-degree dislocation.

特許文献3は、特許文献1における問題点、すなわち、素線導体の転位回数が多い場合や、巻線スロット軸長の短い場合には、転位ピッチが更に短くなり、素線導体が短絡するという問題点を改善するため、次のようにした発明である。すなわち、電機子巻線の素線導体は、固定子鉄心3の両側面より外側に突き出る電機子巻線の両端部を除いて巻線スロットの延在方向に向かって連続的にねじられて転位するように形成され、積み重ね方向の厚みを異ならしめた前記素線導体は、前記両端部では回転子の回転中心から放射方向に並ぶ前記素線導体を回転子に近い方に厚み厚いものが占めるようにした配置した回転電機である。  Patent Document 3 is a problem in Patent Document 1, that is, when the number of dislocations of the wire conductor is large or when the winding slot axial length is short, the dislocation pitch is further shortened and the wire conductor is short-circuited. In order to improve the problem, the invention is as follows. That is, the wire conductors of the armature winding are continuously twisted in the extending direction of the winding slot except for both end portions of the armature winding protruding outward from both side surfaces of the stator core 3. The wire conductors formed so as to have different thicknesses in the stacking direction occupy the wire conductors arranged in the radial direction from the rotation center of the rotor at the both end portions with the thicker one closer to the rotor. The rotating electrical machine is arranged as described above.

特許文献3は、このように構成することにより、素線導体の抵抗値が小さくなり、電流発生損失を低減でき、また従来技術のように転位しない部分を設けていないので転位ピッチを短くする必要が無く、この結果循環電流損失を低減でき、電機子巻線の局部加熱を抑制できる。  According to Patent Document 3, by configuring in this way, the resistance value of the wire conductor is reduced, current generation loss can be reduced, and no dislocation is provided unlike the prior art, so it is necessary to shorten the dislocation pitch. As a result, the circulating current loss can be reduced, and local heating of the armature winding can be suppressed.

特許文献4は、固定子鉄心の端部において短絡された巻線バーであって、この巻線バーである導体バーが、互いに電気的に絶縁された多数の導体素線から構成されており、該素線導体がレーブル原理に基づいて転位されており、両方の端部クリップセクションにおける導体素線と、アクティブパートセクションにおける導体素線とが互いに一緒に転位されている形式の巻線バーであり、このように構成することにより、ループ電流をさらに抑制することができ、ひいては導体バーにおける温度勾配パターンをさらに偏平化することができる。  Patent Document 4 is a winding bar that is short-circuited at the end of the stator core, and the conductor bar that is the winding bar is composed of a number of conductor wires that are electrically insulated from each other. The wire conductor is a type of winding bar in which the conductor conductors are transposed based on the rable principle and the conductor strands in both end clip sections and the conductor strands in the active part section are transposed together. By configuring as above, the loop current can be further suppressed, and the temperature gradient pattern in the conductor bar can be further flattened.

以上述べた特許文献1〜4及び非特許文献1は、いずれも固定子巻線そのものを改善したものであり、本発明のように固定子鉄心を改善したものではない。  Patent Documents 1 to 4 and Non-Patent Document 1 described above all improve the stator winding itself, and do not improve the stator core as in the present invention.

特許文献5には、転位する素線間の接続が容易で、しかも素線間の循環電流を小さくし損失を軽減することを目的として、多重素線導体の端部で、転位する複数の素線対を、それぞれ隣り合う多重素線導体間の周方向空間に引き出し、任意の転位角となるよう各素線同志を接合したものが記載されている。  In Patent Document 5, a plurality of dislocation elements are transferred at the end of a multi-wire conductor for the purpose of easily connecting the dislocation wires and reducing the circulating current between the wires and reducing the loss. A wire pair is drawn out in a circumferential space between adjacent multiple strand conductors, and the strands are joined together so as to have an arbitrary dislocation angle.

特許文献6は、特許文献1における問題点、すなわち、素線導体の転位回数が多い場合や、巻線スロット軸長の短い場合には、転位ピッチが更に短くなり、素線導体が短絡するという問題点を改善するため、次のようにした発明である。すなわち、電機子巻線の素線導体は、固定子鉄心3の両側面より外側に突き出る電機子巻線の両端部を除いて巻線スロットの延在方向に向かって連続的にねじられて転位するように形成され、積み重ね方向の厚みを異ならしめた素線導体は、素線導体の両端部では回転子の回転中心から放射方向に並ぶ前記素線導体を回転子に近い方に厚み厚いものが占めるようにした配置した回転電機の固定子である。特許文献6は、このように構成することにより、素線導体の抵抗値が小さくなり、電流発生損失を低減でき、また従来技術のように転位しない部分を設けていないので転位ピッチを短くする必要が無く、この結果循環電流損失を低減でき、電機子巻線の局部加熱を抑制できる。
特公昭58−14141号公報 US6703752 B2 特開平9−182339号公報 特開2002−78265 特公平5−38539号公報 特開2006−109616 Xu Shanchun, et al, “A New Transposition Technique of Stator Bars of The Hydrogenerator", Proceedings of International Symposium on Salient-Pole Machines With Particular Reference to Large Hydro-Electric Generators and Synchronous Motors, (pp.384-389), Oct. 1993
In Patent Document 6, the problem in Patent Document 1, that is, when the number of dislocations of the wire conductor is large or when the winding slot axial length is short, the dislocation pitch is further shortened and the wire conductor is short-circuited. In order to improve the problem, the invention is as follows. That is, the wire conductors of the armature winding are continuously twisted in the extending direction of the winding slot except for both end portions of the armature winding protruding outward from both side surfaces of the stator core 3. The wire conductors formed in such a manner that the thicknesses in the stacking direction are different from each other are such that the wire conductors arranged in the radial direction from the rotation center of the rotor at the both ends of the wire conductors are thicker toward the rotor. It is the stator of the rotary electric machine arrange | positioned so that may occupy. According to Patent Document 6, by configuring in this way, the resistance value of the wire conductor is reduced, current generation loss can be reduced, and no dislocation is provided unlike the prior art, so it is necessary to shorten the dislocation pitch. As a result, the circulating current loss can be reduced, and local heating of the armature winding can be suppressed.
Japanese Patent Publication No.58-14141 US6703752 B2 JP-A-9-182339 JP 2002-78265 A Japanese Patent Publication No. 5-38539 JP 2006-109616 A Xu Shanchun, et al, “A New Transposition Technique of Stator Bars of The Hydrogenerator”, Proceedings of International Symposium on Salient-Pole Machines With Particular Reference to Large Hydro-Electric Generators and Synchronous Motors, (pp.384-389), Oct . 1993

