JP5376627B2 - Photoresponsive copper ion adsorbing material and copper ion recovery method - Google Patents

Photoresponsive copper ion adsorbing material and copper ion recovery method Download PDF

Info

Publication number
JP5376627B2
JP5376627B2 JP2008234892A JP2008234892A JP5376627B2 JP 5376627 B2 JP5376627 B2 JP 5376627B2 JP 2008234892 A JP2008234892 A JP 2008234892A JP 2008234892 A JP2008234892 A JP 2008234892A JP 5376627 B2 JP5376627 B2 JP 5376627B2
Authority
JP
Japan
Prior art keywords
ions
copper
photoresponsive
copolymer
copper ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008234892A
Other languages
Japanese (ja)
Other versions
JP2010064038A (en
Inventor
隆之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Denki University
Original Assignee
Tokyo Denki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Denki University filed Critical Tokyo Denki University
Priority to JP2008234892A priority Critical patent/JP5376627B2/en
Priority to PCT/JP2009/054201 priority patent/WO2010029778A1/en
Publication of JP2010064038A publication Critical patent/JP2010064038A/en
Application granted granted Critical
Publication of JP5376627B2 publication Critical patent/JP5376627B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • B01J20/267Cross-linked polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/327Polymers obtained by reactions involving only carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/3276Copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3268Macromolecular compounds
    • B01J20/328Polymers on the carrier being further modified
    • B01J20/3282Crosslinked polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

A photoresponsive copper ion adsorbent material containing a copolymer which is obtained by copolymerization of a monomer component containing both a photoresponsive compound exhibiting reversible metal ion adsorption-desorption transition in dependence of light in a metal ion solution and a quaternized amine compound, wherein the copolymer can selectively adsorb copper(II) ions in a dark place from a metal ion solution containing chloride ions, sodium ions, and copper(II) ions. Thus, only copper(II) ions can be adsorbed selectively among metal ions, and recovered through desorption.

Description

本発明は、光応答性銅イオン吸着材料と、それを用いた銅イオン回収方法に関する。   The present invention relates to a photoresponsive copper ion adsorbing material and a copper ion recovery method using the same.

近年、工場等から排出される産業廃液や産業廃棄物から、効率良く金属イオンを回収する方法が、環境汚染防止、産業廃棄物の減量、資源再利用の理由から望まれている。
金属イオンを含む廃液を浄化する方法として、中和凝集沈殿法・硫化ソーダ法・重金属捕集剤法・フェライト法等が実用化されている。これらの方法で廃液を処理した後、金属を回収するステップ、さらに再利用するステップが設けられている。
例えば、重金属捕集剤法は、重金属イオンと錯化合物を形成する捕集剤(例えばシアン化合物)を用いる。捕集処理後の捕集剤に吸着した金属イオンを回収するには、該捕集剤が一般に溶液に可溶なため、捕集剤を酸化処理等の化学反応処理を経て金属イオンから分離した後、金属を陽イオンとして溶液中に単離させて精製・回収している。
上記のような捕集剤による重金属捕集後の重金属回収ステップにおける化学反応処理の実施にあたっては、専門的な知識や技術が要求されるだけでなく、煩雑な操作と、それによる長い処理時間や多大な処理コストとを要した。
In recent years, a method of efficiently recovering metal ions from industrial waste liquid and industrial waste discharged from factories and the like is desired for reasons of environmental pollution prevention, industrial waste reduction, and resource reuse.
As a method for purifying waste liquid containing metal ions, a neutralization coagulation precipitation method, a sodium sulfide method, a heavy metal scavenger method, a ferrite method and the like have been put into practical use. After the waste liquid is treated by these methods, a step of recovering the metal and a step of reusing it are provided.
For example, the heavy metal scavenger method uses a scavenger (for example, a cyanide compound) that forms a complex compound with heavy metal ions. In order to recover the metal ions adsorbed to the collection agent after the collection treatment, the collection agent is generally soluble in the solution, so that the collection agent is separated from the metal ions through a chemical reaction treatment such as an oxidation treatment. Thereafter, the metal is isolated as a cation in a solution and purified and recovered.
In carrying out the chemical reaction process in the heavy metal recovery step after heavy metal collection by the collection agent as described above, not only specialized knowledge and technology are required, but also complicated operations and long treatment time due to it. It took a lot of processing costs.

そこで、化合物への光の照射の有無により可逆的に変色するフォトクロミック化合物とふっ化アルコールとのセグメントを有する共重合体を含み、光照射に応答して溶液中の金属イオンの吸着と脱離との両機能を備える金属イオン吸着材料が提案された(例えば、特許文献1参照。)。
特開2003−053185号公報
Accordingly, it includes a copolymer having a segment of a photochromic compound and a fluoroalcohol that reversibly discolors depending on whether or not the compound is irradiated with light. Adsorption and desorption of metal ions in a solution in response to light irradiation A metal ion adsorbing material having both functions has been proposed (see, for example, Patent Document 1).
JP 2003-053185 A

しかし、上記の吸着材料は金属イオンが複数種含まれる溶液に使用すると、金属イオンの種類に依存せずに吸着される為、特定の金属イオンだけを回収するのは困難であった。
本発明の目的は、金属イオンのうち銅(II)イオンを選択的に、効率良く回収できる吸着材料を提供することにある。
However, when the above adsorbing material is used in a solution containing a plurality of types of metal ions, it is adsorbed without depending on the type of metal ions, so that it is difficult to recover only specific metal ions.
An object of the present invention is to provide an adsorbent material that can selectively and efficiently recover copper (II) ions among metal ions.

すなわち、本発明は、以下の(1)〜(16)に関する。
(1) 金属イオン溶液中で金属イオンの吸着及び脱離の転移を光照射の有無により可逆的に示す光応答性化合物と、
四級化アミン化合物と
を含む単量体成分を共重合させてなる共重合体を含むことを特徴とする光応答性銅イオン吸着材料。
That is, the present invention relates to the following (1) to (16).
(1) a photoresponsive compound that reversibly transitions between adsorption and desorption of metal ions in a metal ion solution depending on the presence or absence of light irradiation;
A photoresponsive copper ion adsorbing material comprising a copolymer obtained by copolymerizing a monomer component containing a quaternized amine compound.

(2) 前記共重合体は、塩素イオン、ナトリウムイオンおよび銅(II)イオンを含む金属イオン溶液から、暗所下で銅(II)イオンを選択的に吸着する前記(1)記載の光応答性銅イオン吸着材料。 (2) The photoresponse according to (1), wherein the copolymer selectively adsorbs copper (II) ions in a dark place from a metal ion solution containing chlorine ions, sodium ions and copper (II) ions. Copper ion adsorption material.

(3) 前記光応答性化合物は、下式(I)または(II)で示される基と、重合可能なエチレン性不飽和結合とを有する化合物である前記(1)または(2)記載の光応答性銅イオン吸着材料。

Figure 0005376627
(式(I)および(II)中、Xは水素原子が一個結合した炭素原子、または窒素原子であり、Yは酸素原子または硫黄原子である。R、Rは独立に水素原子またはアルキル基であり、Rはアルキル基である。
(4) 前記四級化アミン化合物は、下式(IV)で示される基および重合可能なエチレン性不飽和結合を有する前記(1)〜(3)のいずれか記載の光応答性銅イオン吸着材料。
Figure 0005376627
(5) 前記四級化アミン化合物は、下式(V)で示される基および重合可能なエチレン性不飽和結合を有する前記(1)〜(3)のいずれか記載の光応答性銅イオン吸着材料。
Figure 0005376627
(3) The light according to (1) or (2), wherein the photoresponsive compound is a compound having a group represented by the following formula (I) or (II) and a polymerizable ethylenically unsaturated bond: Responsive copper ion adsorption material.
Figure 0005376627
(In the formulas (I) and (II), X is a carbon atom to which one hydrogen atom is bonded, or a nitrogen atom, Y is an oxygen atom or a sulfur atom. R 1 and R 2 are independently a hydrogen atom or alkyl. And R 3 is an alkyl group.
(4) The photoresponsive copper ion adsorption according to any one of (1) to (3), wherein the quaternized amine compound has a group represented by the following formula (IV) and a polymerizable ethylenically unsaturated bond: material.
Figure 0005376627
(5) The photoresponsive copper ion adsorption according to any one of (1) to (3), wherein the quaternized amine compound has a group represented by the following formula (V) and a polymerizable ethylenically unsaturated bond: material.
Figure 0005376627

(6) 前記共重合体が、1´,3´,3´−トリメチル−6−(アクリロイルオキシ)スピロ(2H−1−ベンゾピラン−2,2´−インドール)または
1´,3´,3´−トリメチル−6−(メタクリロイルオキシ)スピロ(2H−1−ベンゾピラン−2,2´−インドール)と、
N,N,N−トリメチル−N−アクリロイルオキシエチルアンモニウムクロリドまたは
N,N,N−トリメチル−N−メタクリロイルオキシエチルアンモニウムクロリド
とを含む単量体成分を共重合させてなる前記(1)〜(4)のいずれか記載の光応答性銅イオン吸着材料。
(7) 前記共重合体が、1´,3´,3´−トリメチル−6−(アクリロイルオキシ)スピロ(2H−1−ベンゾピラン−2,2´−インドール)または
1´,3´,3´−トリメチル−6−(メタクリロイルオキシ)スピロ(2H−1−ベンゾピラン−2,2´−インドール)と、
[2−(アクリロイルオキシ)エチル]−ジメチル−(3−スルホプロピル)−アンモニウムヒドロキシドまたは
[2−(メタクリロイルオキシ)エチル]−ジメチル−(3−スルホプロピル)−アンモニウムヒドロキシドと
を含む単量体成分を共重合させてなる前記(1)〜(3)、(5)のいずれか記載の光応答性銅イオン吸着材料。
(6) The copolymer is 1 ′, 3 ′, 3′-trimethyl-6- (acryloyloxy) spiro (2H-1-benzopyran-2,2′-indole) or 1 ′, 3 ′, 3 ′. -Trimethyl-6- (methacryloyloxy) spiro (2H-1-benzopyran-2,2'-indole);
(1) to (1) obtained by copolymerizing a monomer component containing N, N, N-trimethyl-N-acryloyloxyethylammonium chloride or N, N, N-trimethyl-N-methacryloyloxyethylammonium chloride. The photoresponsive copper ion adsorbing material according to any one of 4).
(7) The copolymer is 1 ′, 3 ′, 3′-trimethyl-6- (acryloyloxy) spiro (2H-1-benzopyran-2,2′-indole) or 1 ′, 3 ′, 3 ′. -Trimethyl-6- (methacryloyloxy) spiro (2H-1-benzopyran-2,2'-indole);
[2- (acryloyloxy) ethyl] -dimethyl- (3-sulfopropyl) -ammonium hydroxide or
Any one of (1) to (3) and (5) above, wherein a monomer component containing [2- (methacryloyloxy) ethyl] -dimethyl- (3-sulfopropyl) -ammonium hydroxide is copolymerized. The photoresponsive copper ion adsorbing material described.

