JP2004249407A - Porous material - Google Patents

Porous material Download PDF

Info

Publication number
JP2004249407A
JP2004249407A JP2003043227A JP2003043227A JP2004249407A JP 2004249407 A JP2004249407 A JP 2004249407A JP 2003043227 A JP2003043227 A JP 2003043227A JP 2003043227 A JP2003043227 A JP 2003043227A JP 2004249407 A JP2004249407 A JP 2004249407A
Authority
JP
Japan
Prior art keywords
porous material
pore
pore diameter
organic group
msu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003043227A
Other languages
Japanese (ja)
Inventor
Kazuyuki Maeda
和之 前田
Tsutomu Yamazaki
務 山崎
Takashi Nishiyama
貴史 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003043227A priority Critical patent/JP2004249407A/en
Publication of JP2004249407A publication Critical patent/JP2004249407A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous material whose pore diameter and shape can be reversibly controlled through the use of deformation of an organic group due to light irradiation. <P>SOLUTION: The porous material has a light responsive organic group bound with the inner wall of a small pore. The pore diameter of the material is preferably in a range of 30-300Å. The pore diameter of the material is more preferably in a range of 50-100Å. The porous material is preferably meso-porous silica. In addition, the light responsive organic group is preferably a molecule containing azobenzene. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、多孔質材料に関する。
【0002】
【従来の技術】
近年、メソポーラスシリカなどの多孔質材料の利用が盛んに研究されており、その機能や利用分野の拡大を目指して有機物との複合化が試みられている。
高い方向性および/または選択性を示す機能を高密度に発現させるために、開口部の口径が2000Å以下で且つ深さが200Å以上である互いに独立した複数の細孔を有する支持体に1種類以上の機能性有機化合物を有する機能性ナノ構造体が報告されている(例えば、特許文献1参照。)。
【0003】
可逆的光応答性を有するクマリン誘導体をメソポーラスシリカMCM−41の細孔の出口に結合させた材料により、光照射によりコレスタンの細孔外への徐放を可逆的にオンオフできる技術が報告されている(例えば、非特許文献1、非特許文献2参照。)。
【0004】
【特許文献1】
特開2002−346999号公報
【非特許文献1】
藤原正浩ら、日本化学会第82秋季年会講演予稿集、1A3−01(2002)
【非特許文献2】
Nawal Kishor Mal, Masahiro Fujiwaraand Yuko Tanaka, Nature, 421, 350−35 3 (2003).
【0005】
【発明が解決しようとする課題】
しかし、特許文献1においては、当該技術は細孔構造を利用したナノ構造体を提供するものの、細孔は有機物等で塞がれており、その吸着性を特徴とする材料とはならない。また、多孔質支持体としては孔径600Åの陽極電解酸化アルミナ皮膜を用いているのみ、機能性有機化合物もロイコ色素及び亜鉛ポルフィリン誘導体のみであり、いずれも細孔壁に共有結合で固定化されていない。
【0006】
また、非特許文献1および非特許文献2において、この材料は単に光照射により開閉する分子ドアを有するのみであり、吸着剤の内部に吸着した成分が脱着することに任せたシステムであるため、吸着成分の強制的な放出を行うことはできず、特にシリカへの吸着能の強い物質の放出は不可能であるという欠点がある。
【0007】
特定の場所において光、電磁気等の外部刺激により細孔径を変化させることを利用して物質の選択的な吸脱着特性をスイッチできる材料は、その出現が期待されているが、上述のように、これまでそのような材料は存在しなかった。
【0008】
本発明は、このような課題に鑑みてなされたものであり、新規な多孔質材料を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の多孔質材料は、細孔の内壁に光応答性有機基を結合させるものである。これにより、光照射に伴う有機基の変形を利用した細孔径及び形状の可逆的な制御が可能である。
【0010】
ここで、多孔質材料の細孔径が30〜300Åの範囲にあることが好ましい。また、多孔質材料の細孔径が50〜100Åの範囲にあることがさらに好ましい。また、多孔質材料がメソポーラスシリカであることが好ましい。また、光応答性有機基がアゾベンゼンを含む分子であることが好ましい。
