JP2006340488A - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
JP2006340488A
JP2006340488A JP2005161591A JP2005161591A JP2006340488A JP 2006340488 A JP2006340488 A JP 2006340488A JP 2005161591 A JP2005161591 A JP 2005161591A JP 2005161591 A JP2005161591 A JP 2005161591A JP 2006340488 A JP2006340488 A JP 2006340488A
Authority
JP
Japan
Prior art keywords
winding
stator core
sub
slot
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005161591A
Other languages
Japanese (ja)
Inventor
Masashi Fujita
真史 藤田
Tadashi Tokumasu
正 徳増
Yasuo Kahata
安雄 加幡
Hiroshi Hatano
浩 幡野
Mikio Kakiuchi
幹雄 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005161591A priority Critical patent/JP2006340488A/en
Publication of JP2006340488A publication Critical patent/JP2006340488A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a rotating electric machine that can reduce a lubrication current between conductor strands generated by leakage magnetic flux at the end of a stator without changing a dislocation angle and a dislocation pitch of an armature winding from those of a conventional technology. <P>SOLUTION: The rotating electric machine comprises the armature winding housed in a winding slot and constituted of multiple laminated strand conductors, and the strand conductor is formed so as to be displaced by continuously being twisted toward the extension direction of the winding slot at a part housed in the winding slot, the strand conductors are short-circuited at both sides of the armature winding that is protruded outside from both sides of a stator core, and the displacement angle of the part housed in the slot of the strand conductor is generally in a range of 360+360n° to 450+360n° (n is an integer of 0 or larger). A sub-core that is larger in the average magnetic body lamination factor of the stator core than that of the other part is formed in a range where the displacement angle of the strand conductor is 90+360n to 270+360n (n is an integer of 0 or larger) with both the sides as references. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固定子鉄心の巻線スロットに内に格納される電機子巻線の素線導体に転位する部分を形成した回転電機に関する。   The present invention relates to a rotating electrical machine in which a dislocation portion is formed in a wire conductor of an armature winding housed in a winding slot of a stator core.

従来の回転電機では、図24の回転電機電機子の断面図に示すように、図示していない回転子の回転軸心に沿うように延在する複数の巻線スロット10を設けた固定子鉄心3と、巻線スロット10に埋設され、かつ積み重なる多数の素線導体5でそれぞれ構成される上コイル2c、下コイル2dからなる電機子巻線2と、固定子鉄心3内の径方向に複数の通風ダクトから構成されており、素線導体5は、巻線スロット10内に格納された部分で、巻線スロット10の延在方向に向かって連続的に捩られて、代表的には360度転位するように形成され、固定子鉄心3の両側面より外側に突き出る電機子巻線2の両側部で素線導体5は短絡されている。   In the conventional rotating electric machine, as shown in the sectional view of the rotating armature of FIG. 24, a stator core provided with a plurality of winding slots 10 extending along the rotation axis of the rotor (not shown). 3, an armature winding 2 composed of an upper coil 2 c and a lower coil 2 d each composed of a plurality of wire conductors 5 embedded and stacked in the winding slot 10, and a plurality of radial coils in the stator core 3. The wire conductor 5 is a portion housed in the winding slot 10 and is continuously twisted in the extending direction of the winding slot 10, typically 360. The wire conductors 5 are short-circuited at both side portions of the armature winding 2 that are formed so as to be dislocated and project outward from both side surfaces of the stator core 3.

このような構成の多重素線導体に交流電流が流れる場合には、巻線スロット10を周方向に横切る漏れ磁束が発生し、これによって多重素線導体の長手方向の各部分における素線導体5の間に電圧が誘起される。そして、任意の素線導体対において、巻線導体の全長にわたる各素線導体の誘起電圧に非常に大きな差が生じると、閉ループ状の素線導体対には大きな循環電流、すなわち素線導体対を循環する電流が流れ、電流損失が増大するとともに素線導体内部で発生する熱も増大する。   When an alternating current flows through the multiple strand conductor having such a configuration, a leakage magnetic flux that crosses the winding slot 10 in the circumferential direction is generated, and thereby the strand conductor 5 in each longitudinal portion of the multiple strand conductor. A voltage is induced during If an extremely large difference occurs in the induced voltage of each strand conductor over the entire length of the winding conductor in any strand conductor pair, a large circulating current, that is, the strand conductor pair, is generated in the closed loop strand conductor pair. The current flowing through the current flows, current loss increases and heat generated inside the wire conductor also increases.

そこで、素線導体の全長にわたって各素線導体間に誘起される電圧をほぼ等しくして循環電流が流れないようにするため、素線導体を各種の方法によって転位することが行われている。   Therefore, in order to prevent the circulating current from flowing by making the voltages induced between the strand conductors substantially equal over the entire length of the strand conductors, the strand conductors are transposed by various methods.

ここで、図25から図27を参照して従来の技術である、素線導体の転位について説明する。この素線導体の転位は、素線導体を巻線スロットの延在方向に向かってねじることにより、各素線導体の位置を順次変更させたもので、素線導体の断面において、ある素線導体が断面中心の周りを円状に移動すると考え、その回転の角度で転位の程度を表す。各素線導体が、素線導体断面において全ての位置を経て巻線スロットの反対端で出発した位置と同じ位置になる転位は、360度転位といい、計2周して上記の同じ位置になる転位を720度転位という。   Here, with reference to FIGS. 25 to 27, the dislocation of the wire conductor, which is a conventional technique, will be described. This dislocation of the wire conductor is a device in which the position of each wire conductor is changed sequentially by twisting the wire conductor toward the extending direction of the winding slot. Considering that the conductor moves in a circle around the center of the cross section, the degree of dislocation is expressed by the angle of rotation. The dislocation where each strand conductor goes to the same position as the starting position at the opposite end of the winding slot through all positions in the section of the strand conductor is called 360-degree dislocation. This dislocation is called 720-degree dislocation.

図25は360度転位の素線構成を表す模式図であり、図示していない回転子の回転軸心に沿うように延在する複数の巻線スロットを設けた固定子鉄心3と、前記巻線スロットに埋設され、かつ積み重なる多数の素線導体5で構成される電機子巻線2と、固定子鉄心内の径方向に複数の通風ダクト4から構成されており、素線導体5は、巻線スロット内に格納された部分で、巻線スロットの延在方向に向かって連続的に捩られて360度転位するように形成され、固定子鉄心3の両側面より外側に突き出る電機子巻線2の両側部で素線導体5は短絡されている。   FIG. 25 is a schematic diagram showing the configuration of a strand of 360 ° dislocation, and the stator core 3 provided with a plurality of winding slots extending along the rotation axis of the rotor (not shown), and the winding The armature winding 2 is composed of a large number of strand conductors 5 embedded and stacked in the wire slot, and a plurality of ventilation ducts 4 in the radial direction in the stator core. An armature winding that is formed in a portion housed in the winding slot so as to be continuously twisted in the extending direction of the winding slot to shift 360 degrees and protrudes outward from both side surfaces of the stator core 3. The strand conductor 5 is short-circuited on both sides of the wire 2.

図25には2つの代表的な素線導体5a、5b間に鎖交する磁束を示しており、図では、鉄心部分の鎖交磁束を16a〜16cと示しているが、例えば16aと16cの和は16bに等しくなり、巻線スロット内で鎖交する磁束による素線導体5a、5b間の誘起電圧が相殺されるような構成となっている。   FIG. 25 shows the magnetic flux interlinking between two typical wire conductors 5a and 5b. In the figure, the interlinkage magnetic flux of the iron core portion is shown as 16a to 16c. The sum is equal to 16b, and the induced voltage between the wire conductors 5a and 5b due to the magnetic flux interlinking in the winding slot is offset.

しかし、巻線スロット内では360度転位が施されているが、巻線スロット外では転位されていないので、回転電機の端部側の漏れ磁束16x、16yによって不平衡電圧が発生し、素線導体5a、5b内には循環電流が生じている。   However, although a 360-degree dislocation is performed in the winding slot but is not dislocated outside the winding slot, an unbalanced voltage is generated by the leakage magnetic fluxes 16x and 16y on the end side of the rotating electrical machine, and the wire Circulating current is generated in the conductors 5a and 5b.

上述のようにこうした回転電機の端部には漏れ磁束があるため、これにより巻線導体の端部に電圧が誘起され、素線導体内に循環電流が流れて電流損失が発生する。この損失を低減するためには、素線導体の両端部における素線導体の位置を逆転し、同一素線導体の両端部に誘起される各電圧の方向を互いに逆にしてこれらを相殺すればよい。これは素線導体を巻線スロット内で540度転位、すなわち1回転半の転位をすることで実現できる。   As described above, since there is a leakage magnetic flux at the end of such a rotating electrical machine, a voltage is induced at the end of the winding conductor, and a circulating current flows in the strand conductor to generate a current loss. In order to reduce this loss, the positions of the wire conductors at both ends of the wire conductor are reversed, and the directions of the voltages induced at both ends of the same wire conductor are reversed to cancel each other. Good. This can be realized by performing a 540-degree dislocation within the winding slot, that is, a one-half rotation.

図26は540度転位の素線構成を表す模式図であり、図25と同一の構成には同一の符号を付し、重複する説明は省略する。   FIG. 26 is a schematic diagram showing a strand configuration of 540-degree dislocation. The same components as those in FIG.

図26において、転位ピッチは両端部から鉄心長Lsの1/4Lsの範囲で中央部の半分であり、すなわち、両端部から鉄心長の1/4の範囲及び中心部の鉄心長の1/2の範囲で、それぞれ180度の転位がなされている。素線導体5a、5b間の鎖交磁束16aと16eの和は16cに等しく、16bと16fの和は16dに等しくなるので、巻線スロット内の鎖交磁束では素線5a、5b間の誘起電圧は相殺される。また、巻線スロット外では16xと16yに鎖交する磁束がそれぞれ相殺しあうので、端部の漏れ磁束による循環電流も低減できることになる。   In FIG. 26, the dislocation pitch is a half of the central portion within a range of 1/4 Ls of the iron core length Ls from both ends, that is, a range of a quarter of the iron core length from both ends and a half of the iron core length of the center portion. Within these ranges, 180 degree dislocations are made. Since the sum of the interlinkage magnetic fluxes 16a and 16e between the strand conductors 5a and 5b is equal to 16c, and the sum of 16b and 16f is equal to 16d, the interlinkage flux in the winding slot is induced between the strands 5a and 5b. The voltage is offset. Further, since the magnetic fluxes interlinking 16x and 16y cancel each other outside the winding slot, the circulating current due to the leakage magnetic flux at the end can also be reduced.

また、図27は450度転位の素線構成を表す模式図であり、図25と同一の構成には同一の符号を付し、重複する説明は省略する。   FIG. 27 is a schematic diagram showing the configuration of a 450-degree dislocation strand. The same components as those in FIG.

図27において、転位ピッチは両端部から鉄心長Lsの1/8Lsの範囲で中央部の半分であり、すなわち、両端部から鉄心長の1/8の範囲及び中心部の鉄心長の3/4の範囲で、それぞれ180度、270度の転位がなされている。素線導体5a、5b間の鎖交磁束16a、16b、16d、16eの和は16cに等しくなるので、巻線スロット内の鎖交磁束では素線5a、5b間の誘起電圧は相殺される。また、巻線スロット外では16xと16yに鎖交する磁束の和は360度転位よりは小さくなり、端部の漏れ磁束による循環電流は360度転位よりは低減できる。   In FIG. 27, the dislocation pitch is a half of the central portion within a range of 1/8 Ls of the core length Ls from both ends, that is, a range of 1/8 of the core length from both ends and 3/4 of the core length of the center portion. Within these ranges, the dislocations are 180 degrees and 270 degrees, respectively. Since the sum of the interlinkage magnetic fluxes 16a, 16b, 16d, and 16e between the strand conductors 5a and 5b is equal to 16c, the induced voltage between the strands 5a and 5b is canceled by the interlinkage magnetic flux in the winding slot. Further, outside the winding slot, the sum of the magnetic fluxes linked to 16x and 16y is smaller than the 360 ° dislocation, and the circulating current due to the leakage flux at the end can be reduced as compared to the 360 ° dislocation.

上記の素線転位角度は、それぞれに、nを整数と360n度を加えた転位角度においても、同様の効果が得られる。   The same effect can be obtained even when the above-mentioned strand dislocation angles are dislocation angles obtained by adding n to an integer and 360 n degrees, respectively.

一方、図25のような端部側の漏れ磁束を相殺するため、非特許文献1や特許文献1〜2に示されているように、工夫が施され、端部の漏れ磁束による誘起電圧が生じさせる循環電流損失を低減する方法である。このうち、特許文献1は転位されていない部分を設けたものであり、また非特許文献1は転位角を360度から小さくするものであり、さらに特許文献2は450度転位の場合に転位勾配を変える位置を変えるものである。   On the other hand, in order to cancel the leakage flux on the end side as shown in FIG. 25, as shown in Non-Patent Document 1 and Patent Documents 1 and 2, a device is applied, and the induced voltage due to the leakage flux at the end is reduced. This is a method of reducing the generated circulating current loss. Of these, Patent Document 1 is provided with a portion that is not dislocated, Non-Patent Document 1 is that the dislocation angle is reduced from 360 degrees, and Patent Document 2 is a dislocation gradient in the case of 450 degrees dislocation. The position to change is changed.

特許文献3は、特許文献1における問題点、すなわち、素線導体の転位回数が多い場合や、巻線スロット軸長の短い場合には、転位ピッチが更に短くなり、素線導体が短絡するという問題点を改善するため、次のようにした発明である。すなわち、電機子巻線の素線導体は、固定子鉄心3の両側面より外側に突き出る電機子巻線の両端部を除いて巻線スロットの延在方向に向かって連続的にねじられて転位するように形成され、積み重ね方向の厚みを異ならしめた前記素線導体は、前記両端部では回転子の回転中心から放射方向に並ぶ前記素線導体を回転子に近い方に厚み厚いものが占めるようにした配置した回転電機である。特許文献3は、このように構成することにより、素線導体の抵抗値が小さくなり、電流発生損失を低減でき、また従来技術のように転位しない部分を設けていないので転位ピッチを短くする必要が無く、この結果循環電流損失を低減でき、電機子巻線の局部加熱を抑制できる。   Patent Document 3 is a problem in Patent Document 1, that is, when the number of dislocations of the wire conductor is large or when the winding slot axial length is short, the dislocation pitch is further shortened and the wire conductor is short-circuited. In order to improve the problem, the invention is as follows. That is, the wire conductors of the armature winding are continuously twisted in the extending direction of the winding slot except for both end portions of the armature winding protruding outward from both side surfaces of the stator core 3. The wire conductors formed so as to have different thicknesses in the stacking direction occupy the wire conductors arranged in the radial direction from the rotation center of the rotor at the both end portions with the thicker one closer to the rotor. The rotating electrical machine is arranged as described above. According to Patent Document 3, by configuring in this way, the resistance value of the wire conductor is reduced, current generation loss can be reduced, and no dislocation is provided unlike the prior art, so it is necessary to shorten the dislocation pitch. As a result, the circulating current loss can be reduced, and local heating of the armature winding can be suppressed.