(8) 基体に前記共重合体が担持されている前記(1)〜(7)のいずれか記載の光応答性銅イオン吸着材料。
(9) 基体が、ガラス、酸化金属、酸化珪素、シリカゲル、珪藻土、スチレンの重合体、アクリル酸の重合体、メタクリル酸の重合体いずれかである前記(8)記載の光応答性銅イオン吸着材料。
(10) 前記単量体成分にさらに架橋剤またはカップリング剤を含む前記(1)〜(9)のいずれか記載の光応答性銅イオン吸着材料。
(11) 繊維、細粒、または細管に共重合体が担持されている前記(8)〜(10)のいずれか記載の光応答性銅イオン吸着材料。
(8) The photoresponsive copper ion adsorbing material according to any one of (1) to (7), wherein the copolymer is supported on a substrate.
(9) The photoresponsive copper ion adsorption according to (8), wherein the substrate is any one of glass, metal oxide, silicon oxide, silica gel, diatomaceous earth, a styrene polymer, an acrylic acid polymer, and a methacrylic acid polymer. material.
(10) The photoresponsive copper ion adsorbing material according to any one of (1) to (9), further including a crosslinking agent or a coupling agent in the monomer component.
(11) The photoresponsive copper ion adsorbing material according to any one of (8) to (10), wherein a copolymer is supported on fibers, fine particles, or thin tubes.

(12) 前記(1)〜(11)のいずれか記載の光応答性銅イオン吸着材料を用いて、銅(II)イオン、塩素イオンおよびナトリウムイオンを含む金属イオン溶液から、銅(II)イオンを選択的に、回収用溶媒中へ回収することを特徴とする銅イオン回収方法。
(13) 前記光応答性銅イオン吸着材料の共重合体と、銅(II)イオンとを、塩素イオンおよびナトリウムイオン存在下の暗所下で錯形成により吸着させる工程と、
回収用溶媒中で、銅(II)イオンを共重合体から脱離させる工程とを含む前記(12)記載の銅イオン回収方法。
(14) 金属イオン溶液中塩素イオンおよびナトリウムイオンが、塩化ナトリウム換算濃度で、10wt%以下である前記(12)または(13)記載の銅イオン回収方法。
(15) 銅(II)イオンを共重合体から脱離させる工程において、回収用溶媒が塩化ナトリウムを含まない水である前記(13)記載の銅イオン回収方法。
(16) 銅(II)イオンを共重合体から脱離させる工程において、回収用溶媒が塩化ナトリウムの水溶液であって可視光を照射して銅イオンを脱離させる前記(13)記載の銅イオン回収方法。
(12) Using the photoresponsive copper ion adsorbing material according to any one of (1) to (11) above, from a metal ion solution containing copper (II) ions, chlorine ions and sodium ions, copper (II) ions Is selectively recovered in a recovery solvent.
(13) a step of adsorbing the copolymer of the photoresponsive copper ion adsorbing material and copper (II) ions by complex formation in the dark in the presence of chlorine ions and sodium ions;
The method for recovering copper ions according to (12), comprising a step of desorbing copper (II) ions from the copolymer in a recovery solvent.
(14) The copper ion recovery method according to the above (12) or (13), wherein chlorine ions and sodium ions in the metal ion solution are 10 wt% or less in terms of sodium chloride concentration.
(15) The copper ion recovery method according to the above (13), wherein the recovery solvent is water not containing sodium chloride in the step of desorbing copper (II) ions from the copolymer.
(16) The copper ion according to (13), wherein, in the step of desorbing copper (II) ions from the copolymer, the recovery solvent is an aqueous solution of sodium chloride, and the copper ions are desorbed by irradiation with visible light. Collection method.

本発明によれば金属イオンのうち銅イオンのみを選択的に吸着し、脱離して回収することができる。さらに銅イオンの吸着に必要な食塩は、生体に特に悪影響を及ぼさないため、銅イオン捕集時の溶液及び銅イオン回収後の廃液は取り扱いが安全である。また、吸着/脱離できる溶液の温度領域が広いので作業性が良い。
さらに本発明の銅イオン吸着材料は、銅イオンの回収だけでなく、色調変化や蛍光の有無による銅(II)イオンセンサーとしても利用可能である。
According to the present invention, only copper ions among metal ions can be selectively adsorbed, desorbed and recovered. Furthermore, since the salt required for the adsorption of copper ions does not have a particularly adverse effect on the living body, the solution at the time of collecting copper ions and the waste liquid after the recovery of copper ions are safe to handle. In addition, workability is good because the temperature range of the solution that can be adsorbed / desorbed is wide.
Furthermore, the copper ion adsorbing material of the present invention can be used not only for the recovery of copper ions, but also as a copper (II) ion sensor based on the presence of color change or fluorescence.

以下、本発明の実施の形態を説明する。
本発明の光応答性銅イオン吸着材料に含まれる共重合体の単量体成分は、
光照射の有無に応答して金属イオンを可逆的に液中で吸着・脱離する、光応答性化合物と、
四級化アミン化合物とを含む。
光応答性化合物として、本発明では、下式(I)または(II)で示される基と、重合可能なエチレン性不飽和結合とを有する化合物が使用される。前記二種の基はメロシアニン構造を取り得る、スピロピラン化合物やスピロオキサジン化合物に由来する。

Figure 0005376627
式(I)および(II)中、Xは水素原子が一個結合した炭素原子、または窒素原子であり、Yは酸素原子または硫黄原子である。R、Rは独立に水素原子またはアルキル基であり、Rはアルキル基である。また、アルキル基は、具体的にはメチル基、エチル基、ドデシル基等が例示され、メチル基が好ましい。
式(I)および(II)中、ベンゼン環に結合している水素原子は置換されていてもよい。この場合の置換基は例えばメチル基、メトキシ基、アミノ基、ニトロ基、ハロゲン基、シアノ基、等が例示され、金属イオンとの錯形成効率の点からは、置換しないかまたはメトキシ基、メチル基、アミノ基等の電子供与性の置換基が好ましい。置換する場合の置換基数は、1つのベンゼン環に1または2が好ましい。また、この置換基は、隣接する二つの炭素原子に環状に結合することにより、前記ベンゼン環と共にナフタレン環を形成してもよい。
なお、Xが炭素原子でYが酸素原子の場合がスピロピラン、Xが窒素原子でYが酸素原子の場合はスピロオキサジンである。以下、共重合体がスピロピランから得られる場合について具体的に説明するが、スピロオキサジンを用いても同様の光応答性を示す。 Embodiments of the present invention will be described below.
The monomer component of the copolymer contained in the photoresponsive copper ion adsorbing material of the present invention,
A photoresponsive compound that reversibly adsorbs and desorbs metal ions in liquid in response to the presence or absence of light irradiation;
A quaternized amine compound.
In the present invention, a compound having a group represented by the following formula (I) or (II) and a polymerizable ethylenically unsaturated bond is used as the photoresponsive compound. The two types of groups are derived from a spiropyran compound or a spirooxazine compound that can take a merocyanine structure.
Figure 0005376627
In the formulas (I) and (II), X is a carbon atom to which one hydrogen atom is bonded, or a nitrogen atom, and Y is an oxygen atom or a sulfur atom. R 1 and R 2 are independently a hydrogen atom or an alkyl group, and R 3 is an alkyl group. Specific examples of the alkyl group include a methyl group, an ethyl group, and a dodecyl group, and a methyl group is preferable.
In formulas (I) and (II), the hydrogen atom bonded to the benzene ring may be substituted. Examples of the substituent in this case include a methyl group, a methoxy group, an amino group, a nitro group, a halogen group, and a cyano group. From the viewpoint of complex formation efficiency with a metal ion, the substituent is not substituted or a methoxy group, methyl An electron donating substituent such as a group or an amino group is preferred. In the case of substitution, the number of substituents is preferably 1 or 2 for one benzene ring. Moreover, this substituent may form a naphthalene ring with the said benzene ring by couple | bonding cyclically with two adjacent carbon atoms.
In addition, when X is a carbon atom and Y is an oxygen atom, it is spiropyran, and when X is a nitrogen atom and Y is an oxygen atom, it is spirooxazine. Hereinafter, although the case where a copolymer is obtained from spiropyran is demonstrated concretely, even if it uses spirooxazine, the same photoresponsiveness is shown.

光照射により分子量を変えずに吸収スペクトルの異なる2つの状態間を異性化する、フォトクロミズムの機構は下式(III)のように考えられている。スピロピランは、可視光(>420nm)照射によってスピロピラン構造体と、メロシアニン構造体とに可逆的に異性化する。可視光照射下であるスピロピラン構造体は水中で閉環しており、電気的に中性である。可視光照射を停止してスピロピラン構造体を暗所下に置くと、メロシアニン構造体へ転移する。これは、開環しており、分子内に双性イオンを有する。Yの原子は、電子密度が高く、この部位で、陽イオンと錯形成することができる。また、スピロピラン構造体と異なる色を呈する。この錯形成はメロシアニン構造体がスピロピラン構造体に戻ると解消する。
可視光照射を止めて暗所下とするには、紫外光の照射で代用しても良い。この場合次に可視光を照射するときは同時に紫外光照射を停止する。
以上のスピロピランの挙動はRやRの基でエステル結合してさらに共重合しても同様である。

Figure 0005376627
The mechanism of photochromism that isomerizes between two states with different absorption spectra without changing the molecular weight by light irradiation is considered as the following formula (III). Spiropyran is reversibly isomerized into a spiropyran structure and a merocyanine structure by irradiation with visible light (> 420 nm). The spiropyran structure under visible light irradiation is closed in water and is electrically neutral. When the visible light irradiation is stopped and the spiropyran structure is placed in the dark, it is transferred to the merocyanine structure. It is open and has zwitterions in the molecule. The atom of Y has a high electron density and can complex with a cation at this site. Moreover, it exhibits a different color from the spiropyran structure. This complex formation disappears when the merocyanine structure returns to the spiropyran structure.
In order to stop the visible light irradiation and put it in a dark place, ultraviolet light irradiation may be used instead. In this case, when the visible light is irradiated next time, the ultraviolet light irradiation is stopped simultaneously.
The behavior of the above spiropyran is the same even when an ester bond is formed at the R 7 or R 3 group and further copolymerized.
Figure 0005376627

式(III)中、R、Rは独立に水素原子またはアルキル基であり、
とRは一方が水素または重合可能な1価の置換基であり、残りの一方がアルキル基、ヒドロキシル基、カルボキシル基、アミノ基、アルデヒド基またはアミド基である。ここで、単量体成分に用いるため、前記置換基は、重合可能なエチレン性不飽和結合を有するのが好ましく例えば、(メタ)アクリロイルオキシ基、ビニル基が挙げられる。
In formula (III), R 1 and R 2 are independently a hydrogen atom or an alkyl group,
One of R 3 and R 7 is hydrogen or a polymerizable monovalent substituent, and the other is an alkyl group, a hydroxyl group, a carboxyl group, an amino group, an aldehyde group, or an amide group. Here, since it uses for a monomer component, it is preferable that the said substituent has a polymerizable ethylenically unsaturated bond, for example, a (meth) acryloyloxy group and a vinyl group are mentioned.

共重合体のための単量体成分として使用する、具体的な光応答性化合物は、スピロピラン化合物が好ましい。特に、1´,3´,3´−トリメチル−6−(アクリロイルオキシ)スピロ(2H−1−ベンゾピラン−2,2´−インドール)が好ましく、以下、SPAAまたはスピロピランアクリレートともいう。また、前記SPAAのアクリロイルオキシ基がメタクリロイルオキシ基である化合物も好ましく、以下、SPMAとも、またはスピロピランメタクリレートともいう。   A specific photoresponsive compound used as a monomer component for the copolymer is preferably a spiropyran compound. In particular, 1 ′, 3 ′, 3′-trimethyl-6- (acryloyloxy) spiro (2H-1-benzopyran-2,2′-indole) is preferable, and hereinafter also referred to as SPAA or spiropyran acrylate. In addition, a compound in which the acryloyloxy group of SPAA is a methacryloyloxy group is also preferable, and hereinafter referred to as SPMA or spiropyran methacrylate.