上述した従来技術で、巻線スロット6内で360度転位が施されている場合では、巻線スロット6外では転位されていないので端部には漏れ磁束があり、これによりコイル端部(巻線導体の端部)に電圧が誘起され、素線導体内に循環電流が流れて電流損失が発生する。  In the above-described prior art, when a 360-degree dislocation is performed in the winding slot 6, since the dislocation is not performed outside the winding slot 6, there is a leakage magnetic flux at the end, which causes a coil end (winding). A voltage is induced at the end of the wire conductor, and a circulating current flows in the wire conductor to cause current loss.

また、一般に上コイルの方が下コイルよりも鎖交磁束が大きいため、循環電流損は大きくなる。素線導体内の循環電流を低減する対策は下記文献(特許文献1〜4、非特許文献1)などに述べられているが、上コイル、下コイルの損失の差について言及されているものはない。  Also, since the upper coil generally has a larger flux linkage than the lower coil, the circulating current loss is increased. Measures to reduce the circulating current in the wire conductor are described in the following documents (Patent Documents 1 to 4, Non-Patent Document 1), etc., but what is mentioned about the difference in loss between the upper coil and the lower coil Absent.

本発明は上述した課題を解決するためになされたものであり、電機子巻線全体として素線導体内に循環電流が流れて発生する電流損失増加を抑制することのできる回転電機の固定子を得ることを目的とする。  SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and provides a stator for a rotating electrical machine capable of suppressing an increase in current loss caused by circulating current flowing in a wire conductor as an entire armature winding. The purpose is to obtain.

前記目的を達成するため、請求項1に対応する発明は、全体として円筒状に形成され、この内周面に軸方向に延在してなる巻線スロットを円周方向に複数個並設すると共に、通風ダクトを複数個軸方向に並設するように形成した固定子鉄心と、
前記巻線スロット内に格納され、かつ多数の素線導体を束ねて上コイルのハーフターンコイル及び下コイルのハーフターンコイルを構成し、前記固定子鉄心の両側面よりそれぞれ外側に突き出る直線部を介してさらに軸方向に延在するコイル端部において、前記素線導体を前記上コイルのハーフターンコイル毎及び前記下コイルのハーフターンコイル毎にそれぞれ短絡してなる電機子巻線とを備え、
前記固定子鉄心の前記巻線スロット内の前記素線導体及び前記固定子鉄心の両側面より外側に延在する前記直線部の前記素線導体を連続的に捩られて転位するように形成し、前記ハーフターンコイル全体での転位角度を360度より大きく形成したことを特徴とする回転電機の固定子である。
In order to achieve the above object, the invention corresponding to claim 1 is formed in a cylindrical shape as a whole, and a plurality of winding slots extending in the axial direction on the inner peripheral surface are arranged in parallel in the circumferential direction. In addition, a stator core formed such that a plurality of ventilation ducts are arranged in parallel in the axial direction,
A straight portion that is housed in the winding slot and bundles a large number of wire conductors to form a half turn coil of the upper coil and a half turn coil of the lower coil, and protrudes outward from both side surfaces of the stator core. Via an armature winding formed by short-circuiting the wire conductor for each half-turn coil of the upper coil and for each half-turn coil of the lower coil.
The strand conductors in the winding slots of the stator core and the strand conductors of the linear portion extending outward from both side surfaces of the stator core are continuously twisted and displaced. The stator of a rotating electric machine is characterized in that a dislocation angle in the whole half-turn coil is formed to be larger than 360 degrees.

前記目的を達成するため、請求項3に対応する発明は、全体として円筒状に形成され、この内周面に軸方向に延在してなる巻線スロットを円周方向に複数個並設すると共に、通風ダクトを複数個軸方向に並設するように形成した固定子鉄心と、
前記巻線スロット内に格納され、かつ多数の素線導体を束ねて上コイルのハーフターンコイル及び下コイルのハーフターンコイルを構成し、前記固定子鉄心の両側面よりそれぞれ外側に突き出る直線部を介してさらに軸方向に延在するコイル端部において、前記素線導体を前記上コイルのハーフターンコイル毎及び前記下コイルのハーフターンコイル毎にそれぞれ短絡してなる電機子巻線とを備え、
前記上コイルのコイル端部ピッチを前記下コイルのコイル端部ピッチより短くすることを特徴とする回転電機の固定子である。
In order to achieve the above object, the invention corresponding to claim 3 is formed in a cylindrical shape as a whole, and a plurality of winding slots extending in the axial direction on the inner peripheral surface are arranged in parallel in the circumferential direction. In addition, a stator core formed such that a plurality of ventilation ducts are arranged in parallel in the axial direction,
A straight portion that is housed in the winding slot and bundles a large number of wire conductors to form a half turn coil of the upper coil and a half turn coil of the lower coil, and protrudes outward from both side surfaces of the stator core. Via an armature winding formed by short-circuiting the wire conductor for each half-turn coil of the upper coil and for each half-turn coil of the lower coil.
A stator of a rotating electrical machine, wherein a coil end pitch of the upper coil is shorter than a coil end pitch of the lower coil.