特許文献4は、固定子鉄心の端部において短絡された巻線バーであって、この巻線バーである導体バーが、互いに電気的に絶縁された多数の導体素線から構成されており、該素線導体がレーブル原理に基づいて転位されており、両方の端部クリップセクションにおける導体素線と、アクティブパートセクションにおける導体素線とが互いに一緒に転位されている形式の巻線バーであり、このように構成することにより、ループ電流をさらに抑制することができ、ひいては導体バーにおける温度勾配パターンをさらに偏平化することができる。   Patent Document 4 is a winding bar that is short-circuited at the end of the stator core, and the conductor bar that is the winding bar is composed of a number of conductor wires that are electrically insulated from each other. The wire conductor is a type of winding bar in which the conductor conductors are transposed based on the rable principle and the conductor strands in both end clip sections and the conductor strands in the active part section are transposed together. By configuring as above, the loop current can be further suppressed, and the temperature gradient pattern in the conductor bar can be further flattened.

以上述べた特許文献1〜4及び非特許文献1は、いずれも固定子巻線そのものを改善したものであり、本願発明のように固定子鉄心を改善したものではない。   Patent Documents 1 to 4 and Non-Patent Document 1 described above all improve the stator winding itself, and do not improve the stator core like the present invention.

次に、機内の冷却ガス通風経路を図28を用いて説明する。図28は、タービン発電機等の回転電機における冷却ガス通風経路の基本構成例である。   Next, the cooling gas ventilation path in the machine will be described with reference to FIG. FIG. 28 is a basic configuration example of a cooling gas ventilation path in a rotating electrical machine such as a turbine generator.

回転電機の固定子鉄心は鉄心抜板を積層するとともに、内側間隔片を所定の間隔で挿入して放射状の通風ダクト4を形成する。通風ダクト4は軸方向に一つ以上のセクションに分割し、鉄心の外径から内径側へ流れる給気セクションと内径から外径側へ流れる排気セクションに区切られる。図28は固定子鉄心3を2つの給気セクション4aと3つの排気セクション4bに分割した構成例であり、個々の通風ダクト4は省略している。   The stator iron core of the rotating electrical machine is formed by laminating iron core punches and inserting inner spacing pieces at a predetermined interval to form a radial ventilation duct 4. The ventilation duct 4 is divided into one or more sections in the axial direction, and is divided into an air supply section that flows from the outer diameter of the iron core to the inner diameter side and an exhaust section that flows from the inner diameter to the outer diameter side. FIG. 28 shows a configuration example in which the stator core 3 is divided into two supply sections 4a and three exhaust sections 4b, and individual ventilation ducts 4 are omitted.

冷却ガスは回転子両端に取り付けた回転子ファン11から吐出され、回転子1、エアギャップ19および電機子巻線端部2bの3方向に分岐する。   The cooling gas is discharged from the rotor fan 11 attached to both ends of the rotor, and branches in three directions: the rotor 1, the air gap 19, and the armature winding end 2b.

固定子への冷却ガスの供給は、ファン11から直接エアギャップ19に流れ込む通風経路からと、電機子巻線端部2bを冷却した後の冷却ガスを固定子鉄心3の給気セクション4aに導き行う。   The cooling gas is supplied to the stator from a ventilation path that flows directly from the fan 11 into the air gap 19, and the cooling gas after cooling the armature winding end 2 b is guided to the air supply section 4 a of the stator core 3. Do.

給気セクション4aに供給された冷却ガスは、通風ダクト4群を外径側から内径側へと流れ、固定子鉄心3および電機子巻線2を冷却した後、エアギャップ19に排出される。エアギャップ部19では、回転子1からの排気ガスおよびファン11から直接エアギャップ内に流れ込む冷却ガスと合流し、さらに排気セクション4bを内径側から外径側へ流れて、固定子鉄心3および電機子巻線2を冷却し、固定子外径側で合流する。固定子および回転子を冷却して高温となった冷却ガスは水冷式ガスクーラ12を通過して冷却され、風導を通って再び回転子ファン11へと循環する。   The cooling gas supplied to the air supply section 4 a flows through the ventilation duct 4 group from the outer diameter side to the inner diameter side, cools the stator core 3 and the armature winding 2, and then is discharged to the air gap 19. In the air gap portion 19, the exhaust gas from the rotor 1 and the cooling gas flowing directly into the air gap from the fan 11 are merged, and further, the exhaust section 4 b flows from the inner diameter side to the outer diameter side. The child winding 2 is cooled and merged on the outer diameter side of the stator. The cooling gas that has become a high temperature by cooling the stator and the rotor passes through the water-cooled gas cooler 12, is cooled, and circulates again to the rotor fan 11 through the air guide.

電機子巻線および界磁巻線はそれらを構成する絶縁物の耐熱性能により厳しく温度上限が制限されており、回転電機の設計においては、これらの温度が規格値以下に保たれるように設計する必要がある。   Armature windings and field windings are strictly limited by the heat resistance performance of the insulators that make them, and in the design of rotating electrical machines, these temperatures are designed to be kept below the standard value. There is a need to.

電機子巻線を効率よく冷却するためには、巻線温度が低い部位には冷却ガスを少なく高い部位に集中的に供給して、巻線温度を平準化することが望ましい。   In order to efficiently cool the armature winding, it is desirable to level the winding temperature by supplying a small amount of cooling gas to a high portion where the winding temperature is low and intensively supplying it to the high portion.

冷却ガスの供給量を調整する手段の一つとして固定子鉄心ダクトを軸方向に不等ピッチで配置する方法がある。タービン発電機の一般的な構造では、固定子端部からエアギャップに流入する冷却ガスは、ファンから直接供給されるためその他の部位と比較してガス温度が低く冷却上有利であることが多いため、例えば図29に示すように、鉄心端部側の通風ダクト4のピッチをその他の部位と比較して大きくして配置することが行われる場合がある。   As one of means for adjusting the supply amount of the cooling gas, there is a method of arranging stator core ducts at unequal pitches in the axial direction. In the general structure of a turbine generator, the cooling gas flowing into the air gap from the end of the stator is supplied directly from the fan, so the gas temperature is lower than other parts and is advantageous for cooling. For this reason, for example, as shown in FIG. 29, the pitch of the ventilation duct 4 on the iron core end side may be increased as compared with other parts.

固定子鉄心の磁性体の軸方向占積率が一様でないと、電機子巻線の素線間の誘起電圧のバランスが崩れて、素線間を循環する電流が生じ損失が増加する。特許文献3には、通風ダクト4の配置が軸方向に一様でない場合に生じる循環電流損失を低減するための方法が述べられているが、端部の漏れ磁束による誘起電圧が生じさせる循環電流損失の低減を目的としてものではない。
特公昭58−14141号公報 US6703752 B2 特開平9−182339 特開2002−78265 Xu Shanchun, et al, “A New Transposition Technique of Stator Bars of The Hydrogenerator”, Proceedings of International Symposium on Salient-Pole Machines With Particular Reference to Large Hydro-Electric Generators and Synchronous Motors, (pp.384-389), Oct. 1993
If the axial space factor of the magnetic material of the stator core is not uniform, the balance of the induced voltage between the strands of the armature winding is lost, and a current circulating between the strands is generated, resulting in an increase in loss. Patent Document 3 describes a method for reducing the circulating current loss that occurs when the arrangement of the ventilation ducts 4 is not uniform in the axial direction. However, the circulating current that causes an induced voltage due to leakage magnetic flux at the end is described. It is not intended to reduce losses.
Japanese Patent Publication No.58-14141 US6703752 B2 JP-A-9-182339 JP 2002-78265 A Xu Shanchun, et al, “A New Transposition Technique of Stator Bars of The Hydrogenerator”, Proceedings of International Symposium on Salient-Pole Machines With Particular Reference to Large Hydro-Electric Generators and Synchronous Motors, (pp.384-389), Oct . 1993

上述した従来技術において、素線導体の転位角度を360度より大きくする場合や、巻線スロット内において転位をしない部分を設ける場合には、転位ピッチが短くなり、素線導体の薄い絶縁を破損し、素線導体の短絡を起こす可能性があった。特に、素線導体の転位回数が多い場合や巻線スロット軸長の短い場合には、転位ピッチが更に短くなり、素線導体が短絡する可能性が増大する。   In the above-described prior art, when the dislocation angle of the strand conductor is larger than 360 degrees or when a portion where no dislocation is provided in the winding slot, the dislocation pitch is shortened and the thin insulation of the strand conductor is damaged. However, there was a possibility of causing a short circuit of the wire conductor. In particular, when the number of dislocations of the strand conductor is large or when the winding slot axial length is short, the dislocation pitch is further shortened, and the possibility that the strand conductor is short-circuited increases.

本発明は上述した課題を解決するためになされたものであり、電機子巻線の転位角度や転位ピッチを従来技術から変更すること無く、固定子の端部の漏れ磁束による導体素線間の循環電流を低減でき、電機子巻線の損失増加及び局部過熱を抑制することのできる回転電機を得ることを目的とする。   The present invention has been made to solve the above-described problem, and without changing the dislocation angle and dislocation pitch of the armature winding from the prior art, between conductor wires due to leakage magnetic flux at the end of the stator. It is an object of the present invention to provide a rotating electrical machine that can reduce circulating current and suppress increase in loss of armature winding and local overheating.

前記目的を達成するため、請求項1に対応する発明は、
回転軸が回転可能に支持された回転子と、
前記回転子の回転軸の軸心に沿うように延在する複数の巻線スロットを設け、かつ径方向に複数の通風ダクトを設けた固定子鉄心と、
前記巻線スロット内に格納され、かつ積み重なる多数の素線導体で構成される電機子巻線を有し、前記素線導体は、前記巻線スロット内に格納された部分で、前記巻線スロットの延在方向に向かって連続的に捩られて転位するように形成され、前記固定子鉄心の両側面より外側に突き出る前記電機子巻線の両側部では前記素線導体を短絡させており、前記素線導体の前記スロット内に格納された部分の転位角度が概ね360+360n度から450+360n度の範囲(nは0以上の整数)にある回転電機において、
前記素線導体の転位角度が両端部を基点として、90+360n度から270+360n度(nは0以上の整数)となる範囲内に、前記固定子鉄心の平均の磁性体占積率が、それ以外の部分よりも大きい、サブ鉄心部を形成したことを特徴とする回転電機である。
In order to achieve the object, the invention corresponding to claim 1 is:
A rotor whose rotation shaft is rotatably supported;
A stator core provided with a plurality of winding slots extending along the axis of the rotating shaft of the rotor, and provided with a plurality of ventilation ducts in the radial direction;
The armature winding is composed of a number of wire conductors stored and stacked in the winding slot, and the wire conductor is a portion stored in the winding slot, and the winding slot Is formed so as to be continuously twisted and dislocated in the extending direction of the armature winding, and the wire conductors are short-circuited at both side portions of the armature winding protruding outward from both side surfaces of the stator core, In the rotating electrical machine in which the dislocation angle of the portion housed in the slot of the wire conductor is in a range of approximately 360 + 360 n degrees to 450 + 360 n degrees (n is an integer of 0 or more)
The average magnetic space factor of the stator core is within a range where the dislocation angle of the wire conductor is 90 + 360n degrees to 270 + 360n degrees (n is an integer of 0 or more) with both ends as the base points. The rotating electrical machine is characterized in that a sub iron core portion larger than the portion is formed.

本発明によれば、電機子巻線の転位角度や転位ピッチを従来技術から変更すること無く、固定子の端部の漏れ磁束による導体素線間の循環電流を低減でき、電機子巻線の損失増加及び局部過熱を抑制することのできる回転電機を提供できる。   According to the present invention, the circulating current between the conductor wires due to the leakage magnetic flux at the end of the stator can be reduced without changing the dislocation angle and the dislocation pitch of the armature winding from the prior art. A rotating electrical machine that can suppress an increase in loss and local overheating can be provided.

以下、本発明に係る回転電機の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of a rotating electrical machine according to the present invention will be described with reference to the drawings.

(第1の実施形態)
図1を参照して本発明の概要を説明する。図1は、回転子1と、回転子の回転軸心に沿うように延在する複数の巻線スロットを設けた固定子鉄心3と、巻線スロットに埋設され、かつ積み重なる多数の素線導体5で構成される上コイル2cと、下コイル2dからなる電機子巻線2と、固定子鉄心3内の径方向に複数の通風ダクト4から構成された回転電機において、次のように構成したものである。
(First embodiment)
The outline of the present invention will be described with reference to FIG. FIG. 1 shows a rotor 1, a stator core 3 provided with a plurality of winding slots extending along the rotation axis of the rotor, and a large number of wire conductors embedded in and stacked in the winding slots. In the rotating electrical machine composed of the upper coil 2c composed of 5 and the armature winding 2 composed of the lower coil 2d and a plurality of ventilation ducts 4 in the radial direction in the stator core 3, the construction is as follows. Is.

素線導体5は、巻線スロット内に格納された部分で、巻線スロットの延在方向に向かって連続的に捩られて転位するように形成され、固定子鉄心3の両側面より外側に突き出る端部巻線2b(電機子巻線の端部)では素線導体を短絡させており、素線導体のスロット内に格納された部分の転位角度が概ね360+360n度から450+360n度の範囲(nは0以上の整数)にある場合であって、素線導体の転位角度が両端部を基点として、90+360n度から270+360n度(nは0以上の整数)となる範囲内にサブ鉄心部14を形成したものであって、該サブ鉄心部14は該サブ鉄心部以外の非サブ鉄心部より平均の磁性体占積率を大きくしたものである。   The strand conductor 5 is a portion housed in the winding slot, and is formed so as to be continuously twisted and displaced in the extending direction of the winding slot, and outside the both side surfaces of the stator core 3. In the protruding end winding 2b (end of the armature winding), the strand conductor is short-circuited, and the dislocation angle of the portion housed in the slot of the strand conductor is approximately in the range of 360 + 360n degrees to 450 + 360n degrees (n The sub-core portion 14 is formed within a range in which the dislocation angle of the wire conductor is 90 + 360n degrees to 270 + 360n degrees (n is an integer equal to or greater than 0) with both ends as base points. The sub iron core portion 14 has an average magnetic material space factor larger than that of the non-sub iron core portion other than the sub iron core portion.