もう一方の単量体成分の原料となる四級化アミンは、ハロゲン塩型であっても、ベタイン型やスルホベタイン型であってもよい。
四級化アミン化合物の窒素原子に結合する炭化水素基には特に制限はない。四級化アミン化合物は、例えば下式(IV)または式(V)で示される基、および重合可能なエチレン性不飽和結合を有するのが好ましい。

Figure 0005376627
Figure 0005376627
第一の実施態様として、式(IV)の基を含むN,N,N−トリメチル−N−アクリロイルオキシエチルアンモニウムクロリドが挙げられる。以下、TMAEMAClともいう。
第二の実施態様として、式(V)の基を含む[2−(メタクリロイルオキシ)エチル]−ジメチル−(3−スルホプロピル)−アンモニウムヒドロキシドが挙げられる。以下、MDSAともいう。
上記の、アクリロイル基とメタクリロイル基とはどちらでもよく、重合可能なエチレン性不飽和結合を有している。 The quaternized amine as the raw material for the other monomer component may be a halogen salt type, a betaine type or a sulfobetaine type.
There is no restriction | limiting in particular in the hydrocarbon group couple | bonded with the nitrogen atom of a quaternized amine compound. The quaternized amine compound preferably has, for example, a group represented by the following formula (IV) or formula (V) and a polymerizable ethylenically unsaturated bond.
Figure 0005376627
Figure 0005376627
A first embodiment includes N, N, N-trimethyl-N-acryloyloxyethylammonium chloride containing a group of formula (IV). Hereinafter also referred to as TMAEMACl.
A second embodiment includes [2- (methacryloyloxy) ethyl] -dimethyl- (3-sulfopropyl) -ammonium hydroxide containing a group of formula (V). Hereinafter, it is also referred to as MDSA.
The acryloyl group and methacryloyl group described above may be either one and have a polymerizable ethylenically unsaturated bond.

光応答性化合物と四級化アミン化合物との重合は、ブロック状の共重合であっても、ランダムな共重合であっても良く、特に限定されない。
重合比は、親水性に合わせて適宜選択される。光応答性化合物が多ければ、光応答性化合物内の銅イオンとの錯形成部位の数も単純に増加するので銅イオン吸着能が増加する。また、四級化アミン化合物が多ければ、銅イオン選択性が向上する傾向がある。
Polymerization of the photoresponsive compound and the quaternized amine compound may be block copolymerization or random copolymerization, and is not particularly limited.
The polymerization ratio is appropriately selected according to the hydrophilicity. If there are many photoresponsive compounds, the number of complex formation sites with copper ions in the photoresponsive compound simply increases, so that the copper ion adsorption ability increases. Moreover, if there are many quaternized amine compounds, there exists a tendency for copper ion selectivity to improve.

例えばランダムな共重合の場合、光応答性化合物:四級化アミン化合物のモル分率(モル比)は、特に限定されないが、それぞれn、(1−n)とすると、0<n≦0.5が好ましい。それ以外のブロック状やグラフト状の共重合の場合は、前記モル分率は特に限定されない。   For example, in the case of random copolymerization, the molar fraction (molar ratio) of the photoresponsive compound to the quaternized amine compound is not particularly limited, but if n and (1-n), respectively, 0 <n ≦ 0. 5 is preferred. In the case of other block or graft copolymerization, the molar fraction is not particularly limited.

以下、光応答性化合物がスピロピランアクリレート、四級化アミン化合物がTMAEMAClである場合を挙げて、本発明の銅イオン吸着材料を説明する。なお、以下のCu、Zn、Ni、Co、Cd、Pbのイオンとは、特に明記しない限り、二価のイオンを指すものとする。
SPAAとTMAEMAClとの共重合体を、P(SPAA−TMAEMACl)と表記する。この構造および挙動を下式(VI)に示す。

Figure 0005376627
Cu(II)イオン、およびZn(II)イオン、Ni(II)イオン等の任意の二価の金属イオンの水溶液に、さらに塩化ナトリウム(食塩)を溶解させた水溶液を用意する。これにP(SPAA−TMAEMACl)の粉末を溶解させ、暗所下で保持すると、各種金属イオンのうちCu(II)イオンのみが選択的にSPAAセグメントの開環部位と錯形成することができる。Cu(II)イオンを含まない金属イオン溶液の場合は、塩化ナトリウムを含んでいても、錯形成は殆ど生じない。
なお、塩化ナトリウムの代わりに同じハロゲン化ナトリウムである、臭素イオン及びナトリウムイオン、また、ヨウ素イオン及びナトリウムイオンの存在下でも、同様に暗所下でCu(II)イオンを選択的に吸着できるが、吸着率が低いので、塩化ナトリウムが好ましい。 Hereinafter, the case where the photoresponsive compound is spiropyran acrylate and the quaternized amine compound is TMAEMACl will be described to explain the copper ion adsorbing material of the present invention. The following Cu, Zn, Ni, Co, Cd, and Pb ions refer to divalent ions unless otherwise specified.
A copolymer of SPAA and TMAEMACl is represented as P (SPAA-TMAEMACl). This structure and behavior are shown in the following formula (VI).
Figure 0005376627
An aqueous solution in which sodium chloride (sodium chloride) is further dissolved in an aqueous solution of an arbitrary divalent metal ion such as Cu (II) ion, Zn (II) ion, Ni (II) ion or the like is prepared. When P (SPAA-TMAEMACl) powder is dissolved in this and kept in the dark, only Cu (II) ions among various metal ions can selectively form a complex with the ring-opening site of the SPAA segment. In the case of a metal ion solution that does not contain Cu (II) ions, complex formation hardly occurs even if sodium chloride is included.
In addition, Cu (II) ions can be selectively adsorbed in the dark similarly in the presence of bromine ions and sodium ions, and iodine ions and sodium ions, which are the same sodium halides instead of sodium chloride. Sodium chloride is preferred because of its low adsorption rate.

これを、図1の(a)の、塩化ナトリウムを含まないCu、Zn、Ni、Co、Cd各金属(II)イオン溶液、および金属を含まないブランクの液の紫外可視吸収スペクトル、また(b)の、塩化ナトリウムを含む各溶液の紫外可視吸収スペクトルを用いて説明する。これら溶液を暗所下に保持した場合のスペクトルが実線であり、可視光を照射すると、点線で示すようにスペクトルの吸収が減衰する。光照射を停止して暗所下に保持すると再度実線のスペクトルに戻る。   The UV-visible absorption spectrum of the Cu, Zn, Ni, Co, and Cd metal (II) ion solutions not containing sodium chloride and the metal-free blank solution in FIG. ) Using the ultraviolet-visible absorption spectrum of each solution containing sodium chloride. The spectrum when these solutions are kept in a dark place is a solid line, and when visible light is irradiated, the absorption of the spectrum is attenuated as shown by the dotted line. When light irradiation is stopped and kept in a dark place, the spectrum returns to the solid line again.

図1の(a)のうち、暗所下の各溶液のスペクトルは、光照射下(点線)と異なる530nm付近の吸収帯を示す。ここでブランクのSPAAセグメントは開環しても、金属イオンがないので、この530nm付近の吸収帯はフリーの開環体(メロシアニン構造体)に基くものである。各金属塩化物を含む溶液も同様の吸収帯を示すことから、金属イオンはいずれもほとんど錯形成していない。
図1(b)の、塩化ナトリウムを含む場合、Cu以外の金属イオンは図1の(a)とほぼ類似した吸収帯のスペクトルである。すなわち、Zn、Ni、Co、Cdイオンは、塩化ナトリウムの存在下であっても錯形成できない。Cu(II)イオンだけが暗所下で410〜420nm付近にSPAAセグメントとの錯体に由来する吸収帯が得られる。
In FIG. 1A, the spectrum of each solution in the dark shows an absorption band near 530 nm, which is different from that under light irradiation (dotted line). Here, even if the blank SPAA segment is ring-opened, there is no metal ion, so this absorption band near 530 nm is based on a free ring-opened body (merocyanine structure). Since the solution containing each metal chloride shows a similar absorption band, almost no metal ions are complexed.
When sodium chloride is included in FIG. 1B, the metal ions other than Cu have an absorption band spectrum almost similar to that in FIG. That is, Zn, Ni, Co, and Cd ions cannot be complexed even in the presence of sodium chloride. An absorption band derived from a complex with the SPAA segment is obtained in the vicinity of 410 to 420 nm only in the dark in the presence of Cu (II) ions.

金属イオン溶液中の好ましい塩素イオン(塩化物イオン、Cl)、ナトリウムイオン(Na)濃度は、塩化ナトリウム換算濃度では、SPAAセグメントとCu(II)イオンとのモル比にもよるが、SPAA:Cu(II)=1:10の場合は、10wt%以下で充分である。10wt%より濃くしても銅イオン吸着能は向上しない。5wt%であれば最多量(10wt%)の3/4程度の銅イオンを吸着できる。
共重合体中のSPAAセグメントと、溶液中のCu(II)イオンとの好ましいモル比は、食塩濃度にもよるが、飽和食塩水の場合、SPAAセグメント:Cu(II)=1:1以上が好ましい。
The preferred chloride ion (chloride ion, Cl ) and sodium ion (Na + ) concentration in the metal ion solution depends on the molar ratio of the SPAA segment to the Cu (II) ion in terms of sodium chloride, but the SPAA : Cu (II) = 1: 10, 10 wt% or less is sufficient. Even if the concentration is higher than 10 wt%, the copper ion adsorption ability is not improved. If it is 5 wt%, the maximum amount (10 wt%) of about 3/4 of copper ions can be adsorbed.
The preferred molar ratio between the SPAA segment in the copolymer and the Cu (II) ion in the solution depends on the salt concentration, but in the case of saturated saline, the SPAA segment: Cu (II) = 1: 1 or more. preferable.

本発明の吸着材料を、溶液の色の変化によるCu(II)イオンセンサーとして用いる際の塩化ナトリウム濃度は、錯形成の吸収帯が検出できる程度であれば特に制限はないが、約1wt%以上が好ましい。またSPAAセグメント:Cu(II)のモル比も、錯形成の吸収帯が検出できる程度であれば特に制限はないが、1:0.2以上が好ましい。   The sodium chloride concentration when the adsorbing material of the present invention is used as a Cu (II) ion sensor due to a change in the color of the solution is not particularly limited as long as a complex formation absorption band can be detected, but about 1 wt% or more. Is preferred. Also, the molar ratio of SPAA segment: Cu (II) is not particularly limited as long as a complex formation absorption band can be detected, but it is preferably 1: 0.2 or more.

