JP2004040910A - Armature winding for rotary electric machine - Google Patents

Armature winding for rotary electric machine Download PDF

Info

Publication number
JP2004040910A
JP2004040910A JP2002194603A JP2002194603A JP2004040910A JP 2004040910 A JP2004040910 A JP 2004040910A JP 2002194603 A JP2002194603 A JP 2002194603A JP 2002194603 A JP2002194603 A JP 2002194603A JP 2004040910 A JP2004040910 A JP 2004040910A
Authority
JP
Japan
Prior art keywords
phase
positions
armature winding
coil
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002194603A
Other languages
Japanese (ja)
Inventor
Tadashi Tokumasu
徳増 正
Hideyuki Nakamura
中村 英之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002194603A priority Critical patent/JP2004040910A/en
Publication of JP2004040910A publication Critical patent/JP2004040910A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the overheat of a winding and the degradation of efficiency caused by a circulating current by reducing the circulating current between parallel circuits, and improve the reliability of the connection part of a connection-side coil end. <P>SOLUTION: In the three-phase two-layer wound partial armature winding 10, when A, B, C, D, E and F represent relative positions of coil pieces, two first parallel circuits 1 are placed at each of the A, F, one at each of the B, C, D and E of an upper coil piece 15, and two at each of the C, D, one at each A, B, E and, F of a lower coil piece 16. Two second parallel circuits 2 are placed at each of the B, E and one for each of the A, C, D and, F of the upper coil piece 15 and the lower coil piece 16, two third parallel circuits 3 are placed at each of the C, D and one at each of the A, B, E, and F of the upper coil piece 15, and two at each of A, F and one at each of the B, C, D, and E of the lower coil piece 16. Three connection conductors between poles 19 and three jumper connection conductors 20 are provided on a connection-side coil end 17 side, and four jumper connection conductors 20 are provided on a non-connection side coil end 18 side. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、4極3相の3並列回路を備えた回転電機の電機子巻線に関する。
【0002】
【従来の技術】
大容量のタービン発電機においては、電機子巻線は上コイル片と下コイル片を積層鉄心に設けられたスロットに2層に配置し、これを直列に接続することによって発生電圧を高め、発電機の容量を増大させている。しかし、電機子巻線の電圧が高くなると耐電圧のために電機子巻線の主絶縁厚さが厚くなり、その結果として導体部分の断面積が減少して電流密度が増加し、電機子巻線の損失の増加を招く。
【0003】
このため、電機子巻線を複数の並列回路に分割することにより、発電機の容量はそのままにして発生電圧を低減して、電機子巻線の損失の低減および冷却能力の向上を図ることが行なわれている。特に、タービン発電機では、最大容量機となる4極の大容量機は発電機の容量の増大に伴う電圧上昇を抑えるため、3つの並列回路を有する電機子巻線が必要となっている。
【0004】
このような4極発電機において3つの並列回路を有する電機子巻線を使用した場合には、各並列回路に発生する電圧を完全に同一にすることができないため、並列回路間に循環電流が発生し、電機子巻線の損失を増加するという問題が生じる。
【0005】
米国特許第3,476,964号明細書は、このようなコイル配置の改善に関するものであり、4極72スロットを有する発電機に準用可能な3つの並列回路を有する電機子巻線のコイル配置について開示している。しかし、この米国特許明細書における電機子巻線のコイルの接続方法では、並列回路毎に発生する電圧の大きさの偏差(平均的な相電圧よりの偏差)は最大で0.51%であり、例えば、米国特許2,778,963号明細書で示されている偏差0.4%以下という基準から考えても不平衡電圧の低減が充分であるとは言い難く問題点があった。
【0006】
【発明が解決しようとする課題】
発電機の大容量化を図るためには、電機子電流の増加に見合って電機子巻線の冷却を強化することが必要であり、並列回路間に流れる循環電流についてもできる限り低減することが必要となってきている。このためには、各並列回路で発生する電圧の不平衡をできる限り低減することが必要となる。
【0007】
また、接続側コイルエンドには口出し接続導体が備わるため、極間接続導体の本数が多くなるとコイルエンド寸法の増加や、コイルエンド接続作業性の低下を招く。
【0008】
本発明は、上述した事情を考慮してなされたもので、並列回路間の電圧の不平衡を低減できるため、並列回路間の循環電流が低減され、循環電流による巻線の過熱や効率の低下を防止して、高信頼性、高効率の電機子巻線を提供することを目的とする。
【0009】
また、他の目的は、接続側コイルエンドの極間接続導体の本数を低減できるので、極間接続導体の設置による接続側コイルエンドの軸方向寸法の増加を抑制することができ、また、接続作業性も向上できるので、接続側コイルエンドの接続部の信頼性を向上させた電機子巻線を提供することにある。
【0010】
【課題を解決するための手段】
本発明に係る回転電機の電機子巻線は、上述した課題を解決するために、請求項1に記載したように、各相が3つの並列回路を有し、かつ各相が第1〜第4相帯に分割される電機子鉄心に設けられたスロットに納められる3相2層巻きの電機子巻線において、前記第1〜第4の各相帯が、上コイル片と下コイル片の2つのコイル片を直列に接続した直列コイルにより構成され、前記並列回路は前記第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記相帯中のコイル片の相対位置を巻線口出し部に接続する側から順にA,B,C,D,E,Fと表すとき、第1並列回路の上コイル片はA,Fの位置に各2個、B,C,D,Eの位置に各1個配置され、第1並列回路の下コイル片はC,Dの位置に各2個、A,B,E,Fの位置に各1個配置され、第2並列回路の上コイル片と下コイル片はそれぞれB,Eの位置に各2個、A,C,D,Fの位置に各1個配置され、第3並列回路の上コイル片はC,Dの位置に各2個、A,B,E,Fの位置に各1個配置され、第3並列回路の下コイル片はA,Fの位置に各2個、B,C,D,Eの位置に各1個それぞれ配置されるように接続され、前記電機子巻線の接続側コイルエンド側に3本の極間接続導体と、3本のジャンパ接続導体を設ける一方、反接続側コイルエンド側に4本のジャンパ接続導体を備えたことを特徴とする。
【0011】
また、本発明に係る回転電機の電機子巻線は、上述した課題を解決するために、請求項2に記載したように、前記電機子巻線において、前記並列回路は前記第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記並列回路の回路番号を1〜3と表すとき、第1相帯の上コイル片と下コイル片の回路番号の配置(A,B,C,D,E,F)を順にそれぞれ2,2,2,2,2,2とし、第2相帯の上コイル片の回路番号の配置を順に1,2,3,3,2,1とし、第2相帯の下コイル片の回路番号の配置を順に3,2,1,1,2,3とし、第3相帯の上コイル片と下コイル片の回路番号の配置を順にそれぞれ3,3,3,3,3,3とし、第4相帯の上コイル片と下コイル片の回路番号の配置を順にそれぞれ1,1,1,1,1,1とするように接続されたことを特徴とする。
【0012】
さらに、本発明に係る回転電機の電機子巻線は、上述した課題を解決するために、請求項3に記載したように、前記電機子巻線のコイルピッチが、18/18,17/18,16/18および15/18のうちのいずれかとしたことを特徴とする。
【0013】
また、本発明に係る回転電機の電機子巻線は、上述した課題を解決するために、請求項4に記載したように、各相が3つの並列回路を有し、かつ各相が第1〜第4相帯に分割される電機子鉄心に設けられたスロットに納められる3相2層巻きの電機子巻線において、前記第1〜第4の各相帯が、上コイル片と下コイル片の2つのコイル片を直列に接続した直列コイルにより構成され、前記並列回路は前記第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記相帯中のコイル片の相対位置を巻線口出し部に接続する側から順にA,B,C,D,E,Fと表すとき、第1並列回路の上コイル片はA,Fの位置に各2個、B,C,D,Eの位置に各1個配置され、第1並列回路の下コイル片はC,Dの位置に各2個、A,B,E,Fの位置に各1個配置され、第2並列回路の上コイル片と下コイル片はそれぞれB,Eの位置に各2個、A,C,D,Fの位置に各1個配置され、第3並列回路の上コイル片はC,Dの位置に各2個、A,B,E,Fの位置に各1個配置され、第3並列回路の下コイル片はA,Fの位置に各2個、B,C,D,Eの位置に各1個それぞれ配置されるように接続され、前記電機子巻線の接続側コイルエンド側に2本の極間接続導体と、4本のジャンパ接続導体を設ける一方、反接続側コイルエンド側に2本の極間接続導体と、2本のジャンパ接続導体を備えたことを特徴とする。
【0014】
さらに、本発明に係る回転電機の電機子巻線は、上述した課題を解決するために、請求項5に記載したように、前記電機子巻線において、前記並列回路は前記第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記並列回路の回路番号を1〜3と表すとき、第1相帯の上コイル片と下コイル片の回路番号の配置(A,B,C,D,E,F)を順にそれぞれ2,2,2,2,2,2とし、第2相帯の上コイル片の回路番号の配置を順に1,2,3,3,2,1とし、第2相帯の下コイル片の回路番号の配置を順に3,2,1,1,2,1とし、第3相帯の上コイル片と下コイル片の回路番号の配置を順にそれぞれ3,3,3,3,3,3とし、第4相帯の上コイル片の回路番号の配置を順に1,1,1,1,1,1とし、第4相帯の下コイル片の回路番号の配置を順に1,1,1,1,1,3とするように接続されたことを特徴とする。
【0015】
また、本発明に係る回転電機の電機子巻線は、上述した課題を解決するために、請求項6に記載したように、前記電機子巻線のコイルピッチが、18/18,17/18,16/18および15/18のうちのいずれかとしたことを特徴とする。
【0016】
さらに、本発明に係る回転電機の電機子巻線は、上述した課題を解決するために、請求項7に記載したように、各相が3つの並列回路を有し、かつ各相が第1〜第4相帯に分割される電機子鉄心に設けられたスロットに納められる3相2層巻きの電機子巻線において、前記第1〜第4の各相帯は上コイル片と下コイル片の2つのコイル片を直列に接続した直列コイルにより構成され、前記並列回路は前記第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記相帯中のコイル片の相対位置を巻線口出し部に接続する側から順にA,B,C,D,E,Fと表すとき、第1並列回路の上コイル片はB,Dの位置に各2個、A,C,E,Fの位置に各1個配置され、第1並列回路の下コイル片はC,Eの位置に各2個、A,B,D,Fの位置に各1個配置され、第2並列回路の上コイル片はB,Dの位置に各2個、A,C,E,Fの位置に各1個配置され、第2並列回路の下コイル片はC,Eの位置に各2個、A,B,D,Fの位置に各1個配置され、第3並列回路の上コイル片はA,C,E,Fの位置に各2個配置され、第3並列回路の下コイル片はA,B,D,Fの位置に各2個配置されるように接続され、前記電機子巻線の接続側コイルエンド側に2本の極間接続導体と、5本のジャンパ接続導体を設ける一方、反接続側コイルエンド側に2本の極間接続導体と、2本のジャンパ接続導体を備えたことを特徴とする。
【0017】
また、本発明に係る回転電機の電機子巻線は、上述した課題を解決するために、請求項8に記載したように、前記電機子巻線において、前記並列回路は前記第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記並列回路の回路番号を1〜3と表すとき、第1相帯の上コイル片と下コイル片の回路番号の配置(A,B,C,D,E,F)を順にそれぞれ2,2,2,2,2,2とし、第2相帯の上コイル片の回路番号の配置を順に3,2,3,2,3,3とし、第2相帯の下コイル片の回路番号の配置を順に3,3,2,3,2,3とし、第3相帯の上コイル片の回路番号の配置を順に3,1,3,1,3,3とし、第3相帯の下コイル片の回路番号の配置を順に3,3,1,3,1,3とし、第4相帯の上コイル片と下コイル片の回路番号の配置を順にそれぞれ1,1,1,1,1,1とするように接続されたことを特徴とする。
【0018】
さらに、本発明に係る回転電機の電機子巻線は、上述した課題を解決するために、請求項9に記載したように、前記電機子巻線のコイルピッチが、15/18または14/18としたことを特徴とする。
【0019】
また、本発明に係る回転電機の電機子巻線は、上述した課題を解決するために、請求項10に記載したように、各相が3つの並列回路を有し、かつ各相が第1〜第4相帯に分割される電機子鉄心に設けられたスロットに納められる3相2層巻きの電機子巻線において、前記第1〜第4の各相帯は上コイル片と下コイル片の2つのコイル片を直列に接続されてなる直列コイルにより構成され、前記並列回路は前記第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記相帯中のコイル片の相対位置を巻線口出し部に接続する側から順にA,B,C,D,E,Fと表すとき、第1並列回路の上コイル片はB,Fの位置に各2個、A,C,D,Eの位置に各1個配置され、第1並列回路の下コイル片はA,Eの位置に各2個、B,C,D,Fの位置に各1個配置され、第2並列回路の上コイル片はB,Fの位置に各2個、A,C,D,Eの位置に各1個配置され、第2並列回路の下コイル片はA,Eの位置に各2個、B,C,D,Fの位置に各1個配置され、第3並列回路の上コイル片はA,C,D,Eの位置に各2個配置され、第3並列回路の下コイル片はB,C,D,Fの位置に各2個配置されるように接続され、前記電機子巻線の接続側コイルエンド側に1本の極間接続導体を設ける一方、反接続側コイルエンド側に4本の極間接続導体と、6本のジャンパ接続導体を備えたことを特徴とする。
【0020】
さらに、本発明に係る回転電機の電機子巻線は、上述した課題を解決するために、請求項11に記載したように、前記電機子巻線において、前記並列回路は第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記並列回路の回路番号を1〜3と表すとき、第1相帯の上コイル片と下コイル片の回路番号の配置(A,B,C,D,E,F)を順にそれぞれ2,2,2,2,2,2の順とし、第2相帯の上コイル片の回路番号の配置を順に3,2,3,3,3,2とし、第2相帯の下コイル片の回路番号の配置を順に2,3,3,3,2,3とし、第3相帯の上コイル片の回路番号の配置を順に3,1,3,3,3,1とし、第3相帯の下コイル片の回路番号の配置を順に1,3,3,3,1,3とし、第4相帯の上コイル片と下コイル片の回路番号の配置を順にそれぞれ1,1,1,1,1,1とするように接続されたことを特徴とする。
【0021】
また、本発明に係る回転電機の電機子巻線は、上述した課題を解決するために、請求項12に記載したように、前記電機子巻線のコイルピッチが、16/18または15/18としたことを特徴とする。
【0022】