ここで、磁性体占積率とは全体の鉄心に対する磁性体部の比であり、ここでの磁性体部は通風ダクト4、鉄心を積層構成している鉄板の表面に形成されている絶縁物等を除いた鉄心等の磁性体で巻線スロット内での漏れ磁束に対する磁気抵抗に寄与する分を指す。固定子鉄心3以外の構造物が一様に構成されていれば、鉄心占積率と言ってもよい。   Here, the magnetic body space factor is the ratio of the magnetic body portion to the entire iron core, and the magnetic body portion here is the insulator formed on the surface of the iron plate that is formed by stacking the air duct 4 and the iron core. This refers to the part that contributes to the magnetic resistance against leakage magnetic flux in the winding slot by a magnetic material such as an iron core excluding the above. If structures other than the stator core 3 are configured uniformly, it may be called the core space factor.

このように構成された実施形態において、負荷運転時には電機子巻線に電流が流れ、各素線導体に電流が分担して流れる。図1には2つの代表的な素線導体5a、5b間に鎖交する磁束を示しており、鉄心部分の鎖交磁束を16a〜16cと示しているが、例えば16aと16cの和と16bとは、鎖交面積が同じであるので、当該部分の磁性体占積率が同じであれば、この部分の鎖交磁束による不平衡電圧は相殺される。しかしながら、端部の鎖交磁束16x、16yは相殺されず強めあうため、この部分の鎖交磁束の差によって素線間に不平衡電圧が生じる。   In the embodiment configured as described above, during load operation, current flows through the armature winding, and current flows through each of the wire conductors. FIG. 1 shows the magnetic flux interlinking between two typical wire conductors 5a and 5b, and the interlinkage magnetic flux of the iron core portion is shown as 16a to 16c. For example, the sum of 16a and 16c and 16b Since the interlinkage area is the same, if the magnetic space factor of the part is the same, the unbalanced voltage due to the interlinkage magnetic flux in this part is canceled out. However, since the interlinkage magnetic fluxes 16x and 16y at the ends are strengthened without being canceled, an unbalanced voltage is generated between the strands due to the difference in the interlinkage magnetic flux at this portion.

本実施形態では、サブ鉄心部14の磁性体占積率が他の固定子鉄心3部分よりも大きいため、鎖交磁束16bは、磁性体占積率が一様である場合よりも大きくなり、端部の鎖交磁束16x、16yを相殺するように働く。そのため、不平衡電圧が減少し、循環電流損失の発生が抑制できる。   In this embodiment, since the magnetic body space factor of the sub iron core part 14 is larger than the other stator core 3 parts, the flux linkage 16b is larger than when the magnetic body space factor is uniform, It works to cancel the interlinkage magnetic fluxes 16x and 16y at the ends. As a result, the unbalanced voltage is reduced and the occurrence of circulating current loss can be suppressed.

本実施形態によれば、鉄心部分の素線導体全体で不平衡電圧が小さくなり、循環電流の発生を抑え、循環電流損失を低減することができるので、素線導体内の損失を低減するとともに、素線導体間の損失分布を低減し、電機子巻線の導体の局所加熱を抑制することができる。   According to the present embodiment, the unbalanced voltage is reduced in the whole core conductor of the iron core portion, the generation of circulating current can be suppressed, and the circulating current loss can be reduced, so that the loss in the strand conductor is reduced. The loss distribution between the wire conductors can be reduced, and the local heating of the armature winding conductor can be suppressed.

以上述べたことは、本発明の概要であるが、図1は具体的には前記素線導体の前記スロット内に格納された部分の転位角度が概ね360度にある回転電機において、素線導体の転位角度が両端部を基点として、概ね135度から225度に相当する範囲内にサブ鉄心部14を形成したものであって、該サブ鉄心部は該サブ鉄心部以外の非サブ鉄心部より平均の磁性体占積率を大きくした場合を示している。   What has been described above is the outline of the present invention. Specifically, FIG. 1 shows a wire conductor in a rotating electrical machine in which the dislocation angle of the portion housed in the slot of the wire conductor is approximately 360 degrees. The sub-core portion is formed within a range corresponding to approximately 135 degrees to 225 degrees with the dislocation angle of both ends as the base points, and the sub-core portion is more than the non-sub-core portion other than the sub-core portion. The case where the average magnetic substance space factor is enlarged is shown.

図1は見方を変えると、次のような構成とも言える。すなわち、素線導体の前記スロット内に格納された部分の転位角度が概ね360度にある回転電機において、固定子鉄心3の両端部を基点として、固定子鉄心3の軸方向全長に対してほぼ4分の1の長さからほぼ13分の1の長さの範囲内にサブ鉄心部14を形成したものであって、該サブ鉄心部14は該サブ鉄心部以外の非サブ鉄心部より平均の磁性体占積率を大きくしたものである。   In other words, FIG. 1 can be said to have the following configuration. That is, in the rotating electrical machine in which the dislocation angle of the portion housed in the slot of the wire conductor is approximately 360 degrees, the axial length of the stator core 3 is approximately the entire length in the axial direction with the both ends of the stator core 3 as the starting point. A sub-core part 14 is formed within a range of a quarter length to a quarter of a length, and the sub-core part 14 is more average than a non-sub-core part other than the sub-core part. This is a larger magnetic space factor.

図1の本実施形態のサブ鉄心部14は、例えば図2に示すように、磁性体占積率の差異、通風ダクト4の相互のピッチ、つまりサブ鉄心部14を構成しているサブ鉄心ユニットの磁性鉄板の積層厚さを、非サブ鉄心部を構成している非サブ鉄心ユニットの積層厚さを薄くしたものである。この場合は、非サブ鉄心ユニット及びサブ鉄心ユニットの磁性鉄板は、同じ厚さのものを使用している。   The sub-core part 14 of the present embodiment in FIG. 1 is, for example, as shown in FIG. 2, the difference in magnetic space factor, the mutual pitch of the ventilation duct 4, that is, the sub-core unit constituting the sub-core part 14. The thickness of the magnetic iron plate is made thinner than the thickness of the non-sub iron core unit constituting the non-sub iron core. In this case, the magnetic iron plates of the non-sub iron core unit and the sub iron core unit have the same thickness.

図3は、図1の回転電機の通風構造を説明するための図で、図の下半分に本実施形態における冷却ガス通風経路の基本構成を示したもので、図の上半分にサブ鉄心部14の構成を示している。図3は、固定子鉄心部を軸方向に複数の冷却空間に分割し、固定子鉄心3の外周側から内周側に通風ダクト4を介して送風する給気セクション4aと、固定子鉄心3の内周側から外周側に通風ダクト4を介して排出する排気セクション4bとを、軸方向に交互に配置し、磁性体占積率がそれ以外の部分よりも大きいサブ鉄心部14を含む給気セクション4bを有している。   FIG. 3 is a diagram for explaining the ventilation structure of the rotating electric machine of FIG. 1, and shows the basic configuration of the cooling gas ventilation path in the present embodiment in the lower half of the drawing, and the sub-iron core portion in the upper half of the drawing. 14 configurations are shown. FIG. 3 shows an air supply section 4 a that divides the stator core portion into a plurality of cooling spaces in the axial direction and blows air from the outer peripheral side to the inner peripheral side of the stator core 3 through the ventilation duct 4, and the stator core 3. The exhaust sections 4b that are discharged from the inner peripheral side to the outer peripheral side through the ventilation duct 4 are alternately arranged in the axial direction, and include a sub iron core part 14 having a larger magnetic space factor than the other parts. A gas section 4b is provided.

図3は、素線導体のスロット内に格納された部分の転位角度が概ね360度から450度の範囲であり、通風セクションの数を、mを1以上の整数として4m−1として、サブ鉄心部を固定子鉄心の軸方向中央部の給気セクション4bに配置したものである。   FIG. 3 shows that the dislocation angle of the portion housed in the slot of the wire conductor is in the range of approximately 360 to 450 degrees, and the number of ventilation sections is 4m-1 where m is an integer of 1 or more. The portion is arranged in the air supply section 4b at the axially central portion of the stator core.

図3は、具体的には固定子鉄心3を3つの給気セクション4aと4つの排気セクション4bに分割しており、また他の部分よりも固定子鉄心3に有する通風ダクト4の軸方向のピッチが大きいサブ鉄心部14が、軸方向中央部の給気セクション内に設けられている。   Specifically, FIG. 3 shows that the stator core 3 is divided into three air supply sections 4a and four exhaust sections 4b, and the axial direction of the ventilation duct 4 included in the stator core 3 rather than other parts. The sub iron core portion 14 having a large pitch is provided in the air supply section in the central portion in the axial direction.

図示しないクーラで冷却された低温のガス温度が供給される給気セクション4aでは、通常巻線温度が比較的低くなるが、本実施形態では、比較的巻線温度が低い中央部の給気セクション4a部で固定子鉄心3に有する通風ダクト4の軸方向のピッチが大きくなっているため、この部分の風量が抑制され、軸方向の電機子巻線の温度分布が平準化されるようにしている。   In the air supply section 4a to which a low-temperature gas temperature cooled by a cooler (not shown) is supplied, the winding temperature is usually relatively low. However, in this embodiment, the air supply section in the central portion where the winding temperature is relatively low. Since the pitch in the axial direction of the ventilation duct 4 included in the stator core 3 at the portion 4a is large, the air volume in this portion is suppressed, and the temperature distribution of the armature winding in the axial direction is leveled. Yes.

このような効果は、固定子鉄心3の軸方向中央部が給気セクションとなる場合に有効であり、通風セクションの数が、mを1以上の整数として4m−1、すなわち、3、7、11といった数の場合に、循環電流損失を抑え、より良好に固定子及び電機子巻線を冷却できる回転電機を提供できる。   Such an effect is effective when the axially central portion of the stator core 3 is an air supply section, and the number of ventilation sections is 4m−1 where m is an integer equal to or greater than 1, that is, 3, 7, In the case of a number such as 11, it is possible to provide a rotating electric machine that can suppress the circulating current loss and can cool the stator and the armature winding more favorably.

第1の実施形態の変形例について、図4から図9を参照して説明する。図4においては、電機子巻線2を構成する素線導体が450度転位されており、固定子鉄心3の軸方向両端部の鉄心長の1/8の範囲で、転位ピッチが半分になっている。同時に、固定子鉄心3の磁性体占積率が軸方向中央部のサブ鉄心部14でその他の固定子鉄心3部分よりも大となっている。図の下側に固定子鉄心3の各部分に相当する転位角度を示しているが、サブ鉄心部14は軸方向中央部の転位角度90度の範囲内にある。   A modification of the first embodiment will be described with reference to FIGS. In FIG. 4, the strand conductors constituting the armature winding 2 are displaced 450 degrees, and the dislocation pitch is halved in the range of 1/8 of the iron core length at both axial ends of the stator core 3. ing. At the same time, the space factor of the magnetic body of the stator core 3 is larger in the sub-core part 14 in the central part in the axial direction than in the other stator cores 3. In the lower side of the figure, the dislocation angle corresponding to each part of the stator core 3 is shown, but the sub iron core portion 14 is within the range of 90 ° in the axial center portion.

図4は、具体的には素線導体の前記スロット内に格納された部分の転位角度が概ね450度にある回転電機において、素線導体の転位角度が両端部を基点として、概ね190度から260度に相当する範囲内にサブ鉄心部14を形成したものであって、該サブ鉄心部は該サブ鉄心部以外の非サブ鉄心部より平均の磁性体占積率を大きくしたものである。   Specifically, FIG. 4 shows that in a rotating electrical machine in which the dislocation angle of the portion of the wire conductor housed in the slot is approximately 450 degrees, the dislocation angle of the wire conductor is approximately 190 degrees from both ends. The sub iron core portion 14 is formed within a range corresponding to 260 degrees, and the sub iron core portion has an average magnetic material space factor larger than that of the non-sub iron core portion other than the sub iron core portion.

図4の見方を変えると、素線導体の前記スロット内に格納された部分の転位角度が概ね450度にある回転電機において、固定子鉄心3の両端部を基点として、固定子鉄心3の軸方向全長に対してほぼ5分の2の長さからほぼ5分の3の長さの範囲内にサブ鉄心部14を形成したものであって、該サブ鉄心部14は該サブ鉄心部以外の非サブ鉄心部より平均の磁性体占積率を大きくしたものとも言える。 4 is changed, in the rotating electrical machine in which the dislocation angle of the portion housed in the slot of the wire conductor is approximately 450 degrees, the axis of the stator core 3 is defined with the both ends of the stator core 3 as the base points. The sub-core part 14 is formed within a range of approximately two-fifths to approximately three-fifths of the total length in the direction, and the sub-core part 14 is a part other than the sub-core part. It can be said that the average magnetic space factor is larger than that of the non-sub iron core.

図4のような構成であるので、素線5a、5b間の鎖交磁束は16dにおいて強められる。固定子鉄心3の磁性体占積率が一様な場合は鎖交磁束16a、16b、16f、16gの総和と、16c、16d、16eの総和がほぼ等しく、巻線スロット内の磁束については、相殺しあうが、端部の鎖交磁束16xと16yが相殺されず残ることとなる。ここで、鎖交磁束16dは、端部の鎖交磁束16xと16yの和とは逆位相となり、誘起電圧を打ち消すように働き、素線間の循環電流損失の発生が抑制できる。   Since it is a structure like FIG. 4, the flux linkage between strand 5a, 5b is strengthened in 16d. When the magnetic material space factor of the stator core 3 is uniform, the sum of the interlinkage magnetic fluxes 16a, 16b, 16f, 16g and the sum of the 16c, 16d, 16e are substantially equal. Although they cancel each other, the interlinkage magnetic fluxes 16x and 16y at the ends remain without being canceled. Here, the interlinkage magnetic flux 16d has an opposite phase to the sum of the interlinkage magnetic fluxes 16x and 16y at the end, functions to cancel the induced voltage, and can suppress the occurrence of circulating current loss between the strands.

図5は本発明に係る第1の実施形態の変形例2であり、図5においては、電機子巻線2を構成する素線導体が720度転位されている。固定子鉄心3の磁性体占積率は、サブ鉄心部14においてその他の固定子鉄心3部分よりも大となっている。図の下側に固定子鉄心3の各部分に相当する転位角度を示しているが、サブ鉄心部14は片方の端部から90度から270度の範囲と、450度(すなわち90+360度)から630度(すなわち270+360度)の範囲内にあり、反対側の端部からみても、同じ転位角度の範囲内にある。   FIG. 5 shows a second modification of the first embodiment according to the present invention. In FIG. 5, the wire conductors constituting the armature winding 2 are displaced by 720 degrees. The magnetic body space factor of the stator core 3 is larger in the sub-core portion 14 than in the other stator core 3 portions. The dislocation angle corresponding to each part of the stator core 3 is shown on the lower side of the figure, but the sub-core part 14 has a range of 90 to 270 degrees from one end and 450 degrees (that is, 90 + 360 degrees). It is within the range of 630 degrees (that is, 270 + 360 degrees), and is within the range of the same dislocation angle when viewed from the opposite end.