共重合体には、水に不溶化して形状付与するために、N,N’−メチレンビスアクリルアミド等の架橋剤を含むことが好ましい。架橋剤は、一般に用いられる架橋剤を使用できる。含有量は共重合成分中、数モル%程度で充分である。これにより共重合体は不溶のゲル状になり、例えば金属イオン溶液槽の内部に投入したり、金属イオン溶液を流入させるカラム内に充填しておいたりすれば、銅イオンを選択的に吸着できる。
さらに、共重合体は、以上に挙げた以外の単量体成分を必要に応じて吸着材料の吸着・脱離作用を妨げない範囲で含んで重合しても良い。これには、例えば親水性を付与する単量体成分、光増感剤、可撓剤等が挙げられる。
共重合体は、以上の単量体成分に、重合開始剤、溶剤、反応停止剤などを適宜用いて、従来公知の重合反応で得られる。
TMAEMAClの代わりにMDSAを用いた場合も同様に銅イオンと反応するが、TMAEMAClの共重合体よりも、MDSAの共重合体が、形状付与しやすい傾向がある。
The copolymer preferably contains a crosslinking agent such as N, N′-methylenebisacrylamide in order to insolubilize in water and impart a shape. As the crosslinking agent, generally used crosslinking agents can be used. A content of about several mol% is sufficient in the copolymer component. As a result, the copolymer becomes an insoluble gel, and can be selectively adsorbed to copper ions, for example, if it is put into a metal ion solution tank or filled in a column into which a metal ion solution flows. .
Further, the copolymer may be polymerized by containing monomer components other than those listed above as long as they do not interfere with the adsorption / desorption action of the adsorbing material. Examples thereof include a monomer component that imparts hydrophilicity, a photosensitizer, and a flexible agent.
The copolymer can be obtained by a conventionally known polymerization reaction by appropriately using a polymerization initiator, a solvent, a reaction terminator and the like for the above monomer components.
When MDSA is used in place of TMAEMACl, it reacts with copper ions in the same manner, but the MDSA copolymer tends to impart a shape more easily than the TMAEMACl copolymer.

上記の共重合体、またはそのゲルを、本発明の光応答性銅イオン吸着材料として使用してもよいが、他に、基体に共重合体を担持させたものを本発明の光応答性銅イオン吸着材料としてもよい。基体は、光応答性銅イオン吸着材料を担持することができるものであれば特に限定されないが、光応答性銅イオン吸着材料が、可逆的に銅イオンを吸着/脱離でき、繰り返し使用されることを考慮すると、担体である基体は、機械的安定性、化学的安定性の高い材料であることが重要である。また、多孔性であることが好ましい。
例えば、無機材料では、アルミナ、シリカ、シリカ・アルミナ、マグネシア、ジルコニア、酸化亜鉛などの酸化金属、ガラス、結晶性アルミノシリケート、酸化珪素、シリカゲル、珪藻土、タルク、炭化珪素等の珪素化合物、粘土鉱物(層間化合物を含む)、活性炭等のカーボン及びこれらの混合物などが挙げられる。また、有機材料では、合成ポリマ、例えばスチレン、アクリル酸、メタクリル酸等を重合した透明なポリマが挙げられる。有機材料は強度が充分であり、無機材料は耐化学腐食性の点で好ましい。
銅イオンの吸着/脱離を溶液の色の変化で判定するため、また、吸着した銅イオンの脱離が可視光の照射によって行われるため、透明材料を材料とすることが好ましく、特にガラスが好ましい。
The above-mentioned copolymer or gel thereof may be used as the photoresponsive copper ion adsorbing material of the present invention. In addition, the photoresponsive copper of the present invention may be obtained by supporting a copolymer on a substrate. It is good also as an ion adsorption material. The substrate is not particularly limited as long as it can support the photoresponsive copper ion adsorbing material, but the photoresponsive copper ion adsorbing material can reversibly adsorb / desorb copper ions and is repeatedly used. In view of this, it is important that the substrate serving as the carrier is a material having high mechanical stability and chemical stability. Moreover, it is preferable that it is porous.
For example, for inorganic materials, alumina, silica, silica / alumina, magnesia, zirconia, zinc oxide and other metal oxides, glass, crystalline aluminosilicate, silicon oxide, silica gel, diatomaceous earth, talc, silicon carbide and other silicon compounds, clay minerals (Including intercalation compounds), carbon such as activated carbon, and mixtures thereof. Examples of organic materials include synthetic polymers such as transparent polymers obtained by polymerizing styrene, acrylic acid, methacrylic acid, and the like. Organic materials are sufficient in strength, and inorganic materials are preferred in terms of chemical corrosion resistance.
In order to determine the adsorption / desorption of copper ions by a change in the color of the solution, and since the desorption of adsorbed copper ions is performed by irradiation with visible light, it is preferable to use a transparent material, especially glass. preferable.

さらに、光応答性銅イオン吸着材料の担持効率を高めるとの観点から、基体の単位量当たりの表面積は大きいほうがよく、また光の透過性能を高めるとの観点から、高い空隙率を有する基体が好ましい。これらから、例えばガラス繊維等の繊維で不織布を作製すれば、シート形状など任意の形状に基体を成形できる。繊維のほかに、ビーズのような細粒、中空の細管に成形した基体も好ましい。
また、金属イオン溶液との接触圧力による損傷を避けたり、溶液と接触する吸着材料の表面積を増加させたりするために、多孔性材料の空隙や孔は、ある程度残して吸着材料を担持させるのが好ましい。
Furthermore, from the viewpoint of increasing the loading efficiency of the photoresponsive copper ion adsorbing material, it is better that the surface area per unit amount of the substrate is large, and from the viewpoint of improving the light transmission performance, a substrate having a high porosity is used. preferable. From these, for example, if a nonwoven fabric is made of fibers such as glass fibers, the substrate can be formed into an arbitrary shape such as a sheet shape. In addition to the fiber, a substrate formed into a fine particle such as a bead or a hollow thin tube is also preferable.
In order to avoid damage due to the contact pressure with the metal ion solution or to increase the surface area of the adsorbent material in contact with the solution, it is necessary to leave the pores and pores of the porous material to some extent to carry the adsorbent material. preferable.

これらの基体に共重合体を担持させるには、共重合させる際に、基体を重合系に加えておいて、モノマーの重合と同時に基体に担持させる方法、共重合体の溶液を調製し、該溶液に基体を浸漬させる含浸法、さらに含浸させた後に溶媒を蒸発乾固させる方法、基体に上記溶液を塗布する方法などが挙げられる。特に管状の基体の管内壁に担持させるには、溶液の流入や浸漬が好ましい。
上記担持方法のうち、モノマーの重合と同時に基体に担持させる方法が、工程を簡略化できる点で好ましい。また、含浸法も簡便で効率的に担持できるので好ましい。
さらに、共重合体中に上記シランカップリングを形成する単量体成分を加える担持方法も、シランカップリング部がガラス等の基体と化学結合により強固に担持されるので、製造上効率的で好ましい。この場合、シランカップリング用の単量体成分は、重合時に加えてもよいし、又は基体に担持させた後、重合時に基体を重合系に加えておいて、重合と同時に基体に担持させてもよい。
In order to carry a copolymer on these substrates, when the copolymerization is carried out, the substrate is added to the polymerization system, and a method of carrying the copolymer on the substrate simultaneously with the polymerization of the monomer, a solution of the copolymer is prepared, Examples include an impregnation method in which the substrate is immersed in a solution, a method in which the solvent is evaporated to dryness after impregnation, and a method in which the solution is applied to the substrate. In particular, in order to carry on the inner wall of the tube of the tubular substrate, inflow or immersion of the solution is preferable.
Of the above supporting methods, the method of supporting the substrate simultaneously with the polymerization of the monomer is preferable in that the process can be simplified. Also, the impregnation method is preferable because it is simple and can be efficiently supported.
Further, the supporting method of adding the monomer component for forming the silane coupling in the copolymer is preferable because the silane coupling portion is firmly supported by a chemical bond with a substrate such as glass. . In this case, the monomer component for silane coupling may be added at the time of polymerization, or after it is supported on the substrate, the substrate is added to the polymerization system at the time of polymerization and is supported on the substrate simultaneously with the polymerization. Also good.

以上のように共重合体は、架橋剤、カップリング剤、基体と組みあわせて、ゲル状、担持されたシート、ビーズ、チューブなど金属イオンの溶液と接触させやすい任意の形状に成形することができる。例えばカラム内やフィルター内にゲルやビーズを充填して、金属イオンの溶液を注入、透過することができる。
さらに、銅イオン吸着用の塩化ナトリウムまたはその水溶液を、共重合体または担持された共重合体との、セットとしてもよい。
As described above, the copolymer can be formed into a gel, a supported sheet, a bead, a tube or any other shape that can be easily brought into contact with a metal ion solution in combination with a crosslinking agent, a coupling agent, and a substrate. it can. For example, gel or beads can be filled in a column or filter, and a metal ion solution can be injected and permeated.
Furthermore, it is good also considering sodium chloride for copper ion adsorption, or its aqueous solution as a set with a copolymer or a supported copolymer.

本発明における銅イオンの回収方法は、
上記光応答性銅イオン吸着材料を用いて、銅(II)イオン、塩素イオンおよびナトリウムイオンを含む金属イオン溶液から、銅(II)イオンを選択的に、回収用溶媒中へ回収することを特徴とする。
例えば、前記光応答性銅イオン吸着材料の共重合体と、銅イオンとを、塩素イオンおよびナトリウムイオン存在下の暗所下で錯形成により吸着させる工程と、
回収用溶媒中で、銅イオンを共重合体から脱離させる工程とを含む。
具体的にはまず、前記光応答性銅イオン吸着材料と、銅イオン、塩素イオンおよびナトリウムイオンを含む金属イオン溶液とを、接触させる。
これを暗所下に保持して錯形成により銅イオンのみを共重合体の該当セグメントに吸着させる。
次いで、共重合体に銅イオンを吸着させたまま、バッチ式であれば光応答性銅イオン吸着材料を金属イオン溶液から取り出して回収用溶媒中へ投入する。連続式であれば、金属イオン溶液との接触終了後に回収用溶媒中と接触させる。
The method for recovering copper ions in the present invention is as follows:
Using the photoresponsive copper ion adsorbing material, copper (II) ions are selectively recovered from a metal ion solution containing copper (II) ions, chlorine ions and sodium ions into a recovery solvent. And
For example, a step of adsorbing the copolymer of the photoresponsive copper ion adsorbing material and copper ions by complex formation in the dark in the presence of chlorine ions and sodium ions,
And a step of desorbing copper ions from the copolymer in a recovery solvent.
Specifically, first, the photoresponsive copper ion adsorbing material is brought into contact with a metal ion solution containing copper ions, chlorine ions and sodium ions.
This is held in the dark, and only copper ions are adsorbed on the corresponding segment of the copolymer by complex formation.
Next, with the copper ion adsorbed on the copolymer, in the case of a batch type, the photoresponsive copper ion adsorbing material is taken out from the metal ion solution and put into a recovery solvent. If it is a continuous type, it is made to contact in the collection | recovery solvent after completion | finish of contact with a metal ion solution.

回収用溶媒は水のように塩化ナトリウムを含まなければ、照射光の有無に関わらず銅イオンは錯形成できないので脱離する。もしくは、塩化ナトリウム水溶液として、可視光を中の吸着材料に照射して銅イオンを脱離させてもよい。このようにして銅イオンのみを回収用溶媒中に回収できる。
P(MDSA−SPMA)のような、MDSAを用いた共重合体は、相転移温度を有し、低温では疎水性、高温では親水性である。よって、温度差を利用して、金属イオン溶液から吸着材料を取り出すこともできる。この場合、基体や架橋剤なしでも不溶化できる。
If the recovery solvent does not contain sodium chloride such as water, copper ions cannot be complexed regardless of the presence or absence of irradiation light, and thus are eliminated. Alternatively, as a sodium chloride aqueous solution, the adsorbing material inside may be irradiated with visible light to desorb copper ions. In this way, only copper ions can be recovered in the recovery solvent.
A copolymer using MDSA, such as P (MDSA-SPMA), has a phase transition temperature, and is hydrophobic at low temperatures and hydrophilic at high temperatures. Therefore, the adsorbing material can be taken out from the metal ion solution using the temperature difference. In this case, it can be insolubilized without a substrate or a crosslinking agent.