本発明によれば、電機子巻線全体として素線導体内に循環電流が流れて発生する電流損失増加を抑制することのできる回転電機の固定子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the stator of the rotary electric machine which can suppress the electric current loss increase which generate | occur | produces when a circulating current flows into a strand conductor as the whole armature winding can be provided.

以下、本発明の回転電機の固定子の実施形態について図面を参照して説明する。   Hereinafter, embodiments of a stator for a rotating electrical machine according to the present invention will be described with reference to the drawings.

(第1の実施形態)
図1及び図2、図3を参照して第1の実施形態を説明する。第1の実施形態による回転電機の固定子は、固定子鉄心3と、電機子巻線2を備えている。固定子鉄心3は、全体として円筒状に形成され、この内周面に軸方向に延在してなる巻線スロット6を、円周方向に複数個並設すると共に、径方向に延在してなる通風ダクト4を、複数個軸方向に等間隔に並設し、かつ、軸方向の両端部及びこの両端部間の中央部における平均の磁性体占積率が等しくなるように形成したものである。
(First embodiment)
The first embodiment will be described with reference to FIGS. 1, 2, and 3. The stator of the rotating electrical machine according to the first embodiment includes a stator core 3 and an armature winding 2. The stator core 3 is formed in a cylindrical shape as a whole, and a plurality of winding slots 6 extending in the axial direction on the inner peripheral surface thereof are arranged side by side in the circumferential direction and extend in the radial direction. A plurality of ventilation ducts 4 are arranged side by side at equal intervals in the axial direction, and are formed so that the average magnetic space factor is equal at both ends in the axial direction and the central portion between both ends. It is.

ここで、磁性体占積率とは全体の鉄心に対する磁性体部の比であり、ここでの磁性体部は通風ダクト4、鉄心を積層構成している鉄板の表面に形成されている絶縁物等を除いた鉄心等の磁性体で巻線スロット内での漏れ磁束に対する磁気抵抗に寄与する分を指す。固定子鉄心3以外の構造物が一様に構成されていれば、鉄心占積率と言ってもよい。   Here, the magnetic body space factor is the ratio of the magnetic body portion to the entire iron core, and the magnetic body portion here is the insulator formed on the surface of the iron plate that is formed by stacking the air duct 4 and the iron core. This refers to the part that contributes to the magnetic resistance against leakage magnetic flux in the winding slot by a magnetic material such as an iron core excluding the above. If structures other than the stator core 3 are configured uniformly, it may be called the core space factor.

電機子巻線2は、巻線スロット6内に格納され、かつ多数の素線導体を束ねて上コイル(巻線スロット6の開口部側にあるもの)2cのハーフターンコイル及び下コイル(巻線スロット6の底部側にあるもの)2dのハーフターンコイルを構成し、固定子鉄心3の両側面よりそれぞれ外側に突き出る直線部2eを介してさらに軸方向に延在するコイル端部において、前記素線導体を上コイル2cのハーフターンコイル毎及び下コイル2dのハーフターンコイル毎にそれぞれ短絡してなるものである。  The armature winding 2 is housed in the winding slot 6, and a large number of wire conductors are bundled to form an upper coil (one on the opening side of the winding slot 6) 2c half-turn coil and lower coil (winding). (On the bottom side of the wire slot 6) 2d half-turn coil, and at the coil end portion extending further in the axial direction through straight portions 2e protruding outward from both side surfaces of the stator core 3, The strand conductor is short-circuited for each half-turn coil of the upper coil 2c and for each half-turn coil of the lower coil 2d.

このような構成の回転電機の固定子において、固定子鉄心3の巻線スロット6内の前記素線導体及び固定子鉄心3の両側面より外側に延在する直線部2eの前記素線導体を連続的に捩られて転位するように形成し、ハーフターンコイル全体での転位角度を360度より大きく形成したことを特徴とする。  In the stator of the rotating electrical machine having such a configuration, the wire conductor in the winding slot 6 of the stator core 3 and the wire conductor of the straight portion 2e extending outward from both side surfaces of the stator core 3 are arranged. The dislocation angle of the entire half-turn coil is formed to be larger than 360 degrees by continuously twisting and dislocation.

このように構成された実施形態において、負荷運転時には電機子巻線2に電流が流れ、各素線導体に電流が分担して流れる。図1に2つの代表的な素線導体5a、5b間に鎖交する磁束を示しており、鉄心部分の鎖交磁束を9d、9e、9fと示している。   In the embodiment configured as described above, a current flows through the armature winding 2 during load operation, and a current flows through each of the wire conductors. FIG. 1 shows a magnetic flux interlinking between two typical wire conductors 5a and 5b, and the interlinkage magnetic flux of the iron core portion is shown as 9d, 9e and 9f.