図5、具体的には、素線導体のスロット内に格納された部分の転位角度が概ね720度にある回転電機において、素線導体の転位角度が一端部を基点として、概ね135度から225度に相当する範囲内と、素線導体の転位角度が他端部を基点として、概ね135度から225度に相当する範囲内に、それぞれサブ鉄心部を形成したものであって、該サブ鉄心部は該サブ鉄心部以外の非サブ鉄心部より平均の磁性体占積率を大きくしたものである。   5, specifically, in a rotating electrical machine in which the dislocation angle of the portion housed in the slot of the strand conductor is approximately 720 degrees, the dislocation angle of the strand conductor is approximately 135 degrees to 225 based on one end portion. Each of the sub-cores is formed in a range corresponding to degrees and a range in which the dislocation angle of the wire conductor is approximately 135 degrees to 225 degrees from the other end. The portion has a larger average magnetic space factor than non-sub-core portions other than the sub-core portion.

図5の見方を変えると、素線導体のスロット内に格納された部分の転位角度が概ね720度にある回転電機において、固定子鉄心3の両端部を基点として、固定子鉄心3の軸方向全長に対してほぼ16分の3の長さからほぼ16分の5の長さの範囲内にそれぞれサブ鉄心部14を形成したものであって、該サブ鉄心部14は該サブ鉄心部以外の非サブ鉄心部より平均の磁性体占積率を大きくしたものと言える。   In other words, in the rotating electrical machine in which the dislocation angle of the portion housed in the slot of the strand conductor is approximately 720 degrees, the axial direction of the stator core 3 is based on both ends of the stator core 3. Each of the sub-core parts 14 is formed within a range of approximately 3 / 16th to approximately 5 / 16th of the total length, and the sub-core part 14 is formed of a part other than the sub-core part. It can be said that the average magnetic space factor is larger than that of the non-sub iron core.

図5の場合は、素線5a、5b間の鎖交磁束は、16bと16dが強められ、これらが端部の鎖交磁束16xと16yの和とは逆位相となり、誘起電圧を打ち消すように働き、素線間の循環電流損失の発生が抑制できる。   In the case of FIG. 5, the interlinkage magnetic flux between the strands 5a and 5b is strengthened by 16b and 16d, and these are in opposite phase to the sum of the interlinkage magnetic fluxes 16x and 16y, so that the induced voltage is canceled out. It can suppress the generation of circulating current loss between the wires.

ここまでに述べた図1の実施形態と図4及び図5の変形例では、素線導体の転位角度が360+360n度または450+360n度であり、素線導体の転位角度が両端部を基点として、90+360n度から270+360n度(nは0以上の整数)となる範囲内に、サブ鉄心部14を設けたものであるといえる。   In the embodiment shown in FIG. 1 and the modifications shown in FIGS. 4 and 5 described so far, the dislocation angle of the strand conductor is 360 + 360 n degrees or 450 + 360 n degrees, and the dislocation angle of the strand conductor is 90 + 360 n from both ends. It can be said that the sub iron core portion 14 is provided within a range of 270 + 360n degrees (n is an integer of 0 or more).

本実施形態によれば、サブ鉄心部14の鎖交磁束が、端部の鎖交磁束の和と逆位相となる場合に同様の効果が得られるので、転位角度が360度と450度の中間の角度の場合においても、同様の構成によって、循環電流損失の発生を抑制することができる。   According to the present embodiment, the same effect is obtained when the interlinkage magnetic flux of the sub iron core portion 14 is in the opposite phase to the sum of the interlinkage magnetic flux at the end, so that the dislocation angle is an intermediate between 360 degrees and 450 degrees. Even in the case of this angle, the occurrence of circulating current loss can be suppressed by the same configuration.

また、非特許文献1や特許文献3でも述べられているように、端部及びスロット内部で生じる漏れ磁束に起因する不平衡電圧による循環電流損を低減するために、転位角度を360度よりも小さくする方法もある。その角度は端部で生じる漏れ磁束に起因する誘起電圧と転位角度の変更による誘起電圧が相殺されるように決定されるが、端部で生じる漏れ磁束の大きさによってそれによる誘起電圧も異なるため、現在では数値計算等の手段で概ね計算され、一般的には320度から350度の範囲で選ばれる。この方法と本発明によるサブ鉄心部14による循環電流損低減方法を併用することも、自明の応用例として考えられる。この場合は、漏れ磁束に起因する誘起電圧、転位角度の変更による誘起電圧、本発明のサブ鉄心部14による誘起電圧の和が相殺されるように、転位角度やサブ鉄心部14の磁性体占積率を決定する必要がある。例えば、サブ鉄心部による誘起電圧を考慮しない場合に、端部漏れ磁束に起因する誘起電圧を相殺する転位角度が340度である場合に、転位角度を350度として、残りの10度分の誘起電圧をサブ鉄心部の磁性体占積率の変更によって得るようにする。   Further, as described in Non-Patent Document 1 and Patent Document 3, in order to reduce the circulating current loss due to the unbalance voltage caused by the leakage magnetic flux generated in the end portion and the slot, the dislocation angle is set to be more than 360 degrees. There is also a way to make it smaller. The angle is determined so that the induced voltage due to the leakage flux generated at the edge and the induced voltage due to the change of the dislocation angle are offset, but the induced voltage varies depending on the magnitude of the leakage flux generated at the edge. Currently, it is generally calculated by means such as numerical calculation, and is generally selected in the range of 320 to 350 degrees. A combination of this method and the circulating current loss reduction method using the sub-core part 14 according to the present invention is also considered as an obvious application example. In this case, the dislocation angle and the magnetic material occupation of the sub iron core portion 14 are canceled so that the sum of the induced voltage due to the leakage magnetic flux, the induced voltage due to the change of the dislocation angle, and the induced voltage due to the sub iron core portion 14 of the present invention is canceled out. It is necessary to determine the moment. For example, in the case where the induced voltage due to the sub iron core portion is not taken into account and the dislocation angle for canceling the induced voltage caused by the end leakage magnetic flux is 340 degrees, the dislocation angle is set to 350 degrees, and the remaining 10 degrees of induction is induced. The voltage is obtained by changing the magnetic space factor of the sub iron core.

一方、図6を用いて本発明に係る第1の実施形態の変形例3を説明する。図6は固定子端部近傍のサブ鉄心部14と通風ダクト4の構成を示したものである。サブ鉄心部14における磁性体占積率が、非サブ鉄心部の磁性体占積率に比べて大きくなるように構成されている。具体的には、サブ鉄心部14における、通風ダクト4の幅が狭くなっている。図6のような構成であるので、通風ダクト4間の鉄心部分の厚みを大きくすることなく積層できるので、鉄心を効率的に冷却することができるとともに、通風ダクト4の間の鉄心ブロックを予め構成しておく場合には、同じ構成の鉄心ブロックを用意しておけばよいので、鉄心の組立ても容易となる。   On the other hand, a third modification of the first embodiment according to the present invention will be described with reference to FIG. FIG. 6 shows the structure of the sub iron core part 14 and the ventilation duct 4 in the vicinity of the stator end part. The magnetic material space factor in the sub iron core part 14 is configured to be larger than the magnetic material space factor of the non-sub iron core part. Specifically, the width of the ventilation duct 4 in the sub iron core portion 14 is narrow. Since the structure as shown in FIG. 6 can be laminated without increasing the thickness of the iron core portion between the ventilation ducts 4, the iron core can be efficiently cooled, and the iron core block between the ventilation ducts 4 is preliminarily provided. In the case of the configuration, it is only necessary to prepare an iron core block having the same configuration, so that it is easy to assemble the iron core.

また、図7〜図8を用いて本発明に係る第1の実施形態の変形例4を説明する。図7は固定子鉄心3のサブ鉄心部14と通風ダクト4の構成を示したものであり、図8は図7のサブ鉄心部14の拡大図を示したものである。固定子鉄心3は通常図8に示すように、抜板鉄板である磁性体の表面に絶縁ワニス等の絶縁皮膜を施したものであるが、ここでは磁性体占積率の差異を、固定子鉄心3を構成する抜板鉄板の磁性体と絶縁皮膜の厚さの比の差異で構成しており、例えばサブ鉄心部14で0.5mm厚さの抜板鉄板を用い、非サブ鉄心部は0.35mm厚さの抜板鉄板を用いる。   A modification 4 of the first embodiment according to the present invention will be described with reference to FIGS. FIG. 7 shows the configuration of the sub-core part 14 and the ventilation duct 4 of the stator core 3, and FIG. 8 shows an enlarged view of the sub-core part 14 of FIG. As shown in FIG. 8, the stator iron core 3 is generally formed by providing an insulating film such as an insulating varnish on the surface of a magnetic material that is a punched steel plate. It consists of the difference in the ratio of the thickness of the magnetic material and insulating film of the punched steel plate that constitutes the iron core 3, for example, the sub iron core portion 14 uses a 0.5 mm thick punched steel plate, and the non-sub iron core portion is A 0.35 mm thick punched iron plate is used.

図7〜図8のような構成の回転電機とすれば、通風ダクト4の構成を変えることなくサブ鉄心部14を形成することができるので、通風設計の自由度が増し、より効率的な通風が可能となると同時に、絶縁皮膜の厚さを一定とすれば、磁性体占積率が小さい部分を、より薄い抜板で構成することになり、この部分の抜板面内磁束による渦電流損失を相対的に小さくできるので、温度上昇を抑えることができる。   If the rotary electric machine having the configuration as shown in FIGS. 7 to 8 is used, the sub iron core portion 14 can be formed without changing the configuration of the ventilation duct 4, so that the degree of freedom in ventilation design is increased and more efficient ventilation is possible. At the same time, if the thickness of the insulating film is kept constant, the portion with a small magnetic space factor will be composed of a thinner punched plate, and eddy current loss due to the in-plane magnetic flux of this portion Can be made relatively small, so that temperature rise can be suppressed.

次に、図9を用いて本発明に係る第1の実施形態の変形例5を説明する。図9は固定子鉄心3のサブ鉄心部14と通風ダクト4の構成を示したものである。固定子鉄心3の通風ダクト4を形成するための内側間隔片は、通常、抜板鉄板と同様の形状の間隔片取付板9に前もって取り付け、固定子鉄心3の組み立て時に所定の間隔で挿入する。図9では、サブ鉄心部14において間隔片取付板9の透磁率をそれ以外の部分よりも高くしたものであり、例えば、サブ鉄心部14で磁性体とし、それ以外の部分において非磁性体とすることで実現される。   Next, Modification 5 of the first embodiment according to the present invention will be described with reference to FIG. FIG. 9 shows a configuration of the sub iron core portion 14 of the stator iron core 3 and the ventilation duct 4. The inner spacing pieces for forming the ventilation duct 4 of the stator core 3 are usually attached in advance to the spacing piece mounting plate 9 having the same shape as the punched steel plate, and are inserted at predetermined intervals when the stator core 3 is assembled. . In FIG. 9, the magnetic permeability of the spacing piece mounting plate 9 is made higher in the sub iron core portion 14 than in the other portions. For example, the sub iron core portion 14 is a magnetic body, and the non-magnetic material is used in the other portions. It is realized by doing.

図9のような構成の回転電機とすれば、前述した変形例4と同様に、通風ダクト4の構成を変えることなくサブ鉄心部14を形成することができるので、通風設計の自由度が増し、より効率的な通風が可能となる。また、間隔片取付板9の材料を変更する以外は従来と同様の手順で固定子鉄心3を製作することができるので、製造工程を複雑化しないという利点もある。   If the rotating electrical machine has the configuration as shown in FIG. 9, the sub iron core portion 14 can be formed without changing the configuration of the ventilation duct 4 as in the above-described modification example 4. Therefore, the degree of freedom in ventilation design is increased. , More efficient ventilation is possible. Moreover, since the stator core 3 can be manufactured by the same procedure as that of the prior art except that the material of the spacing piece mounting plate 9 is changed, there is an advantage that the manufacturing process is not complicated.

(第2の実施形態)
次に、本発明に係る回転電機の第2の実施形態を図10〜図13を用いて説明する。図10は固定子鉄心3のサブ鉄心部14と通風ダクト4の構成を示したものである。固定子鉄心3の通風ダクト4を形成するための内側間隔片8は、固定子鉄心3の軸方向中央部において、中央部側のサブ鉄心部14において、磁性の内側間隔片8bを用い、それ以外の非サブ鉄心部では非磁性の内側間隔片8aを用いている。
(Second Embodiment)
Next, a second embodiment of the rotating electrical machine according to the present invention will be described with reference to FIGS. FIG. 10 shows the configuration of the sub iron core portion 14 and the ventilation duct 4 of the stator iron core 3. The inner spacing piece 8 for forming the ventilation duct 4 of the stator core 3 uses the magnetic inner spacing piece 8b in the central portion of the sub-core portion 14b at the center in the axial direction of the stator core 3. The non-sub iron core part other than the non-magnetic inner spacing piece 8a is used.

図11は通風ダクト4において、軸に垂直な断面図と共に電機子巻線2に流れる電流がつくる漏れ磁束の磁束線図を示したものである。図11では、電機子巻線2の外径側(図の下側)にスロット底の辺とほぼ平行(周方向)に、磁性の内側間隔片8cを追加している。   FIG. 11 shows a magnetic flux diagram of a leakage magnetic flux generated by a current flowing through the armature winding 2 together with a cross-sectional view perpendicular to the axis in the ventilation duct 4. In FIG. 11, a magnetic inner spacing piece 8 c is added to the outer diameter side (lower side in the figure) of the armature winding 2 so as to be substantially parallel (circumferential direction) to the side of the slot bottom.

このような構造であるので、通風ダクト4部において巻線の周りの磁気抵抗が小さくなる。巻線がスロット内に収められている鉄心部では、図24に示したように、鉄心を介した磁路となるが、通風ダクト4部においても、図11のように、磁性の間隔片が磁路となるため、サブ鉄心部14において、巻線への磁束の鎖交数が増加する。   Because of such a structure, the magnetic resistance around the winding is reduced in the ventilation duct 4 part. As shown in FIG. 24, the iron core portion in which the winding is housed in the slot becomes a magnetic path via the iron core, but the magnetic spacing piece is also present in the ventilation duct 4 portion as shown in FIG. Since it becomes a magnetic path, in the sub iron core part 14, the number of linkage of the magnetic flux to a coil | winding increases.

