JP5375582B2 - Thin film capacitor manufacturing method - Google Patents

Thin film capacitor manufacturing method Download PDF

Info

Publication number
JP5375582B2
JP5375582B2 JP2009286511A JP2009286511A JP5375582B2 JP 5375582 B2 JP5375582 B2 JP 5375582B2 JP 2009286511 A JP2009286511 A JP 2009286511A JP 2009286511 A JP2009286511 A JP 2009286511A JP 5375582 B2 JP5375582 B2 JP 5375582B2
Authority
JP
Japan
Prior art keywords
thin film
metal foil
dielectric thin
thickness
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009286511A
Other languages
Japanese (ja)
Other versions
JP2010171397A (en
Inventor
裕子 佐屋
賢治 堀野
義彦 矢野
仁 齊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2009286511A priority Critical patent/JP5375582B2/en
Publication of JP2010171397A publication Critical patent/JP2010171397A/en
Application granted granted Critical
Publication of JP5375582B2 publication Critical patent/JP5375582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a thin-film capacitor capable of improving the leakage characteristics. <P>SOLUTION: The method for manufacturing the thin-film capacitor includes an annealing step S2 for annealing metal foil 11 at a temperature of 800&deg;C or higher; a dielectric thin film formation step S3 for forming a dielectric thin film 12 on the metal foil 11 so that the ratio D0/t of a crystal grain size D0 of the annealed metal foil 11 to a film thickness t of the dielectric thin film becomes 104 to 560; a sintering step S4 for sintering the dielectric thin film 12, by heating the metal foil 11 and the dielectric thin film 12; and an upper electrode formation step S5 for forming an upper electrode 13 on the sintered dielectric thin film 12. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、薄膜コンデンサの製造方法に関する。   The present invention relates to a method for manufacturing a thin film capacitor.

近年、電子部品の薄型化が急速に進んでおり、例えば、基板と下部電極とを兼ねる金属箔上に誘電体薄膜を成膜し、その上に上部電極を形成した薄膜コンデンサに対するニーズが高まってきている。薄膜コンデンサの誘電率を高めるためには、金属箔上に誘電体薄膜を形成した後に高温で加熱して誘電体を焼結させる焼結処理が不可欠である。   In recent years, thinning of electronic components has been progressing rapidly. For example, there is an increasing need for a thin film capacitor in which a dielectric thin film is formed on a metal foil serving as a substrate and a lower electrode, and an upper electrode is formed on the dielectric thin film. ing. In order to increase the dielectric constant of the thin film capacitor, it is essential to perform a sintering process in which a dielectric thin film is formed on a metal foil and then heated at a high temperature to sinter the dielectric.

この焼結処理において、金属箔の硬度が大きいと誘電体薄膜に過度のひずみがかかり、誘電体薄膜にクラックが発生することがある。この場合、薄膜コンデンサのリーク電流が増大し、リーク特性が劣化することになる。そこで、焼結処理におけるクラック発生を抑えるために、例えば以下の特許文献1には、誘電体薄膜を成膜する前に金属箔を焼鈍することが記載されている。   In this sintering process, if the hardness of the metal foil is large, excessive strain is applied to the dielectric thin film, and cracks may occur in the dielectric thin film. In this case, the leakage current of the thin film capacitor increases and the leakage characteristics deteriorate. Therefore, in order to suppress the generation of cracks in the sintering process, for example, Patent Document 1 below describes that the metal foil is annealed before forming the dielectric thin film.

特開2007−110127号公報JP 2007-110127 A

しかしながら、特許文献1のように誘電体成膜前に金属箔を焼鈍処理したとしても、加熱温度などの焼鈍処理や焼結処理の条件によっては、依然として誘電体薄膜にクラックが発生し、リーク特性が劣化することがあった。   However, even if the metal foil is annealed before dielectric film formation as in Patent Document 1, cracks still occur in the dielectric thin film depending on the annealing and sintering conditions such as heating temperature, and leakage characteristics Sometimes deteriorated.

本発明は、上記問題点を鑑みてなされたものであり、リーク特性を向上させることができる薄膜コンデンサの製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a thin film capacitor capable of improving leakage characteristics.

鋭意研究を重ねた結果、クラック発生には、金属箔を焼鈍した後の金属箔の結晶粒径と、誘電体薄膜の膜厚との関係が大きく影響していることが見出された。   As a result of extensive research, it has been found that the relationship between the crystal grain size of the metal foil after annealing the metal foil and the thickness of the dielectric thin film has a great influence on the occurrence of cracks.