さらに、本発明に係る回転電機の電機子巻線は、上述した課題を解決するために、請求項13に記載したように、各相が3つの並列回路を有し、かつ各相が第1〜第4相帯に分割される電機子鉄心に設けられたスロットに納められる3相2層巻きの電機子巻線において、前記第1〜第4の各相帯は上コイル片と下コイル片の2つのコイル片を直列に接続されてなる直列コイルにより構成され、前記並列回路は前記第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記相帯中のコイル片の相対位置を巻線口出し部に接続する側から順にA,B,C,D,E,Fと表すとき、第1並列回路の上コイル片はB,Dの位置に各2個、A,C,E,Fの位置に各1個配置され、第1並列回路の下コイル片はC,Eの位置に各2個、A,B,D,Fの位置に各1個配置され、第2並列回路の上コイル片はB,Fの位置に各2個、A,C,D,Eの位置に各1個配置され、第2並列回路の下コイル片はA,Eの位置に各2個、B,C,D,Fの位置に各1個配置され、第3並列回路の上コイル片はA,C,Eの位置に各2個、D,Fの位置に各1個配置され、第3並列回路の下コイル片はB,D,Fの位置に各2個、A,Cの位置に各1個配置されるように接続され、前記電機子巻線の接続側コイルエンド側に1本の極間接続導体と、4本のジャンパ接続導体を設ける一方、反接続側コイルエンド側に4本の極間接続導体と、3本のジャンパ接続導体を備えたことを特徴とする。
【0023】
また、本発明に係る回転電機の電機子巻線は、上述した課題を解決するために、請求項14に記載したように、前記電機子巻線において、前記並列回路は前記第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記並列回路の回路番号を1〜3と表すとき、第1相帯の上コイル片と下コイル片の回路番号の配置(A,B,C,D,E,F)を順にそれぞれ2,2,2,2,2,2とし、第2相帯の上コイル片の回路番号の配置を順に3,2,3,3,3,2とし、第2相帯の下コイル片の回路番号の配置を順に2,3,3,3,2,3とし、第3相帯の上コイル片の回路番号の配置を順に3,1,3,1,3,3とし、第3相帯の下コイル片の回路番号の配置を順に3,3,1,3,1,3とし、第4相帯の上コイル片と下コイル片の回路番号の配置を順にそれぞれ1,1,1,1,1,1とするように接続されたことを特徴とする。
【0024】
さらに、本発明に係る回転電機の電機子巻線は、上述した課題を解決するために、請求項15に記載したように、前記電機子巻線のコイルピッチが、16/18,15/18および14/18のうちのいずれかとしたことを特徴とする。
【0025】
【発明の実施の形態】
本発明に係る回転電機の電機子巻線の実施の形態について、添付図面を参照して説明する。
【0026】
図1は、本発明に係る回転電機の電機子巻線の第1実施形態を示すもので、回転電機としてタービン発電機の電機子巻線の1相分の部分電機子巻線を示す展開図である。
【0027】
4極3相のタービン発電機に設置され、各相に3並列回路を備える電機子巻線は、積層鉄心よりなる電機子鉄心(図示しない)に設けられた72個のスロットに2層に納められる。
【0028】
図1では、3相からなるタービン発電機の電機子巻線を構成する1相分の電機子巻線(以下、部分電機子巻線10という)を示しており、部分電機子巻線10には、第1相帯11、第2相帯12、第3相帯13および第4相帯14がそれぞれ備えられ、第1相帯11、第2相帯12、第3相帯13および第4相帯14のそれぞれについて、電機子鉄心に備えるスロット内の上部に納められる上コイル片15、およびスロット内の下部に納められる下コイル片16がそれぞれ備わり、上コイル片15および下コイル片16の端部同士を巻線口出し部に接続される接続側コイルエンド17と、その軸方向反対側で巻線口出し部に接続されない反接続側コイルエンド18において直列に接続される。
【0029】
さらに、部分電機子巻線10は、3つの並列回路を備える。例えば図1では、第1並列回路1、第2並列回路2、第3並列回路3という回路番号を付して識別するが、この回路番号1〜3は単に説明の便宜上、並列回路を特定するために付した符号であって、各並列回路の回路番号の順番は任意であり、限定されない。また、第1並列回路1は実線で示し、第2並列回路2は破線で示し、第3並列回路3は1点鎖線で示す。
【0030】
ここで、部分電機子巻線10の第1相帯11、第2相帯12、第3相帯13および第4相帯14のそれぞれの上コイル片15は、接続側コイルエンド17および反接続側コイルエンド18から予め定められたコイルピッチだけ離れた位置に対応する下コイル片16に接続し、かつ、第1相帯11、第2相帯12、第3相帯13および第4相帯14のそれぞれに対応する並列回路のコイルを、極間接続導体19を介して接続させる直列コイルとして形成される。なお、図1は、コイルピッチに2/3(12/18)という小さ目の値を採用した例であるが、これは図を見やすくする目的のためであって、特にこのコイルピッチに特定されるものではない。
【0031】
また、部分電機子巻線10の接続側コイルエンド17側に3本の極間接続導体19と3本のジャンパ接続導体20を設ける一方、反接続側コイルエンド18側に4本のジャンパ接続導体20を設ける。
【0032】
図1の部分電機子巻線10において、第1相帯11、第2相帯12、第3相帯13および第4相帯14内のそれぞれの上コイル片15および下コイル片16の相対位置を巻線口出し部に接続する側から順にA,B,C,D,E,Fと表した場合(第1相帯11の上コイル片15のみに符号を付す)、各並列回路1〜3の上コイル片15および下コイル片16の位置は表1に示す通りである。
【0033】
すなわち、部分電機子巻線10の第1相帯11、第2相帯12、第3相帯13および第4相帯14内のそれぞれの上コイル片15に備わる第1並列回路1の数の合計は8個であり、A,Fの位置に各2個、B,C,D,Eの位置に各1個配置される。同様に、下コイル片16に備わる第1並列回路1の数の合計は8個であり、C,Dの位置に各2個、A,B,E,Fの位置に各1個配置される。
【0034】
第1並列回路1と同様に、上コイル片15に備わる第2並列回路2の数の合計は8個であり、B,Eの位置に各2個、A,C,D,Fの位置に各1個配置される。同様に、下コイル片16に備わる第2並列回路2の数の合計は8個であり、B,Eの位置に各2個、A,C,D,Fの位置に各1個配置される。さらに、上コイル片15に備わる第3並列回路3の数の合計は8個であり、C,Dの位置に各2個、A,B,E,Fの位置に各1個、下コイル片16に備わる第3並列回路3の数の合計は8個であり、A,Fの位置に各2個、B,C,D,Eの位置に各1個配置される。
【0035】
【表1】

Figure 2004040910
【0036】
続いて表1に従い、各相帯内の各並列回路1〜3の配列の一例として、例えば、第1相帯11における上コイル片15および下コイル片16の回路番号の配置(A,B,C,D,E,F)を順にそれぞれ2,2,2,2,2,2とし、同様に、第2相帯12における上コイル片15の回路番号の配置を順に1,2,3,3,2,1、下コイル片16では3,2,1,1,2,3とし、第3相帯13における上コイル片15および下コイル片16の回路番号の配置を順にそれぞれ3,3,3,3,3,3とし、第4相帯14における上コイル片15および下コイル片16の回路番号の配置を順にそれぞれ1,1,1,1,1,1とする。
【0037】
次に、部分電機子巻線10に発生する電圧の不平衡について説明する。ここではその不平衡度を数値評価する手段として、一般的に次の定義を採用する。
【0038】
定義:部分電機子巻線10に備わる多数の並列回路の内、1回路のみの電圧をp.u.表示で表したものは、その並列回路の開放電圧と相全体としての平均電圧(相電圧)との比であって、その並列回路と相全体の電圧の大きさの不平衡の程度を表す。同様に、1つの並列回路に発生する開放電圧と相電圧との位相角偏差はその並列回路と相全体の電圧の位相角の不平衡の程度を表す。
【0039】
表2に、第1実施形態に係る部分電機子巻線10のコイルピッチが16/18の場合における部分電機子巻線10の発生電圧の平衡度を示す。表2に示すように、この部分電機子巻線10においては、電圧の大きさの偏差(p.u.電圧の1.0よりの偏差)は最大で0.26%であり、位相角の偏差は0.119度である。これらの結果から、部分電機子巻線10は前述の米国特許第3,476,964号明細書(電圧の大きさの偏差が最大で0.51%)の場合に比べて非常に高い平衡度を示すことが分かる。
【0040】
また、部分電機子巻線10では、米国特許第2,778,963号明細書で示されている基準値である、電圧の大きさの偏差が0.4%、位相角の偏差が0.15度以内という基準を満足する。
【0041】
【表2】
Figure 2004040910
【0042】
なお、部分電機子巻線10の発生電圧の平衡度は、コイルピッチにより変化するため、コイルピッチに対する3並列回路の不平衡電圧のうち最大のものの大きさを表3に示す。コイルピッチが18/18〜15/18の間であれば上記の米国特許第2,778,963号明細書で示された電圧の大きさの偏差0.4%以下を満足する。
【0043】
【表3】
Figure 2004040910
【0044】
図1では、3相の電機子巻線の1相分の部分電機子巻線10を図示しているが、図1の部分電機子巻線10を第1相とし、第2相および第3相の部分電機子巻線についても第1相の部分電機子巻線10と同様の構成であり、位置的に第1相を60°および120°(電気角で120°および240°)または240°および120°(電気角で480°および240°)ずらして、第2相および第3相を配置する。
【0045】
よって、図示しない第2相および第3相についても、各相帯における回路番号の配置および各並列回路1〜3の上下コイルの相対位置は図1と同様であり、各並列回路の電圧の平衡度は表2および表3に示される通りである。
【0046】
以上のように、部分電機子巻線10によって、並列回路1〜3間の電圧の不平衡を低減できるため、並列回路1〜3間の循環電流が低減され、循環電流による巻線の過熱や効率の低下を防止することで、高信頼性、高効率の電機子巻線を提供できる。
【0047】
なお、本実施の形態は、図1に示した構成に限らず、電気的に等価な巻線配置に変更して準用できる。例えば、図1における第3相帯13と第4相帯14の位置を入れ替えた構成としても、並列回路毎の電圧の平衡度は表2および表3に示すものと同一の効果を持つので、このような変更も可能である。
【0048】
また、部分電機子巻線10のこの相帯の入れ替えにおいては、各種の入れ替えが可能であり、接続側コイルエンド17または反接続側コイルエンド18と極間接続導体19等との接続作業性や、接続側コイルエンド17や極間接続導体19の寸法等の点から適宜選定して行うことができる。
【0049】
さらに、第1相、第2相および第3相は通常同じ構成の相を上記のように特定の角度ずらして形成されるが、電気的に等価な巻線配置であれば、構成の異なる相を組合せて3相としてもよい。例えば、3相中、図1に示した構成の相と、図1における第3相帯13と第4相帯14の位置を入れ替えた構成の相のいずれかを少なくとも1相設けるなど、複数の構成を組合せるようにしてもよい。
【0050】
図2は、本発明に係る回転電機の電機子巻線の第2実施形態を示すもので、回転電機としてタービン発電機の電機子巻線の1相分の部分電機子巻線を示す展開図である。
【0051】
4極3相のタービン発電機に設置され、各相に3並列回路を備える電機子巻線は、積層鉄心よりなる電機子鉄心(図示しない)に設けられた72個のスロットに2層に納められている。
【0052】
図2では、3相からなるタービン発電機の電機子巻線を構成する1相分の部分電機子巻線10Aを示しており、部分電機子巻線10Aには、第1相帯11、第2相帯12、第3相帯13および第4相帯14がそれぞれ備えられる。
【0053】
なお、図2において、図1と同一の部分には同一符号を付して説明を省略する。
【0054】
また、部分電機子巻線10Aの接続側コイルエンド17側に2本の極間接続導体19と4本のジャンパ接続導体20を設ける一方、反接続側コイルエンド18側に2本の極間接続導体19と2本のジャンパ接続導体20を設ける。
【0055】
図2の部分電機子巻線10Aにおいて、第1相帯11、第2相帯12、第3相帯13および第4相帯14内のそれぞれの上コイル片15および下コイル片16の相対位置を巻線口出し部に接続する側から順にA,B,C,D,E,Fと表した場合(第1相帯11の上コイル片15のみに符号を付す)、各並列回路1〜3の上コイル片15および下コイル片16の位置は表1に示す通りである。
【0056】
続いて表1に従い、各相帯内の各並列回路1〜3の配列の一例として、第1相帯11における上コイル片15および下コイル片16の回路番号の配置(A,B,C,D,E,F)を順にそれぞれ2,2,2,2,2,2とし、同様に、第2相帯12における上コイル片15の回路番号の配置を順に1,2,3,3,2,1、下コイル片16では3,2,1,1,2,1とし、第3相帯13における上コイル片および下コイル片16の回路番号の配置を順にそれぞれ3,3,3,3,3,3とし、第4相帯14における上コイル片15の回路番号の配置を順に1,1,1,1,1,1、下コイル片16では1,1,1,1,1,3とする。
【0057】
さらに、図2において、第1相帯11、第2相帯12、第3相帯13および第4相帯内のそれぞれの上コイル片15と下コイル片16との相対位置が、図1の上コイル片15と下コイル片16との相対位置と同一であるため、図2の部分電機子巻線10Aの発生電圧の平衡度は、図1の部分電機子巻線10の発生電圧の平衡度と同一であり、表2および表3で表される。
【0058】
図2では、3相の電機子巻線の1相分の部分電機子巻線10Aを図示しているが、図2の部分電気子巻線10Aを第1相とし、第2相および第3相の部分電機子巻線についても第1相の部分電機子巻線10Aと同様の構成であり、位置的に第1相を特定角ずらして、第2相および第3相を配置する。
【0059】
よって、図示しない第2相および第3相についても、各相帯における回路番号の配置および各並列回路1〜3の上下コイルの相対位置は図2と同様であり、各並列回路の電圧の平衡度は表2および表3に示される通りである。
【0060】
なお、本実施の形態は、図2に示した構成に限らず、電気的に等価な巻線配置に変更して準用できる。
【0061】
また、部分電機子巻線10Aのこの相帯の入れ替えにおいては、各種の入れ替えが可能であり、接続側コイルエンド17または反接続側コイルエンド18と極間接続導体19等との接続作業性や、接続側コイルエンド17や極間接続導体19の寸法等の点から適宜選定して行うことができる。
【0062】
さらに、第1相、第2相および第3相は通常同じ構成の相を上記のように特定の角度ずらして形成されるが、電気的に等価な巻線配置であれば、構成の異なる相を組合せて3相としてもよい。
【0063】
以上のように、部分電機子巻線10Aによって、並列回路1〜3間の電圧の不平衡を低減できるため、並列回路1〜3間の循環電流が低減され、循環電流による巻線の過熱や効率の低下を防止して、高信頼性、高効率の電機子巻線を提供できる。
【0064】
また、部分電機子巻線10Aでは、図1の部分電機子巻線10に比べて接続側コイルエンドの極間接続導体の本数を低減できるので、極間接続導体の設置による接続側コイルエンドの軸方向寸法の増加を抑制することができ、また、接続作業性も向上できるので、接続側コイルエンドの接続部の信頼性を向上させた電機子巻線を提供できる。
【0065】
図3は、本発明に係る回転電機の電機子巻線の第3実施形態を示すもので、回転電機としてタービン発電機の電機子巻線の1相分の部分電機子巻線を示す展開図である。
【0066】
4極3相のタービン発電機に設置され、各相に3並列回路を備える電機子巻線は、積層鉄心よりなる電機子鉄心(図示しない)に設けられた72個のスロットに2層に納められている。
【0067】
図3では、3相からなるタービン発電機の電機子巻線を構成する1相分の部分電機子巻線10Bを示しており、部分電機子巻線10Bには、第1相帯11、第2相帯12、第3相帯13および第4相帯14がそれぞれ備えられる。
【0068】
なお、図3において、図1と同一の部分には同一符号を付して説明を省略する。
【0069】
また、部分電機子巻線10Bの接続側コイルエンド17側に2本の極間接続導体19と5本のジャンパ接続導体20を設ける一方、反接続側コイルエンド18側に2本の極間接続導体19と2本のジャンパ接続導体20を設ける。
【0070】
図3の部分電機子巻線10Bにおいて、第1相帯11、第2相帯12、第3相帯13および第4相帯14内のそれぞれの上コイル片15および下コイル片16の相対位置を巻線口出し部に接続する側から順にA,B,C,D,E,Fとした場合(第1相帯11の上コイル片15のみに符号を付す)、各並列回路1〜3の上コイル片15および下コイル片の位置は表4に示す通りである。
【0071】
すなわち、部分電機子巻線10Bの第1相帯11、第2相帯12、第3相帯13および第4相帯14内のそれぞれの上コイル片15に備わる第1並列回路1の数の合計は8個であり、B,Dの位置に各2個、A,C,E,Fの位置に各1個配置される。同様に、下コイル片16に備わる第1並列回路の数の合計は8個であり、C,Eの位置に各2個、A,B,D,Fの位置に各1個配置される。
【0072】
第1並列回路1と同様に、上コイル片15に備わる第2並列回路2の数の合計は8個であり、B,Dの位置に各2個、A,C,E,Fの位置に各1個配置され。同様に、下コイル片16に備わる第2並列回路2の数の合計は8個であり、C,Eの位置に各2個、A,B,D,Fの位置に各1個配置される。さらに、上コイル片15に備わる第3並列回路3の数の合計は8個であり、A,C,E,Fの位置に各2個、下コイル片16に備わる第3並列回路3の数の合計は8個であり、A,B,D,Fの位置に各2個配置される。
【0073】
【表4】
Figure 2004040910
【0074】
続いて表4に従い、各相帯内の各並列回路1〜3の配列の一例として、例えば、第1相帯11における上コイル片15および下コイル片16の回路番号の配置(A,B,C,D,E,F)を順にそれぞれ2,2,2,2,2,2とし、同様に、第2相帯12における上コイル片15の回路番号の配置を順に3,2,3,2,3,3、下コイル片16では3,3,2,3,2,3とし、第3相帯13における上コイル片15の回路番号の配置を順に3,1,3,1,3,3、下コイル片16では3,3,1,3,1,3とし、第4相帯14における上コイル片15および下コイル片16の回路番号の配置を順にそれぞれ1,1,1,1,1,1とする。
【0075】
次に、部分電機子巻線10Bに発生する電圧の不平衡について説明する。ここではその不平衡度を数値評価する手段として、一般的に次の定義を採用する。
【0076】
定義:部分電機子巻線10Bに備わる多数の並列回路の内、1回路のみの電圧をp.u.表示で表したものは、その並列回路の開放電圧と相全体としての平均電圧(相電圧)との比であって、その並列回路と相全体の電圧の大きさの不平衡の程度を表す。同様に、1つの並列回路に発生する開放電圧と相電圧との位相角偏差はその並列回路と相全体の電圧の位相角の不平衡の程度を表す。