図10の従来例の360度転位では、固定子鉄心3のみで転位を行い、コイル端部2bでは転位されておらず、上記のように素線間に不平衡電圧が生じ、循環電流による損失が発生する。   In the conventional 360-degree dislocation of FIG. 10, the dislocation is performed only by the stator core 3 and is not dislocated at the coil end portion 2b. As described above, an unbalanced voltage is generated between the strands, and the loss due to the circulating current occurs. Will occur.

そこで、図1及び図2の実施形態では、コイル端部の直線部2eまで転位を360度より大きく行うことによって、端部の鎖交磁束9v、9w、9x、9yの総和を従来例よりも小さくすることが可能である。そのため、不平衡電圧が減少し、循環電流損失の発生が抑制できる。  Therefore, in the embodiment of FIG. 1 and FIG. 2, the total of the flux linkages 9v, 9w, 9x, and 9y at the end portion is made larger than that of the conventional example by performing the dislocation to the linear portion 2e at the coil end portion to be larger than 360 degrees. It can be made smaller. As a result, the unbalanced voltage is reduced and the occurrence of circulating current loss can be suppressed.

第1の実施形態によれば、素線導体5全体で不平衡電圧が小さくなり、循環電流の発生を抑え、循環電流損失を低減することができる。これは、前述した従来の技術である、360度転位の場合よりも電機子巻線の損失を抑制することができ、特に上コイルにおいてその効果が大きくなるようにし、電機子巻線全体として素線導体内に循環電流が流れて発生する電流損失増加を抑制することができる。   According to the first embodiment, the unbalanced voltage is reduced in the whole wire conductor 5, the generation of the circulating current can be suppressed, and the circulating current loss can be reduced. This can suppress the loss of the armature winding as compared with the case of the 360-degree dislocation, which is the conventional technique described above. In particular, the effect is increased in the upper coil. An increase in current loss caused by circulating current flowing in the wire conductor can be suppressed.

次に、図3で第1の実施形態を更に詳細に説明する。図3は第1の実施形態において、上コイル2c、下コイル2dを共に記したものである。上コイル2cのコイル端部の直線部2eは下コイル2dよりも長く構成されており、下コイル2dと比べて上コイル2cにより多く転位を施すことができる。   Next, the first embodiment will be described in more detail with reference to FIG. FIG. 3 shows both the upper coil 2c and the lower coil 2d in the first embodiment. The straight portion 2e at the coil end of the upper coil 2c is configured to be longer than the lower coil 2d, and more dislocations can be applied to the upper coil 2c than the lower coil 2d.

このように構成された本実施形態において、上コイル2cの素線間に入射する端部磁束を低減し、より一層の循環電流損失発生が抑制できる。  In the present embodiment configured as described above, the end magnetic flux incident between the strands of the upper coil 2c can be reduced, and generation of further circulating current loss can be suppressed.

逆に、図4を用いて本発明の第1の実施形態の変形例1を説明する。固定子鉄心3の軸方向の略中央部の、転位角度180度に相当する範囲内に、平均の磁性体占積率が、軸方向の略中央部以外例えば固定子鉄心3の両端部よりも大きい、サブ鉄心部7を設けたものである。   Conversely, Modification 1 of the first embodiment of the present invention will be described with reference to FIG. Within the range corresponding to the dislocation angle of 180 degrees in the substantially central portion of the stator core 3 in the axial direction, the average magnetic body space factor is higher than that of the substantially central portion in the axial direction, for example, than both end portions of the stator core 3. A large sub-core part 7 is provided.

図4のような構成であるので、素線5a、5b間の鎖交磁束は9bにおいて強められる。ここで、鎖交磁束9bは、端部の鎖交磁束9x、9y、9v、9wの和とは逆位相となり、誘起電圧を打ち消すように働き、素線間の循環電流損失の発生をより一層抑制できる。  Since it is a structure like FIG. 4, the flux linkage between strand 5a, 5b is strengthened in 9b. Here, the interlinkage magnetic flux 9b has a phase opposite to the sum of the interlinkage magnetic fluxes 9x, 9y, 9v, and 9w at the end, and works to cancel the induced voltage, thereby further reducing the occurrence of circulating current loss between the strands. Can be suppressed.

このように固定子鉄心3にサブ鉄心部7を設けることで、通風ダクト4のピッチの異なる部分を設けて、鉄心占積率の不均一によって生じる不平衡電圧によって、上記端部もれ磁束による不平衡電圧を相殺し、循環電流を低減することによって、固定子コイルの素線に生じる循環電流を低減すると共に、素線間の温度差を均一化し、効率と固定子巻線温度を良好に保つことができる。この結果、従来の課題である、「固定子コイルでは端部に入射する磁束によって導体素線間に循環電流が流れ、損失が増加、効率が低下するとともに、素線間に損失分布が生じて温度が不均一になり、高温部の冷却のために冷却を増す必要がある」を解決できる。  By providing the sub-core part 7 in the stator core 3 in this way, parts with different pitches of the ventilation duct 4 are provided, and due to the unbalanced voltage caused by the non-uniformity of the core space factor, the above-mentioned end leakage magnetic flux causes By offsetting the unbalanced voltage and reducing the circulating current, the circulating current generated in the stator coil strands is reduced, and the temperature difference between the strands is made uniform, improving the efficiency and stator winding temperature. Can keep. As a result, the conventional problem is that, in the stator coil, the circulating current flows between the conductor wires due to the magnetic flux incident on the end, the loss increases, the efficiency decreases, and the loss distribution occurs between the strands. The temperature becomes non-uniform, and it is necessary to increase the cooling to cool the high temperature part.