すなわち、第1の実施形態と同様に、サブ鉄心部14における素線導体間の鎖交磁束の増加が、端部の漏れ磁束による素線導体間の鎖交磁束を相殺するように働くので、不平衡電圧が低減され、素線間の循環電流損失の発生が抑制できる。   That is, as in the first embodiment, the increase in the interlinkage magnetic flux between the strand conductors in the sub iron core portion 14 works to cancel the interlinkage flux between the strand conductors due to the leakage flux at the end portion. The unbalanced voltage is reduced, and the occurrence of circulating current loss between the strands can be suppressed.

本実施形態では、通風ダクト4の間の鉄心ブロックの幅を変えることなく、サブ鉄心部14の素線間の鎖交磁束を増すことができるので、通風ダクト4の配置に制約を与えず、通風路を構成できる。   In the present embodiment, the interlinkage magnetic flux between the strands of the sub iron core portion 14 can be increased without changing the width of the iron core block between the ventilation ducts 4, so that the arrangement of the ventilation duct 4 is not restricted, Ventilation path can be configured.

次に、図12及び図13(図12のA−A‘線に沿って切断した断面図)を参照して本発明の第2の実施形態の変形例を説明する。図12においては、固定子鉄心3の巻線スロット部を構成するティース部に径方向に向けられた磁性の断面I型の内側間隔片8が2本設けてある。このように、軸方向中央部のサブ鉄心部14での磁性の内側間隔片8の本数を多くしておけば、通風ダクト4部の磁気抵抗が小さくなるので、サブ鉄心部14の素線間の鎖交磁束がより増加することになり、端部の漏れ磁束による素線導体間の鎖交磁束を相殺して、素線間の循環電流損失の発生が抑制できる。   Next, a modification of the second embodiment of the present invention will be described with reference to FIGS. 12 and 13 (a cross-sectional view taken along the line A-A ′ in FIG. 12). In FIG. 12, two inner spacing pieces 8 having a magnetic cross-section I-type oriented in the radial direction are provided on the tooth portion constituting the winding slot portion of the stator core 3. As described above, if the number of the magnetic inner spacing pieces 8 in the sub iron core portion 14 in the central portion in the axial direction is increased, the magnetic resistance of the ventilation duct 4 portion is reduced. This increases the interlinkage magnetic flux, cancels the interlinkage magnetic flux between the strand conductors due to the leakage magnetic flux at the end, and suppresses the occurrence of circulating current loss between the strands.

また、磁性の内側間隔片8の周方向の幅Wを増加しても、通風ダクト4部の磁気抵抗を小さくできるので同様の効果が得られる。   Further, even if the circumferential width W of the magnetic inner spacing piece 8 is increased, the same effect can be obtained because the magnetic resistance of the ventilation duct 4 can be reduced.

(第3の実施形態)
次に、本発明に係る回転電機の第3の実施形態を図14を用いて説明する。図1の固定子鉄心3の軸方向中央部に設けたサブ鉄心部14において、通風ダクト4の軸に垂直な断面図を示したものである。図14において、巻線の周りに磁性体21が設けてある。通常は鉄心スロット部では、リップルスプリングと呼ばれるような構造材を挿入して、巻線を固定するが、その代わりに磁性の板を挿入してもよい。また、鉄心スロット部の構造はそのままとして、通風ダクト4部においてのみ、巻線の周囲に磁性板21を設置し、テープ等で縛って磁性板を固定してもよい。
(Third embodiment)
Next, a third embodiment of the rotating electrical machine according to the present invention will be described with reference to FIG. FIG. 3 is a cross-sectional view perpendicular to the axis of the ventilation duct 4 in the sub iron core portion 14 provided at the axially central portion of the stator iron core 3 in FIG. 1. In FIG. 14, a magnetic body 21 is provided around the winding. Normally, in the core slot portion, a structural material called a ripple spring is inserted to fix the winding, but a magnetic plate may be inserted instead. Alternatively, the structure of the iron core slot portion may be left as it is, and only in the ventilation duct 4 portion, the magnetic plate 21 may be installed around the winding and tied with tape or the like to fix the magnetic plate.

また、図15の第3の実施形態の変形例1を示すように、巻線スロットに近い形状、例えば断面コ字型の磁性板21を用意して、通風ダクト4部に設置してもよい。   Further, as shown in Modification 1 of the third embodiment in FIG. 15, a magnetic plate 21 having a shape close to the winding slot, for example, a U-shaped cross section, may be prepared and installed in the ventilation duct 4 part. .

このような構造とすることで、通風ダクト4部において巻線の周りの磁気抵抗が小さくなり、巻線素線間の鎖交磁束数が増加し、端部の漏れ磁束による素線導体間の鎖交磁束を相殺するように働くので、不平衡電圧が低減され、素線間の循環電流損失の発生が抑制できる。   By adopting such a structure, the magnetic resistance around the winding in the ventilation duct 4 is reduced, the number of interlinkage magnetic flux between the winding strands is increased, and between the strand conductors due to the leakage flux at the end. Since it works so as to cancel the flux linkage, the unbalanced voltage is reduced and the occurrence of circulating current loss between the strands can be suppressed.

磁性板21は高磁界にさらされるので、渦電流による発熱を防止するため、例えば、フェライト材のような高抵抗材料を用いるとよい。   Since the magnetic plate 21 is exposed to a high magnetic field, a high resistance material such as a ferrite material may be used to prevent heat generation due to eddy current.

図16は本発明の第3の実施形態の変形例2を示し、磁性板21の代わりに磁性材を含む磁性テープ22を巻線に巻回している。素線間の鎖交磁束を大きくするには、巻線スロットの開口部については、磁気抵抗を大きくしておくことが望ましいので、巻線スロット開口部では非磁性(あるいは透磁率小)となるように、前もって磁性体部分が不連続となるようなテープを構成しておくとよい。磁性体部分には例えばポリエチレンナフタレートのような材料を用いてもよい。   FIG. 16 shows a second modification of the third embodiment of the present invention, in which a magnetic tape 22 containing a magnetic material is wound around a winding instead of the magnetic plate 21. In order to increase the flux linkage between the wires, it is desirable to increase the magnetic resistance at the opening of the winding slot, so that the winding slot opening is non-magnetic (or has low permeability). As described above, it is preferable to configure a tape in which the magnetic portion is discontinuous in advance. For example, a material such as polyethylene naphthalate may be used for the magnetic part.

このような構造であるので、より容易に、サブ鉄心部14の巻線素線間の鎖交磁束数を増加することができる。また、通常は巻線の周りにはコロナ放電を防ぐために導電性のコロナ防止処理を施すが、この磁気テープを巻回した外側に、コロナ防止処理を行うこともできるので、巻線を健全に保つことができる。   Since it is such a structure, the number of flux linkages between the winding strands of the sub iron core part 14 can be increased more easily. Normally, a conductive corona prevention treatment is applied around the winding to prevent corona discharge. However, the corona prevention treatment can also be performed on the outer side of the magnetic tape, so that the winding is sound. Can keep.

(第4の実施形態)
次に、本発明に係る回転電機の第4の実施形態について図17を用いて説明する。図17では、電機子巻線2は素線が360度転位されており、図28と同様に、固定子鉄心33を2つの給気セクション4aと3つの排気セクション4bに分割してある。それ以外の部分よりも通風ダクト4のピッチを大きくして磁性体の占積率大としたサブ鉄心部14が中央部の排気セクション4bに隣接する給気セクション4a内に設けてある。サブ鉄心部14は、固定子鉄心3の軸方向中央から両側に1/4以内、すなわち、1/2の長さの領域内にある。
(Fourth embodiment)
Next, a fourth embodiment of the rotating electrical machine according to the present invention will be described with reference to FIG. In FIG. 17, the armature winding 2 has the strands shifted by 360 degrees, and the stator core 33 is divided into two supply sections 4 a and three exhaust sections 4 b as in FIG. 28. A sub iron core portion 14 having a larger space factor of the magnetic material by increasing the pitch of the ventilation duct 4 than the other portions is provided in the air supply section 4a adjacent to the central exhaust section 4b. The sub-core part 14 is within ¼ on both sides from the center in the axial direction of the stator core 3, that is, in a region having a length of ½.

図17は、素線導体のスロット内に格納された部分の転位角度が360度であり、通風セクションの数を、mを1以上の整数として4m+1として、サブ鉄心部14を、固定子鉄心3の軸方向中央部に隣接する給気セクション4aにあり、かつ素線導体の転位角度が軸方向中央部から90度以内の範囲に配置したものである。   In FIG. 17, the dislocation angle of the portion stored in the slot of the wire conductor is 360 degrees, the number of ventilation sections is 4m + 1 where m is an integer equal to or greater than 1, and the sub-core portion 14 is fixed to the stator core 3. In the air supply section 4a adjacent to the central portion in the axial direction, and the dislocation angle of the wire conductor is arranged within a range of 90 degrees from the central portion in the axial direction.

具体的には固定子鉄心3を2つの給気セクション4aと3つの排気セクション4bに分割しており、また他の部分よりも固定子鉄心3に有する通風ダクト4の軸方向のピッチが大きいサブ鉄心部14が、軸方向中央部の給気セクション内に設けられている。   Specifically, the stator core 3 is divided into two air supply sections 4a and three exhaust sections 4b, and the axial pitch of the ventilation duct 4 in the stator core 3 is larger than the other parts. The iron core part 14 is provided in the air supply section in the central part in the axial direction.

図示しないクーラで冷却された低温のガス温度が供給される給気セクション4aでは、通常巻線温度が比較的低くなるが、本実施形態では、比較的巻線温度が低い中央部の給気セクション4a部で固定子鉄心3に有する通風ダクト4の軸方向のピッチが大きくなっているため、この部分の風量が抑制され、軸方向の電機子巻線の温度分布が平準化されるようにしている。   In the air supply section 4a to which a low-temperature gas temperature cooled by a cooler (not shown) is supplied, the winding temperature is usually relatively low. However, in this embodiment, the air supply section in the central portion where the winding temperature is relatively low. Since the pitch in the axial direction of the ventilation duct 4 included in the stator core 3 at the portion 4a is large, the air volume in this portion is suppressed, and the temperature distribution of the armature winding in the axial direction is leveled. Yes.

このような効果は、固定子鉄心3の軸方向中央部が給気セクションとなる場合に有効であり、通風セクションの数が、mを1以上の整数として4m+1、すなわち、5、9、13といった数の場合に、循環電流損失を抑え、より良好に固定子及び電機子巻線を冷却できる回転電機を提供できる。   Such an effect is effective when the axially central portion of the stator core 3 is an air supply section, and the number of ventilation sections is 4m + 1 where m is an integer equal to or greater than 1, that is, 5, 9, 13, etc. In the case of the number, it is possible to provide a rotating electric machine that can suppress the circulating current loss and can cool the stator and the armature winding more favorably.

このような構造であるので、巻線端部で素線間に鎖交する磁束と、サブ鉄心部14で同素線間に鎖交する磁束は、互いに打ち消すように働くので、サブ鉄心部14の磁性体によって強められた磁束が、端部漏れ磁束による不平衡電圧を相殺し、循環電流損失が低減できる。更に、サブ鉄心部14は比較的冷却条件のよい給気セクションに配置されているので、通風ダクト4のピッチを大きくして、冷媒が流れにくくても、電機子巻線の軸方向の温度分布を均一かするように働くので、局所過熱の恐れが小さくなる。   Because of such a structure, the magnetic flux interlinking between the strands at the winding end and the magnetic flux interlinking between the strands in the sub-core portion 14 work so as to cancel each other, so that the sub-core portion 14 The magnetic flux strengthened by the magnetic material cancels out the unbalanced voltage due to the end leakage magnetic flux, and the circulating current loss can be reduced. Furthermore, since the sub iron core portion 14 is disposed in the air supply section with relatively good cooling conditions, the temperature distribution in the axial direction of the armature winding is increased even if the pitch of the ventilation duct 4 is increased to make it difficult for the refrigerant to flow. Since it works to make it uniform, the risk of local overheating is reduced.

(第5の実施形態)
次に、本発明に係る回転電機の第5の実施形態を図18を用いて説明する。なお、前述した第1〜第4の実施形態と同一の部分には同一の符号を付し、重複する説明は省略する。本実施形態5は、図4における電機子巻線2を構成する素線導体が360度転位されており、固定子鉄心3の軸方向両端部の鉄心長の1/4以下の範囲のサブ鉄心部14で、通風ダクト4のピッチを小さくしており、すなわち磁性体占積率が非サブ鉄心部より小さくなっている。
(Fifth embodiment)
Next, a fifth embodiment of the rotating electrical machine according to the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the part same as the 1st-4th embodiment mentioned above, and the overlapping description is abbreviate | omitted. In the fifth embodiment, the strand conductors constituting the armature winding 2 in FIG. 4 are displaced by 360 degrees, and the sub-core in a range of ¼ or less of the core length at both axial ends of the stator core 3. The pitch of the ventilation duct 4 is made small by the part 14, ie, the magnetic body space factor is smaller than the non-sub iron core part.

具体的には、素線導体の前記スロット内に格納された部分の転位角度が概ね360+360n度から450+360n度(nは0以上の整数)である回転電機において、素線導体の転位角度が、各端部から90度以内の範囲の、電機子巻線の周方向側面に、周方向の漏れ磁束に対する磁気抵抗を増すための部材を設けたものである。   Specifically, in the rotating electrical machine in which the dislocation angle of the portion stored in the slot of the strand conductor is approximately 360 + 360 n degrees to 450 + 360 n degrees (n is an integer of 0 or more), the dislocation angle of the strand conductor is A member for increasing the magnetic resistance against the leakage flux in the circumferential direction is provided on the circumferential side surface of the armature winding within a range of 90 degrees from the end.

図19の見方を変えると、素線導体の前記スロット内に格納された部分の転位角度が概ね360+360n度から450+360n度(nは0以上の整数)である回転電機において、固定子鉄心の軸方向の両端部側であって、前記固定子鉄心の軸方向の両端面からそれぞれ前記固定子鉄心の軸方向全長のほぼ4分の1までの範囲内に、前記電機子巻線の周方向側面に、周方向の漏れ磁束に対する磁気抵抗を増すための部材を設けたものとも言える。 19 is changed, in the rotating electrical machine in which the dislocation angle of the portion housed in the slot of the wire conductor is approximately 360 + 360n degrees to 450 + 360n degrees (n is an integer of 0 or more), the axial direction of the stator core On both sides of the stator core, within a range from the both axial end faces of the stator core to approximately one quarter of the axial total length of the stator core, respectively, on the circumferential side surface of the armature winding It can also be said that a member for increasing the magnetic resistance against the leakage flux in the circumferential direction is provided.