【0077】
表5に、第3実施形態に係る部分電機子巻線10Bのコイルピッチが15/18の場合における電機子巻線10Bの発生電圧の平衡度を示す。表5に示すように、この部分電機子巻線10Bにおいては、電圧の大きさの偏差は最大で0.10%であり、位相角の偏差は0度である。これらの結果から、部分電機子巻線10Bは前述の米国特許第3,476,964号明細書(電圧の大きさの偏差が最大で0.51%)の場合に比べて非常に高い平衡度を示すことが分かる。
【0078】
また、部分電機子巻線10Bでは、米国特許第2,778,963号明細書で示されている基準値である、電圧の大きさの偏差が0.4%、位相角の偏差が0.15度以内という基準を満足する。
【0079】
【表5】
Figure 2004040910
【0080】
なお、部分電機子巻線10Bの発生電圧の平衡度は、コイルピッチにより変化するため、コイルピッチに対する3並列回路の不平衡電圧のうち最大のものの大きさを表6に示す。コイルピッチが15/18,14/18のいずれかであれば米国特許第2,778,963号明細書で示された電圧の大きさの偏差0.4%以下を満足する。
【0081】
【表6】
Figure 2004040910
【0082】
図3では、3相の電機子巻線の1相分の部分電機子巻線を図示しているが、図3の部分電機子巻線10Bを第1相とし、第2相および第3相の部分電機子巻線についても第1相の部分電機子巻線10Bと同様の構成であり、位置的に第1相を特定角ずらして、第2相および第3相を配置する。
【0083】
よって、図示しない第2相および第3相の部分電機子巻線についても、各相帯における回路番号の配置および各並列回路の上下コイルの相対位置は図3と同様であり、各並列回路の電圧の平衡度は表5および表6に示される通りである。
【0084】
なお、本実施の形態は、図3に示した構成に限らず、電気的に等価な巻線配置に変更して準用できる。
【0085】
また、部分電機子巻線10Bのこの相帯の入れ替えにおいては、各種の入れ替えが可能であり、接続側コイルエンド17または反接続側コイルエンド18と極間接続導体19等との接続可能性や、接続側コイルエンド17や極間接続導体19の寸法等の点から便宜選定して行うことができる。
【0086】
さらに、第1相、第2相および第3相は通常同じ構成の相を上記のように特定の角度ずらして形成されるが、電気的に等価な巻線配置であれば、構成の異なる相を組合せて3相としてもよい。
【0087】
以上のように、部分電機子巻線10Bによって、並列回路1〜3間の電圧の不平衡を低減できるため、並列回路1〜3間の循環電流が低減され、循環電流による巻線の過熱や効率の低下を防止して、高信頼性、高効率の電機子巻線を提供できる。
【0088】
また、部分電機子巻線10Bでは、図1の部分電機子巻線10、および図2の部分電機子巻線10Aに比べて接続側コイルエンドの極間接続導体の本数を低減できるので、極間接続導体の設置による接続側コイルエンドの軸方向寸法の増加を抑制することができ、また、接続作業性も向上できるので、接続側コイルエンドの接続部の信頼性を向上させた電機子巻線を提供できる。
【0089】
図4は、本発明に係る回転電機の電機子巻線の第4実施形態を示すもので、回転電機としてタービン発電機の電機子巻線の1相分の部分電機子巻線を示す展開図である。
【0090】
4極3相のタービン発電機に設置され、各相に3並列回路を備える電機子巻線は、積層鉄心よりなる電機子鉄心(図示しない)に設けられた72個のスロットに2層に納められている。
【0091】
図4では、3相からなるタービン発電機の電機子巻線を構成する1相分の部分電機子巻線10Cを示しており、部分電機子巻線10Cには、第1相帯11、第2相帯12、第3相帯13および第4相帯14がそれぞれ備えられる。
【0092】
なお、図4において、図1と同一の部分には同一符号を付して説明を省略する。
【0093】
また、部分電機子巻線10Cの接続側コイルエンド17側に1本の極間接続導体19を設ける一方、反接続側コイルエンド18側に4本の極間接続導体19と6本のジャンパ接続導体20を設ける。
【0094】
図4の部分電機子巻線10Cにおいて、第1相帯11、第2相帯12、第3相帯13および第4相帯14内の上コイル片15および下コイル片16の相対位置を巻線口出し部に接続する側から順にA,B,C,D,E,Fと表した場合(第1相帯11の上コイル片15のみに符号を付す)、各並列回路1〜3の上コイル片15および下コイル片16の位置は表7に示す通りである。
【0095】
すなわち、部分電機子巻線10Cの第1相帯11、第2相帯12、第3相帯13および第4相帯14内のそれぞれの上コイル片15に備わる第1並列回路1の数の合計は8個であり、B,Fの位置に各2個、A,C,D,Eの位置に各1個配置される。同様に、下コイル片16に備わる第1並列回路1の数の合計は8個であり、A,Eの位置に各2個、B,C,D,Fの位置に各1個配置される。
【0096】
第1並列回路1と同様に、上コイル片15に備わる第2並列回路2の数の合計は8個であり、B,Fの位置に各2個、A,C,D,Eの位置に各1個配置される。同様に、下コイル片16に係わる第2並列回路2の数の合計は8個であり、A,Eの位置に各2個、B,C,D,Fの位置に各1個配置される。さらに、上コイル片15に備わる第3並列回路3の数の合計は8個であり、A,C,D,Eの位置に各2個、下コイル片16はB,C,D,Fの位置に各2個配置される。
【0097】
【表7】
Figure 2004040910
【0098】
続いて表7に従い、各相帯内の各並列回路1〜3の配列の一例として、例えば、第1相帯11における上コイル片15および下コイル片16の回路番号の配置(A,B,C,D,E,F)を順にそれぞれ2,2,2,2,2,2とし、同様に、第2相帯12における上コイル片15の回路番号の配置を順に3,2,3,3,3,2、下コイル片16では2,3,3,3,2,3とし、第3相帯13における上コイル片15の回路番号の配置を順に3,1,3,3,3,1、下コイル片16では1,3,3,3,1,3とし、第4相帯14における上コイル片15および下コイル片16の回路番号の配置を順にそれぞれ1,1,1,1,1,1とする。
【0099】
次に、部分電機子巻線10Cに発生する電圧の不平衡について説明する。ここではその不平衡度を数値評価する手段として、一般的に次の定義を採用する。
【0100】
定義:部分電機子巻線10Cに備わる多数の並列回路の内、1回路のみの電圧をp.u.表示で表したものは、その並列回路の開放電圧と相全体としての平均電圧(相電圧)との比であって、その並列回路と相全体の電圧の大きさの不平衡の程度を表す。同様に、1つの並列回路に発生する開放電圧と相電圧との位相角偏差はその並列回路と相全体の電圧の位相角の不平衡の程度を表す。
【0101】
表8に、第4実施形態に係る部分電機子巻線10Cのコイルピッチが15/18の場合における部分電機子巻線10Cの発生電圧の平衡度をに示す。表2に示すように、この部分電機子巻線10Cにおいては、電圧の大きさの偏差は最大で0.10%であり、位相角の偏差は0度である。これらの結果から、部分電機子巻線10Cは前述の米国特許第3,476,964号明細書(電圧の大きさの偏差が最大で0.51%)の場合に比べて非常に高い平衡度を示すことが分かる。
【0102】
また、部分電機子巻線10Cでは、米国特許第2,778,963号明細書で示されている基準値である、電圧の大きさの偏差が0.4%、位相角の偏差を0.15度以内という基準を満足する。
【0103】
【表8】
Figure 2004040910
【0104】
なお、部分電機子巻線10Cの発生電圧の平衡度は、コイルピッチにより変化するため、コイルピッチに対する3並列回路の不平衡電圧のうち最大のものの大きさを表9に示す。コイルピッチが16/18,15/18のいずれかであれば上記の米国特許第2,778,963号明細書で示された電圧偏差0.4%以下を満足する。
【0105】
【表9】
Figure 2004040910
【0106】
図4では、3相の電機子巻線の1相分の部分電機子巻線10Cを図示しているが、図4の部分電機子巻線10Cを第1相とし、第2相および第3相の部分電機子巻線についても第1相の部分電機子巻線10Cと同様の構成であり、位置的に第1相を特定角ずらして、第2相および第3相を配置する。
【0107】
よって、図示しない第2相および第3相についても、各相帯における回路番号の配置および各並列回路1〜3の上下コイルの相対位置は図4と同様であり、各並列回路の電圧の平衡度は表8および表9に示される通りである。
【0108】
なお、本実施の形態は、図4に示した構成に限らず、電気的に等価な巻線配置に変更して準用できる。
【0109】
また、部分電機子巻線10Cのこの相帯の入れ替えにおいては、各種の入れ替えが可能であり、接続側コイルエンド17または反接続側コイルエンド18と極間接続導体19等との接続作業性や、接続側コイルエンド17や極間接続導体19の寸法等の点から便宜選定して行うことができる。
【0110】
さらに、第1相、第2相および第3相の電機子巻線は通常同じ構成の相を上記のように特定の角度ずらして形成されるが、電気的に等価な巻線配置であれば、構成の異なる相を組合せて3相としてもよい。
【0111】
以上のように、部分電機子巻線10Cによって、並列回路1〜3間の電圧の不平衡を低減できるため、並列回路1〜3間の循環電流が低減され、循環電流による巻線の過熱や効率の低下を防止して、高信頼性、高効率の電機子巻線を提供できる。
【0112】
また、部分電機子巻線10Cでは、図1の部分電機子巻線10、図2の部分電機子巻線10A、および図3の部分電機子巻線10Bに比べて接続側コイルエンドの極間接続導体の本数を低減できるので、極間接続導体の設置による接続側コイルエンドの軸方向寸法の増加を抑制することができ、また、接続作業性も向上できるので、接続側コイルエンドの接続部の信頼性を向上させた電機子巻線を提供できる。
【0113】
図5は、本発明に係る回転電機の電機子巻線の第5実施形態を示すもので、回転電機としてタービン発電機の電機子巻線の1相分の部分電機子巻線を示す展開図である。
【0114】
4極3相発電機に設置され、各相に3並列回路を備える電機子巻線は、積層鉄心よりなる電機子鉄心(図示しない)に設けられた72個のスロットに2層に納められている。
【0115】
図5では、3相からなるタービン発電機の電機子巻線を構成する1相分の部分電機子巻線10Dを示しており、部分電機子巻線10Dには、第1相帯11、第2相帯12、第3相帯13および第4相帯14がそれぞれ備えられる。
【0116】
なお、図5において、図1と同一の部分には同一符号を付して説明を省略する。
【0117】
また、部分電機子巻線10Dの接続側コイルエンド17側に1本の極間接続導体19と4本のジャンパ接続導体20を設ける一方、反接続側コイルエンド18側に4本の極間接続導体19と3本のジャンパ接続導体20を設ける。
【0118】
部分電機子巻線10Dにおいて、第1相帯11、第2相帯12、第3相帯13および第4相帯14内のそれぞれの上コイル片15および下コイル片16の相対位置を巻線口出し部に接続する側から順にA,B,C,D,E,Fと表した場合(第1相帯の上コイル片15のみに符号を付す)、各並列回路1〜3の上コイル片15および下コイル片16の位置は表10に示す通りである。
【0119】
すなわち、部分電機子巻線10Dの第1相帯11、第2相帯12、第3相帯13および第4相帯14内のそれぞれの上コイル片15に備わる第1並列回路1の数の合計は8個であり、B,Dの位置に各2個、A,C,E,Fの位置に各1個配置される。同様に、下コイル片16に備わる第1並列回路1の数は8個であり、C,Eの位置に各2個、A,B,D,Fの位置に各1個配置される。
【0120】
第1並列回路1と同様に、上コイル片15に備わる第2並列回路2の数の合計は8個であり、B,Fの位置に各2個、A,C,D,Eの位置に各1個配置される。同様に、下コイル片16はA,Eの位置に各2個、B,C,D,Fの位置に各1個配置される。さらに、上コイル片15に備わる第3並列回路3の数の合計は8個あり、A,C,Eの位置に各2個、D,Fの位置に各1個、下コイル片16はB,D,Fの位置に各2個、A,Cの位置に各1個配置される。
【0121】
【表10】
Figure 2004040910
【0122】
続いて表10に従い、各相帯内の各並列回路1〜3の配列の一例として、例えば、第1相帯11における上コイル片15および下コイル片16の回路番号の配置(A,B,C,D,E,F)を順にそれぞれ2,2,2,2,2,2とし、同様に、第2相帯12における上コイル片15の回路番号の配置を順に3,2,3,3,3,2、下コイル片16では2,3,3,3,2,3とし、第3相帯13における上コイル片15の回路番号の配置を順に3,1,3,1,3,3、下コイル片16では3,3,1,3,1,3とし、第4相帯14における上コイル片15および下コイル片16の回路番号の配置を順にそれぞれ1,1,1,1,1,1とする。
【0123】
次に、部分電機子巻線10Dに発生する電圧の不平衡について説明する。ここではその不平衡度を数値評価する手段として、一般的に次の定義を採用する。
【0124】
定義:部分電機子巻線10Dに備わる多数の並列回路の内、1回路のみの電圧をp.u.表示で表したものは、その並列回路の開放電圧と相全体としての平均電圧(相電圧)との比であって、その並列回路と相全体の電圧の大きさの不平衡の程度を表す。同様に、1つの並列回路に発生する開放電圧と相電圧との位相角偏差はその並列回路と相全体の電圧の位相角の不平衡の程度を表す。
【0125】
表11に、第5実施の形態に係る部分電機子巻線10Dのコイルピッチが15/18の場合における部分電機子巻線10Dの発生電圧の平衡度を示す。表11に示すように、この部分電機子巻線10Dにおいては、電圧の大きさの偏差は最大で0.10%であり、位相角の偏差は0度である。これらの結果から、部分電機子巻線10Dは前述の米国特許第3,476,964号明細書(電圧の大きさの偏差が最大で0.51%)の場合に比べて非常に高い平衡度を示すことが分かる。
【0126】
また、部分電機子巻線10Dでは、米国特許第2,778,963号明細書で示されている基準値である、電圧の大きさの偏差が0.4%、位相角の偏差を0.15度以内という基準を満足する。
【0127】
【表11】
Figure 2004040910
【0128】
なお、部分電機子巻線10Dの発生電圧の平衡度は、コイルピッチにより変化するため、コイルピッチに対する3並列回路の不平衡電圧のうち最大のものの大きさを表12に示す。コイルピッチが16/18,15/18,14/18のいずれかであれば米国特許第2,778,963号明細書で示された電圧の偏差0.4%以下を満足する。
【0129】
【表12】
Figure 2004040910
【0130】
図5では、3相の電機子巻線の1相分の部分電機子巻線10Dを図示しているが、図5の部分電機子巻線を第1相とし、第2相および第3相の部分電機子巻線についても第1相の部分電機子巻線10Dと同様の構成であり、位置的に第1相を特定角ずらして、第2相および第3相を配置する。
【0131】
よって、図示しない第2相および第3相についても、各相帯における回路番号の配置および各並列回路1〜3の上下コイルの相対位置は図5と同様であり、各並列回路の電圧の平衡度は表11および表12に示される通りである。
【0132】
なお、本実施の形態は、図5に示した構成に限らず、電気的に等価な巻線配置に変更して準用できる。
【0133】
さらに、第1相、第2相および第3相の電機子巻線は通常同じ構成の相を特定の角度ずらして形成されるが、電気的に等価な巻線配置であれば、構成の異なる相を組合せて3相としてもよい。
【0134】
以上のように、部分電機子巻線10Dによって、並列回路1〜3間の電圧の不平衡を低減できるため、並列回路1〜3間の循環電流が低減され、循環電流による巻線の過熱や効率の低下を防止して、高信頼性、高効率の電機子巻線を提供できる。
【0135】
また、部分電機子巻線10Dでは、図1の部分電機子巻線10,図2の部分電機子巻線10Aおよび図3の部分電機子巻線10Bに比べて接続側コイルエンドの極間接続導体の本数を低減できるので、極間接続導体の設置による接続側コイルエンドの軸方向寸法の増加を抑制することができ、また、接続作業性も向上できるので、接続側コイルエンドの接続部の信頼性を向上させた電機子巻線を提供できる。
【0136】
【発明の効果】
本発明によれば、並列回路間の電圧の不平衡を低減できるため、並列回路間の循環電流が低減され、循環電流による巻線の過熱や効率の低下を防止して、高信頼性、高効率の電機子巻線を提供できる。
【0137】
また、接続側コイルエンドの極間接続導体の本数を低減できるので、極間接続導体の設置による接続側コイルエンドの軸方向寸法の増加を抑制することができ、また、接続作業性も向上できるので、接続側コイルエンドの接続部の信頼性を向上させた電機子巻線を提供できる。
【図面の簡単な説明】
【図1】本発明に係る回転電機の電機子巻線の第1実施形態を示すもので、回転電機としてタービン発電機の電機子巻線の1相分の部分電機子巻線を示す展開図。
【図2】本発明に係る回転電機の電機子巻線の第2実施形態を示すもので、回転電機としてタービン発電機の電機子巻線の1相分の部分電機子巻線を示す展開図。
【図3】本発明に係る回転電機の電機子巻線の第3実施形態を示すもので、回転電機としてタービン発電機の電機子巻線の1相分の部分電機子巻線を示す展開図。
【図4】本発明に係る回転電機の電機子巻線の第4実施形態を示すもので、回転電機としてタービン発電機の電機子巻線の1相分の部分電機子巻線を示す展開図。
【図5】本発明に係る回転電機の電機子巻線の第5実施形態を示すもので、回転電機としてタービン発電機の電機子巻線の1相分の部分電機子巻線を示す展開図。
【符号の説明】
1 第1並列回路
2 第2並列回路
3 第3並列回路
10,10A,10B,10C,10D 部分電機子巻線
11 第1相帯
12 第2相帯
13 第3相帯
14 第4相帯
15 上コイル片
16 下コイル片
17 接続側コイルエンド
18 反接続側コイルエンド
19 極間接続導体
20 ジャンパ接続導体
A,B,C,D,E,F 1相帯内における各コイル片の相対位置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an armature winding of a rotating electric machine including a three-parallel circuit of four poles and three phases.