【0011】
【発明の実施の形態】
以下、多孔質材料にかかる発明の実施の形態について説明する。
【0012】
多孔質材料としては、光応答性有機基を細孔内壁に均一に結合させて細孔構造のスイッチングを行わせるため、均一な細孔分布を有する大孔径のメソポーラスシリカを用いることが望ましい。
【0013】
多孔質材料の細孔径は、30〜300Åの範囲にあることが好ましい。細孔構造のスイッチングを行うために必要な光応答性有機基は一般に15Åより大きいものがほとんどであることから、細孔径が30Å未満であると、光応答性有機基を細孔の内壁に均一に固定化することが困難である。
【0014】
細孔径が300Åより大きいと、均一な細孔分布を有するメソポーラスシリカが合成されにくいという問題点がある。多孔質材料の細孔径が30〜300Åである場合は、かかる問題がなく、細孔の内壁に光応答性有機基を均一に結合させることが可能である。
【0015】
多孔質材料の細孔径は、50〜100Åの範囲にあることがさらに好ましい。細孔径が50Å以上であると、細孔径に対して適切なサイズの有機基を自在に選択できるからであり、細孔径が100Å以下であると、均一な細孔径を有するメソポーラスシリカを得やすいからである。
【0016】
多孔質材料はメソポーラスシリカであることが好ましい。その理由は、安定性が高く、径の調節が可能でかつ均一な細孔分布を有する物質が得られやすいことに加え、細孔表面に存在するヒドロキシル基を用いることにより自在に有機基を結合させることが特に容易であるためである。
【0017】
メソポーラスシリカは、特にMSU−Hが最適ではあるが、それに限定されるものではなく、MCM−41、FSM−16、SBA−15、MCM−48、SBA−11、SBA−12なども利用可能である。
【0018】
多孔質材料は、メソポーラスシリカに限定されない。このほか、メソポーラスシリカアルミナ、メソポーラスアルミナ、メソポーラスアルミノフォスフェート等の多数のメソポーラス酸化物のほか、メソポーラスカーボンなどを採用することができる。
【0019】
つぎに、光応答性有機基について説明する。
光応答性有機基としては、短時間内に可逆的に異性化し、細孔構造を変化させるに足る分子構造の変化を起こすものが好ましい。光応答性有機基は、その分子構造中に異性化する部分と細孔内壁と結合する部分を含んでいる。
【0020】
異性化する部分としては、一般的にアゾベンゼン類、フルギド類、スピロピラン類、サリチリデンアニリン類など様々な有機分子を用いることができる。
【0021】
細孔内壁と結合する部分としては、アミノアルキルシリル基、メルカプトアルキルシリル基、カルボキシアルキルシリル基、ヒドロキシアルキルシリル基などを用いることができる。
【0022】
以上のことから、本実施の形態によれば、細孔の内壁に光応答性有機基を結合させることにより、新規な多孔質材料を提供することができる。
【0023】
これにより、光照射に伴う有機基の変形を利用した細孔径及び形状の可逆的な制御が可能である。ドラッグデリバリー、徐放剤や有害物質の吸着・輸送・貯蔵等、また固体触媒、センサー等の分野において、特定の場所における特定物質の取り込み・放出を光照射によりスイッチすることが可能になる。
【0024】
なお、本発明は上述の実施の形態に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。
【0025】
【実施例】
つぎに、本発明にかかる実施例について具体的に説明する。ただし、本発明はこれら実施例に限定されるものではないことはもちろんである。
【0026】
参考例
メソポーラスシリカ(以下MPSと称する)の調製
本参考例では製法、細孔直径の異なる3種類のMPSについてその製造方法を示すが、それらに限定されるものではない。
【0027】
MCM−41
水(80.8g)に臭化セチルトリメチルアンモニウム(以下CTMABrと称する)を溶かし、つづいて20%水酸化テトラエチルアンモニウム(以下TEAOHと称する)水溶液を加えた。ここへフュームドシリカを加えて70℃で2時間撹拌した。テフロン容器に移し、オートクレーブ中、150℃で48時間放置し合成した。窒素吸着測定より得られた生成物の平均細孔直径は3.8nmであった。
【0028】
SBA−15
水160gに濃塩酸8.4mlを加え、界面活性剤Pluronic123(BASF社製、以下、P−123と称する)4.48gを溶かした。溶液の温度を35℃に保ちながらテトラエトキシシラン(以下TEOSと称する)9.3gをゆっくりと滴下しながら加え1時間撹拌後、オーブン中90℃、6時間で放置した。ろ過し、固形物を洗浄せずに乾燥させたのち、550℃で焼成した。窒素吸着測定より得られた生成物の平均細孔直径は5.6nmであった。
【0029】
MSU−H
水120gに酢酸3.6gとP−123 5.0gを溶かした溶液へ、水120gに水ガラス10gを溶かした溶液を加え、常温で30分間、メカニカルスターラーで撹拌後、オーブン中(25〜80℃)で、24時間放置した。ろ過後、多量の水で十分に洗浄し、550℃で6時間焼成した。窒素吸着測定より得られた生成物の平均細孔直径は7.9nmであった。
【0030】
メソポーラスシリカの種類及び製造方法は、上述の3種類に限定されない。このほか、FSM−16、MCM−48、SBA−11、SBA−12の製造方法を採用することができ、薄膜、ファイバー等、所望の利用形態に最適な製造方法を選択することができる。
【0031】
実施例
メソポーラスシリカへの光応答性有機基の固定化
以下、アミノプロピルシリル基を固定化したMPSをAP−MPS(もしくは個別のMPSの名称)と称し、さらにアゾベンゼン誘導体を固定化したMPSをAz−AP−MPS(もしくは個別のMPSの名称)と称する。
【0032】
AP−MPSの合成
MPS1.0gを乾燥トルエン10ml中で3−aminopropyltriethoxysilane(以下、APESと称する。化1)50〜1000mgと共に窒素下で3時間還流した。ろ過し、ソックスレー抽出器を用いて、ジエチルエーテルおよびジクロロメタンでそれぞれ3時間洗浄し、窒素下、80℃で一晩乾燥した。
【0033】
【化1】