このように構成された本実施形態においては、鎖交磁束16aと16cの和の絶対値が16bの絶対値よりも小さくなるため、鎖交磁束16aや16cと同じ向きの端部漏れ磁束による鎖交磁束16xと16yも16bによって相殺され、端部漏れ磁束による不平衡電圧が低減され循環電流損失の発生が抑制できる。   In the present embodiment configured as described above, the absolute value of the sum of the interlinkage magnetic fluxes 16a and 16c is smaller than the absolute value of 16b, and therefore the chain due to the end leakage magnetic flux in the same direction as the interlinkage magnetic fluxes 16a and 16c. The alternating magnetic fluxes 16x and 16y are also offset by 16b, the unbalanced voltage due to the end leakage magnetic flux is reduced, and the occurrence of circulating current loss can be suppressed.

図19は第5の実施形態の変形例であり、端部に設けられたサブ鉄心部14で、通風ダクトピッチを小さくする代わりに、巻線スロット幅Wtを小さくしている。   FIG. 19 shows a modification of the fifth embodiment. In the sub iron core portion 14 provided at the end portion, the winding slot width Wt is reduced instead of reducing the ventilation duct pitch.

このような構成であるので、巻線スロット部での磁気抵抗を大きくして、素線間の鎖交磁束数を小さくすると同時に、ティース幅の減少は固定子鉄心3端部に軸方向に入射する磁束によって生じる渦電流損失を小さくすることができるので、より効率が高く、鉄心端部の過熱の恐れを小さくして、健全な回転電機を提供することができる。   With this configuration, the magnetic resistance at the winding slot is increased to reduce the number of flux linkages between the strands, and at the same time, the reduction in the tooth width is incident on the end of the stator core 3 in the axial direction. Since the eddy current loss caused by the magnetic flux to be generated can be reduced, it is possible to provide a healthy rotating electric machine with higher efficiency and less fear of overheating of the core end.

(第6の実施形態)
図20及び図21は本実施形態の第6の実施形態を示し、固定子鉄心3の軸方向両端部の鉄心長の1/4以下の範囲のサブ鉄心部14に磁気抵抗を大きくする磁気シールド板23を設けている。磁気シールド板23は銅のような低抵抗材料では、導体に誘起される渦電流によって発熱が大きくなるため、電気抵抗率が概ね100μΩcm以上の金属、例えばNiCr材のようなものを用いると発熱を小さくできる。
(Sixth embodiment)
FIGS. 20 and 21 show a sixth embodiment of the present embodiment, in which the magnetic resistance is increased in the sub-core portion 14 in a range equal to or less than ¼ of the core length at both axial ends of the stator core 3. A plate 23 is provided. When the magnetic shield plate 23 is made of a low resistance material such as copper, heat generation increases due to eddy currents induced in the conductor. Therefore, when a metal having an electrical resistivity of approximately 100 μΩcm or more, such as a NiCr material, is used, heat generation is performed. Can be small.

このような構成であるので、巻線スロット部での磁気抵抗を大きくして、素線間の鎖交磁束数を小さくすることができるので、素線導体間の循環電流の発生を抑制することができる。   With this configuration, the magnetic resistance at the winding slot can be increased to reduce the number of flux linkages between the strands, thereby suppressing the generation of circulating current between the strand conductors. Can do.

図22及び図23は第6の実施形態の変形例1であり、固定子鉄心3の軸方向両端部の鉄心長の1/4以下の範囲のサブ鉄心部14にシールド巻線24を設けている。   22 and 23 show a first modification of the sixth embodiment, in which shield windings 24 are provided on the sub-core part 14 in a range equal to or less than ¼ of the iron core length at both axial ends of the stator iron core 3. Yes.

このような構成であるので、巻線スロット部での磁気抵抗を大きくして、素線間の鎖交磁束数を小さくすると同時に、このシールド巻線には電圧が誘起されるので、例えば発電所内の照明の一部などに電力を供給することもできる。   With such a configuration, the magnetic resistance in the winding slot portion is increased to reduce the number of interlinkage magnetic fluxes between the strands, and at the same time, a voltage is induced in the shield winding. It is also possible to supply power to a part of the lighting.

また、これらのシールド板やシールド巻線は、より素線間への鎖交磁束が大きい、上コイル(内径側)のみについて設置すれば、シールド板やシールド巻線の設置場所を少なくして、より効率的に、鎖交磁束数を減らすことができる。   In addition, if these shield plates and shield windings are installed only on the upper coil (inner diameter side), the interlinkage magnetic flux between the strands is larger, the installation location of the shield plates and shield windings is reduced, The number of flux linkages can be reduced more efficiently.

(変形例)
本願発明は、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は可能な限り適宜組み合わせて実施してもよく、その場合、組み合わされた効果が得られる。さらに、上記各実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。例えば実施形態に示される全構成要件から幾つかの構成要件が省略されることで発明が抽出された場合には、その抽出された発明を実施する場合には省略部分が周知慣用技術で適宜補われるものである。
(Modification)
The present invention can be variously modified without departing from the scope of the invention in the implementation stage. In addition, the embodiments may be appropriately combined as much as possible, and in that case, combined effects can be obtained. Furthermore, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, when an invention is extracted by omitting some constituent elements from all the constituent elements shown in the embodiment, when the extracted invention is implemented, the omitted part is appropriately supplemented by a well-known common technique. It is what is said.

例えば図7及び図8では、固定子鉄心3に通風ダクト4があるものを示しているが、小型の回転電機にあっては通風ダクト4がないものでも同様な作用効果が得られる。   For example, FIG. 7 and FIG. 8 show that the stator core 3 has the ventilation duct 4, but the same effect can be obtained even in a small rotating electrical machine without the ventilation duct 4.

本発明に係る第1の実施形態の回転電機を示す基本構成図。The basic block diagram which shows the rotary electric machine of 1st Embodiment which concerns on this invention. 本発明に係る第1の実施形態における固定子鉄心を示す基本構成図。The basic block diagram which shows the stator core in 1st Embodiment which concerns on this invention. 本発明に係る第1の実施形態の回転電機の通風構造を示す基本構成図。The basic block diagram which shows the ventilation structure of the rotary electric machine of 1st Embodiment which concerns on this invention. 本発明に係る第1の実施形態の変形例1における固定子を示す基本構成図。The basic block diagram which shows the stator in the modification 1 of 1st Embodiment which concerns on this invention. 本発明に係る第1の実施形態の変形例2における固定子を示す基本構成図。The basic block diagram which shows the stator in the modification 2 of 1st Embodiment which concerns on this invention. 本発明に係る第1の実施形態の変形例3における固定子鉄心を示す基本構成図。The basic block diagram which shows the stator core in the modification 3 of 1st Embodiment which concerns on this invention. 本発明に係る第1の実施形態の変形例4における固定子鉄心を示す基本構成図。The basic block diagram which shows the stator core in the modification 4 of 1st Embodiment which concerns on this invention. 本発明に係る第1の実施形態の変形例4における抜板鉄心を示す基本構成図。The basic block diagram which shows the punched-sheet iron core in the modification 4 of 1st Embodiment which concerns on this invention. 本発明に係る第3の実施形態の変形例5における固定子鉄心を示す基本構成図。The basic block diagram which shows the stator core in the modification 5 of the 3rd Embodiment which concerns on this invention. 本発明に係る第2の実施形態における固定子鉄心を示す基本構成図The basic block diagram which shows the stator core in 2nd Embodiment which concerns on this invention 本発明に係る第2の実施形態における電機子巻線断面図と漏れ磁束を示す基本構成図。The basic block diagram which shows the armature winding sectional drawing and leakage magnetic flux in 2nd Embodiment which concerns on this invention. 本発明に係る第2の実施形態の変形例における固定子鉄心の断面図。Sectional drawing of the stator core in the modification of 2nd Embodiment which concerns on this invention. 本発明に係る第2の実施形態の変形例において図12のA−A’部の断面図。Sectional drawing of the A-A 'part of FIG. 12 in the modification of 2nd Embodiment based on this invention. 本発明に係る第3の実施形態における固定子鉄心の断面図。Sectional drawing of the stator core in 3rd Embodiment which concerns on this invention. 本発明に係る第3の実施形態の変形例1における固定子鉄心の断面図。Sectional drawing of the stator core in the modification 1 of the 3rd Embodiment which concerns on this invention. 本発明に係る第3の実施形態の変形例1における固定子鉄心の断面図。Sectional drawing of the stator core in the modification 1 of the 3rd Embodiment which concerns on this invention. 本発明に係る第4の実施形態の回転電機の通風構造を示す基本構成図。The basic block diagram which shows the ventilation structure of the rotary electric machine of 4th Embodiment which concerns on this invention. 本発明に係る第5の実施形態の回転電機を示す基本構成図。The basic block diagram which shows the rotary electric machine of 5th Embodiment which concerns on this invention. 本発明に係る第5の実施形態の変形例における固定子鉄心の断面図。Sectional drawing of the stator core in the modification of 5th Embodiment which concerns on this invention. 本発明に係る第6の実施形態における固定子鉄心の断面図。Sectional drawing of the stator core in 6th Embodiment which concerns on this invention. 本発明に係る第6の実施形態の電機子巻線を示す基本構成図。The basic block diagram which shows the armature winding of 6th Embodiment which concerns on this invention. 本発明に係る第7の実施形態における固定子鉄心の断面図。Sectional drawing of the stator core in 7th Embodiment which concerns on this invention. 本発明に係る第7の実施形態の電機子巻線を示す基本構成図。The basic block diagram which shows the armature winding of 7th Embodiment which concerns on this invention. 回転電機の電機子巻線断面図と漏れ磁束を示す基本構成図。FIG. 3 is a cross-sectional view of an armature winding of a rotating electric machine and a basic configuration diagram showing leakage flux. 従来の回転電機を示す基本構成図。The basic block diagram which shows the conventional rotary electric machine. 従来の回転電機を示す基本構成図(360度転位)。The basic block diagram which shows the conventional rotary electric machine (360 degree shift). 従来の回転電機を示す基本構成図(540度転位)。The basic block diagram which shows the conventional rotary electric machine (540 degree shift). 従来の回転電機を示す基本構成図(450度転位)。The basic block diagram (450 degree transposition) which shows the conventional rotary electric machine. 従来の回転電機における通風ダクトピッチの分布例を示す基本構成図。The basic block diagram which shows the example of distribution of the ventilation duct pitch in the conventional rotary electric machine.

符号の説明Explanation of symbols

1…回転子、2c…上コイル、2d…下コイル、2…電機子巻線、2b…電機子巻線端部、2b…端部巻線、22…磁性テープ、23…磁気シールド板、4…通風ダクト、4b…排気セクション、4a…給気セクション、4b…給気セクション、5a、5b、5…素線、8…内側間隔片、8b…内側間隔片、8a…内側間隔片、8c…内側間隔片、9…間隔片取付板、10…巻線スロット、11…ファン、11…回転子ファン、12…水冷式ガスクーラ、14…サブ鉄心部、16x.16y…磁束、16a…鎖交磁束、16a.16b…鎖交磁束、16x.16y…鎖交磁束、16b…鎖交磁束、16x…鎖交磁束、16d…鎖交磁束、19…エアギャップ、19…直接エアギャップ、19…エアギャップ部、21…磁性体、21…磁性板、24…磁気シールド巻線。   DESCRIPTION OF SYMBOLS 1 ... Rotor, 2c ... Upper coil, 2d ... Lower coil, 2 ... Armature winding, 2b ... Armature winding edge part, 2b ... End part winding, 22 ... Magnetic tape, 23 ... Magnetic shield board, 4 ... Ventilation duct, 4b ... Exhaust section, 4a ... Supply section, 4b ... Supply section, 5a, 5b, 5 ... Wire, 8 ... Inner spacing piece, 8b ... Inner spacing piece, 8a ... Inner spacing piece, 8c ... Inner spacing piece, 9 ... spacing piece mounting plate, 10 ... winding slot, 11 ... fan, 11 ... rotor fan, 12 ... water-cooled gas cooler, 14 ... sub iron core, 16x. 16y ... Magnetic flux, 16a ... Interlinkage magnetic flux, 16a. 16b ... Interlinkage magnetic flux, 16x. 16y ... Interlinkage magnetic flux, 16b ... Interlinkage magnetic flux, 16x ... Interlinkage magnetic flux, 16d ... Interlinkage magnetic flux, 19 ... Air gap, 19 ... Direct air gap, 19 ... Air gap portion, 21 ... Magnetic body, 21 ... Magnetic plate 24: Magnetic shield winding.