[0002]
[Prior art]
In a large-capacity turbine generator, the armature windings are arranged in two layers in a slot provided in a laminated iron core in an upper coil piece and a lower coil piece. The capacity of the machine is increasing. However, when the voltage of the armature winding increases, the main insulation thickness of the armature winding increases due to withstand voltage, and as a result, the cross-sectional area of the conductor decreases, the current density increases, and the armature winding increases. This causes an increase in wire loss.
[0003]
For this reason, by dividing the armature winding into a plurality of parallel circuits, it is possible to reduce the generated voltage while maintaining the capacity of the generator, thereby reducing the loss of the armature winding and improving the cooling capacity. Is being done. In particular, in a turbine generator, a four-pole large-capacity machine, which is a maximum-capacity machine, requires an armature winding having three parallel circuits in order to suppress a voltage increase due to an increase in the capacity of the generator.
[0004]
When an armature winding having three parallel circuits is used in such a four-pole generator, the voltage generated in each parallel circuit cannot be made completely the same, so that a circulating current flows between the parallel circuits. This causes a problem of increasing the loss of the armature winding.
[0005]
U.S. Pat. No. 3,476,964 relates to such an improvement in coil arrangement, in which an armature winding coil arrangement having three parallel circuits applicable mutatis mutandis to a generator having 4 poles and 72 slots. Is disclosed. However, in the method of connecting the coils of the armature winding in this US patent specification, the deviation of the magnitude of the voltage (deviation from the average phase voltage) generated for each parallel circuit is 0.51% at the maximum. For example, there is a problem that it is difficult to say that the unbalanced voltage is sufficiently reduced even in view of the standard of the deviation of 0.4% or less shown in US Pat. No. 2,778,963.
[0006]
[Problems to be solved by the invention]
In order to increase the capacity of the generator, it is necessary to enhance the cooling of the armature windings in accordance with the increase in the armature current, and it is necessary to reduce the circulating current flowing between the parallel circuits as much as possible. It is becoming necessary. For this purpose, it is necessary to reduce the voltage imbalance generated in each parallel circuit as much as possible.
[0007]
In addition, since the connection-side coil end is provided with a lead-out connection conductor, an increase in the number of inter-pole connection conductors leads to an increase in coil end size and a reduction in coil end connection workability.
[0008]
The present invention has been made in consideration of the above circumstances, and can reduce the voltage imbalance between the parallel circuits, so that the circulating current between the parallel circuits is reduced, and the circulating current overheats the windings and lowers the efficiency. And to provide a highly reliable and highly efficient armature winding.
[0009]
Another object is to reduce the number of inter-pole connection conductors of the connection-side coil end, thereby suppressing an increase in the axial dimension of the connection-side coil end due to the installation of the inter-pole connection conductor. An object of the present invention is to provide an armature winding in which the reliability of the connection portion of the connection-side coil end is improved because the workability can be improved.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems, the armature winding of the rotating electric machine according to the present invention has, as described in claim 1, each phase has three parallel circuits, and each phase has first to first phases. In a three-phase two-layer armature winding accommodated in a slot provided in an armature core divided into four-phase bands, each of the first to fourth phase bands includes an upper coil piece and a lower coil piece. The parallel circuit is constituted by a series coil in which two coil pieces are connected in series, and the parallel circuit has a series coil arranged in at least two of the first to fourth phase bands, and a coil in the phase band When the relative positions of the pieces are represented as A, B, C, D, E, and F in order from the side connected to the winding lead-out portion, the upper coil pieces of the first parallel circuit are two at each of the positions A and F, and B , C, D, and E, one each at the position of C and D, and two lower coil pieces at the positions of C and D in the first parallel circuit. , F, one at the position of B and E, and one at the positions of A, C, D and F, respectively. The upper coil piece of the third parallel circuit is arranged at each of the positions C and D, and one at the positions of A, B, E and F, and the lower coil piece of the third parallel circuit is arranged at the positions A and F. Are connected so as to be respectively disposed at positions B, C, D, and E, and three pole-to-pole connection conductors and three , And four jumper connection conductors are provided on the non-connection-side coil end side.
[0011]
Further, in order to solve the above-mentioned problem, the armature winding of the rotating electric machine according to the present invention is configured such that, in the armature winding, the parallel circuit includes the first to fourth armature windings. When there are series coils arranged in at least two of the phase bands and the circuit numbers of the parallel circuits are represented by 1 to 3, the arrangement of the circuit numbers of the upper coil piece and the lower coil piece of the first phase band (A, B, C, D, E, F) are set to 2, 2, 2, 2, 2, and 2, respectively, and the arrangement of the circuit numbers of the upper coil pieces of the second phase band is set to 1, 2, 3, 3, 2, 1, and 3, 2, 1, 1, 2, 3, in order of the circuit numbers of the lower coil pieces of the second phase band, and the circuit numbers of the upper coil piece and the lower coil piece of the third phase band. Are arranged in the order of 3,3,3,3,3,3, respectively, and the arrangements of the circuit numbers of the upper coil piece and the lower coil piece of the fourth phase band are respectively 1,1, Characterized connected it to the 1,1,1,1.
[0012]
Furthermore, in order to solve the above-described problem, the armature winding of the rotating electric machine according to the present invention has a coil pitch of 18/18, 17/18 as described in claim 3. , 16/18 and 15/18.
[0013]
Further, in order to solve the above-described problem, the armature winding of the rotating electric machine according to the present invention has three parallel circuits in each phase, and each phase has the first circuit. In the three-phase two-layer armature winding accommodated in the slot provided in the armature core divided into the fourth to fourth phase bands, each of the first to fourth phase bands includes an upper coil piece and a lower coil. The parallel circuit has a series coil arranged in at least two of the first to fourth phase zones, and the parallel circuit includes a series coil in which two coil segments are connected in series. When the relative positions of the coil pieces are denoted by A, B, C, D, E, and F in order from the side connected to the winding exit section, the upper coil pieces of the first parallel circuit are two at the positions of A and F, respectively. , B, C, D, and E, one each at the position of C and D. One of each of the upper coil piece and the lower coil piece of the second parallel circuit is placed at each of the positions B and E, and one of each is placed at the positions of A, C, D and F in the second parallel circuit. The upper coil pieces of the third parallel circuit are arranged at two positions C and D, respectively, one at the positions of A, B, E and F. The lower coil pieces of the third parallel circuit are arranged at A and F is connected so as to be arranged at two positions, and one at B, C, D and E, respectively, and is connected to two connection conductors between the poles on the connection side coil end side of the armature winding. And four jumper connection conductors, and two inter-pole connection conductors and two jumper connection conductors are provided on the non-connection-side coil end side.
[0014]
Further, in order to solve the above-mentioned problem, the armature winding of the rotating electric machine according to the present invention is configured such that, in the armature winding, the parallel circuit includes the first to fourth circuits. When there are series coils arranged in at least two of the phase bands and the circuit numbers of the parallel circuits are represented by 1 to 3, the arrangement of the circuit numbers of the upper coil piece and the lower coil piece of the first phase band (A, B, C, D, E, F) are set to 2, 2, 2, 2, 2, and 2, respectively, and the arrangement of the circuit numbers of the upper coil pieces of the second phase band is set to 1, 2, 3, 3, 2, 1, and the circuit numbers of the lower coil pieces of the second phase band are arranged in order of 3, 2, 1, 1, 2, 1, and the circuit numbers of the upper coil piece and the lower coil piece of the third phase band. Are arranged in order of 3,3,3,3,3,3, respectively, and the arrangement of the circuit numbers of the upper coil pieces of the fourth phase band is 1,1,1,1,1,1 in order. Characterized the connected possible to the fourth phase belts turn 1,1,1,1,1,3 placement of circuit number of lower coil piece.
[0015]
Further, in order to solve the above-mentioned problem, the armature winding of the rotating electric machine according to the present invention has a coil pitch of the armature winding of 18/18, 17/18. , 16/18 and 15/18.
[0016]
Further, in order to solve the above-described problem, the armature winding of the rotating electric machine according to the present invention has three parallel circuits in each phase and the first phase in the first phase. In the three-phase two-layer armature winding accommodated in the slot provided in the armature core divided into the fourth to fourth phase zones, the first to fourth phase zones are composed of an upper coil piece and a lower coil piece. And the parallel circuit has a series coil arranged in at least two of the first to fourth phase bands, and the parallel circuit includes: When the relative positions of the coil pieces are represented as A, B, C, D, E, and F in order from the side connected to the winding lead-out portion, the upper coil pieces of the first parallel circuit are two at the positions of B and D, respectively. One is disposed at each of the positions A, C, E, and F, and two lower coil pieces are disposed at the positions C and E in the first parallel circuit. One is disposed at each of the positions B, D and F, and two upper coil pieces are disposed at the positions B and D and one at each of the positions A, C, E and F in the second parallel circuit. The two lower coil pieces of the two parallel circuits are respectively arranged at positions C and E, and one each at the positions of A, B, D and F, and the upper coil pieces of the third parallel circuit are A, C, E and F. , And the lower coil pieces of the third parallel circuit are connected so as to be two each at positions A, B, D, and F, and the connection side coil end side of the armature winding Provided with two inter-pole connection conductors and five jumper connection conductors, and two non-pole-side coil end conductors and two jumper connection conductors on the opposite end. .
[0017]
Further, in order to solve the above-mentioned problem, in the armature winding of the rotating electric machine according to the present invention, in the armature winding, in the armature winding, the parallel circuit includes the first to fourth circuits. When there are series coils arranged in at least two of the phase bands and the circuit numbers of the parallel circuits are represented by 1 to 3, the arrangement of the circuit numbers of the upper coil piece and the lower coil piece of the first phase band (A, B, C, D, E, F) are set to 2,2,2,2,2,2, respectively, and the arrangement of the circuit numbers of the upper coil pieces of the second phase band is set to 3,2,3,3 in order. 2, 3, 3 and the arrangement of the circuit numbers of the lower coil pieces of the second phase band are 3, 3, 2, 3, 2, 3 in order, and the arrangement of the circuit numbers of the upper coil pieces of the third phase band are in order. 3,1,3,1,3,3, the arrangement of the circuit numbers of the lower coil pieces of the third phase band is 3,3,1,3,1,3 in order, and the upper coil of the fourth phase band It characterized connected it to the order respectively 1,1,1,1,1,1 placement of circuit number of lower coil piece with.
[0018]
Further, in order to solve the above-mentioned problem, the armature winding of the rotating electric machine according to the present invention has a coil pitch of the armature winding of 15/18 or 14/18. It is characterized by having.
[0019]
Further, in order to solve the above-mentioned problem, the armature winding of the rotating electric machine according to the present invention has three parallel circuits in each phase and the first phase in the first phase. In the three-phase two-layer armature winding accommodated in the slot provided in the armature core divided into the fourth to fourth phase zones, the first to fourth phase zones are composed of an upper coil piece and a lower coil piece. And the parallel circuit has a series coil disposed in at least two of the first to fourth phase bands, and the parallel circuit When the relative positions of the inner coil pieces are represented as A, B, C, D, E, and F in order from the side connected to the winding exit portion, the upper coil pieces of the first parallel circuit are located at positions B and F, respectively. , One each at positions A, C, D, and E, and the lower coil piece of the first parallel circuit , B, C, D, and F, one each at the B and F positions, and one upper coil piece at the A, C, D, and E positions in the second parallel circuit. The two lower coil pieces of the second parallel circuit are arranged at positions A and E, respectively, one at the positions of B, C, D and F, and the upper coil pieces of the third parallel circuit are A, C and Two pieces are arranged at positions D and E, respectively, and two lower coil pieces of the third parallel circuit are connected so as to be arranged at positions B, C, D and F, respectively. One inter-pole connection conductor is provided on the coil end side, while four inter-pole connection conductors and six jumper connection conductors are provided on the non-connection side coil end side.
[0020]
Further, in order to solve the above-described problem, the armature winding of the rotating electric machine according to the present invention is configured such that, in the armature winding, the parallel circuit includes the first to fourth phases. When there are series coils arranged in at least two phase bands of the band and the circuit numbers of the parallel circuits are represented by 1 to 3, the arrangement of the circuit numbers of the upper coil piece and the lower coil piece of the first phase band ( A, B, C, D, E, F) in order of 2, 2, 2, 2, 2, 2, respectively, and the arrangement of the circuit numbers of the upper coil pieces of the second phase band is 3, 2, 3 in order. , 3,3,2, and the arrangement of the circuit numbers of the lower coil pieces of the second phase band are 2,3,3,3,2,3 in order, and the arrangement of the circuit numbers of the upper coil pieces of the third phase band is In this order, 3,1,3,3,3,1 and the arrangement of the circuit numbers of the lower coil pieces of the third phase band are 1,3,3,3,1,3 in order, and the upper Turn each arrangement of circuit number of Le piece and lower coil piece, characterized in that connected to the 1,1,1,1,1,1.
[0021]
Further, in order to solve the above-described problem, the armature winding of the rotating electric machine according to the present invention has a coil pitch of the armature winding of 16/18 or 15/18. It is characterized by having.
[0022]
Further, in order to solve the above-described problems, the armature winding of the rotating electric machine according to the present invention has three parallel circuits in each phase and each phase has the first parallel circuit. In the three-phase two-layer armature winding accommodated in the slot provided in the armature core divided into the fourth to fourth phase zones, the first to fourth phase zones are composed of an upper coil piece and a lower coil piece. And the parallel circuit has a series coil disposed in at least two of the first to fourth phase bands, and the parallel circuit When the relative positions of the middle coil pieces are represented as A, B, C, D, E, and F in order from the side connected to the winding exit, the upper coil pieces of the first parallel circuit are located at positions B and D, respectively. , One each at positions A, C, E, and F, and the lower coil piece of the first parallel circuit , One each at the positions of A, B, D, and F, and two upper coil pieces at the positions of B and F and one at the positions of A, C, D, and E in the second parallel circuit. The two lower coil pieces of the second parallel circuit are arranged at positions A and E, respectively, one at the positions of B, C, D and F, and the upper coil pieces of the third parallel circuit are A and C. , E, two at D and F, one at D and F, and two lower coils at B, D, and F, and one at A and C. And one jumper connecting conductor is provided on the connection side coil end side of the armature winding, while four are provided on the opposite connection side coil end side. It is characterized by comprising an inter-pole connection conductor and three jumper connection conductors.