以下に、本発明を実施例によって具体的に説明する。なお、本実施例により本発明を限定するものではない。なお、図中、紫外可視吸収スペクトルの実線表示は暗所の保存下であり、点線表示は可視光照射後である。また、特記しない限りスペクトル測定は室温で行った。   Hereinafter, the present invention will be specifically described by way of examples. In addition, this invention is not limited by this Example. In the figure, the solid line display of the UV-visible absorption spectrum is in a dark place, and the dotted line display is after irradiation with visible light. Unless otherwise specified, the spectrum measurement was performed at room temperature.

<スピロピランメタクリレート(SPMA)の合成>
(1) スピロピランとして、1´,3´,3´−トリメチル−6−ヒドロキシスピロ(2H−1−ベンゾピラン−2,2´−インドール) 4.72g(0.0161mol)(ACROS ORGANICS社製、純度99%、Fw 293.37、品番42192-0050)を、トルエン(関東化学株式会社製(蒸留後使用)、特級、純度99.5%、沸点110.625℃) 28.3ミリリットルに溶解させた。
(2) メタクリル酸クロライド(ACROS ORGANICS社製、760mmHgの沸点95〜96℃) 1.84g(0.0176mol)を、トルエン(同上) 14.2ミリリットルに溶解させた。
(3) 別に、トリエチルアミン(以下、TEAという。)(和光純薬工業株式会社製(蒸留後使用)、純度99%、品番202-02646) 1.79g(0.0114mol)を用意した。また、アンモニア(関東化学株式会社製、純度28.0〜30.0%、品番01266-00) 400ミリリットルの純水 100ミリリットル溶液を1単位として、5単位用意した。
<Synthesis of Spiropyran Methacrylate (SPMA)>
(1) As spiropyran, 1 ′, 3 ′, 3′-trimethyl-6-hydroxyspiro (2H-1-benzopyran-2,2′-indole) 4.72 g (0.0161 mol) (manufactured by ACROS ORGANICS, purity 99%, Fw 293.37, product number 42192-0050) was dissolved in 28.3 ml of toluene (manufactured by Kanto Chemical Co., Ltd. (used after distillation), special grade, purity 99.5%, boiling point 110.625 ° C.). .
(2) Methacrylic acid chloride (manufactured by ACROS ORGANICS, 760 mmHg, boiling point 95-96 ° C.) 1.84 g (0.0176 mol) was dissolved in 14.2 ml of toluene (same as above).
(3) Separately, 1.79 g (0.0114 mol) of triethylamine (hereinafter referred to as TEA) (manufactured by Wako Pure Chemical Industries, Ltd. (used after distillation), purity 99%, product number 202-02646) was prepared. In addition, ammonia (manufactured by Kanto Chemical Co., Inc., purity: 28.0 to 30.0%, product number: 01266-00) 400 ml of pure water (100 ml solution) was prepared as a unit, and 5 units were prepared.

(4) 二口なすフラスコ内に上記(1)で得たスピロピランのトルエン溶液と、上記(3)のTEAとを投入し、二口なすフラスコの一つの口には球入冷却器、もう一方の口には円筒型分液ロートを装着した。二口なすフラスコを60℃に保温しながら円筒型分液ロートで上記(2)のメタクリル酸クロライドのトルエン溶液を少しずつ滴下した後、24時間反応させた。なお、この反応で発生した塩酸は、TEAで中和された。24時間後に、反応溶液から未反応のメタクリル酸クロライドとTEAを取り除くために、反応溶液をトルエン100ミリリットルで希釈し、次いで分液ロート内に移して上記(3)のアンモニア水溶液を1単位加えた。分液ロートを振り混ぜ、静置して下層のアンモニア水溶液を取り出し、残りの(3)のアンモニア水溶液の1単位を加え、同様にして分液を計5回繰り返した。
(5) アンモニア水溶液の代わりに純水を100ミリリットル加え、同様にしてpHが7になるまで計5回分液を繰り返した。
(6) 分液ロート上層の液を、エバポレータによりトルエンを蒸発させ、次いで減圧乾燥させた。これによって得られた褐色固体をジクロロメタンに溶かしてカラムクロマトグラフィにかけ、不純物を分離した。カラムはシリカゲル(関東化学株式会社製、品番:9385-4M、Rf:0.86)、展開溶媒はジクロロメタンを使用した。
(7) カラムから排出した液を、エバポレータでジクロロメタンを蒸発させ、次いで減圧乾燥させてSPMA単量体である、1´,3´,3´−トリメチル−6−(メタクリロイルオキシ)スピロ(2H−1−ベンゾピラン−2,2´−インドール)を1.11g(収率23.5%)得た。
(4) Into the two-necked flask, the toluene solution of spiropyran obtained in (1) above and the TEA in (3) above are charged. One of the two-necked flask has a ball cooler and the other. A cylindrical separatory funnel was attached to the mouth. While keeping the two-necked flask at 60 ° C., the toluene solution of methacrylic acid chloride of (2) above was dropped little by little with a cylindrical separatory funnel, and then reacted for 24 hours. The hydrochloric acid generated by this reaction was neutralized with TEA. After 24 hours, in order to remove unreacted methacrylic acid chloride and TEA from the reaction solution, the reaction solution was diluted with 100 ml of toluene, then transferred to a separatory funnel, and 1 unit of the aqueous ammonia solution (3) was added. . The separatory funnel was shaken and allowed to stand to take out the lower ammonia aqueous solution, 1 unit of the remaining ammonia aqueous solution (3) was added, and the liquid separation was repeated 5 times in the same manner.
(5) 100 ml of pure water was added instead of the aqueous ammonia solution, and the liquid separation was repeated a total of 5 times until the pH reached 7.
(6) Toluene was evaporated from the upper layer of the separatory funnel by an evaporator, and then dried under reduced pressure. The brown solid thus obtained was dissolved in dichloromethane and subjected to column chromatography to separate impurities. The column was silica gel (manufactured by Kanto Chemical Co., Ltd., product number: 9385-4M, Rf: 0.86), and the developing solvent was dichloromethane.
(7) The liquid discharged from the column was evaporated with an evaporator and then dried under reduced pressure, and the SPMA monomer, 1 ′, 3 ′, 3′-trimethyl-6- (methacryloyloxy) spiro (2H- 1.11 g (yield 23.5%) of 1-benzopyran-2,2′-indole) was obtained.

<スピロピランアクリレート(SPAA)の合成>
メタクリル酸クロライドの代わりに、アクリル酸クロライドを2.91g(0.0322mol)を用いたこと以外は同様にして、SPAA単量体である、1´,3´,3´−トリメチル−6−(アクリロイルオキシ)スピロ(2H−1−ベンゾピラン−2,2´−インドール)を1.34g(収率24.0%)得た。
<Synthesis of Spiropyran Acrylate (SPAA)>
In the same manner except that 2.91 g (0.0322 mol) of acrylic acid chloride was used instead of methacrylic acid chloride, the SPAA monomer, 1 ′, 3 ′, 3′-trimethyl-6- ( 1.34 g (yield 24.0%) of (acryloyloxy) spiro (2H-1-benzopyran-2,2′-indole) was obtained.

TMAEACl(株式会社 興人、品名DMAEA-Q)およびMSDA(Aldrich社、品番:537284-50G)を用意した。   TMAEACl (Kojin Co., Ltd., product name DMAEA-Q) and MSDA (Aldrich, product number: 537284-50G) were prepared.

<合成例1 共重合体P(TMAEACl−SPAA)の合成>
重合モル比98:2に対応するように、上記TMAEAClを4.9×10−3モル(657μl)、SPAA単量体を1.0×10−4モル(34.7mg)を、またエタノールを2ml、重合開始剤AIBN 13.7mg(8.3×10−5モル)用意した。
<Synthesis Example 1 Copolymer P (TMAEACl-SPAA)>
In order to correspond to a polymerization molar ratio of 98: 2, 4.9 × 10 −3 mol (657 μl) of the above TMAEACl, 1.0 × 10 −4 mol (34.7 mg) of SPAA monomer, and ethanol were added. 2 ml of a polymerization initiator AIBN 13.7 mg (8.3 × 10 −5 mol) was prepared.

TMAEACl、SPAAおよびエタノールをサンプルびんに入れ、びん内に純窒素を1時間フローしつつ攪拌してびん内から湿気および空気を除去した。AIBNを加えてさらに30分間窒素フローしつつ攪拌した。オイルバスでびん内温度を60℃に上げ窒素フローしつつさらに1.5時間反応させた後、重合禁止剤としてハイドロキノンを加えて反応を止めた。   TMAEACl, SPAA and ethanol were put into a sample bottle, and pure nitrogen was flowed into the bottle for 1 hour while stirring to remove moisture and air from the bottle. AIBN was added and stirred for an additional 30 minutes with nitrogen flow. The temperature in the bottle was raised to 60 ° C. in an oil bath and the reaction was continued for 1.5 hours while flowing nitrogen, and then hydroquinone was added as a polymerization inhibitor to stop the reaction.

びん内の反応生成物を、大量のアセトン中に少しずつ滴下して沈殿精製した。この沈殿をろ紙で濾別し、減圧乾燥して共重合体P(TMAEACl−SPAA)(収率58.7%)を得た。この共重合体中の各セグメントのモル比を、H−NMRの積分値の結果から算出したところ、TMAEACl:SPAAは98:2であった。 The reaction product in the bottle was precipitated and purified by dropwise addition into a large amount of acetone. This precipitate was filtered off with a filter paper and dried under reduced pressure to obtain a copolymer P (TMAEACl-SPAA) (yield 58.7%). When the molar ratio of each segment in this copolymer was calculated from the result of the integral value of 1 H-NMR, TMAEACl: SPAA was 98: 2.

<合成例2 共重合体P(MDSA−SPMA)の合成>
SPMAを0.03×10−3モル、MDSAを2.97×10−3モル、2,2,2-トリフルオロエタノールを2.0ml、AIBNを5.0×10−5モル用意した。最初の攪拌を30分、60℃での反応を3.5時間とした以外は合成例1と同様にして共重合体P(MDSA−SPMA)を収率56%、重合モル比99:1で得た。
<Synthesis Example 2 Copolymer P (MDSA-SPMA)>
0.03 × 10 −3 mol of SPMA, 2.97 × 10 −3 mol of MDSA, 2.0 ml of 2,2,2-trifluoroethanol, and 5.0 × 10 −5 mol of AIBN were prepared. The copolymer P (MDSA-SPMA) was obtained in a yield of 56% and a polymerization molar ratio of 99: 1 in the same manner as in Synthesis Example 1 except that the initial stirring was 30 minutes and the reaction at 60 ° C. was 3.5 hours. Obtained.