そこで、本発明に係る薄膜コンデンサの製造方法は、上記課題を解決するために、金属箔を800℃以上の温度にて焼鈍する焼鈍工程と、焼鈍された金属箔の結晶粒径D0と誘電体薄膜の膜厚tとの比D0/tが104〜560となるよう金属箔の上に誘電体薄膜を形成する誘電体薄膜形成工程と、金属箔及び誘電体薄膜を加熱して誘電体薄膜を焼結させる焼結工程と、焼結された誘電体薄膜の上に上部電極を形成する上部電極形成工程と、を備えることを特徴とする。   Therefore, in order to solve the above problems, the method of manufacturing a thin film capacitor according to the present invention includes an annealing process in which the metal foil is annealed at a temperature of 800 ° C. or higher, a crystal grain size D0 of the annealed metal foil, and a dielectric. A dielectric thin film forming step of forming a dielectric thin film on the metal foil so that a ratio D0 / t to the thin film thickness t is 104 to 560, and heating the metal foil and the dielectric thin film to form the dielectric thin film It comprises a sintering step for sintering and an upper electrode forming step for forming an upper electrode on the sintered dielectric thin film.

このような薄膜コンデンサの製造方法によれば、金属箔を800℃以上の温度にて焼鈍し、さらに焼鈍された金属箔の結晶粒径D0と誘電体薄膜の膜厚tとの比D0/tが104〜560となるよう金属箔の上に誘電体薄膜を形成することにより、薄膜コンデンサのリーク特性を向上させることができる。   According to such a method of manufacturing a thin film capacitor, the metal foil is annealed at a temperature of 800 ° C. or higher, and the ratio D0 / t between the crystal grain size D0 of the annealed metal foil and the film thickness t of the dielectric thin film. By forming the dielectric thin film on the metal foil so that becomes 104 to 560, the leakage characteristics of the thin film capacitor can be improved.

また、焼鈍工程において、金属箔の結晶粒径D0が箔厚H以上まで粒成長するよう金属箔を焼鈍することが好適である。このように金属箔の結晶粒径D0が箔厚H以上まで粒成長するよう焼鈍処理を行うことにより、焼結工程における加熱による金属箔の粒成長が抑制され、薄膜コンデンサのリーク特性を向上させることができる。   In addition, in the annealing step, it is preferable to anneal the metal foil so that the crystal grain size D0 of the metal foil grows up to a foil thickness H or more. By performing the annealing process so that the crystal grain size D0 of the metal foil grows to the foil thickness H or more in this way, the grain growth of the metal foil due to heating in the sintering process is suppressed, and the leakage characteristics of the thin film capacitor are improved. be able to.

ここで、誘電体薄膜形成工程前の金属箔の結晶粒径D0と、焼結工程後の金属箔の結晶粒径D1との比D1/D0が、1.50以下であることが好適であり、1.22以下であることがさらに好適である。これにより、焼結工程における高温加熱による金属箔の粒成長がさらに抑制され、クラック発生をさらに抑制してリーク特性をより一層向上させることができる。   Here, it is preferable that the ratio D1 / D0 between the crystal grain size D0 of the metal foil before the dielectric thin film forming step and the crystal grain size D1 of the metal foil after the sintering step is 1.50 or less. More preferably, it is 1.22 or less. Thereby, the grain growth of the metal foil due to high-temperature heating in the sintering process is further suppressed, and the occurrence of cracks can be further suppressed to further improve the leak characteristics.

ここで、誘電体薄膜形成工程において、焼鈍された金属箔の結晶粒径D0と誘電体薄膜の膜厚tとの比D0/tが144〜400となるよう金属箔の上に誘電体薄膜を形成することが好適である。これにより、リーク特性をより一層向上させることができる。   Here, in the dielectric thin film forming step, the dielectric thin film is formed on the metal foil so that the ratio D0 / t of the crystal grain size D0 of the annealed metal foil and the film thickness t of the dielectric thin film is 144 to 400. It is preferable to form. Thereby, the leak characteristic can be further improved.

本発明に係る薄膜コンデンサの製造方法によれば、リーク特性を向上させることができる。   According to the method for manufacturing a thin film capacitor according to the present invention, the leakage characteristics can be improved.

本発明の一実施形態に係る薄膜コンデンサの構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the thin film capacitor which concerns on one Embodiment of this invention. 本実施形態に係る薄膜コンデンサの製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the thin film capacitor which concerns on this embodiment. 金属箔における結晶粒の粒成長の概略を示す図である。It is a figure which shows the outline of the grain growth of the crystal grain in metal foil.