[0023]
Further, in order to solve the above-described problem, the armature winding of the rotating electric machine according to the present invention is configured such that, in the armature winding, the parallel circuit includes the first to fourth circuits. When there are series coils arranged in at least two of the phase bands and the circuit numbers of the parallel circuits are represented by 1 to 3, the arrangement of the circuit numbers of the upper coil piece and the lower coil piece of the first phase band (A, B, C, D, E, F) are set to 2,2,2,2,2,2, respectively, and the arrangement of the circuit numbers of the upper coil pieces of the second phase band is set to 3,2,3,3 in order. 3, 3, 2, the arrangement of the circuit numbers of the lower coil pieces of the second phase band is 2, 3, 3, 3, 2, 3, in order, and the arrangement of the circuit numbers of the upper coil pieces of the third phase band is, in order. 3,1,3,1,3,3, the arrangement of the circuit numbers of the lower coil pieces of the third phase band is 3,3,1,3,1,3 in order, and the upper coil of the fourth phase band. Turn respectively placed pieces and the circuit number of lower coil piece, characterized in that connected to the 1,1,1,1,1,1.
[0024]
Further, in order to solve the above-mentioned problem, the armature winding of the rotating electric machine according to the present invention has a coil pitch of the armature winding of 16/18, 15/18. And 14/18.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of an armature winding of a rotating electric machine according to the present invention will be described with reference to the accompanying drawings.
[0026]
FIG. 1 shows a first embodiment of an armature winding of a rotating electric machine according to the present invention, and is a developed view showing a partial armature winding for one phase of an armature winding of a turbine generator as the rotating electric machine. It is.
[0027]
Armature windings installed in a 4-pole, 3-phase turbine generator and provided with three parallel circuits in each phase are housed in two layers in 72 slots provided in an armature core (not shown) composed of a laminated core. Can be
[0028]
FIG. 1 shows an armature winding for one phase (hereinafter, referred to as a partial armature winding 10) constituting an armature winding of a three-phase turbine generator. Has a first phase zone 11, a second phase zone 12, a third phase zone 13 and a fourth phase zone 14, respectively, and the first phase zone 11, the second phase zone 12, the third phase zone 13 and the fourth phase zone 14. For each of the phase zones 14, an upper coil piece 15 accommodated in an upper portion of a slot provided in an armature core and a lower coil piece 16 accommodated in a lower portion of the slot are provided. The ends are connected in series at a connection-side coil end 17 connected to the winding lead-out portion and an opposite connection-side coil end 18 not connected to the winding lead-out portion on the opposite side in the axial direction.
[0029]
Further, the partial armature winding 10 includes three parallel circuits. For example, in FIG. 1, the first parallel circuit 1, the second parallel circuit 2, and the third parallel circuit 3 are identified by adding circuit numbers, but the circuit numbers 1 to 3 simply specify the parallel circuits for convenience of explanation. The order of the circuit numbers of the parallel circuits is arbitrary and is not limited. The first parallel circuit 1 is indicated by a solid line, the second parallel circuit 2 is indicated by a broken line, and the third parallel circuit 3 is indicated by a chain line.
[0030]
Here, the upper coil pieces 15 of the first phase band 11, the second phase band 12, the third phase band 13, and the fourth phase band 14 of the partial armature winding 10 are connected to the connection side coil end 17 and the anti-connection. The first coil 11, the second coil 12, the third coil 13, and the fourth coil 13 are connected to the lower coil 16 corresponding to a position separated by a predetermined coil pitch from the side coil end 18. The coils of the parallel circuit corresponding to each of the fourteen are formed as a series coil that is connected via the interpole connecting conductor 19. FIG. 1 is an example in which a small value of 2/3 (12/18) is adopted as the coil pitch, but this is for the purpose of making the figure easier to see, and is particularly specified by this coil pitch. Not something.
[0031]
Also, three inter-pole connection conductors 19 and three jumper connection conductors 20 are provided on the connection side coil end 17 side of the partial armature winding 10, while four jumper connection conductors are provided on the opposite connection side coil end 18 side. 20 are provided.
[0032]
In the partial armature winding 10 of FIG. 1, the relative positions of the upper coil piece 15 and the lower coil piece 16 in the first phase band 11, the second phase band 12, the third phase band 13, and the fourth phase band 14, respectively. , A, B, C, D, E, and F in order from the side connected to the winding lead portion (only the upper coil piece 15 of the first phase band 11 is denoted by a reference numeral). The positions of the upper coil piece 15 and the lower coil piece 16 are as shown in Table 1.
[0033]
That is, the number of the first parallel circuits 1 provided in the upper coil pieces 15 in the first phase band 11, the second phase band 12, the third phase band 13, and the fourth phase band 14 of the partial armature winding 10 The total is eight, two at each of the positions A and F and one each at the positions B, C, D and E. Similarly, the total number of the first parallel circuits 1 provided in the lower coil piece 16 is eight, two at the positions C and D and one at the positions A, B, E and F. .
[0034]
Similarly to the first parallel circuit 1, the total number of the second parallel circuits 2 provided in the upper coil piece 15 is eight, two at the positions B and E, and two at the positions A, C, D and F. Each one is arranged. Similarly, the total number of the second parallel circuits 2 provided in the lower coil piece 16 is eight, two in each of the positions B and E, and one each in the positions A, C, D and F. . Further, the total number of the third parallel circuits 3 provided in the upper coil piece 15 is eight, two at C and D positions, one at A, B, E and F positions, and one at the lower coil pieces. The total number of the third parallel circuits 3 provided in 16 is eight, two at the positions A and F, and one at the positions B, C, D and E.
[0035]
[Table 1]
Figure 2004040910
[0036]
Subsequently, according to Table 1, as an example of the arrangement of the parallel circuits 1 to 3 in each phase band, for example, the arrangement of the circuit numbers of the upper coil piece 15 and the lower coil piece 16 in the first phase band 11 (A, B, C, D, E, and F) are set to 2, 2, 2, 2, 2, and 2, respectively. Similarly, the arrangement of the circuit numbers of the upper coil pieces 15 in the second phase band 12 is set to 1, 2, 3, and 3, respectively. 3, 2, 1, and 3, 2, 1, 1, 2, 3 in the lower coil piece 16, and the arrangement of the circuit numbers of the upper coil piece 15 and the lower coil piece 16 in the third phase band 13 is 3, 3, respectively. , 3, 3, 3, 3 and the arrangement of the circuit numbers of the upper coil piece 15 and the lower coil piece 16 in the fourth phase band 14 are 1, 1, 1, 1, 1, 1, respectively.
[0037]
Next, the imbalance of the voltage generated in the partial armature winding 10 will be described. Here, the following definitions are generally adopted as means for numerically evaluating the degree of imbalance.
[0038]
Definition: Of a number of parallel circuits provided in the partial armature winding 10, the voltage of only one circuit is p. u. What is shown is the ratio between the open circuit voltage of the parallel circuit and the average voltage (phase voltage) of the entire phase, and indicates the degree of imbalance between the magnitudes of the voltages of the parallel circuit and the entire phase. Similarly, the phase angle deviation between the open-circuit voltage and the phase voltage generated in one parallel circuit indicates the degree of imbalance in the phase angle between the voltage of the parallel circuit and the entire phase.
[0039]
Table 2 shows the degree of balance of the voltage generated in the partial armature winding 10 when the coil pitch of the partial armature winding 10 according to the first embodiment is 16/18. As shown in Table 2, in this partial armature winding 10, the deviation of the voltage magnitude (the deviation of the pu voltage from 1.0) is 0.26% at the maximum, and the phase angle The deviation is 0.119 degrees. From these results, the partial armature winding 10 has a much higher degree of balance as compared with the case of the above-mentioned US Pat. No. 3,476,964 (the deviation of the voltage magnitude is 0.51% at the maximum). It can be seen that
[0040]
Further, in the partial armature winding 10, the deviation of the magnitude of the voltage and the deviation of the phase angle are 0.4%, which are the reference values described in U.S. Pat. No. 2,778,963. Satisfies the standard of 15 degrees or less.
[0041]
[Table 2]
Figure 2004040910
[0042]
In addition, since the degree of balance of the voltage generated by the partial armature winding 10 varies depending on the coil pitch, Table 3 shows the maximum unbalanced voltage of the three parallel circuits with respect to the coil pitch. If the coil pitch is between 18/18 and 15/18, the deviation of the voltage magnitude shown in the above-mentioned U.S. Pat. No. 2,778,963 is not more than 0.4%.
[0043]
[Table 3]
Figure 2004040910
[0044]
Although FIG. 1 illustrates the partial armature winding 10 for one phase of the three-phase armature winding, the partial armature winding 10 of FIG. The partial armature winding of the phase has the same configuration as that of the partial armature winding 10 of the first phase, and the first phase is positioned at 60 ° and 120 ° (electrical angles of 120 ° and 240 °) or 240 °. The second phase and the third phase are staggered by degrees and 120 degrees (480 and 240 electrical degrees).
[0045]
Therefore, the arrangement of the circuit numbers in each phase band and the relative positions of the upper and lower coils of each of the parallel circuits 1 to 3 are the same as those in FIG. The degree is as shown in Tables 2 and 3.
[0046]
As described above, since the partial armature winding 10 can reduce the voltage imbalance between the parallel circuits 1 to 3, the circulating current between the parallel circuits 1 to 3 can be reduced, and the circulating current can prevent overheating of the windings. By preventing a decrease in efficiency, a highly reliable and highly efficient armature winding can be provided.
[0047]
Note that the present embodiment is not limited to the configuration shown in FIG. 1 and can be applied mutatis mutandis by changing to an electrically equivalent winding arrangement. For example, even in a configuration in which the positions of the third phase band 13 and the fourth phase band 14 in FIG. 1 are interchanged, the degree of voltage balance for each parallel circuit has the same effect as that shown in Tables 2 and 3, so that Such a change is also possible.
[0048]
In the exchange of the phase bands of the partial armature windings 10, various exchanges are possible, and the connection workability between the connection side coil end 17 or the non-connection side coil end 18 and the inter-electrode connection conductor 19, etc. And the dimensions of the connection-side coil end 17 and the inter-pole connection conductor 19 can be appropriately selected.
[0049]
Further, the first phase, the second phase, and the third phase are usually formed by shifting the phases having the same configuration by a specific angle as described above. However, if the winding arrangement is electrically equivalent, the phases having different configurations are different. May be combined to form three phases. For example, among the three phases, a plurality of phases are provided, such as providing at least one of a phase having a configuration shown in FIG. 1 and a phase having a configuration in which the positions of the third phase zone 13 and the fourth phase zone 14 in FIG. The configurations may be combined.
[0050]
FIG. 2 shows a second embodiment of the armature winding of the rotating electric machine according to the present invention, and is a development view showing a partial armature winding of one phase of the armature winding of the turbine generator as the rotating electric machine. It is.
[0051]
Armature windings installed in a 4-pole, 3-phase turbine generator and provided with three parallel circuits in each phase are housed in two layers in 72 slots provided in an armature core (not shown) composed of a laminated core. Has been.
[0052]
FIG. 2 shows a partial armature winding 10A for one phase constituting an armature winding of a three-phase turbine generator. The partial armature winding 10A has a first phase band 11, A two-phase zone 12, a third phase zone 13, and a fourth phase zone 14 are provided, respectively.
[0053]
In FIG. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
[0054]
Also, two inter-pole connection conductors 19 and four jumper connection conductors 20 are provided on the connection side coil end 17 side of the partial armature winding 10A, while two inter-pole connection conductors are provided on the opposite connection side coil end 18 side. A conductor 19 and two jumper connection conductors 20 are provided.
[0055]
In the partial armature winding 10A of FIG. 2, the relative positions of the upper coil piece 15 and the lower coil piece 16 in the first phase band 11, the second phase band 12, the third phase band 13 and the fourth phase band 14, respectively. , A, B, C, D, E, and F in order from the side connected to the winding lead portion (only the upper coil piece 15 of the first phase band 11 is denoted by a reference numeral). The positions of the upper coil piece 15 and the lower coil piece 16 are as shown in Table 1.
[0056]
Subsequently, according to Table 1, as an example of the arrangement of the parallel circuits 1 to 3 in each phase band, the circuit numbers of the upper coil piece 15 and the lower coil piece 16 in the first phase band 11 (A, B, C, D, E, and F) are set to 2, 2, 2, 2, 2, and 2, respectively. Similarly, the arrangement of the circuit numbers of the upper coil pieces 15 in the second phase band 12 is set to 1, 2, 3, 3, and 2,1 and 3,2,1,1,2,1 in the lower coil piece 16, and the arrangement of the circuit numbers of the upper coil piece and the lower coil piece 16 in the third phase band 13 are 3, 3, 3, respectively. 3, 3, 3, and the arrangement of the circuit numbers of the upper coil pieces 15 in the fourth phase band 14 is 1,1,1,1,1,1 in the order, and 1,1,1,1,1 in the lower coil pieces 16. , 3.
[0057]
Further, in FIG. 2, the relative positions of the upper coil piece 15 and the lower coil piece 16 in the first phase band 11, the second phase band 12, the third phase band 13 and the fourth phase band are shown in FIG. Since the relative positions of the upper coil piece 15 and the lower coil piece 16 are the same, the balance of the voltage generated by the partial armature winding 10A in FIG. The degree is the same as that shown in Tables 2 and 3.
[0058]
FIG. 2 illustrates the partial armature winding 10A for one phase of the three-phase armature winding. However, the partial armature winding 10A in FIG. The partial armature winding of the phase has the same configuration as the partial armature winding 10A of the first phase, and the second phase and the third phase are arranged by shifting the first phase by a specific angle.
[0059]
Therefore, for the second and third phases (not shown), the arrangement of the circuit numbers in each phase band and the relative positions of the upper and lower coils of each of the parallel circuits 1 to 3 are the same as in FIG. The degree is as shown in Tables 2 and 3.
[0060]
Note that the present embodiment is not limited to the configuration shown in FIG. 2 and can be applied mutatis mutandis to an electrically equivalent winding arrangement.
[0061]
In the exchange of the phase bands of the partial armature windings 10A, various exchanges are possible, and the connection workability between the connection side coil end 17 or the non-connection side coil end 18 and the inter-electrode connection conductor 19 and the like can be improved. And the dimensions of the connection-side coil end 17 and the inter-pole connection conductor 19 can be appropriately selected.
[0062]
Further, the first phase, the second phase, and the third phase are usually formed by shifting the phases having the same configuration by a specific angle as described above. However, if the winding arrangement is electrically equivalent, the phases having different configurations are different. May be combined to form three phases.
[0063]
As described above, the partial armature winding 10A can reduce the voltage imbalance between the parallel circuits 1 to 3, so that the circulating current between the parallel circuits 1 to 3 is reduced, and overheating of the winding due to the circulating current and It is possible to provide a highly reliable and highly efficient armature winding while preventing a decrease in efficiency.
[0064]
Further, in the partial armature winding 10A, the number of inter-pole connection conductors at the connection side coil end can be reduced as compared with the partial armature winding 10 of FIG. Since the increase in the axial dimension can be suppressed and the connection workability can be improved, an armature winding with improved reliability of the connection portion of the connection-side coil end can be provided.
[0065]
FIG. 3 shows a third embodiment of the armature winding of the rotating electric machine according to the present invention, and is a developed view showing a partial armature winding of one phase of the armature winding of the turbine generator as the rotating electric machine. It is.
[0066]
Armature windings installed in a 4-pole, 3-phase turbine generator and provided with three parallel circuits in each phase are housed in two layers in 72 slots provided in an armature core (not shown) composed of a laminated core. Has been.
[0067]
FIG. 3 shows a partial armature winding 10B for one phase constituting an armature winding of a three-phase turbine generator. The partial armature winding 10B has a first phase band 11, A two-phase zone 12, a third phase zone 13, and a fourth phase zone 14 are provided, respectively.
[0068]
In FIG. 3, the same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
[0069]
Further, two inter-pole connection conductors 19 and five jumper connection conductors 20 are provided on the connection side coil end 17 side of the partial armature winding 10B, while two pole connection conductors are provided on the opposite connection side coil end 18 side. A conductor 19 and two jumper connection conductors 20 are provided.
[0070]
In the partial armature winding 10B of FIG. 3, the relative positions of the upper coil piece 15 and the lower coil piece 16 in the first phase band 11, the second phase band 12, the third phase band 13, and the fourth phase band 14, respectively. , A, B, C, D, E, and F in order from the side connected to the winding lead portion (only the upper coil piece 15 of the first phase band 11 is denoted by a reference numeral). The positions of the upper coil piece 15 and the lower coil piece are as shown in Table 4.