Figure 2004249407
【0034】
AP−MPSの合成方法は、上述の方法に限定されない。このほか、水にCTMABrと水酸化ナトリウムを溶解させ、TEOSとAPESを加え常温で24時間撹拌後、ろ過、洗浄し、得られた固形物を110℃で乾燥することを特徴とする、AP−MCM−41の一段階合成などの方法を採用することができる。
【0035】
Az−AP−MPSの合成
光応答性有機基として、6−[4−[4’−(hexylphenyl)azo]phenoxy]−1−bromohexane(以下6Az6Brと称する。化2)を合成し、以下に示す3通りの方法により細孔壁に結合させた。アゾベンゼン誘導体の臭化物との反応によりアゾベンゼン誘導体を細孔内壁に結合させた。
【0036】
【化2】
Figure 2004249407
【0037】
[合成方法A]
AP−MPS1.0gをエタノール20ml中で6Az6Br(50〜1000mg)と共に6〜24時間、窒素下で還流した。ろ過後、エタノールで洗浄した。
【0038】
[合成方法B]
テフロン容器中でAP−MPS1.0g、エタノール20mlおよび6Az6Br(50〜1000mg)を混合し、20分間撹拌した後、100℃、6〜72時間オートクレーブ中で放置した。ろ過後、エタノールで洗浄した。
【0039】
[合成方法C]
テフロン容器中でAPES50mgおよび6Az6Br100mgをトルエン4ml中で混合し20分間撹拌した。MPS0.2gを加え撹拌後、オートクレーブで130℃、24時間で合成した。ろ過し、ジエチルエーテルおよびジクロロメタンでそれぞれ3時間洗浄し、窒素下、80℃で一晩乾燥した。
【0040】
比較例
MSU−H1.0gをエタノール20ml中で6Az6Br(50〜1000mg)と共に6〜24時間、窒素下で還流した。ろ過後、エタノールで洗浄した。着色したアゾベンゼン誘導体のほとんどが洗浄により除去された。
【0041】
細孔容量
MSU−H、AP−MSU−H、Az−AP−MSU−Hについて、細孔容量を測定した。細孔容量の測定方法と測定結果を説明する。
【0042】
細孔容量の測定方法
MSU−H、AP−MSU−H、Az−AP−MSU−H(方法C)について、各々真空中で加熱前処理した試料を用い窒素吸着測定を行なった。測定には日本ベル社製Belsorp28を用い、吸着及び脱着平衡圧を変化させながら液体窒素温度における窒素の吸着量を測定することにより、図1に示す吸脱着等温線を得た。
【0043】
細孔容量の測定結果
図1に、MSU−H、AP−MSU−H、Az−AP−MSU−H(方法C)の77Kにおける窒素吸脱着等温線を示す。それぞれ、図中のA、B、Cに対応する。また、横軸は相対圧(吸着平衡圧/飽和蒸気圧)、縦軸は吸着量を表わす。いずれの試料も相対圧0.5〜0.9付近で2本の曲線に分かれ、吸脱着でヒステリシスがあることより、メソ孔を有していることが確認された。試料の細孔容量はMSU−H、AP−MSU−H、Az−AP−MSU−Hについて、それぞれ1.04、0.80、0.59(ml/g)であった。このことは、アミノプロピル基およびアゾベンゼン誘導体がメソポーラスシリカの細孔内に結合していることを支持している。
【0044】
光照射
実施例のAz−AP−MSU−Hと比較例の粉体試料について、光照射を行った。光照射方法とその結果について説明する。
【0045】
光照射方法
紫外線ファイバースポット照射装置(三永電機製作所(株)製、SUPERCURE−203S)を用い、適当な光学フィルターを用いて紫外光(λ=365nm)及び可視光(λ=436nm)の照射を行った。
【0046】
試料への光照射
アゾベンゼン誘導体の光異性化は溶液中や単分子層のLB膜上では単純に光を照射するだけで行われるが、本研究で扱う試料は粉末状であるため試料全体に対して光を照射することが必要であり、以下に示す2つの方法を挙げるが、これらの方法に限定されるものではない。
【0047】
[光照射方法A:薄膜化法]
試料0.5gをエタノール5ml中に分散させ、スライドガラス上にスポイトで滴下し薄膜状に伸ばした。風乾後、必要な波長の光を照射した。
【0048】
[光照射方法B:液体中での光照射]
試料0.5gをエーテル5ml中に分散させ、撹拌子を用いて撹拌しながら必要な波長の光を照射した。
【0049】
光照射方法は、上述の2つに限定されない。このほか、撹拌もしくは無攪拌で直接粉体に照射するなどの方法を採用することができる。
【0050】
光照射試料の紫外可視拡散反射スペクトル
Az−AP−MSU−H(合成方法A)の粉体試料について、キセノンランプによる光を、光学フィルターを用いて所定の波長以外除去し、直接粉体試料に照射した。このとき、光照射前、10分間紫外光照射後、及び引き続き10分間可視光照射後の紫外可視拡散反射スペクトルを、発光ダイオードアレイを用いてごく短時間で測定した。その結果を図2に示す。図中、横軸は光の波長(nm)、縦軸は測定により得られた反射率からクベルカ・ムンク変換により求められた吸光度を示す。波長370〜380nmにおいては、紫外光の照射により吸光度の減少が起こり、可視光照射により再び増加した。紫外光照射により細孔内に結合したアゾベンゼン誘導体がトランス型からシス型へと異性化し、さらなる可視光照射によりシス型からトランス型にほぼ戻ることが確認され、細孔構造の変化が裏付けられた。
比較例の粉体試料については、光照射による吸光度の変化は観察されなかった。
【0051】
【発明の効果】
本発明は、以下に記載されるような効果を奏する。
本発明は、細孔の内壁に光応答性有機基を結合させることにより、新規な多孔質材料を提供することができる。
【図面の簡単な説明】
【図1】MSU−H(A)、AP−MSU−H(B)、Az−AP−MSU−H(C)の窒素吸脱着等温線を示す図である。
【図2】Az−AP−MSU−Hの粉体試料について、紫外光照射前、10分間紫外光照射後、及び引き続き10分間可視光照射後の紫外可視拡散反射スペクトルの測定結果を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a porous material.
[0002]
[Prior art]
In recent years, the use of porous materials such as mesoporous silica has been actively studied, and attempts have been made to combine them with organic substances with the aim of expanding their functions and application fields.
In order to express a function exhibiting high directionality and / or selectivity at a high density, one type of support having a plurality of mutually independent pores having an opening diameter of 2000 ° or less and a depth of 200 ° or more is used. A functional nanostructure having the above functional organic compound has been reported (for example, see Patent Document 1).
[0003]
A technique has been reported in which a coumarin derivative having a reversible photoresponsive property is bonded to the exit of a pore of mesoporous silica MCM-41, whereby the sustained release of cholestane outside the pore can be reversibly turned on / off by light irradiation. (For example, see Non-Patent Document 1 and Non-Patent Document 2).
[0004]
[Patent Document 1]
JP-A-2002-346999 [Non-Patent Document 1]
Masahiro Fujiwara et al., Proceedings of the 82nd Annual Meeting of the Chemical Society of Japan, 1A3-01 (2002)
[Non-patent document 2]
Nawal Kishor Mal, Masahiro Fujiwaraand Yuko Tanaka, Nature, 421, 350-353 (2003).
[0005]
[Problems to be solved by the invention]
However, in Patent Literature 1, although this technique provides a nanostructure using a pore structure, the pores are closed by an organic substance or the like, and the material is not a material characterized by its adsorptivity. Further, only an anodic electrolytic oxide alumina film having a pore diameter of 600 ° is used as the porous support, and the functional organic compounds are only leuco dyes and zinc porphyrin derivatives, all of which are covalently immobilized on the pore walls. Absent.
[0006]
In Non-patent Document 1 and Non-Patent Document 2, since this material has only a molecular door that is opened and closed by light irradiation, and is a system in which components adsorbed inside the adsorbent are left to be desorbed, It is impossible to forcibly release the adsorbed component, and in particular, there is a disadvantage that it is impossible to release a substance having a strong adsorption ability to silica.