<合成例3 共重合体P(MDSA−SPMA)ゲルの合成>
SPMAを0.05×10−3モル、MDSAを4.85×10−3モル、2,2,2-トリフルオロエタノールを2.0ml、N,N’−メチレンビスアクリルアミド(以下、MBAAmという。)を0.1×10−3モル、AIBNを8.4×10−5モル用意した。60℃での反応を3時間とした以外は合成例2と同様に反応させた。
反応終了後のゲル状内容物を、型に注入し、60℃で加熱した。
加熱により固化して得られたゲルを型から剥離し、メタノールに1週間浸漬して精製し、さらに超純水中に一週間浸漬した後、真空乾燥させて共重合体P(MDSA−SPMA)のゲルを得た。重合モル比は、MDSA:SPMA:MBAAm=97:1:2であった。このゲルは水に不溶であった。
<Synthesis Example 3 Copolymer P (MDSA-SPMA) Gel>
SPMA 0.05 × 10 −3 mol, MDSA 4.85 × 10 −3 mol, 2,2,2-trifluoroethanol 2.0 ml, N, N′-methylenebisacrylamide (hereinafter referred to as MBAAm). ) 0.1 × 10 −3 mol and AIBN 8.4 × 10 −5 mol. The reaction was conducted in the same manner as in Synthesis Example 2 except that the reaction at 60 ° C. was changed to 3 hours.
The gel-like contents after completion of the reaction were poured into a mold and heated at 60 ° C.
The gel obtained by solidification by heating is peeled off from the mold, purified by immersing in methanol for 1 week, further immersed in ultrapure water for 1 week, and then vacuum dried to copolymer P (MDSA-SPMA). A gel was obtained. The polymerization molar ratio was MDSA: SPMA: MBAAm = 97: 1: 2. This gel was insoluble in water.

(実施例1 共重合体の金属イオン選択性、光応答性)
上記合成例1で得た重合比98:2の共重合体P(TMAEACl−SPAA)の濃度0.1mMの水溶液を調製し、さらに、CuCl、ZnCl、NiCl、CoCl、CdClを、各金属のモル濃度1mMとなるように、別個に添加した。金属塩無添加を含むこれら6種類の水溶液の、暗所下および可視光照射後の、紫外可視吸収スペクトルをあわせて図1(a)に示す。暗所下で金属塩を添加していない共重合体水溶液には530nm付近にスピロピラン開環体(メロシアニン構造体)由来の吸収帯が観察された。各金属塩化物を含む溶液も同様の吸収帯を示すことから、金属イオンとほとんど錯形成していないことがわかった。これらに可視光を照射すると点線で示すように吸収帯は減衰したので閉環したのが確認できた。
(Example 1 Metal ion selectivity and photoresponsiveness of copolymer)
An aqueous solution having a concentration of 0.1 mM of copolymer P (TMAEACl-SPAA) having a polymerization ratio of 98: 2 obtained in Synthesis Example 1 was prepared, and CuCl 2 , ZnCl 2 , NiCl 2 , CoCl 2 , and CdCl 2 were further added. These were added separately so that the molar concentration of each metal was 1 mM. FIG. 1A shows the ultraviolet-visible absorption spectra of these six types of aqueous solutions containing no addition of metal salt in the dark and after irradiation with visible light. An absorption band derived from a spiropyran ring-opened product (merocyanine structure) was observed at around 530 nm in the aqueous copolymer solution to which no metal salt was added in the dark. Since the solution containing each metal chloride also showed the same absorption band, it was found that the metal ions were hardly complexed. When these were irradiated with visible light, the absorption band was attenuated as shown by the dotted line, and it was confirmed that the ring was closed.

これら6種類の水溶液に、さらに塩化ナトリウムを3wt%溶液になるように添加した。それぞれの溶液の紫外可視吸収スペクトルを図1(b)に示す。これよりCu(II)溶液は暗所下で410〜420nm付近に開環したSPAAと銅イオンとの錯体に由来する吸収帯が観測されたが、他の4種の金属溶液では、図1(a)に類似する、金属イオンと錯形成していないフリーな開環体由来の吸収帯が観測された。
さらにこれら溶液に可視光を照射すると、図中の点線で示すように吸収が減衰した。可視光照射を停止して暗所下では再度吸収が現れた。これにより、可逆的なSPAAの光応答性が確認された。
Sodium chloride was further added to these six kinds of aqueous solutions so as to become a 3 wt% solution. The ultraviolet-visible absorption spectrum of each solution is shown in FIG. From this, in the Cu (II) solution, an absorption band derived from a complex of SPAA and copper ions opened in the vicinity of 410 to 420 nm was observed in the dark, but in the other four types of metal solutions, FIG. Similar to a), an absorption band derived from a free ring-opened compound not complexed with metal ions was observed.
Further, when these solutions were irradiated with visible light, the absorption was attenuated as indicated by the dotted line in the figure. Absorption appeared again in the dark after stopping visible light irradiation. This confirmed reversible SPAA photoresponsiveness.

(実施例2 塩化ナトリウム濃度による共重合体の銅イオン吸着性)
SPAA:Cu(II)のモル濃度比が1:10になるようにP(TMAEACl−SPAA)とCuClの水溶液を調製した(Cu(II)モル濃度1mM)。これへ、塩化ナトリウムを、0、1、3、5、10および26wt%になるように添加した。暗所下での各紫外可視吸収スペクトルを図2に示す。塩化ナトリウムが10%までは濃度が高いほど銅錯体の吸収帯の強度も増大するが、10wt%と、飽和濃度の26wt%とでは、銅錯体の吸収帯の強度はほぼ同等であった。5wt%であっても10wt%の場合の3/4程度の銅イオンを吸着できること、また、塩化ナトリウム濃度1wt%であれば吸収帯を検知できることがわかった。
(Example 2 Copper ion adsorptivity of copolymer by sodium chloride concentration)
An aqueous solution of P (TMAEACl-SPAA) and CuCl 2 was prepared so that the molar concentration ratio of SPAA: Cu (II) was 1:10 (Cu (II) molar concentration 1 mM). To this, sodium chloride was added to 0, 1, 3, 5, 10, and 26 wt%. Each ultraviolet-visible absorption spectrum in the dark is shown in FIG. The strength of the absorption band of the copper complex increases as the concentration increases up to 10% of sodium chloride, but the strength of the absorption band of the copper complex is almost equal between 10 wt% and the saturation concentration of 26 wt%. It was found that even if it was 5 wt%, about 3/4 of copper ions in the case of 10 wt% can be adsorbed, and if the sodium chloride concentration is 1 wt%, the absorption band can be detected.

(実施例3 銅イオン濃度による共重合体の銅イオン吸着性)
飽和食塩水(26wt%)に、P(TMAEACl−SPAA)とCuClとを、SPAA:Cu(II)のモル濃度比が1:1、1:1/3、1:1/5、1:1/10、1:0になるように添加した(SPAAモル濃度0.1mM)。暗所下での各紫外可視吸収スペクトルを図3に示す。Cu(II)濃度が低いと銅錯体の吸収帯も減衰し、Cu(II)イオンのモル濃度がSPAAの1/10以下では吸収帯の検知は困難だが、1/5程度より高ければ確実に検知できることがわかった。
(Example 3 Copper ion adsorptivity of copolymer depending on copper ion concentration)
In a saturated saline solution (26 wt%), P (TMAEACl-SPAA) and CuCl 2 are mixed at a molar ratio of SPAA: Cu (II) of 1: 1, 1: 1/3, 1: 1/5, 1: 1/10, 1: 0 was added (SPAA molar concentration 0.1 mM). Each ultraviolet-visible absorption spectrum in the dark is shown in FIG. When the Cu (II) concentration is low, the absorption band of the copper complex is also attenuated. When the molar concentration of Cu (II) ions is 1/10 or less of SPAA, it is difficult to detect the absorption band. I found that I could detect it.

(実施例4 共重合体の金属イオン選択性)
上記合成例2で得た重合モル比99:1の共重合体P(MDSA−SPMA)を、塩化ナトリウム1wt%の水溶液に、濃度0.1mMで添加した溶液を調製した。さらに、CuCl、ZnCl、NiCl、CoCl、CdClを、各金属のモル濃度1mMとなるように、別個に添加した。金属塩無添加を含むこれら6種類の溶液のpHは8.5であった。これらの暗所下および可視光照射後の、紫外可視吸収スペクトルをあわせて図4に示す。これよりCu(II)溶液は暗所下で、416nm付近に開環したSPMAと銅イオンとの錯体に由来する吸収帯が観測されたが、他の4種の金属溶液では、金属イオンと錯形成していないほぼフリーな開環体由来の吸収帯が530nmに観測された。これから、食塩水中の暗所で開環したメロシアニン構造体へ、Cu(II)イオンのみが選択的に錯形成して吸着されることがわかる。
これら各溶液に可視光を照射すると点線で示すように吸収帯は減衰したので閉環したのが確認できた。可視光照射を停止すると再度吸収が現れた。これにより、可逆的なSPMAの光応答性が確認された。
Example 4 Metal Ion Selectivity of Copolymer
A solution was prepared by adding the copolymer P (MDSA-SPMA) having a polymerization molar ratio of 99: 1 obtained in Synthesis Example 2 above to an aqueous solution of 1 wt% sodium chloride at a concentration of 0.1 mM. Further, CuCl 2 , ZnCl 2 , NiCl 2 , CoCl 2 , and CdCl 2 were added separately so that each metal had a molar concentration of 1 mM. The pH of these six solutions containing no metal salt added was 8.5. The ultraviolet-visible absorption spectrum in these dark places and after irradiation with visible light is shown together in FIG. As a result, in the Cu (II) solution, an absorption band derived from a complex of SPMA and a copper ion ring-opened at around 416 nm was observed in the dark. However, in the other four types of metal solutions, a complex with a metal ion was observed. An absorption band derived from an almost free ring-opened product that was not formed was observed at 530 nm. From this, it can be seen that only Cu (II) ions are selectively complexed and adsorbed to the merocyanine structure opened in the dark in the saline solution.
When each of these solutions was irradiated with visible light, the absorption band was attenuated as shown by the dotted line, and it was confirmed that the ring was closed. Absorption appeared again when the visible light irradiation was stopped. Thereby, reversible photoresponsiveness of SPMA was confirmed.

(実施例5 共重合体の金属イオン選択性)
本実施例では、金属イオンのなかでスピロピランとの錯形成能が高いことが知られているPb(II)イオンを用いて、Cu(II)イオンと錯形成能を比較した。
上記金属塩化物の代わりに、Pb(ClO及びCu(ClOを用いた以外は実施例4と同様にして溶液を調製した。金属塩無添加を含む3種類の溶液のpHは8.5であった。紫外可視吸収スペクトルを図5(a)に示す。
Pb(II)イオンを含む溶液は、Cu(II)イオンを含む溶液と同様に、暗所下で金属錯体に由来する415nm付近に吸収帯が観測されたが、吸光度比は1/2未満であった。これら溶液に可視光を照射すると点線で示すように吸収帯はいずれも減衰した。
(Example 5 Metal ion selectivity of copolymer)
In this example, Pb (II) ions, which are known to have high complexing ability with spiropyran among metal ions, were compared with Cu (II) ions.
A solution was prepared in the same manner as in Example 4 except that Pb (ClO 4 ) 2 and Cu (ClO 4 ) 2 were used instead of the metal chloride. The pH of the three types of solutions containing no metal salt added was 8.5. The ultraviolet-visible absorption spectrum is shown in FIG.
In the solution containing Pb (II) ions, as in the solution containing Cu (II) ions, an absorption band was observed near 415 nm derived from the metal complex in the dark, but the absorbance ratio was less than 1/2. there were. When these solutions were irradiated with visible light, the absorption bands were all attenuated as indicated by the dotted line.