次に、図5を用いて本発明の第1の実施形態の変形例2を説明する。これは、素線導体の巻線スロット内に格納された部分の転位角度が概ね360度であり、固定子鉄心の軸方向の略中央部に平均の磁性体占積率が、軸方向の略中央部以外の部分とは異なる部分とは異なる磁性体占積率となるように構成してもよい。具体的には、素線導体の転位角度が、固定子鉄心3の各端部から90度以内の範囲内に、固定子鉄心3の平均の磁性体占積率が、固定子鉄心3の各端部から90度以内の範囲よりも小さい、サブ鉄心部7を設けたものである。   Next, Modification 2 of the first embodiment of the present invention will be described with reference to FIG. This is because the dislocation angle of the portion housed in the winding slot of the wire conductor is approximately 360 degrees, and the average magnetic material space factor is approximately the axial direction at the substantially central portion in the axial direction of the stator core. You may comprise so that it may become a magnetic body space factor different from the part different from parts other than a center part. Specifically, the dislocation angle of the wire conductor is within 90 degrees from each end of the stator core 3, and the average magnetic space factor of the stator core 3 is each of the stator core 3. The sub iron core part 7 smaller than the range within 90 degrees from the end part is provided.

図5のような構成でも、素線5a、5b間の鎖交磁束は9a、9cにおいて弱められ鎖交磁束9a、9b、9cの総和が、端部の鎖交磁束9x、9y、9v、9wの誘起電圧を打ち消すように働き、素線間の循環電流損失の発生を抑制できる。  Even in the configuration as shown in FIG. 5, the interlinkage magnetic flux between the strands 5a and 5b is weakened at 9a and 9c, and the sum of the interlinkage magnetic fluxes 9a, 9b and 9c becomes the interlinkage magnetic flux 9x, 9y, 9v and 9w. This works so as to cancel the induced voltage and suppresses the occurrence of circulating current loss between the strands.

(第2の実施形態)
図6を用いて第2の実施形態を説明する。図6は固定子鉄心端部を軸方向から見た図である。これは、図1、図2の実施形態と同様に、固定子鉄心3と、電機子巻線2とを備えたものにおいて、上コイル2cのコイル端部ピッチaを下コイル2dのコイル端部ピッチbより短くした点のみが異なる。
(Second Embodiment)
A second embodiment will be described with reference to FIG. FIG. 6 is a view of the end portion of the stator core as seen from the axial direction. This is similar to the embodiment of FIGS. 1 and 2, and includes the stator core 3 and the armature winding 2, and the coil end pitch a of the upper coil 2c is set to the coil end of the lower coil 2d. The only difference is that the pitch is shorter than the pitch b.

このように第2の実施形態では、鎖交磁束の大きい上コイル2cの端部ピッチaを下コイル2dの端部ピッチbより短くすることで、上コイル2cでの鎖交磁束量を減少させ、循環電流による損失発生を抑制できる。  Thus, in the second embodiment, the amount of interlinkage magnetic flux in the upper coil 2c is reduced by making the end pitch a of the upper coil 2c having a large interlinkage magnetic flux shorter than the end pitch b of the lower coil 2d. The occurrence of loss due to circulating current can be suppressed.

これに対して前述した図11の従来例では、上コイル2cの端部ピッチa、下コイル2dの端部ピッチbは等しく、埋設された各スロット6間の均等な距離の端部で接続されている。この結果、図11の場合、上コイル2cの端部に入射する端部磁束は、下コイル2dの端部に入射する端部磁束よりも大きく、上コイル2cでは下コイル2dより誘起電圧が大きく、循環電流が流れ損失が大きくなる。   On the other hand, in the conventional example of FIG. 11 described above, the end pitch a of the upper coil 2c and the end pitch b of the lower coil 2d are equal, and are connected at the ends of the equal distance between the embedded slots 6. ing. As a result, in the case of FIG. 11, the end magnetic flux incident on the end of the upper coil 2c is larger than the end magnetic flux incident on the end of the lower coil 2d, and the induced voltage is larger in the upper coil 2c than in the lower coil 2d. , Circulating current flows and loss increases.

また図7は本発明の第2の実施形態を説明するための図であり、コイルの鉄心端部近傍を内径方向から見た図を示し、図8は図7のA矢視図を示している。固定子鉄心3の両側面より外側に突き出る下コイル2dの曲がる側の鉄心端部に、径方向に垂直な面内で、巻線スロット面を鉄心端面との角部を落とした鉄心端段落とし8を形成したものである。また、固定子鉄心の両側面より外側に突き出る下コイル2dの曲がる側の鉄心端部に、径方向に垂直な面内で、巻線スロット面を鉄心端面との角部を落とした鉄心端段落とし3aを形成したものである。図7、8において上コイル2cは、図面左方向に曲がり、下コイルとコイル端部で接続され、下コイル2dは、右方向に曲がり、上コイルとコイル端部で接続される。   FIG. 7 is a view for explaining the second embodiment of the present invention, showing a view of the vicinity of the iron core end portion of the coil viewed from the inner diameter direction, and FIG. 8 showing a view taken in the direction of arrow A in FIG. Yes. In the end of the lower coil 2d that protrudes outward from both side surfaces of the stator core 3, the winding slot surface is a core end stage with the corners of the core end surface dropped in a plane perpendicular to the radial direction. 8 is formed. Further, the end portion of the core in which the corners of the winding slot surface and the end surface of the core are dropped in a plane perpendicular to the radial direction on the end portion of the bent side of the lower coil 2d protruding outward from both side surfaces of the stator core. A drop 3a is formed. 7 and 8, the upper coil 2c is bent leftward in the drawing and connected to the lower coil and the coil end, and the lower coil 2d is bent rightward and connected to the upper coil and the coil end.