[0007]
Materials that can switch the selective adsorption and desorption characteristics of a substance by using a change in the pore diameter by an external stimulus such as light or electromagnetism at a specific place are expected to appear, but as described above, To date, no such material has existed.
[0008]
The present invention has been made in view of such a problem, and has as its object to provide a novel porous material.
[0009]
[Means for Solving the Problems]
The porous material of the present invention has a photoresponsive organic group bonded to the inner wall of the pore. Thereby, the reversible control of the pore diameter and the shape using the deformation of the organic group due to the light irradiation is possible.
[0010]
Here, the pore diameter of the porous material is preferably in the range of 30 to 300 °. More preferably, the pore diameter of the porous material is in the range of 50 to 100 °. Further, it is preferable that the porous material is mesoporous silica. Further, it is preferable that the photoresponsive organic group is a molecule containing azobenzene.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the invention relating to a porous material will be described.
[0012]
As the porous material, it is desirable to use mesoporous silica having a large pore size and a uniform pore distribution in order to uniformly switch the photoresponsive organic group to the inner wall of the pore and to perform switching of the pore structure.
[0013]
The pore diameter of the porous material is preferably in the range of 30 to 300 °. Since most of the photoresponsive organic groups required for switching the pore structure are generally larger than 15 °, when the pore diameter is less than 30 °, the photoresponsive organic groups are uniformly distributed on the inner wall of the pores. Is difficult to immobilize.
[0014]
When the pore diameter is larger than 300 °, there is a problem that it is difficult to synthesize mesoporous silica having a uniform pore distribution. When the pore diameter of the porous material is 30 to 300 °, there is no such a problem, and the photoresponsive organic group can be uniformly bonded to the inner wall of the pore.
[0015]
More preferably, the pore diameter of the porous material is in the range of 50 to 100 °. When the pore diameter is 50 ° or more, an organic group having an appropriate size with respect to the pore diameter can be freely selected. When the pore diameter is 100 ° or less, it is easy to obtain mesoporous silica having a uniform pore diameter. It is.
[0016]
Preferably, the porous material is mesoporous silica. The reason is that it is easy to obtain a substance with high stability, a diameter can be adjusted and a uniform pore distribution, and organic groups can be bound freely by using hydroxyl groups present on the pore surface. This is particularly easy.
[0017]
The mesoporous silica is particularly preferably MSU-H, but is not limited thereto, and MCM-41, FSM-16, SBA-15, MCM-48, SBA-11, SBA-12 and the like can also be used. is there.
[0018]
The porous material is not limited to mesoporous silica. In addition, many mesoporous oxides such as mesoporous silica alumina, mesoporous alumina and mesoporous aluminophosphate, as well as mesoporous carbon can be used.
[0019]
Next, the photoresponsive organic group will be described.
The photoresponsive organic group is preferably one that reversibly isomerizes within a short period of time and causes a change in the molecular structure sufficient to change the pore structure. The photoresponsive organic group contains a portion that isomerizes in its molecular structure and a portion that binds to the inner wall of the pore.
[0020]
As the isomerizing portion, various organic molecules such as azobenzenes, fulgides, spiropyrans, and salicylideneanilines can be generally used.
[0021]
An aminoalkylsilyl group, a mercaptoalkylsilyl group, a carboxyalkylsilyl group, a hydroxyalkylsilyl group, or the like can be used as the portion that bonds to the inner wall of the pore.
[0022]
As described above, according to the present embodiment, a novel porous material can be provided by bonding a photoresponsive organic group to the inner wall of a pore.
[0023]
Thereby, the reversible control of the pore diameter and the shape using the deformation of the organic group due to the light irradiation is possible. In the fields of drug delivery, sustained release agents, adsorption / transportation / storage of harmful substances, etc., and solid catalysts, sensors, etc., it becomes possible to switch the uptake / release of a specific substance at a specific place by light irradiation.
[0024]
Note that the present invention is not limited to the above-described embodiment, but can adopt various other configurations without departing from the gist of the present invention.
[0025]
【Example】