比較のために、1´,3´,3´−トリメチル−6−(アクリロイルオキシ)スピロ(2H−1−ベンゾピラン−2,2´−インドール)とN−イソプロピルアクリルアミドとの共重合体(以下、P(SPA−NIPAAm)という。)の水溶液(食塩なし)を用いて、上記実施例5と同様に測定した紫外可視吸収スペクトルを図5(b)に示す。暗所下の金属錯体に由来する吸収帯は、Pb(II)溶液とCu(II)溶液とでほぼ同じ強度の吸光度であった。これにより、塩化ナトリウム水溶液中の共重合体P(MDSA−SPMA)は、ある程度選択的にCu(II)イオンを光可逆的に錯形成していることが考えられる。   For comparison, a copolymer of 1 ′, 3 ′, 3′-trimethyl-6- (acryloyloxy) spiro (2H-1-benzopyran-2,2′-indole) and N-isopropylacrylamide (hereinafter, An ultraviolet-visible absorption spectrum measured in the same manner as in Example 5 above using an aqueous solution of P (SPA-NIPAAm) (without salt) is shown in FIG. The absorption band derived from the metal complex in the dark was an absorbance with almost the same intensity in the Pb (II) solution and the Cu (II) solution. Thereby, it is considered that the copolymer P (MDSA-SPMA) in the sodium chloride aqueous solution is selectively reversibly complexed with Cu (II) ions to some extent.

(実施例6 共重合体ゲルの金属イオン選択性)
合成例3で得たMDSA:SPMA:MBAAm=97:1:2のゲルを、スペクトル測定用セルの、測定光の当たる内壁の大きさに成形した。
a)(上記で成形したゲルに含まれるSPMA量):(測定用セルに注入される規定の量の液中のCuCl量)がモル比で1:10になるように、塩化ナトリウム1wt%の水溶液へCuClを溶解した。CuCl濃度は10mMであった。
b)同様にZnClを塩化ナトリウム1wt%の水溶液へ溶解した。ZnCl濃度は8.4mMであった。
c)比較のために金属イオンを入れない塩化ナトリウム1wt%の水溶液(ブランク)を用意した。
これら溶液のpHは8.5であった。
上記で成形したゲルを内壁に接着した三個のセルに、規定量のa)、b)、c)をそれぞれ注入して室温で、暗所下6時間、保持して平衡状態になった後、紫外可視吸収スペクトルを測定した。その後、可視光を照射した後のスペクトルも測定した。結果をあわせて図6(a)に示す。
これら各溶液に可視光を照射すると点線で示すように吸収帯は減衰した。可視光照射を停止すると再度吸収が現れた。これにより、可逆的なSPMA共重合体ゲルの光応答性が確認された。参考の為に、上記暗所下と光照射との、両スペクトル間の吸収度の差を算出した。これを図6(a)の内側の枠に示す。
よって、上記ゲルP(MDSA-SPMA-MBAAm)が図6(b)のように、銅イオンを選択的に吸着していると考えられる。
(Example 6 Metal ion selectivity of copolymer gel)
The gel of MDSA: SPMA: MBAAm = 97: 1: 2 obtained in Synthesis Example 3 was molded into the size of the inner wall of the spectrum measurement cell where the measurement light hits.
a) (SPMA amount contained in the gel formed above): 1 wt% of sodium chloride so that the molar ratio of 1:10 CuCl 2 in the liquid injected into the measurement cell is 1:10 CuCl 2 was dissolved in an aqueous solution. The CuCl 2 concentration was 10 mM.
b) Similarly, ZnCl 2 was dissolved in an aqueous solution of 1 wt% sodium chloride. The ZnCl 2 concentration was 8.4 mM.
c) For comparison, an aqueous solution (blank) of 1 wt% sodium chloride not containing metal ions was prepared.
The pH of these solutions was 8.5.
After injecting the specified amount of a), b), and c) into the three cells with the above-formed gel adhered to the inner wall and holding at room temperature for 6 hours in a dark place, The UV-visible absorption spectrum was measured. Thereafter, the spectrum after irradiation with visible light was also measured. The results are shown in FIG.
When each of these solutions was irradiated with visible light, the absorption band was attenuated as indicated by the dotted line. Absorption appeared again when the visible light irradiation was stopped. Thereby, the photoresponsiveness of the reversible SPMA copolymer gel was confirmed. For reference, the difference in absorbance between the two spectra under the dark place and light irradiation was calculated. This is shown in the inner frame of FIG.
Therefore, it is considered that the gel P (MDSA-SPMA-MBAAm) selectively adsorbs copper ions as shown in FIG.

(実施例7 共重合体の相転移温度)
P(MDSA−SPMA)は例えば図7のように低温では疎水性で濁りが生じるため、照射光が届きにくく環が閉じにくい。そこで、P(MDSA−SPMA)の相転移温度を以下のように濁度で検出した。
純水および塩化ナトリウム水溶液(0.1wt%および1wt%)にP(MDSA−SPMA)を濃度0.04wt%で溶解し、700nm(スピロピランの吸収に影響されない波長)における光透過率を測定し、光透過率の値が90%以下となる温度を相転移温度とした。
参考のためにP(MDSA)も同様に純水および塩化ナトリウム水溶液に溶解して測定した。なお、いずれもpHは未調整である。結果を合わせて表1に示す。相転移温度以上では、いずれの溶液も透明な親水性溶液であった。

Figure 0005376627
表1から、塩化ナトリウム0.1wt%の水溶液の場合、MDSA:SPMA重合モル比が99:1では45℃以上で親水性を示し、重合モル比が95:5では35℃以上であればよいので、より低温で銅(II)イオンを吸着できることがわかる。 (Example 7 Phase transition temperature of copolymer)
For example, P (MDSA-SPMA) is hydrophobic and turbid at low temperatures as shown in FIG. Therefore, the phase transition temperature of P (MDSA-SPMA) was detected by turbidity as follows.
P (MDSA-SPMA) was dissolved at a concentration of 0.04 wt% in pure water and an aqueous sodium chloride solution (0.1 wt% and 1 wt%), and the light transmittance at 700 nm (wavelength not affected by absorption of spiropyran) was measured. The temperature at which the light transmittance was 90% or less was defined as the phase transition temperature.
For reference, P (MDSA) was similarly measured by dissolving in pure water and a sodium chloride aqueous solution. In all cases, the pH is not adjusted. The results are shown in Table 1. Above the phase transition temperature, all solutions were transparent hydrophilic solutions.
Figure 0005376627
From Table 1, in the case of a 0.1 wt% sodium chloride aqueous solution, MDSA: SPMA polymerization molar ratio of 99: 1 indicates hydrophilicity at 45 ° C. or higher, and polymerization molar ratio of 95: 5 may be 35 ° C. or higher. Therefore, it can be seen that copper (II) ions can be adsorbed at a lower temperature.

本発明の実施例1の各種金属イオンを含む溶液中の共重合体P(TMAEACl−SPAA)の紫外可視吸収スペクトルを測定したグラフであり、(a)は溶液に塩化ナトリウム添加前、(b)は塩化ナトリウムを溶解した暗所下のスペクトルである。It is the graph which measured the ultraviolet visible absorption spectrum of copolymer P (TMAEAC1-SPAA) in the solution containing the various metal ions of Example 1 of the present invention, (a) before adding sodium chloride to the solution, (b) Is a spectrum in the dark where sodium chloride is dissolved. 本発明の実施例2の塩化ナトリウム濃度に対する、暗所下での共重合体P(TMAEACl−SPAA)の紫外可視吸収スペクトルを測定したグラフである。It is the graph which measured the ultraviolet visible absorption spectrum of the copolymer P (TMAEAC1-SPAA) under the dark place with respect to the sodium chloride density | concentration of Example 2 of this invention. 本発明の実施例3のSPAA:銅(II)イオンの比率に対する、暗所下での共重合体P(TMAEACl−SPAA)の紫外可視吸収スペクトルを測定したグラフである。It is the graph which measured the ultraviolet visible absorption spectrum of the copolymer P (TMAEACl-SPAA) in the dark place with respect to the ratio of SPAA: copper (II) ion of Example 3 of this invention. 本発明の実施例4において各種金属イオンおよび塩化ナトリウムを含む溶液中の共重合体P(MDSA−SPMA)の紫外可視吸収スペクトルを測定したグラフである。It is the graph which measured the ultraviolet visible absorption spectrum of copolymer P (MDSA-SPMA) in the solution containing various metal ions and sodium chloride in Example 4 of the present invention. 本発明の実施例5においてPb(II)イオン及びCu(II)イオンを含む溶液の紫外可視吸収スペクトルを測定したグラフであり、(a)は共重合体がP(MDSA−SPMA)であり、塩化ナトリウムを含み、(b)はP(SPA−NIPAAm)である。It is the graph which measured the ultraviolet visible absorption spectrum of the solution containing Pb (II) ion and Cu (II) ion in Example 5 of this invention, (a) is a copolymer P (MDSA-SPMA), Sodium chloride is included, and (b) is P (SPA-NIPAAm). 本発明の実施例6において(a)は各種金属イオンと塩化ナトリウムを含む溶液中の共重合体ゲルP(MDSA−SPMA−MBAAm)の紫外可視吸収スペクトルを測定したグラフであり、(b)はその挙動を示す化学式である。In Example 6 of this invention, (a) is the graph which measured the ultraviolet visible absorption spectrum of the copolymer gel P (MDSA-SPMA-MBAAA) in the solution containing various metal ions and sodium chloride, (b) It is a chemical formula showing the behavior. 本発明のP(MDSA−SPMA)の相転移を示す化学式である。It is a chemical formula which shows the phase transition of P (MDSA-SPMA) of this invention.

Claims (15)