[0071]
That is, the number of the first parallel circuits 1 provided in the upper coil pieces 15 in the first phase band 11, the second phase band 12, the third phase band 13, and the fourth phase band 14 of the partial armature winding 10B is The total is eight, two at the positions B and D and one at the positions A, C, E and F. Similarly, the total number of the first parallel circuits provided in the lower coil piece 16 is eight, two at the positions C and E, and one at the positions A, B, D and F.
[0072]
Similarly to the first parallel circuit 1, the total number of the second parallel circuits 2 provided in the upper coil piece 15 is eight, two at B and D positions, and two at A, C, E and F positions. Each one is arranged. Similarly, the total number of the second parallel circuits 2 provided in the lower coil piece 16 is eight, two at the positions C and E and one at the positions A, B, D and F. . Furthermore, the total number of the third parallel circuits 3 provided in the upper coil piece 15 is eight, two each at the positions of A, C, E, and F, and the number of the third parallel circuits 3 provided in the lower coil piece 16. Are eight, and two are arranged at the positions of A, B, D, and F, respectively.
[0073]
[Table 4]
Figure 2004040910
[0074]
Subsequently, according to Table 4, as an example of the arrangement of the parallel circuits 1 to 3 in each phase band, for example, the arrangement of the circuit numbers of the upper coil piece 15 and the lower coil piece 16 in the first phase band 11 (A, B, C, D, E, and F) are set to 2, 2, 2, 2, 2, and 2, respectively. Similarly, the arrangement of the circuit numbers of the upper coil pieces 15 in the second phase band 12 is set to 3, 2, 3, and 3, respectively. 2,3,3,3,3,2,3,2,3 in the lower coil segment 16, and the arrangement of the circuit numbers of the upper coil segment 15 in the third phase band 13 is 3,1,3,1,3 in order. , 3, and the lower coil piece 16 are 3, 3, 1, 3, 1, 3, and the arrangement of the circuit numbers of the upper coil piece 15 and the lower coil piece 16 in the fourth phase band 14 is 1, 1, 1, 1, respectively. 1, 1, and 1.
[0075]
Next, the imbalance of the voltage generated in the partial armature winding 10B will be described. Here, the following definitions are generally adopted as means for numerically evaluating the degree of imbalance.
[0076]
Definition: A voltage of only one circuit among a number of parallel circuits provided in the partial armature winding 10B is p. u. What is shown is the ratio between the open circuit voltage of the parallel circuit and the average voltage (phase voltage) of the entire phase, and indicates the degree of imbalance between the magnitudes of the voltages of the parallel circuit and the entire phase. Similarly, the phase angle deviation between the open-circuit voltage and the phase voltage generated in one parallel circuit indicates the degree of imbalance in the phase angle between the voltage of the parallel circuit and the entire phase.
[0077]
Table 5 shows the balance of the generated voltage of the armature winding 10B when the coil pitch of the partial armature winding 10B according to the third embodiment is 15/18. As shown in Table 5, in the partial armature winding 10B, the maximum voltage deviation is 0.10% and the phase angle deviation is 0 degree. From these results, the partial armature winding 10B has a much higher degree of balance as compared with the case of the above-mentioned US Pat. No. 3,476,964 (the deviation of the voltage magnitude is 0.51% at the maximum). It can be seen that
[0078]
Further, in the partial armature winding 10B, the deviation of the magnitude of the voltage is 0.4% and the deviation of the phase angle is 0.4%, which are the reference values disclosed in US Pat. No. 2,778,963. Satisfies the standard of 15 degrees or less.
[0079]
[Table 5]
Figure 2004040910
[0080]
Since the degree of balance of the voltage generated by the partial armature winding 10B changes depending on the coil pitch, Table 6 shows the maximum unbalanced voltage of the three parallel circuits with respect to the coil pitch. If the coil pitch is either 15/18 or 14/18, the deviation of the magnitude of the voltage shown in US Pat. No. 2,778,963 is not more than 0.4%.
[0081]
[Table 6]
Figure 2004040910
[0082]
Although FIG. 3 illustrates a partial armature winding for one phase of the three-phase armature winding, the partial armature winding 10B in FIG. Has the same configuration as the partial armature winding 10B of the first phase, and the second phase and the third phase are arranged by shifting the first phase by a specific angle.
[0083]
Therefore, the arrangement of the circuit numbers in each phase band and the relative positions of the upper and lower coils of each parallel circuit are also the same as those in FIG. The degree of voltage balance is as shown in Tables 5 and 6.
[0084]
Note that the present embodiment is not limited to the configuration shown in FIG. 3, but can be applied mutatis mutandis by changing to an electrically equivalent winding arrangement.
[0085]
In the exchange of the phase bands of the partial armature windings 10B, various exchanges are possible, such as the possibility of connection between the connection-side coil end 17 or the non-connection-side coil end 18 and the inter-electrode connection conductor 19 or the like. And the dimensions of the connection-side coil end 17 and the inter-electrode connection conductor 19 can be conveniently selected.
[0086]
Further, the first phase, the second phase, and the third phase are usually formed by shifting the phases having the same configuration by a specific angle as described above. However, if the winding arrangement is electrically equivalent, the phases having different configurations are different. May be combined to form three phases.
[0087]
As described above, the partial armature winding 10B can reduce the unbalance of the voltage between the parallel circuits 1 to 3, so that the circulating current between the parallel circuits 1 to 3 is reduced, and overheating of the winding due to the circulating current and It is possible to provide a highly reliable and highly efficient armature winding while preventing a decrease in efficiency.
[0088]
Further, in the partial armature winding 10B, the number of inter-pole connection conductors at the connection side coil end can be reduced as compared with the partial armature winding 10 of FIG. 1 and the partial armature winding 10A of FIG. The armature winding with improved reliability of the connection portion of the connection-side coil end can be suppressed because the increase in the axial dimension of the connection-side coil end due to the installation of the inter-connection conductor can be suppressed, and the connection workability can be improved. Can provide line.
[0089]
FIG. 4 shows a fourth embodiment of the armature winding of the rotating electric machine according to the present invention, and is a developed view showing a partial armature winding for one phase of the armature winding of the turbine generator as the rotating electric machine. It is.
[0090]
Armature windings installed in a 4-pole, 3-phase turbine generator and provided with three parallel circuits in each phase are housed in two layers in 72 slots provided in an armature core (not shown) composed of a laminated core. Has been.
[0091]
FIG. 4 shows a partial armature winding 10C for one phase constituting an armature winding of a three-phase turbine generator. The partial armature winding 10C includes a first phase band 11, A two-phase zone 12, a third phase zone 13, and a fourth phase zone 14 are provided, respectively.
[0092]
In FIG. 4, the same portions as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
[0093]
Also, one inter-pole connection conductor 19 is provided on the connection side coil end 17 side of the partial armature winding 10C, and four inter-pole connection conductors 19 and six jumper connections are provided on the non-connection side coil end 18 side. A conductor 20 is provided.
[0094]
In the partial armature winding 10C of FIG. 4, the relative positions of the upper coil piece 15 and the lower coil piece 16 in the first phase band 11, the second phase band 12, the third phase band 13, and the fourth phase band 14 are wound. When A, B, C, D, E, and F are indicated in order from the side connected to the wire outlet (only the upper coil piece 15 of the first phase band 11 is denoted by a reference numeral), The positions of the coil pieces 15 and the lower coil pieces 16 are as shown in Table 7.
[0095]
That is, the number of first parallel circuits 1 provided in the upper coil pieces 15 in the first phase band 11, the second phase band 12, the third phase band 13, and the fourth phase band 14 of the partial armature winding 10C is The total is eight, two at B and F positions and one at A, C, D and E positions. Similarly, the total number of the first parallel circuits 1 provided in the lower coil piece 16 is eight, two at the positions A and E and one at the positions B, C, D and F. .
[0096]
Similarly to the first parallel circuit 1, the total number of the second parallel circuits 2 provided in the upper coil piece 15 is eight, two at B and F positions, and two at A, C, D and E positions. Each one is arranged. Similarly, the total number of the second parallel circuits 2 related to the lower coil piece 16 is eight, two at the positions A and E, and one at the positions B, C, D and F. . Further, the total number of the third parallel circuits 3 provided in the upper coil piece 15 is eight, two at the positions of A, C, D, and E, and the lower coil piece 16 is the number of B, C, D, and F. Two are arranged at each position.
[0097]
[Table 7]
Figure 2004040910
[0098]
Subsequently, according to Table 7, as an example of the arrangement of the parallel circuits 1 to 3 in each phase band, for example, the arrangement of the circuit numbers of the upper coil piece 15 and the lower coil piece 16 in the first phase band 11 (A, B, C, D, E, and F) are set to 2, 2, 2, 2, 2, and 2, respectively. Similarly, the arrangement of the circuit numbers of the upper coil pieces 15 in the second phase band 12 is set to 3, 2, 3, and 3, respectively. 3,3,2,2,3,3,3,2,3 in the lower coil piece 16, and the arrangement of the circuit numbers of the upper coil piece 15 in the third phase band 13 is 3,1,3,3,3 in order. , 1, and 1, 3, 3, 3, 1, 3 in the lower coil piece 16, and the arrangement of the circuit numbers of the upper coil piece 15 and the lower coil piece 16 in the fourth phase band 14 is 1, 1, 1, 1, respectively. 1, 1, and 1.
[0099]
Next, the imbalance of the voltage generated in the partial armature winding 10C will be described. Here, the following definitions are generally adopted as means for numerically evaluating the degree of imbalance.
[0100]
Definition: Of a number of parallel circuits provided in the partial armature winding 10C, the voltage of only one circuit is p. u. What is shown is the ratio between the open circuit voltage of the parallel circuit and the average voltage (phase voltage) of the entire phase, and indicates the degree of imbalance between the magnitudes of the voltages of the parallel circuit and the entire phase. Similarly, the phase angle deviation between the open-circuit voltage and the phase voltage generated in one parallel circuit indicates the degree of imbalance in the phase angle between the voltage of the parallel circuit and the entire phase.
[0101]
Table 8 shows the balance of the generated voltage of the partial armature winding 10C when the coil pitch of the partial armature winding 10C according to the fourth embodiment is 15/18. As shown in Table 2, in this partial armature winding 10C, the deviation of the voltage magnitude is 0.10% at the maximum, and the deviation of the phase angle is 0 degree. From these results, the partial armature winding 10C has a much higher degree of balance as compared with the case of the aforementioned U.S. Pat. No. 3,476,964 (the deviation of the voltage magnitude is 0.51% at the maximum). It can be seen that
[0102]
Further, in the partial armature winding 10C, the deviation of the magnitude of the voltage, which is the reference value described in US Pat. No. 2,778,963, is 0.4%, and the deviation of the phase angle is 0.1%. Satisfies the standard of 15 degrees or less.
[0103]
[Table 8]
Figure 2004040910
[0104]
In addition, since the degree of balance of the voltage generated by the partial armature winding 10C changes depending on the coil pitch, Table 9 shows the maximum unbalanced voltage of the three parallel circuits with respect to the coil pitch. If the coil pitch is either 16/18 or 15/18, the voltage deviation of 0.4% or less described in the above-mentioned US Pat. No. 2,778,963 is satisfied.
[0105]
[Table 9]
Figure 2004040910
[0106]
FIG. 4 illustrates the partial armature winding 10C for one phase of the three-phase armature winding. However, the partial armature winding 10C of FIG. The partial armature winding of the phase has the same configuration as the partial armature winding 10C of the first phase, and the second phase and the third phase are arranged by shifting the first phase by a specific angle.
[0107]
Therefore, the arrangement of circuit numbers in each phase band and the relative positions of the upper and lower coils of each of the parallel circuits 1 to 3 are the same as those in FIG. The degrees are as shown in Tables 8 and 9.
[0108]
Note that the present embodiment is not limited to the configuration shown in FIG. 4, but can be applied mutatis mutandis to an electrically equivalent winding arrangement.
[0109]
In the exchange of the phase bands of the partial armature windings 10C, various exchanges are possible, and the connection workability between the connection side coil end 17 or the non-connection side coil end 18 and the inter-electrode connection conductor 19 and the like can be improved. And the dimensions of the connection-side coil end 17 and the inter-electrode connection conductor 19 can be conveniently selected.
[0110]
Further, the armature windings of the first phase, the second phase and the third phase are usually formed by shifting the phases of the same configuration by a specific angle as described above. Alternatively, three phases having different configurations may be combined to form three phases.
[0111]
As described above, since the partial armature winding 10C can reduce the voltage imbalance between the parallel circuits 1 to 3, the circulating current between the parallel circuits 1 to 3 is reduced, and the overheating of the winding due to the circulating current and It is possible to provide a highly reliable and highly efficient armature winding while preventing a decrease in efficiency.
[0112]
Further, in the partial armature winding 10C, as compared with the partial armature winding 10 of FIG. 1, the partial armature winding 10A of FIG. 2, and the partial armature winding 10B of FIG. Since the number of connection conductors can be reduced, it is possible to suppress an increase in the axial dimension of the connection-side coil end due to the installation of the inter-pole connection conductor, and also to improve the connection workability. Armature windings with improved reliability can be provided.
[0113]
FIG. 5 shows a fifth embodiment of the armature winding of the rotating electric machine according to the present invention, and is a developed view showing a partial armature winding of one phase of the armature winding of the turbine generator as the rotating electric machine. It is.
[0114]
The armature windings installed in the four-pole three-phase generator and having three parallel circuits in each phase are housed in two layers in 72 slots provided in an armature core (not shown) made of a laminated core. I have.
[0115]
FIG. 5 shows a one-phase partial armature winding 10D constituting an armature winding of a three-phase turbine generator, and the partial armature winding 10D includes a first phase band 11, A two-phase zone 12, a third phase zone 13, and a fourth phase zone 14 are provided, respectively.
[0116]
In FIG. 5, the same parts as those in FIG.
[0117]
Also, one inter-pole connection conductor 19 and four jumper connection conductors 20 are provided on the connection side coil end 17 side of the partial armature winding 10D, while the four inter-pole connection conductors are provided on the opposite connection side coil end 18 side. A conductor 19 and three jumper connection conductors 20 are provided.
[0118]
In the partial armature winding 10D, the relative positions of the upper coil piece 15 and the lower coil piece 16 in the first phase band 11, the second phase band 12, the third phase band 13, and the fourth phase band 14 are determined. When A, B, C, D, E, and F are indicated in order from the side connected to the outlet (only the upper coil pieces 15 of the first phase band are denoted by reference numerals), the upper coil pieces of each of the parallel circuits 1 to 3 are provided. The positions of 15 and the lower coil piece 16 are as shown in Table 10.
[0119]
That is, the number of the first parallel circuits 1 provided in the upper coil pieces 15 in the first phase band 11, the second phase band 12, the third phase band 13, and the fourth phase band 14 of the partial armature winding 10D is The total is eight, two at the positions B and D and one at the positions A, C, E and F. Similarly, the number of the first parallel circuits 1 provided in the lower coil piece 16 is eight, two at the positions C and E, and one at the positions A, B, D and F.
[0120]
Similarly to the first parallel circuit 1, the total number of the second parallel circuits 2 provided in the upper coil piece 15 is eight, two at B and F positions, and two at A, C, D and E positions. Each one is arranged. Similarly, two lower coil pieces 16 are disposed at positions A and E, and one lower coil piece 16 is disposed at positions B, C, D and F. Furthermore, the total number of the third parallel circuits 3 provided in the upper coil piece 15 is eight, two at the positions A, C, and E, one at each of the positions D and F, and the lower coil piece 16 is at B , D, and F, and one each at A and C.
[0121]
[Table 10]
Figure 2004040910
[0122]
Subsequently, according to Table 10, as an example of the arrangement of the parallel circuits 1 to 3 in each phase band, for example, the arrangement of the circuit numbers of the upper coil piece 15 and the lower coil piece 16 in the first phase band 11 (A, B, C, D, E, and F) are set to 2, 2, 2, 2, 2, and 2, respectively. Similarly, the arrangement of the circuit numbers of the upper coil pieces 15 in the second phase band 12 is set to 3, 2, 3, and 3, respectively. 3,3,2,3,2,3,3,2,3 in the lower coil piece 16, and the arrangement of the circuit numbers of the upper coil piece 15 in the third phase band 13 is 3,1,3,1,3 in order. , 3, and the lower coil piece 16 are 3, 3, 1, 3, 1, 3, and the arrangement of the circuit numbers of the upper coil piece 15 and the lower coil piece 16 in the fourth phase band 14 is 1, 1, 1, 1, respectively. 1, 1, and 1.