Next, examples according to the present invention will be specifically described. However, needless to say, the present invention is not limited to these examples.
[0026]
Reference Example Preparation of mesoporous silica (hereinafter referred to as MPS) In this reference example, the production method and the production method for three types of MPS having different pore diameters are shown, but the present invention is not limited thereto.
[0027]
MCM-41
Cetyltrimethylammonium bromide (hereinafter referred to as CTMABr) was dissolved in water (80.8 g), and then a 20% aqueous solution of tetraethylammonium hydroxide (hereinafter referred to as TEAOH) was added. Fumed silica was added thereto and stirred at 70 ° C. for 2 hours. It was transferred to a Teflon container and left in an autoclave at 150 ° C. for 48 hours for synthesis. The average pore diameter of the product obtained from the nitrogen adsorption measurement was 3.8 nm.
[0028]
SBA-15
8.4 ml of concentrated hydrochloric acid was added to 160 g of water, and 4.48 g of a surfactant Pluronic123 (manufactured by BASF, hereinafter referred to as P-123) was dissolved. While maintaining the temperature of the solution at 35 ° C., 9.3 g of tetraethoxysilane (hereinafter referred to as TEOS) was slowly added dropwise, and the mixture was stirred for 1 hour and then left in an oven at 90 ° C. for 6 hours. After being filtered and dried without washing the solid, it was calcined at 550 ° C. The average pore diameter of the product obtained from the nitrogen adsorption measurement was 5.6 nm.
[0029]
MSU-H
To a solution of 3.6 g of acetic acid and 5.0 g of P-123 in 120 g of water was added a solution of 10 g of water glass in 120 g of water. After stirring at room temperature for 30 minutes with a mechanical stirrer, the mixture was stirred in an oven (25-80). C) for 24 hours. After filtration, it was sufficiently washed with a large amount of water, and calcined at 550 ° C. for 6 hours. The average pore diameter of the product obtained from the nitrogen adsorption measurement was 7.9 nm.
[0030]
The type and manufacturing method of mesoporous silica are not limited to the above three types. In addition, the manufacturing method of FSM-16, MCM-48, SBA-11, and SBA-12 can be adopted, and the optimum manufacturing method such as a thin film and a fiber can be selected.
[0031]
EXAMPLES Immobilization of Photoresponsive Organic Groups on Mesoporous Silica Hereinafter, MPS in which aminopropylsilyl groups are immobilized is referred to as AP-MPS (or individual MPS name), and MPS in which azobenzene derivatives are immobilized is referred to as Az. -AP-MPS (or the name of an individual MPS).
[0032]
1. Synthesis of AP-MPS 1.0 g of MPS was refluxed in 10 ml of dry toluene together with 50 to 1000 mg of 3-aminopropyltriethyloxysilane (hereinafter referred to as APES) under nitrogen for 3 hours. The mixture was filtered, washed with diethyl ether and dichloromethane for 3 hours using a Soxhlet extractor, and dried overnight at 80 ° C. under nitrogen.
[0033]
Embedded image
Figure 2004249407
[0034]
The method for synthesizing AP-MPS is not limited to the method described above. In addition, APMA is characterized by dissolving CTMABr and sodium hydroxide in water, adding TEOS and APES, stirring at room temperature for 24 hours, filtering and washing, and drying the obtained solid at 110 ° C. A method such as one-step synthesis of MCM-41 can be employed.
[0035]
6- [4- [4 ′-(hexylphenyl) azo] phenoxy] -1-bromohexane (hereinafter referred to as 6Az6Br; Chemical Formula 2) was synthesized as a photoresponsive organic group of Az-AP-MPS, and shown below. It was attached to the pore wall by three methods. The azobenzene derivative was bonded to the inner wall of the pore by the reaction of the azobenzene derivative with bromide.
[0036]
Embedded image
Figure 2004249407
[0037]
[Synthesis method A]
1.0 g of AP-MPS was refluxed with 6Az6Br (50-1000 mg) in 20 ml of ethanol under nitrogen for 6-24 hours. After filtration, it was washed with ethanol.
[0038]
[Synthesis method B]
In a Teflon container, 1.0 g of AP-MPS, 20 ml of ethanol and 6Az6Br (50 to 1000 mg) were mixed, stirred for 20 minutes, and left in an autoclave at 100 ° C. for 6 to 72 hours. After filtration, it was washed with ethanol.
[0039]
[Synthesis method C]
In a Teflon container, 50 mg of APES and 100 mg of 6Az6Br were mixed in 4 ml of toluene and stirred for 20 minutes. After adding 0.2 g of MPS and stirring, the solution was synthesized in an autoclave at 130 ° C. for 24 hours. Filter, wash with diethyl ether and dichloromethane for 3 hours each, and dry under nitrogen at 80 ° C. overnight.
[0040]
Comparative Example 1.0 g of MSU-H was refluxed with 6Az6Br (50-1000 mg) in 20 ml of ethanol under nitrogen for 6-24 hours. After filtration, it was washed with ethanol. Most of the colored azobenzene derivative was removed by washing.
[0041]