図6のように上コイル2cの端部ピッチaを下コイル2dの端部ピッチbより短くすると、下コイル2dを曲げる傾きが小さくなり、図7の下コイル2dと外側間隔片8との距離c、下コイル2dと固定子鉄心3の端部との距離dが小さくなる。すると、下コイル2dが外側間隔片8や固定子鉄心3の端部に接触するおそれが増し、組立て時にコイル2を損傷するおそれがある。また、コイルとの距離が小さくなると、外側間隔片8や鉄心の端部に発生する渦電流損失が増大する。  When the end pitch a of the upper coil 2c is made shorter than the end pitch b of the lower coil 2d as shown in FIG. 6, the inclination of bending the lower coil 2d is reduced, and the distance between the lower coil 2d and the outer spacing piece 8 of FIG. c, The distance d between the lower coil 2d and the end of the stator core 3 is reduced. Then, the possibility that the lower coil 2d comes into contact with the outer spacing piece 8 and the end of the stator core 3 increases, and the coil 2 may be damaged during assembly. Further, when the distance from the coil is reduced, eddy current loss generated at the outer spacing piece 8 and the end of the iron core is increased.

そこで、第2の実施形態では図7、図8に示すように、下コイル2dと対向する固定子鉄心3に周方向の鉄心端段落とし3aを形成し、また外側間隔片8の角部に面取り部8aを形成したものである。  Therefore, in the second embodiment, as shown in FIGS. 7 and 8, the stator core 3 facing the lower coil 2 d is formed with a circumferential core end paragraph 3 a, and at the corner of the outer spacing piece 8. A chamfered portion 8a is formed.

このように構成することにより、下コイル2dと外側間隔片8との間に距離cが保たれ、また下コイル2dと固定子鉄心3の端部との間に距離dが保たれるので、下コイル2dと外側間隔片8及び下コイル2dと固定子鉄心3の端部との接触を防ぐことができ、かつ渦電流損失も低減できる。  With this configuration, the distance c is maintained between the lower coil 2d and the outer spacing piece 8, and the distance d is maintained between the lower coil 2d and the end of the stator core 3. Contact between the lower coil 2d and the outer spacing piece 8 and the lower coil 2d and the end of the stator core 3 can be prevented, and eddy current loss can also be reduced.

なお、第2の実施形態の変形例においても、第1の実施形態の変形例を示す図である、図4、図5と同様に、固定子鉄心3の磁性体占積率をサブ鉄心部7でその他の固定子鉄心部分よりも大とした変形例とすることにより、誘起電圧を打ち消すように働き、素線間の循環電流損失の発生をより一層抑制できる。   In addition, also in the modified example of the second embodiment, as in FIGS. 4 and 5, the magnetic material space factor of the stator core 3 is expressed as the sub-core part, which is a diagram illustrating a modified example of the first embodiment. By making the modification 7 larger than the other stator core part, it works to cancel the induced voltage, and the generation of circulating current loss between the wires can be further suppressed.

本発明の回転電機の固定子の第1の実施形態を説明するため、素線導体の鎖交磁束を模式的に示す概略断面図。BRIEF DESCRIPTION OF THE DRAWINGS In order to demonstrate 1st Embodiment of the stator of the rotary electric machine of this invention, the schematic sectional drawing which shows typically the flux linkage of a strand conductor. 図1の一部を拡大して示す概略断面図。The schematic sectional drawing which expands and shows a part of FIG. 図1の構成をより詳細に示す回転電機の固定子を示す概略断面図。The schematic sectional drawing which shows the stator of the rotary electric machine which shows the structure of FIG. 1 in detail. 本発明の回転電機の固定子の第1の実施形態の変形例1を説明するための概略断面図。The schematic sectional drawing for demonstrating the modification 1 of 1st Embodiment of the stator of the rotary electric machine of this invention. 本発明の回転電機の固定子の第1の実施形態の変形例2を説明するための概略断面図。The schematic sectional drawing for demonstrating the modification 2 of 1st Embodiment of the stator of the rotary electric machine of this invention. 本発明の回転電機の固定子の第2の実施形態を説明するための、固定子鉄心と上コイルと下コイルの関係を説明するための概略図。Schematic for demonstrating the relationship between a stator iron core, an upper coil, and a lower coil for describing 2nd Embodiment of the stator of the rotary electric machine of this invention. 本発明の回転電機の固定子の第2の実施形態を説明するため、固定子を内径方向から見た図。The figure which looked at the stator from the internal diameter direction in order to demonstrate 2nd Embodiment of the stator of the rotary electric machine of this invention. 図7のA矢視図。FIG. 従来の回転電機の固定子の電機子巻線断面図と漏れ磁束を説明するための基本構成図。Sectional drawing of the armature winding of the stator of the conventional rotary electric machine, and the basic block diagram for demonstrating leakage magnetic flux. 従来の回転電機の固定子の下半部を断面して示す部分断面図。The fragmentary sectional view which cuts and shows the lower half part of the stator of the conventional rotary electric machine. 図10の固定子の軸方向の端面から見て電機子巻線の上コイル及び下コイルの関係を説明するための図。The figure for demonstrating the relationship between the upper coil of an armature winding, and a lower coil seeing from the end surface of the axial direction of the stator of FIG.