[0123]
Next, the imbalance of the voltage generated in the partial armature winding 10D will be described. Here, the following definitions are generally adopted as means for numerically evaluating the degree of imbalance.
[0124]
Definition: Of a number of parallel circuits provided in the partial armature winding 10D, the voltage of only one circuit is p. u. What is shown is the ratio between the open circuit voltage of the parallel circuit and the average voltage (phase voltage) of the entire phase, and indicates the degree of imbalance between the magnitudes of the voltages of the parallel circuit and the entire phase. Similarly, the phase angle deviation between the open-circuit voltage and the phase voltage generated in one parallel circuit indicates the degree of imbalance in the phase angle between the voltage of the parallel circuit and the entire phase.
[0125]
Table 11 shows the balance of the generated voltage of the partial armature winding 10D when the coil pitch of the partial armature winding 10D according to the fifth embodiment is 15/18. As shown in Table 11, in this partial armature winding 10D, the deviation of the magnitude of the voltage is 0.10% at the maximum, and the deviation of the phase angle is 0 degree. From these results, the partial armature winding 10D has a much higher degree of balance compared to the case of the above-mentioned US Pat. No. 3,476,964 (the deviation of the voltage magnitude is 0.51% at the maximum). It can be seen that
[0126]
Further, in the partial armature winding 10D, the deviation of the magnitude of the voltage, which is the reference value disclosed in US Pat. No. 2,778,963, is 0.4%, and the deviation of the phase angle is 0.1%. Satisfies the standard of 15 degrees or less.
[0127]
[Table 11]
Figure 2004040910
[0128]
Since the degree of balance of the voltage generated by the partial armature winding 10D changes depending on the coil pitch, Table 12 shows the magnitude of the largest unbalanced voltage of the three parallel circuits with respect to the coil pitch. If the coil pitch is any one of 16/18, 15/18 and 14/18, the voltage deviation of 0.4% or less described in U.S. Pat. No. 2,778,963 is satisfied.
[0129]
[Table 12]
Figure 2004040910
[0130]
FIG. 5 shows a partial armature winding 10D for one phase of the three-phase armature winding. However, the partial armature winding shown in FIG. Has the same configuration as the partial armature winding 10D of the first phase, and the second phase and the third phase are arranged by shifting the first phase by a specific angle.
[0131]
Therefore, the arrangement of the circuit numbers in each phase band and the relative positions of the upper and lower coils of each of the parallel circuits 1 to 3 are the same as those in FIG. The degrees are as shown in Tables 11 and 12.
[0132]
Note that the present embodiment is not limited to the configuration shown in FIG.
[0133]
Further, the armature windings of the first phase, the second phase and the third phase are usually formed by shifting the phases of the same configuration by a specific angle, but the configuration is different if the winding arrangement is electrically equivalent. The phases may be combined into three phases.
[0134]
As described above, the partial armature winding 10D can reduce the imbalance of the voltage between the parallel circuits 1 to 3, so that the circulating current between the parallel circuits 1 to 3 is reduced, and the circulating current may cause overheating of the winding and A highly reliable and highly efficient armature winding can be provided by preventing a decrease in efficiency.
[0135]
In addition, the partial armature winding 10D has a more pole-to-pole connection on the connection side coil end than the partial armature winding 10 of FIG. 1, the partial armature winding 10A of FIG. 2, and the partial armature winding 10B of FIG. Since the number of conductors can be reduced, it is possible to suppress an increase in the axial dimension of the connection side coil end due to the installation of the inter-pole connection conductor, and it is also possible to improve the connection workability. An armature winding with improved reliability can be provided.
[0136]
【The invention's effect】
According to the present invention, since the voltage imbalance between the parallel circuits can be reduced, the circulating current between the parallel circuits is reduced, and overheating of the windings and a decrease in efficiency due to the circulating current are prevented, and high reliability and high reliability are achieved. An efficient armature winding can be provided.
[0137]
In addition, since the number of inter-pole connection conductors of the connection-side coil end can be reduced, an increase in the axial dimension of the connection-side coil end due to installation of the inter-pole connection conductor can be suppressed, and connection workability can be improved. Therefore, it is possible to provide an armature winding in which the reliability of the connection portion of the connection-side coil end is improved.
[Brief description of the drawings]
FIG. 1 shows a first embodiment of an armature winding of a rotary electric machine according to the present invention, and is a developed view showing a partial armature winding of one phase of an armature winding of a turbine generator as the rotary electric machine. .
FIG. 2 shows a second embodiment of the armature winding of the rotating electric machine according to the present invention, and is a developed view showing a partial armature winding of one phase of the armature winding of the turbine generator as the rotating electric machine. .
FIG. 3 is a view showing a third embodiment of the armature winding of the rotating electric machine according to the present invention, and is a developed view showing a partial armature winding for one phase of the armature winding of the turbine generator as the rotating electric machine. .
FIG. 4 is a view showing a fourth embodiment of the armature winding of the rotating electric machine according to the present invention, and is a developed view showing a partial armature winding for one phase of the armature winding of the turbine generator as the rotating electric machine. .
FIG. 5 shows a fifth embodiment of the armature winding of the rotating electric machine according to the present invention, and is a development view showing a partial armature winding for one phase of the armature winding of the turbine generator as the rotating electric machine. .
[Explanation of symbols]
1 First parallel circuit
2 Second parallel circuit
3 Third parallel circuit
10, 10A, 10B, 10C, 10D Partial armature winding
11 First phase belt
12 Second phase belt
13 Third phase belt
14 Phase 4 belt
15 Upper coil pieces
16 Lower coil piece
17 Connection side coil end
18 Non-connection side coil end
19 Pole connecting conductor
20 Jumper connection conductor
A, B, C, D, E, F Relative position of each coil piece in one-phase band

Claims (15)

各相が3つの並列回路を有し、かつ各相が第1〜第4相帯に分割される電機子鉄心に設けられたスロットに納められる3相2層巻きの電機子巻線において、
前記第1〜第4の各相帯が、上コイル片と下コイル片の2つのコイル片を直列に接続した直列コイルにより構成され、
前記並列回路は前記第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記相帯中のコイル片の相対位置を巻線口出し部に接続する側から順にA,B,C,D,E,Fと表すとき、
第1並列回路の上コイル片はA,Fの位置に各2個、B,C,D,Eの位置に各1個配置され、第1並列回路の下コイル片はC,Dの位置に各2個、A,B,E,Fの位置に各1個配置され、
第2並列回路の上コイル片と下コイル片はそれぞれB,Eの位置に各2個、A,C,D,Fの位置に各1個配置され、
第3並列回路の上コイル片はC,Dの位置に各2個、A,B,E,Fの位置に各1個配置され、第3並列回路の下コイル片はA,Fの位置に各2個、B,C,D,Eの位置に各1個それぞれ配置されるように接続され、
前記電機子巻線の接続側コイルエンド側に3本の極間接続導体と、3本のジャンパ接続導体を設ける一方、反接続側コイルエンド側に4本のジャンパ接続導体を備えたことを特徴とする回転電機の電機子巻線。
In a three-phase two-layer armature winding, each phase has three parallel circuits, and each phase is housed in a slot provided in an armature core divided into first to fourth phase bands,
Each of the first to fourth phase bands is constituted by a series coil in which two coil pieces of an upper coil piece and a lower coil piece are connected in series,
The parallel circuit has a series coil arranged in at least two phase bands of the first to fourth phase bands, and sequentially connects the relative positions of the coil pieces in the phase band to a winding lead portion. When expressed as A, B, C, D, E, F,
Two upper coil pieces of the first parallel circuit are arranged at positions A and F, and one each at B, C, D and E positions. The lower coil piece of the first parallel circuit is placed at positions C and D. Two each, one each at the positions of A, B, E, F,
The upper coil piece and the lower coil piece of the second parallel circuit are arranged at two positions B and E, respectively, and one at the positions A, C, D and F, respectively.
The upper coil piece of the third parallel circuit is arranged at two positions C and D, and one at the positions of A, B, E and F. The lower coil piece of the third parallel circuit is arranged at the positions A and F. Two pieces are connected to each other, and one piece is connected to each of B, C, D, and E positions.
Three armature connection conductors and three jumper connection conductors are provided on the connection side coil end side of the armature winding, and four jumper connection conductors are provided on the non-connection side coil end side. The armature winding of the rotating electric machine.
前記電機子巻線において、前記並列回路は前記第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記並列回路の回路番号を1〜3と表すとき、第1相帯の上コイル片と下コイル片の回路番号の配置(A,B,C,D,E,F)を順にそれぞれ2,2,2,2,2,2とし、第2相帯の上コイル片の回路番号の配置を順に1,2,3,3,2,1とし、第2相帯の下コイル片の回路番号の配置を順に3,2,1,1,2,3とし、第3相帯の上コイル片と下コイル片の回路番号の配置を順にそれぞれ3,3,3,3,3,3とし、第4相帯の上コイル片と下コイル片の回路番号の配置を順にそれぞれ1,1,1,1,1,1とするように接続されたことを特徴とする請求項1記載の回転電機の電機子巻線。In the armature winding, the parallel circuit has a series coil arranged in at least two of the first to fourth phase bands, and when the circuit numbers of the parallel circuits are represented by 1 to 3, The arrangement (A, B, C, D, E, F) of the circuit numbers of the upper coil piece and the lower coil piece of the first phase band is set to 2, 2, 2, 2, 2, 2, respectively, and the second phase band The arrangement of the circuit numbers of the upper coil pieces is 1, 2, 3, 3, 2, 1, and 1, respectively, and the arrangement of the circuit numbers of the lower coil pieces in the second phase band is 3, 2, 1, 1, 2, 3, And the arrangement of the circuit numbers of the upper coil piece and the lower coil piece in the third phase band are 3, 3, 3, 3, 3, 3 respectively, and the circuit number of the upper coil piece and the lower coil piece in the fourth phase band 2. The armature winding of a rotating electric machine according to claim 1, wherein the connection is arranged such that the arrangements are 1, 1, 1, 1, 1, 1, 1, respectively. 前記電機子巻線のコイルピッチが、18/18,17/18,16/18および15/18のうちのいずれかとしたことを特徴とする請求項1または2記載の回転電機の電機子巻線。The armature winding according to claim 1, wherein a coil pitch of the armature winding is any one of 18/18, 17/18, 16/18 and 15/18. . 各相が3つの並列回路を有し、かつ各相が第1〜第4相帯に分割される電機子鉄心に設けられたスロットに納められる3相2層巻きの電機子巻線において、
前記第1〜第4の各相帯が、上コイル片と下コイル片の2つのコイル片を直列に接続した直列コイルにより構成され、
前記並列回路は前記第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記相帯中のコイル片の相対位置を巻線口出し部に接続する側から順にA,B,C,D,E,Fと表すとき、
第1並列回路の上コイル片はA,Fの位置に各2個、B,C,D,Eの位置に各1個配置され、第1並列回路の下コイル片はC,Dの位置に各2個、A,B,E,Fの位置に各1個配置され、
第2並列回路の上コイル片と下コイル片はそれぞれB,Eの位置に各2個、A,C,D,Fの位置に各1個配置され、
第3並列回路の上コイル片はC,Dの位置に各2個、A,B,E,Fの位置に各1個配置され、第3並列回路の下コイル片はA,Fの位置に各2個、B,C,D,Eの位置に各1個それぞれ配置されるように接続され、
前記電機子巻線の接続側コイルエンド側に2本の極間接続導体と、4本のジャンパ接続導体を設ける一方、反接続側コイルエンド側に2本の極間接続導体と、2本のジャンパ接続導体を備えたことを特徴とする回転電機の電機子巻線。
In a three-phase two-layer armature winding, each phase has three parallel circuits, and each phase is housed in a slot provided in an armature core divided into first to fourth phase bands,
Each of the first to fourth phase bands is constituted by a series coil in which two coil pieces of an upper coil piece and a lower coil piece are connected in series,
The parallel circuit has a series coil arranged in at least two phase bands of the first to fourth phase bands, and sequentially connects the relative positions of the coil pieces in the phase band to a winding lead portion. When expressed as A, B, C, D, E, F,
Two upper coil pieces of the first parallel circuit are arranged at positions A and F, and one each at B, C, D and E positions. The lower coil piece of the first parallel circuit is placed at positions C and D. Two each, one each at the positions of A, B, E, F,
The upper coil piece and the lower coil piece of the second parallel circuit are arranged at two positions B and E, respectively, and one at the positions A, C, D and F, respectively.
The upper coil piece of the third parallel circuit is arranged at two positions C and D, and one at the positions of A, B, E and F. The lower coil piece of the third parallel circuit is arranged at the positions A and F. Two pieces are connected to each other, and one piece is connected to each of B, C, D, and E positions.
While two inter-pole connection conductors and four jumper connection conductors are provided on the connection side coil end side of the armature winding, two inter-pole connection conductors and two jumper connection conductors are provided on the non-connection side coil end side. An armature winding for a rotating electric machine, comprising a jumper connection conductor.
前記電機子巻線において、前記並列回路は前記第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記並列回路の回路番号を1〜3と表すとき、第1相帯の上コイル片と下コイル片の回路番号の配置(A,B,C,D,E,F)を順にそれぞれ2,2,2,2,2,2とし、第2相帯の上コイル片の回路番号の配置を順に1,2,3,3,2,1とし、第2相帯の下コイル片の回路番号の配置を順に3,2,1,1,2,1とし、第3相帯の上コイル片と下コイル片の回路番号の配置を順にそれぞれ3,3,3,3,3,3とし、第4相帯の上コイル片の回路番号の配置を順に1,1,1,1,1,1とし、第4相帯の下コイル片の回路番号の配置を順に1,1,1,1,1,3とするように接続されたことを特徴とする請求項4記載の回転電機の電機子巻線。In the armature winding, the parallel circuit has a series coil arranged in at least two of the first to fourth phase bands, and when the circuit numbers of the parallel circuits are represented by 1 to 3, The arrangement (A, B, C, D, E, F) of the circuit numbers of the upper coil piece and the lower coil piece of the first phase band is set to 2, 2, 2, 2, 2, 2, respectively, and the second phase band The arrangement of the circuit numbers of the upper coil pieces is 1, 2, 3, 3, 2, 1, and 1, and the arrangement of the circuit numbers of the lower coil pieces in the second phase band is 3, 2, 1, 1, 2, 1, 1. The arrangement of the circuit numbers of the upper coil piece and the lower coil piece of the third phase band is 3, 3, 3, 3, 3, 3 respectively, and the arrangement of the circuit number of the upper coil piece of the fourth phase band is sequentially. 1,1,1,1,1,1 and connected so that the arrangement of the circuit numbers of the lower coil pieces of the fourth phase band is 1,1,1,1,1,3 in order. An armature winding of a rotating electric machine according to claim 4 wherein. 前記電機子巻線のコイルピッチが、18/18,17/18,16/18および15/18のうちのいずれかとしたことを特徴とする請求項4または5記載の回転電機の電機子巻線。The armature winding of a rotary electric machine according to claim 4 or 5, wherein a coil pitch of the armature winding is any one of 18/18, 17/18, 16/18 and 15/18. . 各相が3つの並列回路を有し、かつ各相が第1〜第4相帯に分割される電機子鉄心に設けられたスロットに納められる3相2層巻きの電機子巻線において、
前記第1〜第4の各相帯は上コイル片と下コイル片の2つのコイル片を直列に接続した直列コイルにより構成され、
前記並列回路は前記第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記相帯中のコイル片の相対位置を巻線口出し部に接続する側から順にA,B,C,D,E,Fと表すとき、
第1並列回路の上コイル片はB,Dの位置に各2個、A,C,E,Fの位置に各1個配置され、第1並列回路の下コイル片はC,Eの位置に各2個、A,B,D,Fの位置に各1個配置され、
第2並列回路の上コイル片はB,Dの位置に各2個、A,C,E,Fの位置に各1個配置され、第2並列回路の下コイル片はC,Eの位置に各2個、A,B,D,Fの位置に各1個配置され、
第3並列回路の上コイル片はA,C,E,Fの位置に各2個配置され、第3並列回路の下コイル片はA,B,D,Fの位置に各2個配置されるように接続され、
前記電機子巻線の接続側コイルエンド側に2本の極間接続導体と、5本のジャンパ接続導体を設ける一方、反接続側コイルエンド側に2本の極間接続導体と、2本のジャンパ接続導体を備えたことを特徴とする回転電機の電機子巻線。
In a three-phase two-layer armature winding, each phase has three parallel circuits, and each phase is housed in a slot provided in an armature core divided into first to fourth phase bands,
Each of the first to fourth phase bands is constituted by a series coil in which two coil pieces of an upper coil piece and a lower coil piece are connected in series,
The parallel circuit has a series coil arranged in at least two phase bands of the first to fourth phase bands, and sequentially connects the relative positions of the coil pieces in the phase band to a winding lead portion. When expressed as A, B, C, D, E, F,
Two upper coil pieces of the first parallel circuit are arranged at positions B and D, and one each at A, C, E and F positions, and the lower coil piece of the first parallel circuit is positioned at C and E positions. Two each, one each at the positions of A, B, D, F,
The upper coil piece of the second parallel circuit is arranged at two positions B and D, and one at the positions of A, C, E and F. The lower coil piece of the second parallel circuit is positioned at the positions C and E. Two each, one each at the positions of A, B, D, F,
Two upper coil pieces are arranged at positions A, C, E, and F in the third parallel circuit, and two lower coil pieces are arranged at positions A, B, D, and F in the third parallel circuit. Connected as
While two inter-pole connection conductors and five jumper connection conductors are provided on the connection side coil end side of the armature winding, two inter-pole connection conductors and two jumper connection conductors are provided on the non-connection side coil end side. An armature winding for a rotating electric machine, comprising a jumper connection conductor.