The pore volumes of the pore volumes MSU-H, AP-MSU-H and Az-AP-MSU-H were measured. The measurement method and measurement result of the pore volume will be described.
[0042]
Nitrogen adsorption measurement was carried out for each of MSU-H, AP-MSU-H, and Az-AP-MSU-H (method C) for measuring the pore volume using a sample pretreated in a vacuum. The adsorption and desorption isotherm shown in FIG. 1 was obtained by measuring the amount of nitrogen adsorbed at the liquid nitrogen temperature while changing the adsorption and desorption equilibrium pressures by using Belsorp 28 manufactured by Bell Japan.
[0043]
Measurement Results of Pore Volume FIG. 1 shows nitrogen adsorption / desorption isotherms at 77 K for MSU-H, AP-MSU-H, and Az-AP-MSU-H (method C). These correspond to A, B, and C in the figure, respectively. The horizontal axis represents the relative pressure (adsorption equilibrium pressure / saturated vapor pressure), and the vertical axis represents the amount of adsorption. Each sample was divided into two curves at a relative pressure of around 0.5 to 0.9, and it was confirmed that the sample had mesopores by hysteresis due to adsorption and desorption. The pore volume of the sample was 1.04, 0.80, and 0.59 (ml / g) for MSU-H, AP-MSU-H, and Az-AP-MSU-H, respectively. This supports that the aminopropyl group and the azobenzene derivative are bound in the pores of the mesoporous silica.
[0044]
Light irradiation Irradiation was performed on the Az-AP-MSU-H of the example and the powder sample of the comparative example. The light irradiation method and the result will be described.
[0045]
Light Irradiation Method Irradiation of ultraviolet light (λ = 365 nm) and visible light (λ = 436 nm) using an appropriate optical filter using an ultraviolet fiber spot irradiation apparatus (SUPERCURE-203S, manufactured by Minaga Electric Works, Ltd.). went.
[0046]
Photoirradiation to samples Photoisomerization of azobenzene derivatives is performed by simply irradiating light in solution or on a monolayer LB film. However, since the samples treated in this study are powdery, It is necessary to irradiate with light, and the following two methods are exemplified, but are not limited to these methods.
[0047]
[Light irradiation method A: thinning method]
0.5 g of a sample was dispersed in 5 ml of ethanol, dropped on a slide glass with a dropper, and stretched into a thin film. After air drying, light of a required wavelength was irradiated.
[0048]
[Light irradiation method B: light irradiation in liquid]
0.5 g of a sample was dispersed in 5 ml of ether, and irradiated with light of a required wavelength while stirring using a stirrer.
[0049]
The light irradiation method is not limited to the above two methods. In addition, a method of directly irradiating the powder with or without stirring can be employed.
[0050]
With respect to the powder sample of the UV-visible diffuse reflection spectrum Az-AP-MSU-H (Synthesis method A) of the light irradiation sample, light other than a predetermined wavelength is removed using a xenon lamp using an optical filter, and the powder sample is directly converted to a powder sample. Irradiated. At this time, the ultraviolet-visible diffuse reflection spectrum before the light irradiation, after the ultraviolet light irradiation for 10 minutes, and after the visible light irradiation for 10 minutes was measured in a very short time using the light emitting diode array. The result is shown in FIG. In the figure, the horizontal axis represents the wavelength of light (nm), and the vertical axis represents the absorbance obtained by the Kubelka-Munk conversion from the reflectance obtained by the measurement. At a wavelength of 370 to 380 nm, the absorbance decreased by irradiation with ultraviolet light, and increased again by irradiation with visible light. It was confirmed that the azobenzene derivative bound in the pore was isomerized from the trans form to the cis form by irradiation with ultraviolet light, and it was confirmed that the visible light irradiation almost returned to the trans form from the cis form, confirming the change in the pore structure. .
For the powder sample of the comparative example, no change in absorbance due to light irradiation was observed.
[0051]
【The invention's effect】
The present invention has the following effects.
The present invention can provide a novel porous material by bonding a photoresponsive organic group to the inner wall of a pore.
[Brief description of the drawings]
FIG. 1 is a diagram showing nitrogen adsorption / desorption isotherms of MSU-H (A), AP-MSU-H (B), and Az-AP-MSU-H (C).
FIG. 2 is a view showing a measurement result of an ultraviolet-visible diffuse reflection spectrum of a powder sample of Az-AP-MSU-H before irradiation with ultraviolet light, after irradiation with ultraviolet light for 10 minutes, and subsequently after irradiation with visible light for 10 minutes. is there.