符号の説明Explanation of symbols

2…電機子巻線、2b…コイル端部、2c…上コイル、2d…下コイル、2e…直線部、3…固定子鉄心、3a…鉄心端段落とし、4…通風ダクト、5a.5b…素線導体、6…巻線スロット、7…サブ鉄心部、8…外側間隔片、8a…面取り部、9a…鎖交磁束、9b…鎖交磁束、9v.9w…鎖交磁束、9x.9y…鎖交磁束。   2 ... armature winding, 2b ... coil end, 2c ... upper coil, 2d ... lower coil, 2e ... straight line part, 3 ... stator core, 3a ... core end stage, 4 ... ventilation duct, 5a. 5b ... strand conductor, 6 ... winding slot, 7 ... sub iron core part, 8 ... outer spacing piece, 8a ... chamfered part, 9a ... interlinkage magnetic flux, 9b ... interlinkage magnetic flux, 9v. 9w ... Interlinkage magnetic flux, 9x. 9y ... Interlinkage magnetic flux.

Claims (8)

全体として円筒状に形成され、この内周面に軸方向に延在してなる巻線スロットを円周方向に複数個並設すると共に、通風ダクトを複数個軸方向に並設するように形成した固定子鉄心と、
前記巻線スロット内に格納され、かつ多数の素線導体を束ねて上コイルのハーフターンコイル及び下コイルのハーフターンコイルを構成し、前記固定子鉄心の両側面よりそれぞれ外側に突き出る直線部を介してさらに軸方向に延在するコイル端部において、前記素線導体を前記上コイルのハーフターンコイル毎及び前記下コイルのハーフターンコイル毎にそれぞれ短絡してなる電機子巻線とを備え、
前記固定子鉄心の前記巻線スロット内の前記素線導体及び前記固定子鉄心の両側面より外側に延在する前記直線部の前記素線導体を連続的に捩られて転位するように形成し、前記ハーフターンコイル全体での転位角度を360度より大きく形成したことを特徴とする回転電機の固定子。
Formed in a cylindrical shape as a whole, a plurality of winding slots extending in the axial direction on this inner peripheral surface are arranged side by side in the circumferential direction, and a plurality of ventilation ducts are arranged in parallel in the axial direction The stator core
A straight portion that is housed in the winding slot and bundles a large number of wire conductors to form a half turn coil of the upper coil and a half turn coil of the lower coil, and protrudes outward from both side surfaces of the stator core. Via an armature winding formed by short-circuiting the wire conductor for each half-turn coil of the upper coil and for each half-turn coil of the lower coil.
The strand conductors in the winding slots of the stator core and the strand conductors of the linear portion extending outward from both side surfaces of the stator core are continuously twisted and displaced. A stator of a rotating electric machine, wherein a dislocation angle in the whole half-turn coil is formed to be larger than 360 degrees.
前記上コイルのコイル端部の直線部における転位角度を、前記下コイルのコイル端部に存在する直線部における転位角度より大きくしたことを特徴とする請求項1に記載の回転電機の固定子。  The stator of the rotating electrical machine according to claim 1, wherein a dislocation angle at a linear portion of a coil end portion of the upper coil is larger than a dislocation angle at a linear portion existing at the coil end portion of the lower coil. 全体として円筒状に形成され、この内周面に軸方向に延在してなる巻線スロットを円周方向に複数個並設すると共に、通風ダクトを複数個軸方向に並設するように形成した固定子鉄心と、
前記巻線スロット内に格納され、かつ多数の素線導体を束ねて上コイルのハーフターンコイル及び下コイルのハーフターンコイルを構成し、前記固定子鉄心の両側面よりそれぞれ外側に突き出る直線部を介してさらに軸方向に延在するコイル端部において、前記素線導体を前記上コイルのハーフターンコイル毎及び前記下コイルのハーフターンコイル毎にそれぞれ短絡してなる電機子巻線とを備え、
前記上コイルのコイル端部ピッチを前記下コイルのコイル端部ピッチより短くすることを特徴とする回転電機の固定子。
Formed in a cylindrical shape as a whole, a plurality of winding slots extending in the axial direction on this inner peripheral surface are arranged side by side in the circumferential direction, and a plurality of ventilation ducts are arranged in parallel in the axial direction The stator core
A straight portion that is housed in the winding slot and bundles a large number of wire conductors to form a half turn coil of the upper coil and a half turn coil of the lower coil, and protrudes outward from both side surfaces of the stator core. Via an armature winding formed by short-circuiting the wire conductor for each half-turn coil of the upper coil and for each half-turn coil of the lower coil.
A stator for a rotating electric machine, wherein a coil end pitch of the upper coil is shorter than a coil end pitch of the lower coil.
前記固定子鉄心の両側面より外側に突き出る前記下コイルの曲がる側の鉄心端部に、径方向に垂直な面内で、前記巻線スロット面を鉄心端面との角部を落とした鉄心端段落としを形成したことを特徴とする請求項3に記載の回転電機の固定子。  A core end stage in which corners of the winding slot surface and the core end surface are dropped in a plane perpendicular to the radial direction at the end of the core of the lower coil that protrudes outward from both side surfaces of the stator core. The stator of the rotating electric machine according to claim 3, wherein a drop is formed. 前記固定子鉄心の両側面より外側に突き出る前記下コイル側に設置される外側間隔片角部に面取りを施すことを特徴とする請求項3または請求項4に記載の回転電機の固定子。  5. The stator of a rotating electrical machine according to claim 3, wherein chamfering is performed on one corner portion of the outer space provided on the lower coil side that protrudes outward from both side surfaces of the stator core. 6. 前記素線導体の前記巻線スロット内に格納された部分の転位角度が概ね360度であり、前記固定子鉄心の軸方向の略中央部に平均の磁性体占積率が、前記軸方向の略中央部以外の部分とは異なる部分とは異なる磁性体占積率となるように構成したことを特徴とする請求項1乃至5の何れか一つに記載の回転電機の固定子。  The dislocation angle of the portion housed in the winding slot of the wire conductor is approximately 360 degrees, and an average magnetic material space factor in the axial center of the stator core is the axial direction. The stator for a rotating electrical machine according to any one of claims 1 to 5, wherein the stator has a magnetic space factor different from a portion different from a portion other than the substantially central portion. 前記固定子鉄心の軸方向の略中央部の、転位角度180度に相当する範囲内に、平均の磁性体占積率が、前記軸方向の略中央部以外よりも大きい、サブ鉄心部を設けたことを特徴とする請求項6に記載の回転電機の固定子。  A sub-core part having an average magnetic material space factor larger than those other than the substantially central part in the axial direction is provided in a range corresponding to a dislocation angle of 180 degrees at a substantially central part in the axial direction of the stator core. The stator for a rotating electric machine according to claim 6. 前記素線導体の転位角度が、各端部から90度以内の範囲内に、前記固定子鉄心の平均の磁性体占積率が、前記各端部から90度以内の範囲よりも小さい、サブ鉄心部を設けたことを特徴とする請求項6に記載の回転電機の固定子。  The dislocation angle of the wire conductor is within a range within 90 degrees from each end, and the average magnetic space factor of the stator core is smaller than the range within 90 degrees from each end. The stator for a rotating electric machine according to claim 6, wherein an iron core is provided.
JP2007272976A 2007-10-19 2007-10-19 Stator of rotating electric machine Pending JP2009106005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007272976A JP2009106005A (en) 2007-10-19 2007-10-19 Stator of rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007272976A JP2009106005A (en) 2007-10-19 2007-10-19 Stator of rotating electric machine