塩素イオン、ナトリウムイオンおよび銅(II)イオンを含む金属イオン溶液中で銅(II)イオンの吸着および脱離の転移を光照射の有無により可逆的に示す光応答性化合物と、
四級化アミン化合物と
を含む単量体成分を共重合させてなる共重合体を含み、
前記光応答性化合物は、下式(I)または(II)で示される基と、重合可能なエチレン性不飽和結合とを有する化合物であることを特徴とする光応答性銅イオン吸着材料。
Figure 0005376627
(式(I)および(II)中、Xは水素原子が一個結合した炭素原子、または窒素原子であり、Yは酸素原子または硫黄原子である。R 、R は独立に水素原子またはアルキル基であり、R はアルキル基である。)
And photoresponsive compounds showing reversible by the presence of chloride ions, the light irradiation metastasis adsorption and desorption of copper (II) ions with sodium ions and copper (II) metal ion solution containing ions,
Look-containing copolymers by copolymerizing a monomer component containing a quaternized amine compounds,
The photoresponsive copper ion adsorbing material, wherein the photoresponsive compound is a compound having a group represented by the following formula (I) or (II) and a polymerizable ethylenically unsaturated bond .
Figure 0005376627
(In the formulas (I) and (II), X is a carbon atom to which one hydrogen atom is bonded, or a nitrogen atom, Y is an oxygen atom or a sulfur atom. R 1 and R 2 are independently a hydrogen atom or alkyl. And R 3 is an alkyl group.)
前記共重合体は、前記塩素イオン、ナトリウムイオンおよび銅(II)イオンを含む金属イオン溶液から、暗所下で銅(II)イオンを選択的に吸着する請求項1記載の光応答性銅イオン吸着材料。 The photoresponsive copper ion according to claim 1, wherein the copolymer selectively adsorbs copper (II) ions in a dark place from a metal ion solution containing the chlorine ions, sodium ions, and copper (II) ions. Adsorption material. 前記四級化アミン化合物は、下式(IV)で示される基および重合可能なエチレン性不飽和結合を有する請求項1または2記載の光応答性銅イオン吸着材料。
Figure 0005376627
The photoresponsive copper ion adsorbing material according to claim 1 or 2, wherein the quaternized amine compound has a group represented by the following formula (IV) and a polymerizable ethylenically unsaturated bond.
Figure 0005376627
前記四級化アミン化合物は、下式(V)で示される基および重合可能なエチレン性不飽和結合を有する請求項1または2記載の光応答性銅イオン吸着材料。
Figure 0005376627
The photoresponsive copper ion adsorbing material according to claim 1 or 2, wherein the quaternized amine compound has a group represented by the following formula (V) and a polymerizable ethylenically unsaturated bond.
Figure 0005376627
前記共重合体が、1´,3´,3´−トリメチル−6−(アクリロイルオキシ)スピロ(2H−1−ベンゾピラン−2,2´−インドール)または
1´,3´,3´−トリメチル−6−(メタクリロイルオキシ)スピロ(2H−1−ベンゾピラン−2,2´−インドール)と、
N,N,N−トリメチル−N−アクリロイルオキシエチルアンモニウムクロリドまたは
N,N,N−トリメチル−N−メタクリロイルオキシエチルアンモニウムクロリド
とを含む単量体成分を共重合させてなる請求項1〜のいずれか記載の光応答性銅イオン吸着材料。
The copolymer is 1 ', 3', 3'-trimethyl-6- (acryloyloxy) spiro (2H-1-benzopyran-2,2'-indole) or 1 ', 3', 3'-trimethyl- 6- (methacryloyloxy) spiro (2H-1-benzopyran-2,2′-indole);
N, N, N-trimethyl -N- acryloyloxyethyl ammonium chloride or N, N, N-trimethyl -N- methacrylonitrile comprising a copolymerized monomer component containing a acryloyloxyethyl ammonium chloride claim 1-3 Any one of the photoresponsive copper ion adsorption material of description.
前記共重合体が、1´,3´,3´−トリメチル−6−(アクリロイルオキシ)スピロ(2H−1−ベンゾピラン−2,2´−インドール)または
1´,3´,3´−トリメチル−6−(メタクリロイルオキシ)スピロ(2H−1−ベンゾピラン−2,2´−インドール)と、
[2−(アクリロイルオキシ)エチル]−ジメチル−(3−スルホプロピル)−アンモニウムヒドロキシドまたは
[2−(メタクリロイルオキシ)エチル]−ジメチル−(3−スルホプロピル)−アンモニウムヒドロキシドと
を含む単量体成分を共重合させてなる請求項1、2、4のいずれか記載の光応答性銅イオン吸着材料。
The copolymer is 1 ', 3', 3'-trimethyl-6- (acryloyloxy) spiro (2H-1-benzopyran-2,2'-indole) or 1 ', 3', 3'-trimethyl- 6- (methacryloyloxy) spiro (2H-1-benzopyran-2,2′-indole);
[2- (acryloyloxy) ethyl] -dimethyl- (3-sulfopropyl) -ammonium hydroxide or
The photoresponsiveness according to any one of claims 1 , 2 , and 4, wherein a monomer component containing [2- (methacryloyloxy) ethyl] -dimethyl- (3-sulfopropyl) -ammonium hydroxide is copolymerized. Copper ion adsorption material.
基体に前記共重合体が担持されている請求項1〜のいずれか記載の光応答性銅イオン吸着材料。 The photoresponsive copper ion adsorbing material according to any one of claims 1 to 6 , wherein the copolymer is supported on a substrate. 前記基体が、ガラス、酸化金属、酸化珪素、シリカゲル、珪藻土、スチレンの重合体、アクリル酸の重合体およびメタクリル酸の重合体からなる群から選ばれるいずれかである請求項記載の光応答性銅イオン吸着材料。 The photoresponsiveness according to claim 7 , wherein the substrate is selected from the group consisting of glass, metal oxide, silicon oxide, silica gel, diatomaceous earth, a styrene polymer, an acrylic acid polymer, and a methacrylic acid polymer. Copper ion adsorption material. 前記単量体成分にさらに架橋剤またはカップリング剤を含む請求項1〜のいずれか記載の光応答性銅イオン吸着材料。 The photoresponsive copper ion adsorbing material according to any one of claims 1 to 8 , further comprising a crosslinking agent or a coupling agent in the monomer component. 繊維、細粒たは細管に前記共重合体が担持されている請求項のいずれか記載の光応答性銅イオン吸着材料。 Fibers, photoresponsive copper ion adsorption material according to any one of claims 7-9, wherein the copolymer tubules were fine or is supported. 請求項1〜10のいずれか記載の光応答性銅イオン吸着材料を用いて、銅(II)イオン、塩素イオンおよびナトリウムイオンを含む前記金属イオン溶液から、銅(II)イオンを選択的に、回収用溶媒中へ回収することを特徴とする銅イオン回収方法。 Using photoresponsive copper ion adsorption material according to claim 1-10, copper (II) ions from the metal ion solution containing chloride ions and sodium ions, selectively copper (II) ions, A method for recovering copper ions, comprising recovering into a recovery solvent. 前記光応答性銅イオン吸着材料の共重合体と、銅(II)イオンとを、塩素イオンおよびナトリウムイオン存在下の暗所下で錯形成により吸着させる工程と、
回収用溶媒中で、銅(II)イオンを共重合体から脱離させる工程とを含む請求項11記載の銅イオン回収方法。
A step of adsorbing the copolymer of the photoresponsive copper ion adsorbing material and copper (II) ions by complex formation in the dark in the presence of chlorine ions and sodium ions;
The method for recovering copper ions according to claim 11 , further comprising a step of desorbing copper (II) ions from the copolymer in a recovery solvent.
前記金属イオン溶液中塩素イオンおよびナトリウムイオンが、塩化ナトリウム換算濃度で、10wt%以下である請求項11または12記載の銅イオン回収方法。 The metal ion solution, the chlorine ions and sodium ions, sodium chloride reduced concentration, copper ion collection method according to claim 11 or 12, wherein at most 10 wt%. 前記銅(II)イオンを共重合体から脱離させる工程において、回収用溶媒が塩化ナトリウムを含まない水である請求項12記載の銅イオン回収方法。 The method for recovering copper ions according to claim 12 , wherein in the step of desorbing the copper (II) ions from the copolymer, the recovery solvent is water not containing sodium chloride. 前記銅(II)イオンを共重合体から脱離させる工程において、回収用溶媒が塩化ナトリウムの水溶液であって、可視光を照射して銅イオンを脱離させる請求項12記載の銅イオン回収方法。 13. The method for recovering copper ions according to claim 12 , wherein in the step of desorbing the copper (II) ions from the copolymer, the recovery solvent is an aqueous solution of sodium chloride, and the copper ions are desorbed by irradiation with visible light. .
JP2008234892A 2008-09-12 2008-09-12 Photoresponsive copper ion adsorbing material and copper ion recovery method Active JP5376627B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008234892A JP5376627B2 (en) 2008-09-12 2008-09-12 Photoresponsive copper ion adsorbing material and copper ion recovery method
PCT/JP2009/054201 WO2010029778A1 (en) 2008-09-12 2009-03-05 Photoresponsive copper ion adsorbent material and process for recovery of copper ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008234892A JP5376627B2 (en) 2008-09-12 2008-09-12 Photoresponsive copper ion adsorbing material and copper ion recovery method

Publications (2)

Publication Number Publication Date
JP2010064038A JP2010064038A (en) 2010-03-25
JP5376627B2 true JP5376627B2 (en) 2013-12-25

Family

ID=42005041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008234892A Active JP5376627B2 (en) 2008-09-12 2008-09-12 Photoresponsive copper ion adsorbing material and copper ion recovery method

Country Status (2)

Country Link
JP (1) JP5376627B2 (en)
WO (1) WO2010029778A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6547963B2 (en) * 2016-04-28 2019-07-24 学校法人東京電機大学 Photoresponsive heavy metal ion adsorbing material and heavy metal ion recovery method
JP6831554B2 (en) * 2016-07-14 2021-02-17 学校法人 関西大学 Driving solution of forward osmotic pressure utilization system and its regeneration method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919447B2 (en) * 2001-08-17 2012-04-18 学校法人東京電機大学 Photoresponsive metal ion adsorbing material and metal ion recovery method
JP2004249407A (en) * 2003-02-20 2004-09-09 Japan Science & Technology Agency Porous material
JP4058517B2 (en) * 2003-04-08 2008-03-12 独立行政法人産業技術総合研究所 Photoresponsive molecular identification material
JP4736362B2 (en) * 2003-09-09 2011-07-27 学校法人東京電機大学 Light and heat-responsive adsorbent material, method for recovering soluble substances
JP2007205924A (en) * 2006-02-02 2007-08-16 Nippon Sheet Glass Co Ltd Metal ion sensor and metal ion absorber
JP2007268444A (en) * 2006-03-31 2007-10-18 Tokyo Denki Univ Photoresponsive metal ion adsorbent material and metal ion recovery process

Also Published As

Publication number Publication date
JP2010064038A (en) 2010-03-25
WO2010029778A1 (en) 2010-03-18

Similar Documents

Publication Publication Date Title
Lin et al. Fabrication of photo-responsive cellulose based intelligent imprinted material and selective adsorption on typical pesticide residue
Zong et al. Synthesis of polyacrylonitrile-grafted cross-linked N-chlorosulfonamidated polystyrene via surface-initiated ARGET ATRP, and use of the resin in mercury removal after modification
RU2719736C2 (en) Granules of molecularly imprinted polymers for metal extraction and use thereof
RU2748350C2 (en) Molecularly imprinted polymer granules for extraction of lithium, mercury and scandium
Zhai et al. Metal ion-small molecule complex imprinted polymer membranes: Preparation and separation characteristics
Qi et al. A novel chelating resin containing high levels of sulfamine group: preparation and its adsorption characteristics towards p-toluenesulfonic acid and Hg (II)
JP6465273B2 (en) Rare earth element adsorption separation material
CN108031452B (en) Porous adsorbent with surface expressed by polycarboxylic acid and preparation method and application thereof
US10889688B2 (en) Crosslinked polymer resin for contaminant adsorption from water
JP5392902B2 (en) Photoresponsive carbon dioxide absorbing material and carbon dioxide recovery method
Gazi et al. The rapid boron uptake by multi-hydroxyl functional hairy polymers
JP5002654B2 (en) Material comprising polyazacycloalkane grafted on polypropylene fiber, method for its preparation and method for desorption of metal cations from liquids
JP5376627B2 (en) Photoresponsive copper ion adsorbing material and copper ion recovery method
JP2007205924A (en) Metal ion sensor and metal ion absorber
JP4919447B2 (en) Photoresponsive metal ion adsorbing material and metal ion recovery method
KR101759998B1 (en) Ion-exchange polymer containing catechol group, preparation method and application thereof
JP2007268444A (en) Photoresponsive metal ion adsorbent material and metal ion recovery process
JP4736362B2 (en) Light and heat-responsive adsorbent material, method for recovering soluble substances
JPH1087701A (en) Porous cellulose support and selective separation of metal using the support
JPWO2006013864A1 (en) Metal ion adsorbent
KR100800038B1 (en) Light - and heat - responsive adsorbents and process for recovery of solutes
JP3682527B2 (en) Photoresponsive polymer film material
JP4058517B2 (en) Photoresponsive molecular identification material
JP3740958B2 (en) Modification method of solid surface
JPH0521123B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130920

R150 Certificate of patent or registration of utility model

Ref document number: 5376627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250