Claims (5)

細孔の内壁に光応答性有機基を結合させる多孔質材料。A porous material that binds a photoresponsive organic group to the inner wall of a pore. 30〜300Åの細孔径を有する多孔質材料の内壁に光応答性有機基を結合させる請求項1記載の多孔質材料。The porous material according to claim 1, wherein a photoresponsive organic group is bonded to an inner wall of the porous material having a pore diameter of 30 to 300 °. 前記多孔質材料がメソポーラスシリカである請求項2記載の多孔質材料。3. The porous material according to claim 2, wherein said porous material is mesoporous silica. 前記多孔質材料の細孔径が50〜100Åである請求項3記載の多孔質材料。The porous material according to claim 3, wherein the porous material has a pore diameter of 50 to 100 °. 前記光応答性有機基がアゾベンゼンを含む分子である請求項2記載の多孔質材料。The porous material according to claim 2, wherein the photoresponsive organic group is a molecule containing azobenzene.
JP2003043227A 2003-02-20 2003-02-20 Porous material Pending JP2004249407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003043227A JP2004249407A (en) 2003-02-20 2003-02-20 Porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003043227A JP2004249407A (en) 2003-02-20 2003-02-20 Porous material

Publications (1)

Publication Number Publication Date
JP2004249407A true JP2004249407A (en) 2004-09-09