Publications (1)

Publication Number Publication Date
JP2009106005A true JP2009106005A (en) 2009-05-14

Family

ID=40707173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007272976A Pending JP2009106005A (en) 2007-10-19 2007-10-19 Stator of rotating electric machine

Country Status (1)

Country Link
JP (1) JP2009106005A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033500A (en) * 2012-08-01 2014-02-20 Toyota Motor Corp Stator of dynamo-electric machine
JP2017099118A (en) * 2015-11-24 2017-06-01 株式会社東芝 Armature coil for rotary electric machine
CN111856271A (en) * 2020-05-30 2020-10-30 华能澜沧江水电股份有限公司 Insulation fault detection method for stator core of hydraulic generator
CN112466656A (en) * 2020-11-17 2021-03-09 保定天威集团特变电气有限公司 Continuous winding method containing half-turn structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033500A (en) * 2012-08-01 2014-02-20 Toyota Motor Corp Stator of dynamo-electric machine
JP2017099118A (en) * 2015-11-24 2017-06-01 株式会社東芝 Armature coil for rotary electric machine
CN106849441A (en) * 2015-11-24 2017-06-13 株式会社东芝 The armature winding of electric rotating machine
CN111856271A (en) * 2020-05-30 2020-10-30 华能澜沧江水电股份有限公司 Insulation fault detection method for stator core of hydraulic generator
CN112466656A (en) * 2020-11-17 2021-03-09 保定天威集团特变电气有限公司 Continuous winding method containing half-turn structure

Similar Documents

Publication Publication Date Title
JP5875886B2 (en) Rotating electric machine stator
US7893575B2 (en) Rotor with field coils in optimized flux space slots
WO2012147475A1 (en) Stator for rotating electric machine
JP4542864B2 (en) Rotating electric machine and armature winding of rotating electric machine
US20220103038A1 (en) Stator for a rotating electrical machine
JP6638008B2 (en) Rotating electric machine stator
US20120086288A1 (en) Electric rotating machine
JP2006109616A5 (en)
US7812499B2 (en) Armature winding of electric rotating machine, stator of electric rotating machine and electric rotating machine
US20200235621A1 (en) Stator assembly with both copper conductors and aluminum conductors disposed in same slot for phase winding
EP3093961A2 (en) Windings for electrical machines
JP2017184394A (en) Stator for rotary electric machine
JP6293576B2 (en) Stator for rotating electrical machine
US20130062978A1 (en) Electric rotating machine
US20100026115A1 (en) Stator windings and an electric rotary machine
JP2009106005A (en) Stator of rotating electric machine
JP2008253014A (en) Rotating electrical machine for high voltage
US20170149298A1 (en) Armature winding for electrical rotating machine
EP3301788A1 (en) Salient pole coils for electric machines
JP2015233414A (en) Stator for rotating electric machine and manufacturing method of the same
CN107078588B (en) The active part of electric machine
JP2006340488A (en) Rotating electric machine
JP6394542B2 (en) Rotating electrical machine stator
JP3734435B2 (en) Phase lead for rotating electrical machines
JP2010239680A (en) Armature for rotary electric machine and manufacturing method therefor