前記電機子巻線において、前記並列回路は前記第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記並列回路の回路番号を1〜3と表すとき、第1相帯の上コイル片と下コイル片の回路番号の配置(A,B,C,D,E,F)を順にそれぞれ2,2,2,2,2,2とし、第2相帯の上コイル片の回路番号の配置を順に3,2,3,2,3,3とし、第2相帯の下コイル片の回路番号の配置を順に3,3,2,3,2,3とし、第3相帯の上コイル片の回路番号の配置を順に3,1,3,1,3,3とし、第3相帯の下コイル片の回路番号の配置を順に3,3,1,3,1,3とし、第4相帯の上コイル片と下コイル片の回路番号の配置を順にそれぞれ1,1,1,1,1,1とするように接続されたことを特徴とする請求項7記載の回転電機の電機子巻線。In the armature winding, the parallel circuit has a series coil arranged in at least two of the first to fourth phase bands, and when the circuit numbers of the parallel circuits are represented by 1 to 3, The arrangement (A, B, C, D, E, F) of the circuit numbers of the upper coil piece and the lower coil piece of the first phase band is set to 2, 2, 2, 2, 2, 2, respectively, and the second phase band The arrangement of the circuit numbers of the upper coil pieces is 3, 2, 3, 2, 3, 3 in order, and the arrangement of the circuit numbers of the lower coil pieces in the second phase band is 3, 3, 2, 3, 2, 3 in order. The arrangement of the circuit numbers of the upper coil pieces of the third phase band is 3,1,3,1,3,3 in order, and the arrangement of the circuit numbers of the lower coil pieces of the third phase band is 3,3,1 in order. , 3, 1, and 3, and the arrangement of the circuit numbers of the upper coil piece and the lower coil piece of the fourth phase band is 1, 1, 1, 1, 1, 1, respectively. An armature winding of a rotating electric machine according to claim 7 wherein. 前記電機子巻線のコイルピッチが、15/18または14/18としたことを特徴とする請求項7または8記載の回転電機の電機子巻線。The armature winding of a rotary electric machine according to claim 7 or 8, wherein a coil pitch of the armature winding is 15/18 or 14/18. 各相が3つの並列回路を有し、かつ各相が第1〜第4相帯に分割される電機子鉄心に設けられたスロットに納められる3相2層巻きの電機子巻線において、
前記第1〜第4の各相帯は上コイル片と下コイル片の2つのコイル片を直列に接続されてなる直列コイルにより構成され、
前記並列回路は前記第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記相帯中のコイル片の相対位置を巻線口出し部に接続する側から順にA,B,C,D,E,Fと表すとき、
第1並列回路の上コイル片はB,Fの位置に各2個、A,C,D,Eの位置に各1個配置され、第1並列回路の下コイル片はA,Eの位置に各2個、B,C,D,Fの位置に各1個配置され、
第2並列回路の上コイル片はB,Fの位置に各2個、A,C,D,Eの位置に各1個配置され、第2並列回路の下コイル片はA,Eの位置に各2個、B,C,D,Fの位置に各1個配置され、
第3並列回路の上コイル片はA,C,D,Eの位置に各2個配置され、第3並列回路の下コイル片はB,C,D,Fの位置に各2個配置されるように接続され、
前記電機子巻線の接続側コイルエンド側に1本の極間接続導体を設ける一方、反接続側コイルエンド側に4本の極間接続導体と、6本のジャンパ接続導体を備えたことを特徴とする回転電機の電機子巻線。
In a three-phase two-layer armature winding, each phase has three parallel circuits, and each phase is housed in a slot provided in an armature core divided into first to fourth phase bands,
Each of the first to fourth phase bands is constituted by a series coil formed by connecting two coil pieces of an upper coil piece and a lower coil piece in series,
The parallel circuit has a series coil arranged in at least two phase bands of the first to fourth phase bands, and sequentially connects the relative positions of the coil pieces in the phase band to a winding lead portion. When expressed as A, B, C, D, E, F,
Two upper coil pieces of the first parallel circuit are arranged at positions B and F, and one each at A, C, D and E positions, and the lower coil piece of the first parallel circuit is positioned at A and E positions. Two each, one each at B, C, D, F positions,
The upper coil pieces of the second parallel circuit are arranged at two positions B and F, respectively, and one each at the positions of A, C, D and E. The lower coil pieces of the second parallel circuit are arranged at the positions A and E. Two each, one each at B, C, D, F positions,
Two upper coil pieces are arranged at positions A, C, D, and E in the third parallel circuit, and two lower coil pieces are arranged at positions B, C, D, and F in the third parallel circuit. Connected as
One arm connection conductor is provided on the connection side coil end side of the armature winding, and four pole connection conductors and six jumper connection conductors are provided on the non-connection side coil end side. Characteristic armature winding of rotating electric machine.
前記電機子巻線において、前記並列回路は第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記並列回路の回路番号を1〜3と表すとき、第1相帯の上コイル片と下コイル片の回路番号の配置(A,B,C,D,E,F)を順にそれぞれ2,2,2,2,2,2の順とし、第2相帯の上コイル片の回路番号の配置を順に3,2,3,3,3,2とし、第2相帯の下コイル片の回路番号の配置を順に2,3,3,3,2,3とし、第3相帯の上コイル片の回路番号の配置を順に3,1,3,3,3,1とし、第3相帯の下コイル片の回路番号の配置を順に1,3,3,3,1,3とし、第4相帯の上コイル片と下コイル片の回路番号の配置を順にそれぞれ1,1,1,1,1,1とするように接続されたことを特徴とする請求項10記載の回転電機の電機子巻線。In the armature winding, the parallel circuit has a series coil arranged in at least two of the first to fourth phase bands, and when a circuit number of the parallel circuit is represented by 1 to 3, The arrangement (A, B, C, D, E, F) of the circuit numbers of the upper coil piece and the lower coil piece in the one-phase band is 2, 2, 2, 2, 2, 2, respectively, in order, and the second phase The arrangement of the circuit numbers of the upper coil pieces of the band is 3, 2, 3, 3, 3, 2 in order, and the arrangement of the circuit numbers of the lower coil pieces of the second phase band is 2, 3, 3, 3, 2, in order. 3, the arrangement of the circuit numbers of the upper coil pieces of the third phase band is 3, 1, 3, 3, 3, 1 in order, and the arrangement of the circuit numbers of the lower coil pieces of the third phase band is 1, 3, 3, 3, 3, 1, 3 and the arrangement is such that the arrangement of the circuit numbers of the upper coil piece and the lower coil piece of the fourth phase band is 1, 1, 1, 1, 1, 1, respectively. An armature winding of a rotating electric machine according to claim 10 wherein. 前記電機子巻線のコイルピッチが、16/18または15/18としたことを特徴とする請求項10または11記載の回転電機の電機子巻線。The armature winding of a rotating electric machine according to claim 10 or 11, wherein a coil pitch of the armature winding is 16/18 or 15/18. 各相が3つの並列回路を有し、かつ各相が第1〜第4相帯に分割される電機子鉄心に設けられたスロットに納められる3相2層巻きの電機子巻線において、
前記第1〜第4の各相帯は上コイル片と下コイル片の2つのコイル片を直列に接続されてなる直列コイルにより構成され、
前記並列回路は前記第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記相帯中のコイル片の相対位置を巻線口出し部に接続する側から順にA,B,C,D,E,Fと表すとき、
第1並列回路の上コイル片はB,Dの位置に各2個、A,C,E,Fの位置に各1個配置され、第1並列回路の下コイル片はC,Eの位置に各2個、A,B,D,Fの位置に各1個配置され、
第2並列回路の上コイル片はB,Fの位置に各2個、A,C,D,Eの位置に各1個配置され、第2並列回路の下コイル片はA,Eの位置に各2個、B,C,D,Fの位置に各1個配置され、
第3並列回路の上コイル片はA,C,Eの位置に各2個、D,Fの位置に各1個配置され、第3並列回路の下コイル片はB,D,Fの位置に各2個、A,Cの位置に各1個配置されるように接続され、
前記電機子巻線の接続側コイルエンド側に1本の極間接続導体と、4本のジャンパ接続導体を設ける一方、反接続側コイルエンド側に4本の極間接続導体と、3本のジャンパ接続導体を備えたことを特徴とする回転電機の電機子巻線。
In a three-phase two-layer armature winding, each phase has three parallel circuits, and each phase is housed in a slot provided in an armature core divided into first to fourth phase bands,
Each of the first to fourth phase bands is constituted by a series coil formed by connecting two coil pieces of an upper coil piece and a lower coil piece in series,
The parallel circuit has a series coil arranged in at least two phase bands of the first to fourth phase bands, and sequentially connects the relative positions of the coil pieces in the phase band to a winding lead portion. When expressed as A, B, C, D, E, F,
Two upper coil pieces of the first parallel circuit are arranged at positions B and D, and one each at A, C, E and F positions, and the lower coil piece of the first parallel circuit is positioned at C and E positions. Two each, one each at the positions of A, B, D, F,
The upper coil pieces of the second parallel circuit are arranged at two positions B and F, respectively, and one each at the positions of A, C, D and E. The lower coil pieces of the second parallel circuit are arranged at the positions A and E. Two each, one each at B, C, D, F positions,
The upper coil pieces of the third parallel circuit are arranged at two positions A, C, and E, respectively, and one at the positions of D and F. The lower coil pieces of the third parallel circuit are positioned at the positions B, D, and F. It is connected so that two each, one each at the positions of A and C,
One inter-pole connection conductor and four jumper connection conductors are provided on the connection side coil end side of the armature winding, while four inter-pole connection conductors and three jumper connection conductors are provided on the non-connection side coil end side. An armature winding for a rotating electric machine, comprising a jumper connection conductor.
前記電機子巻線において、前記並列回路は前記第1〜第4相帯のうち少なくとも2つの相帯に配置される直列コイルを有し、前記並列回路の回路番号を1〜3と表すとき、第1相帯の上コイル片と下コイル片の回路番号の配置(A,B,C,D,E,F)を順にそれぞれ2,2,2,2,2,2とし、第2相帯の上コイル片の回路番号の配置を順に3,2,3,3,3,2とし、第2相帯の下コイル片の回路番号の配置を順に2,3,3,3,2,3とし、第3相帯の上コイル片の回路番号の配置を順に3,1,3,1,3,3とし、第3相帯の下コイル片の回路番号の配置を順に3,3,1,3,1,3とし、第4相帯の上コイル片と下コイル片の回路番号の配置を順にそれぞれ1,1,1,1,1,1とするように接続されたことを特徴とする請求項13記載の回転電機の電機子巻線。In the armature winding, the parallel circuit has a series coil arranged in at least two of the first to fourth phase bands, and when the circuit numbers of the parallel circuits are represented by 1 to 3, The arrangement (A, B, C, D, E, F) of the circuit numbers of the upper coil piece and the lower coil piece of the first phase band is set to 2, 2, 2, 2, 2, 2, respectively, and the second phase band The arrangement of the circuit numbers of the upper coil pieces is 3, 2, 3, 3, 3, 2 in order, and the arrangement of the circuit numbers of the lower coil pieces in the second phase band is 2, 3, 3, 3, 2, 3 in order. The arrangement of the circuit numbers of the upper coil pieces of the third phase band is 3,1,3,1,3,3 in order, and the arrangement of the circuit numbers of the lower coil pieces of the third phase band is 3,3,1 in order. , 3, 1, and 3, and the arrangement of the circuit numbers of the upper coil piece and the lower coil piece of the fourth phase band is 1, 1, 1, 1, 1, 1, respectively. An armature winding of a rotating electric machine according to claim 13 wherein. 前記電機子巻線のコイルピッチが、16/18,15/18および14/18のうちのいずれかとしたことを特徴とする請求項13または14記載の回転電機の電機子巻線。The armature winding of a rotating electric machine according to claim 13 or 14, wherein the coil pitch of the armature winding is any one of 16/18, 15/18, and 14/18.
JP2002194603A 2002-07-03 2002-07-03 Armature winding for rotary electric machine Pending JP2004040910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002194603A JP2004040910A (en) 2002-07-03 2002-07-03 Armature winding for rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002194603A JP2004040910A (en) 2002-07-03 2002-07-03 Armature winding for rotary electric machine

Publications (1)

Publication Number Publication Date
JP2004040910A true JP2004040910A (en) 2004-02-05

Family

ID=31703259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002194603A Pending JP2004040910A (en) 2002-07-03 2002-07-03 Armature winding for rotary electric machine

Country Status (1)

Country Link
JP (1) JP2004040910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119853A1 (en) * 2009-04-13 2010-10-21 株式会社 東芝 Armature coil of rotating electrical machinery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119853A1 (en) * 2009-04-13 2010-10-21 株式会社 東芝 Armature coil of rotating electrical machinery
JP2010252438A (en) * 2009-04-13 2010-11-04 Toshiba Corp Armature coil of rotating electric machine
CN102326321A (en) * 2009-04-13 2012-01-18 株式会社东芝 Armature coil of rotating electrical machinery
US8536755B2 (en) 2009-04-13 2013-09-17 Kabushiki Kaisha Toshiba Armature winding of rotating electrical machine
US8803397B2 (en) 2009-04-13 2014-08-12 Kabushiki Kaisha Toshiba Armature winding of rotating electrical machine
US9035525B2 (en) 2009-04-13 2015-05-19 Kabushiki Kaisha Toshiba Armature winding of rotating electrical machine
US9130428B2 (en) 2009-04-13 2015-09-08 Kabushiki Kaisha Toshiba Armature winding of rotating electrical machine
US9343938B2 (en) 2009-04-13 2016-05-17 Kabushiki Kaisha Toshiba Armature winding of rotating electrical machine
US9419488B2 (en) 2009-04-13 2016-08-16 Kabushiki Kaisha Toshiba Armature winding of rotating electrical machine
US9577485B2 (en) 2009-04-13 2017-02-21 Kabushiki Kaisha Toshiba Armature winding of rotating electrical machine
EP2421124A4 (en) * 2009-04-13 2017-04-12 Kabushiki Kaisha Toshiba Armature coil of rotating electrical machinery

Similar Documents

Publication Publication Date Title
JP5193557B2 (en) Armature
JP5231950B2 (en) Armature winding of rotating electric machine
JP5060325B2 (en) Armature winding of rotating electric machine
EP3696950B1 (en) Stator
JP2012085533A (en) Five-phase generator
JP2000050549A (en) Armature coil of electric rotating machine
JP4914169B2 (en) Rotating electric machine
JP2017070101A (en) Rotary electric machine
US7812499B2 (en) Armature winding of electric rotating machine, stator of electric rotating machine and electric rotating machine
US7911106B2 (en) Rotary electric machine
JP3550847B2 (en) Armature winding pattern of rotating electric machine
JP2001309597A (en) Armature winding of rotating electric machine
JP2006503528A (en) Single-phase induction motor with partially shared winding
JP6267933B2 (en) Rotating electric machine
US11394265B2 (en) Electric machine element and an electric machine
JP2008253014A (en) Rotating electrical machine for high voltage
JP6560606B2 (en) Rotating electric machine
CN113708521B (en) Wound motor stator and motor
JP2004040910A (en) Armature winding for rotary electric machine
CN110867994B (en) Rotating electrical machine
JP7002546B2 (en) Rotating machine
JP2006340488A (en) Rotating electric machine
JP2021151008A (en) Armature winding of rotary electric machine
JP2021132450A (en) Rotary electric machine