Family

ID=33026290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003043227A Pending JP2004249407A (en) 2003-02-20 2003-02-20 Porous material

Country Status (1)

Country Link
JP (1) JP2004249407A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064038A (en) * 2008-09-12 2010-03-25 Tokyo Denki Univ Photoresponsive copper ion adsorption material and copper ion recovery method
CN112844316A (en) * 2020-12-24 2021-05-28 南京工业大学 Azophenyl photoresponse complexing adsorbent and preparation method and application thereof
CN114306636A (en) * 2021-12-03 2022-04-12 华南理工大学 Photoresponse silicon dioxide material and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010064038A (en) * 2008-09-12 2010-03-25 Tokyo Denki Univ Photoresponsive copper ion adsorption material and copper ion recovery method
CN112844316A (en) * 2020-12-24 2021-05-28 南京工业大学 Azophenyl photoresponse complexing adsorbent and preparation method and application thereof
CN114306636A (en) * 2021-12-03 2022-04-12 华南理工大学 Photoresponse silicon dioxide material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Brown et al. Photophysical pore control in an azobenzene-containing metal–organic framework
Zaarour et al. Progress in zeolite synthesis promotes advanced applications
Schwartz et al. Solution-like behavior of photoswitchable spiropyrans embedded in metal–organic frameworks
Knebel et al. Azobenzene guest molecules as light-switchable CO2 valves in an ultrathin UiO-67 membrane
Inagaki et al. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks
Hu et al. Surfactant-templated organic functionalized mesoporous silica with phosphino ligands
Ogawa et al. Luminescence of Tris (2, 2 ‘-bipyridine) ruthenium (II) Cations ([Ru (bpy) 3] 2+) Adsorbed in Mesoporous Silica
Ogawa Photoprocesses in mesoporous silicas prepared by a supramolecular templating approach
KR101693227B1 (en) Method for manufacturing mesoporous materials, materials so produced and use of mesoporous materials
JP4962861B2 (en) Light energy conversion material
Besson et al. Photoresponsive ordered hybrid materials containing a bridged azobenzene group
Dong et al. Enhanced biological imaging via aggregation-induced emission active porous organic cages
Alvaro et al. Reversible porosity changes in photoresponsive azobenzene-containing periodic mesoporous silicas
Das et al. Unexpected nonresponsive behavior of a flexible metal-organic framework under conformational changes of a photoresponsive guest molecule
Tanamura et al. Ship-in-a-bottle synthesis of copper phthalocyanine molecules within mesoporous channels of MCM-41 by a chemical vapor deposition method
Benitez et al. Design of a chiral mesoporous silica and its application as a host for stereoselective di-π-methane rearrangements
JP4701437B2 (en) Aromatic compound-layered inorganic compound porous body and method for producing the same
JP6887676B2 (en) Immobilized photocatalyst and its manufacturing method
Payra et al. Development of a dissolved oxygen sensor using tris (bipyridyl) ruthenium (II) complexes entrapped in highly siliceous zeolites
Agarkar et al. The photo-switching study of guest 2-(phenylazo) pyridine (PAP) embedded in solid host material MOF-5
Ariga et al. Supramolecular materials from inorganic building blocks
JP4793623B2 (en) Photoresponsive mesoporous body and its sustained release function
JP2004249407A (en) Porous material
Dewal et al. Manipulating the cavity of a porous material changes the photoreactivity of included guests
Mehraban et al. Synthesis and characterization of a new organic–inorganic hybrid NiO–chlorophyll-a as optical material

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20060126

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Effective date: 20060218

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A02 Decision of refusal

Effective date: 20080325

Free format text: JAPANESE INTERMEDIATE CODE: A02