Claims (23)

回転軸が回転可能に支持された回転子と、
前記回転子の回転軸の軸心に沿うように延在する複数の巻線スロットを設け、かつ径方向に複数の通風ダクトを設けた固定子鉄心と、
前記巻線スロット内に格納され、かつ積み重なる多数の素線導体で構成される電機子巻線を有し、前記素線導体は、前記巻線スロット内に格納された部分で、前記巻線スロットの延在方向に向かって連続的に捩られて転位するように形成され、前記固定子鉄心の両側面より外側に突き出る前記電機子巻線の両側部では前記素線導体を短絡させており、前記素線導体の前記スロット内に格納された部分の転位角度が概ね360+360n度から450+360n度の範囲(nは0以上の整数)にある回転電機において、
前記素線導体の転位角度が両端部を基点として、90+360n度から270+360n度(nは0以上の整数)となる範囲内にサブ鉄心部を形成したものであって、該サブ鉄心部は該サブ鉄心部以外の非サブ鉄心部より平均の磁性体占積率を大きくしたことを特徴とする回転電機。
A rotor whose rotation shaft is rotatably supported;
A stator core provided with a plurality of winding slots extending along the axis of the rotating shaft of the rotor, and provided with a plurality of ventilation ducts in the radial direction;
The armature winding is composed of a number of wire conductors stored and stacked in the winding slot, and the wire conductor is a portion stored in the winding slot, and the winding slot Is formed so as to be continuously twisted and dislocated in the extending direction of the armature winding, and the wire conductors are short-circuited at both side portions of the armature winding protruding outward from both side surfaces of the stator core, In the rotating electrical machine in which the dislocation angle of the portion housed in the slot of the wire conductor is in a range of approximately 360 + 360 n degrees to 450 + 360 n degrees (n is an integer of 0 or more)
The sub-core portion is formed within a range in which the dislocation angle of the wire conductor is 90 + 360 n degrees to 270 + 360 n degrees (n is an integer of 0 or more) with both ends as base points. A rotating electrical machine characterized by having an average magnetic material space factor larger than that of a non-sub core part other than the iron core part.
回転軸が回転可能に支持された回転子と、
前記回転子の回転軸の軸心に沿うように延在する複数の巻線スロットを設け、かつ径方向に複数の通風ダクトを設けた固定子鉄心と、
前記巻線スロット内に格納され、かつ積み重なる多数の素線導体で構成される電機子巻線を有し、前記素線導体は、前記巻線スロット内に格納された部分で、前記巻線スロットの延在方向に向かって連続的に捩られて転位するように形成され、前記固定子鉄心の両側面より外側に突き出る前記電機子巻線の両側部では前記素線導体を短絡させており、前記素線導体の前記スロット内に格納された部分の転位角度が概ね360度にある回転電機において、
前記素線導体の転位角度が両端部を基点として、概ね135度から225度に相当する範囲内にサブ鉄心部を形成したものであって、該サブ鉄心部は該サブ鉄心部以外の非サブ鉄心部より平均の磁性体占積率を大きくしたことを特徴とする回転電機。
A rotor whose rotation shaft is rotatably supported;
A stator core provided with a plurality of winding slots extending along the axis of the rotating shaft of the rotor, and provided with a plurality of ventilation ducts in the radial direction;
The armature winding is composed of a number of wire conductors stored and stacked in the winding slot, and the wire conductor is a portion stored in the winding slot, and the winding slot Is formed so as to be continuously twisted and dislocated in the extending direction of the armature winding, and the wire conductors are short-circuited at both side portions of the armature winding protruding outward from both side surfaces of the stator core, In the rotating electrical machine in which the dislocation angle of the portion housed in the slot of the wire conductor is approximately 360 degrees,
A sub-core part is formed in a range where the dislocation angle of the wire conductor is approximately 135 degrees to 225 degrees with both ends as the base points, and the sub-core part is a non-sub core other than the sub-core part. A rotating electrical machine characterized by having an average magnetic material space factor larger than that of an iron core.
回転軸が回転可能に支持された回転子と、
前記回転子の回転軸の軸心に沿うように延在する複数の巻線スロットを設け、かつ径方向に複数の通風ダクトを設けた固定子鉄心と、
前記巻線スロット内に格納され、かつ積み重なる多数の素線導体で構成される電機子巻線を有し、前記素線導体は、前記巻線スロット内に格納された部分で、前記巻線スロットの延在方向に向かって連続的に捩られて転位するように形成され、前記固定子鉄心の両側面より外側に突き出る前記電機子巻線の両側部では前記素線導体を短絡させており、前記素線導体の前記スロット内に格納された部分の転位角度が概ね360度にある回転電機において、
前記固定子鉄心の両端部を基点として、前記固定子鉄心の軸方向全長に対してほぼ4分の1の長さからほぼ13分の1の長さの範囲内にサブ鉄心部を形成したものであって、該サブ鉄心部は該サブ鉄心部以外の非サブ鉄心部より平均の磁性体占積率を大きくしたことを特徴とする回転電機。
A rotor whose rotation shaft is rotatably supported;
A stator core provided with a plurality of winding slots extending along the axis of the rotating shaft of the rotor, and provided with a plurality of ventilation ducts in the radial direction;
The armature winding is composed of a number of wire conductors stored and stacked in the winding slot, and the wire conductor is a portion stored in the winding slot, and the winding slot Is formed so as to be continuously twisted and dislocated in the extending direction of the armature winding, and the wire conductors are short-circuited at both side portions of the armature winding protruding outward from both side surfaces of the stator core, In the rotating electrical machine in which the dislocation angle of the portion housed in the slot of the wire conductor is approximately 360 degrees,
A sub-core part is formed within a range from about one quarter to about one-third of the axial length of the stator core with both ends of the stator core as a starting point. The rotating iron machine is characterized in that the sub iron core portion has a larger average magnetic material space factor than non-sub iron core portions other than the sub iron core portion.
回転軸が回転可能に支持された回転子と、
前記回転子の回転軸の軸心に沿うように延在する複数の巻線スロットを設け、かつ径方向に複数の通風ダクトを設けた固定子鉄心と、
前記巻線スロット内に格納され、かつ積み重なる多数の素線導体で構成される電機子巻線を有し、前記素線導体は、前記巻線スロット内に格納された部分で、前記巻線スロットの延在方向に向かって連続的に捩られて転位するように形成され、前記固定子鉄心の両側面より外側に突き出る前記電機子巻線の両側部では前記素線導体を短絡させており、前記素線導体の前記スロット内に格納された部分の転位角度が概ね450度にある回転電機において、
前記素線導体の転位角度が両端部を基点として、概ね190度から260度に相当する範囲内にサブ鉄心部を形成したものであって、該サブ鉄心部は該サブ鉄心部以外の非サブ鉄心部より平均の磁性体占積率を大きくしたことを特徴とする回転電機。
A rotor whose rotation shaft is rotatably supported;
A stator core provided with a plurality of winding slots extending along the axis of the rotating shaft of the rotor, and provided with a plurality of ventilation ducts in the radial direction;
The armature winding is composed of a number of wire conductors stored and stacked in the winding slot, and the wire conductor is a portion stored in the winding slot, and the winding slot Is formed so as to be continuously twisted and dislocated in the extending direction of the armature winding, and the wire conductors are short-circuited at both side portions of the armature winding protruding outward from both side surfaces of the stator core, In the rotating electrical machine in which the dislocation angle of the portion housed in the slot of the wire conductor is approximately 450 degrees,
A sub-core portion is formed in a range where the dislocation angle of the wire conductor is approximately 190 degrees to 260 degrees with respect to both end portions, and the sub-core portion is a non-sub core portion other than the sub-core portion. A rotating electrical machine characterized by having an average magnetic material space factor larger than that of an iron core.
回転軸が回転可能に支持された回転子と、
前記回転子の回転軸の軸心に沿うように延在する複数の巻線スロットを設け、かつ径方向に複数の通風ダクトを設けた固定子鉄心と、
前記巻線スロット内に格納され、かつ積み重なる多数の素線導体で構成される電機子巻線を有し、前記素線導体は、前記巻線スロット内に格納された部分で、前記巻線スロットの延在方向に向かって連続的に捩られて転位するように形成され、前記固定子鉄心の両側面より外側に突き出る前記電機子巻線の両側部では前記素線導体を短絡させており、前記素線導体の前記スロット内に格納された部分の転位角度が概ね450度にある回転電機において、
前記固定子鉄心の両端部を基点として、前記固定子鉄心の軸方向全長に対してほぼ5分の2の長さからほぼ5分の3の長さの範囲内にサブ鉄心部を形成したものであって、該サブ鉄心部は該サブ鉄心部以外の非サブ鉄心部より平均の磁性体占積率を大きくしたことを特徴とする回転電機。
A rotor whose rotation shaft is rotatably supported;
A stator core provided with a plurality of winding slots extending along the axis of the rotating shaft of the rotor, and provided with a plurality of ventilation ducts in the radial direction;
The armature winding is composed of a number of wire conductors stored and stacked in the winding slot, and the wire conductor is a portion stored in the winding slot, and the winding slot Is formed so as to be continuously twisted and dislocated in the extending direction of the armature winding, and the wire conductors are short-circuited at both side portions of the armature winding protruding outward from both side surfaces of the stator core, In the rotating electrical machine in which the dislocation angle of the portion housed in the slot of the wire conductor is approximately 450 degrees,
A sub-core part is formed in a range from about two-fifths to about three-fifths of the total length in the axial direction of the stator core, starting from both ends of the stator core. The rotating iron machine is characterized in that the sub iron core portion has a larger average magnetic material space factor than non-sub iron core portions other than the sub iron core portion.
回転軸が回転可能に支持された回転子と、
前記回転子の回転軸の軸心に沿うように延在する複数の巻線スロットを設け、かつ径方向に複数の通風ダクトを設けた固定子鉄心と、
前記巻線スロット内に格納され、かつ積み重なる多数の素線導体で構成される電機子巻線を有し、前記素線導体は、前記巻線スロット内に格納された部分で、前記巻線スロットの延在方向に向かって連続的に捩られて転位するように形成され、前記固定子鉄心の両側面より外側に突き出る前記電機子巻線の両側部では前記素線導体を短絡させており、前記素線導体の前記スロット内に格納された部分の転位角度が概ね720度にある回転電機において、
前記素線導体の転位角度が一端部を基点として、概ね135度から225度に相当する範囲内と、前記素線導体の転位角度が他端部を基点として、概ね135度から225度に相当する範囲内に、それぞれサブ鉄心部を形成したものであって、該サブ鉄心部は該サブ鉄心部以外の非サブ鉄心部より平均の磁性体占積率を大きくしたことを特徴とする回転電機。
A rotor whose rotation shaft is rotatably supported;
A stator core provided with a plurality of winding slots extending along the axis of the rotating shaft of the rotor, and provided with a plurality of ventilation ducts in the radial direction;
The armature winding is composed of a number of wire conductors stored and stacked in the winding slot, and the wire conductor is a portion stored in the winding slot, and the winding slot Is formed so as to be continuously twisted and dislocated in the extending direction of the armature winding, and the wire conductors are short-circuited at both side portions of the armature winding protruding outward from both side surfaces of the stator core, In the rotating electrical machine in which the dislocation angle of the portion housed in the slot of the wire conductor is approximately 720 degrees,
The dislocation angle of the wire conductor is within a range corresponding to approximately 135 degrees to 225 degrees with one end as a base point, and the dislocation angle of the wire conductor is approximately 135 degrees to 225 degrees with the other end portion as a base point. A rotating electrical machine characterized in that each sub-core portion is formed within a range to be processed, and the sub-core portion has a larger average magnetic space factor than non-sub-core portions other than the sub-core portion. .
回転軸が回転可能に支持された回転子と、
前記回転子の回転軸の軸心に沿うように延在する複数の巻線スロットを設け、かつ径方向に複数の通風ダクトを設けた固定子鉄心と、
前記巻線スロット内に格納され、かつ積み重なる多数の素線導体で構成される電機子巻線を有し、前記素線導体は、前記巻線スロット内に格納された部分で、前記巻線スロットの延在方向に向かって連続的に捩られて転位するように形成され、前記固定子鉄心の両側面より外側に突き出る前記電機子巻線の両側部では前記素線導体を短絡させており、前記素線導体の前記スロット内に格納された部分の転位角度が概ね720度にある回転電機において、
前記固定子鉄心の両端部を基点として、前記固定子鉄心の軸方向全長に対してほぼ16分の3の長さからほぼ16分の5の長さの範囲内にそれぞれサブ鉄心部を形成したものであって、該サブ鉄心部は該サブ鉄心部以外の非サブ鉄心部より平均の磁性体占積率を大きくしたことを特徴とする回転電機。
A rotor whose rotation shaft is rotatably supported;
A stator core provided with a plurality of winding slots extending along the axis of the rotating shaft of the rotor, and provided with a plurality of ventilation ducts in the radial direction;
The armature winding is composed of a number of wire conductors stored and stacked in the winding slot, and the wire conductor is a portion stored in the winding slot, and the winding slot Is formed so as to be continuously twisted and dislocated in the extending direction of the armature winding, and the wire conductors are short-circuited at both side portions of the armature winding protruding outward from both side surfaces of the stator core, In the rotating electrical machine in which the dislocation angle of the portion housed in the slot of the wire conductor is approximately 720 degrees,
Sub-core portions are formed in a range of approximately 3 / 16th to approximately 5 / 16th of the length in the axial direction of the stator core, using both ends of the stator core as a base point. A rotating electric machine characterized in that the sub iron core portion has an average magnetic material space factor larger than that of a non-sub iron core portion other than the sub iron core portion.
回転軸が回転可能に支持された回転子と、
前記回転子の回転軸の軸心に沿うように延在する複数の巻線スロットを設け、かつ径方向に複数の通風ダクトを設けた固定子鉄心と、
前記巻線スロット内に格納され、かつ積み重なる多数の素線導体で構成される電機子巻線を有し、前記素線導体は、前記巻線スロット内に格納された部分で、前記巻線スロットの延在方向に向かって連続的に捩られて転位するように形成され、前記固定子鉄心の両側面より外側に突き出る前記電機子巻線の両側部では前記素線導体を短絡させており、前記素線導体の前記スロット内に格納された部分の転位角度が概ね360度である回転電機において、
前記素線導体の転位角度が、各端部から90度以内の範囲内に、サブ鉄心部を形成したものであって、該サブ鉄心部は該サブ鉄心部以外の非サブ鉄心部より平均の磁性体占積率を小さくしたことを特徴とする回転電機。
A rotor whose rotation shaft is rotatably supported;
A stator core provided with a plurality of winding slots extending along the axis of the rotating shaft of the rotor, and provided with a plurality of ventilation ducts in the radial direction;
The armature winding is composed of a number of wire conductors stored and stacked in the winding slot, and the wire conductor is a portion stored in the winding slot, and the winding slot Is formed so as to be continuously twisted and dislocated in the extending direction of the armature winding, and the wire conductors are short-circuited at both side portions of the armature winding protruding outward from both side surfaces of the stator core, In the rotating electrical machine in which the dislocation angle of the portion housed in the slot of the wire conductor is approximately 360 degrees,
A sub-core portion is formed within a range where the dislocation angle of the wire conductor is within 90 degrees from each end, and the sub-core portion is more average than non-sub-core portions other than the sub-core portion. A rotating electrical machine characterized by a reduced magnetic space factor.
回転軸が回転可能に支持された回転子と、
前記回転子の回転軸の軸心に沿うように延在する複数の巻線スロットを設け、かつ径方向に複数の通風ダクトを設けた固定子鉄心と、
前記巻線スロット内に格納され、かつ積み重なる多数の素線導体で構成される電機子巻線を有し、前記素線導体は、前記巻線スロット内に格納された部分で、前記巻線スロットの延在方向に向かって連続的に捩られて転位するように形成され、前記固定子鉄心の両側面より外側に突き出る前記電機子巻線の両側部では前記素線導体を短絡させており、前記素線導体の前記スロット内に格納された部分の転位角度が概ね360度である回転電機において、
前記固定子鉄心の両端部を基点として、前記固定子鉄心の軸方向全長に対してほぼ4分の1までの範囲内にそれぞれサブ鉄心部を形成したものであって、該サブ鉄心部は該サブ鉄心部以外の非サブ鉄心部より平均の磁性体占積率を小さくしたことを特徴とする回転電機。
A rotor whose rotation shaft is rotatably supported;
A stator core provided with a plurality of winding slots extending along the axis of the rotating shaft of the rotor, and provided with a plurality of ventilation ducts in the radial direction;
The armature winding is composed of a number of wire conductors stored and stacked in the winding slot, and the wire conductor is a portion stored in the winding slot, and the winding slot Is formed so as to be continuously twisted and dislocated in the extending direction of the armature winding, and the wire conductors are short-circuited at both side portions of the armature winding protruding outward from both side surfaces of the stator core, In the rotating electrical machine in which the dislocation angle of the portion housed in the slot of the wire conductor is approximately 360 degrees,
Sub-core portions are formed within a range of up to about a quarter of the axial total length of the stator core, with both end portions of the stator core as base points. An electric rotating machine characterized in that an average magnetic material space factor is made smaller than that of a non-sub iron core part other than the sub iron core part.
前記固定子鉄心に、軸方向の所望の位置でかつ半径方向に複数の通風ダクトを備えたものにあっては、前記磁性体占積率の差異を、前記通風ダクト相互のピッチ又は前記通風ダクトの軸方向厚さで構成したことを特徴とする請求項1〜9のいずれか一つに記載の回転電機。    In the case where the stator core is provided with a plurality of ventilation ducts at desired positions in the axial direction and in the radial direction, the difference in the magnetic material space factor is determined by the pitch between the ventilation ducts or the ventilation duct. The rotating electrical machine according to any one of claims 1 to 9, wherein the rotating electrical machine has a thickness in the axial direction. 前記固定子鉄心が、複数の磁性板を積層してなる場合には、前記磁性体占積率の差異を、前記固定子鉄心を構成する複数の磁性板の厚さと、この各磁性板の周囲に配設された絶縁皮膜の厚さの比で構成したことを特徴とする請求項1〜9のいずれか一つに記載の回転電機。   When the stator core is formed by laminating a plurality of magnetic plates, the difference in the space factor of the magnetic material is determined by the thickness of the plurality of magnetic plates constituting the stator core and the circumference of each magnetic plate. The rotating electrical machine according to any one of claims 1 to 9, wherein the rotating electrical machine is configured with a ratio of thicknesses of insulating films disposed on the rotating electrical machine. 前記磁性体占積率の差異を、前記固定子鉄心の前記通風ダクトに設置する内側間隔片取付板又は前記通風ダクトに設置する内側間隔片の透磁率の差異で構成したことを特徴とする請求項1〜9のいずれか一つに記載の回転電機。   The difference in the space factor of the magnetic material is configured by a difference in magnetic permeability between an inner spacing piece mounting plate installed in the ventilation duct of the stator core or an inner spacing piece installed in the ventilation duct. Item 10. The rotating electrical machine according to any one of Items 1 to 9. 前記磁性体占積率の差異を、前記固定子鉄心の前記通風ダクトに設置する磁性内側間隔片の周方向幅又は前記磁性内側間隔片の本数の差異によって構成したことを特徴とする請求項1〜9のいずれか一つに記載の回転電機。   2. The difference in the space factor of the magnetic material is configured by a difference in circumferential width of magnetic inner spacing pieces installed in the ventilation duct of the stator core or the number of magnetic inner spacing pieces. The rotary electric machine as described in any one of -9. 前記磁性内側間隔片をI形の形状としたことを特徴とする請求項13に記載の回転電機。   The rotating electrical machine according to claim 13, wherein the magnetic inner spacing piece has an I shape. 前記サブ鉄心部の磁性体占積率が前記非サブ鉄心部よりも大きく、前記巻線スロットの外径側に巻線スロット底の辺とほぼ平行になるように磁性内側間隔片を設置したことを特徴とする請求項1〜9のいずれか一つに記載の回転電機。   The magnetic inner space piece is installed on the outer diameter side of the winding slot so as to be substantially parallel to the side of the bottom of the winding slot, and the magnetic material space factor of the sub core is larger than that of the non-sub core. The rotating electrical machine according to any one of claims 1 to 9. 前記サブ鉄心部において、前記電機子巻線の内径側を除く周囲又は前記電機子巻線の少なくとも内径側を除く面或いは前記電機子巻線の周囲面のうち内径側を除く面に対して、磁束を増やすための板材、テープ、粉末のいずれかからなる磁性材を設置したことを特徴とする請求項1〜9のいずれか一つに記載の回転電機。   In the sub iron core part, with respect to the surface excluding the inner diameter side of the armature winding or the surface excluding at least the inner diameter side of the armature winding or the surface excluding the inner diameter side of the peripheral surface of the armature winding, The rotating electrical machine according to any one of claims 1 to 9, wherein a magnetic material made of any one of a plate material, a tape, and powder for increasing magnetic flux is installed. 前記固定子鉄心部を軸方向に複数の冷却空間に分割し、前記固定子鉄心の外周側から内周側に通風ダクトを介して送風する給気セクションと、前記固定子鉄心の内周側から外周側に前記通風ダクトを介して排出する排気セクションとを、軸方向に交互に配置し、前記
磁性体占積率がそれ以外の部分よりも大きい前記サブ鉄心部を含む給気セクションを有することを特徴とする請求項1から16のいずれか一つに記載の回転電機。
An air supply section that divides the stator core portion into a plurality of cooling spaces in the axial direction and blows air from the outer peripheral side of the stator core to the inner peripheral side through a ventilation duct, and from the inner peripheral side of the stator core Exhaust sections that are exhausted through the ventilation duct on the outer peripheral side are alternately arranged in the axial direction, and have an air supply section that includes the sub iron core portion in which the magnetic material space factor is larger than the other portions. The rotating electrical machine according to any one of claims 1 to 16, wherein
前記素線導体の前記スロット内に格納された部分の転位角度が概ね360度から450度の範囲であり、前記通風セクションの数を、mを1以上の整数として4m−1として、前記サブ鉄心部を前記固定子鉄心の軸方向中央部の給気セクション部に配置したことを特徴とする請求項17記載の回転電機。   The dislocation angle of the portion stored in the slot of the wire conductor is in a range of approximately 360 to 450 degrees, and the number of the ventilation sections is 4m-1 where m is an integer equal to or greater than 1, and the sub iron core The rotating electrical machine according to claim 17, wherein the portion is arranged in an air supply section at an axially central portion of the stator core. 前記通風セクションの数を、mを1以上の整数として4m+1として、前記サブ鉄心部を、前記固定子鉄心の軸方向中央部に隣接する給気セクション部にあり、かつ前記素線導体の転位角度が軸方向中央部から90度以内の範囲に配置したことを特徴とする請求項17記載の回転電機。   The number of the ventilation sections is 4m + 1, where m is an integer equal to or greater than 1, the sub-core portion is in the air supply section adjacent to the axial center of the stator core, and the dislocation angle of the strand conductor 18. The rotating electrical machine according to claim 17, wherein the rotating electric machine is disposed within a range of 90 degrees or less from an axially central portion. 前記磁性体占積率の差異を、前記固定子鉄心のティース幅を小さくすることによって構成したことを特徴とする請求項8又は9に記載の回転電機。   The rotating electrical machine according to claim 8 or 9, wherein the difference in the magnetic material space factor is configured by reducing a tooth width of the stator core. 回転軸が回転可能に支持された回転子と、
前記回転子の回転軸の軸心に沿うように延在する複数の巻線スロットを設け、かつ径方向に複数の通風ダクトを設けた固定子鉄心と。
前記巻線スロット内に格納され、かつ積み重なる多数の素線導体で構成される電機子巻線を有し、前記素線導体は、前記巻線スロット内に格納された部分で、前記巻線スロットの延在方向に向かって連続的に捩られて転位するように形成され、前記固定子鉄心の両側面より外側に突き出る前記電機子巻線の両側部では前記素線導体を短絡させており、前記素線導体の前記スロット内に格納された部分の転位角度が概ね360+360n度から450+360n度(nは0以上の整数)である回転電機において、
前記素線導体の転位角度が、各端部から90度以内の範囲の、前記電機子巻線の周方向側面に、周方向の漏れ磁束に対する磁気抵抗を増すための部材を設けたことを特徴とする回転電機。
A rotor whose rotation shaft is rotatably supported;
A stator core provided with a plurality of winding slots extending along the axis of the rotation axis of the rotor and provided with a plurality of ventilation ducts in the radial direction;
The armature winding is composed of a number of wire conductors stored and stacked in the winding slot, and the wire conductor is a portion stored in the winding slot, and the winding slot Is formed so as to be continuously twisted and dislocated in the extending direction of the armature winding, and the wire conductors are short-circuited at both side portions of the armature winding protruding outward from both side surfaces of the stator core, In the rotating electrical machine in which the dislocation angle of the portion stored in the slot of the wire conductor is approximately 360 + 360 n degrees to 450 + 360 n degrees (n is an integer of 0 or more),
A member for increasing the magnetic resistance against circumferential leakage magnetic flux is provided on the circumferential side surface of the armature winding in a range where the dislocation angle of the strand conductor is within 90 degrees from each end. Rotating electric machine.
回転軸が回転可能に支持された回転子と、
前記回転子の回転軸の軸心に沿うように延在する複数の巻線スロットを設け、かつ径方向に複数の通風ダクトを設けた固定子鉄心と。
前記巻線スロット内に格納され、かつ積み重なる多数の素線導体で構成される電機子巻線を有し、前記素線導体は、前記巻線スロット内に格納された部分で、前記巻線スロットの延在方向に向かって連続的に捩られて転位するように形成され、前記固定子鉄心の両側面より外側に突き出る前記電機子巻線の両側部では前記素線導体を短絡させており、前記素線導体の前記スロット内に格納された部分の転位角度が概ね360+360n度から450+360n度(nは0以上の整数)である回転電機において、
前記固定子鉄心の軸方向の両端部側であって、前記固定子鉄心の軸方向の両端面からそれぞれ前記固定子鉄心の軸方向全長のほぼ4分の1までの範囲内に、前記電機子巻線の周方向側面に、周方向の漏れ磁束に対する磁気抵抗を増すための部材を設けたことを特徴とする回転電機。
A rotor whose rotation shaft is rotatably supported;
A stator core provided with a plurality of winding slots extending along the axis of the rotation axis of the rotor and provided with a plurality of ventilation ducts in the radial direction;
The armature winding is composed of a number of wire conductors stored and stacked in the winding slot, and the wire conductor is a portion stored in the winding slot, and the winding slot Is formed so as to be continuously twisted and dislocated in the extending direction of the armature winding, and the wire conductors are short-circuited at both side portions of the armature winding protruding outward from both side surfaces of the stator core, In the rotating electrical machine in which the dislocation angle of the portion stored in the slot of the wire conductor is approximately 360 + 360 n degrees to 450 + 360 n degrees (n is an integer of 0 or more),
The armatures are located at both ends in the axial direction of the stator core and within a range from both axial end surfaces of the stator core to approximately one quarter of the axial total length of the stator core. A rotating electrical machine, wherein a member for increasing a magnetic resistance against circumferential leakage magnetic flux is provided on a circumferential side surface of a winding.
前記磁気抵抗を増すための部材は、導電性のシールド板、シールド巻線のいずれか、又は前記磁気抵抗を増すための部材を上コイルの側面のみに設けたことを特徴とする請求項21又は22に記載の回転電機。   The member for increasing the magnetic resistance is any one of a conductive shield plate and a shield winding, or a member for increasing the magnetic resistance is provided only on a side surface of the upper coil. The rotating electrical machine according to 22.
JP2005161591A 2005-06-01 2005-06-01 Rotating electric machine Pending JP2006340488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005161591A JP2006340488A (en) 2005-06-01 2005-06-01 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005161591A JP2006340488A (en) 2005-06-01 2005-06-01 Rotating electric machine

Publications (1)

Publication Number Publication Date
JP2006340488A true JP2006340488A (en) 2006-12-14

Family

ID=37560546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005161591A Pending JP2006340488A (en) 2005-06-01 2005-06-01 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP2006340488A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2112742A2 (en) 2008-04-25 2009-10-28 Hitachi, Ltd. Rotating electrical machine
AU2008243280B2 (en) * 2007-11-15 2011-02-03 Gardner Denver Deutschland Gmbh Stator winding method and apparatus
JP2011061898A (en) * 2009-09-07 2011-03-24 Toshiba Corp Generator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008243280B2 (en) * 2007-11-15 2011-02-03 Gardner Denver Deutschland Gmbh Stator winding method and apparatus
EP2112742A2 (en) 2008-04-25 2009-10-28 Hitachi, Ltd. Rotating electrical machine
EP2112742A3 (en) * 2008-04-25 2011-06-15 Hitachi, Ltd. Rotating electrical machine
EP2362523A1 (en) * 2008-04-25 2011-08-31 Hitachi, Ltd. Rotating electrical machine
EP2362524A1 (en) * 2008-04-25 2011-08-31 Hitachi, Ltd. Rotating electrical machine
US8174156B2 (en) 2008-04-25 2012-05-08 Hitachi, Ltd. Rotating electrical machine with different lamination steel kinds and spacing
US8304953B2 (en) 2008-04-25 2012-11-06 Hitachi, Ltd. Rotating electrical machine
US8624462B2 (en) 2008-04-25 2014-01-07 Hitachi, Ltd. Rotating electrical machine
JP2011061898A (en) * 2009-09-07 2011-03-24 Toshiba Corp Generator

Similar Documents

Publication Publication Date Title
JP6035146B2 (en) Superconducting generator and wind turbine equipped with superconducting generator
EP2362524B1 (en) Rotating electrical machine
US7312552B2 (en) Rotary electro-dynamic machine and armature winding thereof
US7893575B2 (en) Rotor with field coils in optimized flux space slots
JP2006109616A5 (en)
EP0920107A2 (en) Winding arrangement for switched reluctance machine based internal starter generator
KR20030085502A (en) Induction motor
US20120086288A1 (en) Electric rotating machine
JP6048191B2 (en) Multi-gap rotating electric machine
US7812499B2 (en) Armature winding of electric rotating machine, stator of electric rotating machine and electric rotating machine
US9048702B2 (en) Generator with compact single turn wave winding and wind turbine
US20100026115A1 (en) Stator windings and an electric rotary machine
TW200527799A (en) Armature windings and dynamo-electric machine using the same
JP2006340488A (en) Rotating electric machine
JP2008253014A (en) Rotating electrical machine for high voltage
JP2009106005A (en) Stator of rotating electric machine
JP2007166797A (en) Dynamo-electric machine and its control method, and compressor, blower, and air conditioner
JP2007116801A (en) Rotating electric machine
JP2017099118A (en) Armature coil for rotary electric machine
JP2005198463A (en) Housing of dynamo-electric machine
JP2012205334A (en) Rotary electric machine
JP2009268245A (en) Stator for rotary electric machine
JP2001178034A (en) Armature core of dynamoelectric machine
US20140354106A1 (en) Reduction of leakage flux in electrical machines
JP2004040910A (en) Armature winding for rotary electric machine