以下、本発明の好適な実施形態について説明する。但し、本発明は以下の実施形態に限定されるものではない。なお、同一又は同等の要素については同一の符号を付し、説明が重複する場合にはその説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described. However, the present invention is not limited to the following embodiments. In addition, the same code | symbol is attached | subjected about the same or equivalent element, and the description is abbreviate | omitted when description overlaps.

図1は、本発明の一実施形態に係る薄膜コンデンサ10の構造を示す概略断面図である。薄膜コンデンサ10は、金属箔11と、この金属箔11の上に設けられた誘電体薄膜12と、誘電体薄膜12の上に設けられた上部電極13とを備えて構成されている。   FIG. 1 is a schematic sectional view showing the structure of a thin film capacitor 10 according to an embodiment of the present invention. The thin film capacitor 10 includes a metal foil 11, a dielectric thin film 12 provided on the metal foil 11, and an upper electrode 13 provided on the dielectric thin film 12.

金属箔11は、Ni箔、Cu箔、Al箔、Pt箔、またはこれらの合金を主成分としたものが好ましく、特にNi箔が好ましい。また、金属箔11の製法として、電解法(めっき法、スパッタ法、蒸着法、CVD法など)及び圧延法があるが、製造工程において加工歪みが含まれない電解法によって作製した金属箔を用いるのがより好適であり、特にめっき法によって作製した金属箔は、不純物の混入が少なく,高純度(99.99%以上)のものが得られるため、これを用いるのが好適である。金属箔11の箔厚は5〜500μmであることが好ましい。本実施形態では、金属箔11は、誘電体薄膜12を保持する保持部材としての機能と、下部電極としての機能と、誘電体薄膜を形成する基体として機能と、を兼ね備えている。   The metal foil 11 is preferably a Ni foil, Cu foil, Al foil, Pt foil, or an alloy thereof, and Ni foil is particularly preferable. In addition, as a method for producing the metal foil 11, there are an electrolytic method (plating method, sputtering method, vapor deposition method, CVD method, etc.) and a rolling method, but a metal foil produced by an electrolytic method that does not include processing strain in the manufacturing process is used. In particular, a metal foil produced by a plating method is preferably used because it is less contaminated with impurities and has a high purity (99.99% or more). The foil thickness of the metal foil 11 is preferably 5 to 500 μm. In the present embodiment, the metal foil 11 has both a function as a holding member that holds the dielectric thin film 12, a function as a lower electrode, and a function as a substrate on which the dielectric thin film is formed.

誘電体薄膜12は、BTすなわちチタン酸バリウムBaTiO、BSTすなわちチタン酸バリウムストロンチウム(BaSr)TiO、チタン酸ストロンチウムSrTiO、(BaSr)(TiZr)O、BaTiZrOなどのペロブスカイト型酸化物が好適に用いられる。誘電体薄膜12は、これらの酸化物のうち一つ以上を含んでいてもよい。誘電体薄膜12の膜厚は、30nm〜5μm程度が好ましく、特に本実施形態においては、金属箔11の結晶粒径に基づいて適宜、好適な範囲を調整することが好ましい。本実施形態における誘電体薄膜12の膜厚の決定方法については後述する。 The dielectric thin film 12 is made of a perovskite oxide such as BT, that is, barium titanate BaTiO 3 , BST, that is, barium strontium titanate (BaSr) TiO 3 , strontium titanate SrTiO 3 , (BaSr) (TiZr) O 3 , BaTiOZrO 3. Preferably used. The dielectric thin film 12 may contain one or more of these oxides. The film thickness of the dielectric thin film 12 is preferably about 30 nm to 5 μm. In particular, in the present embodiment, it is preferable to appropriately adjust a suitable range based on the crystal grain size of the metal foil 11. A method of determining the film thickness of the dielectric thin film 12 in this embodiment will be described later.

上部電極13は、低コスト化のため、安価な卑金属材料を主成分として構成されるのが好ましく、特にCuを主成分として構成されるのが好ましい。なお、上部電極13は、例えば、Ni、Pt、Pd、Ir、Ru、Rh、Re、Os、Au、Ag、Cu、IrO、RuO、SrRuO、およびLaNiOの少なくともいずれか1つを含むように構成してもよい。 The upper electrode 13 is preferably composed of an inexpensive base metal material as a main component for cost reduction, and particularly preferably composed of Cu as a main component. The upper electrode 13 is made of, for example, at least one of Ni, Pt, Pd, Ir, Ru, Rh, Re, Os, Au, Ag, Cu, IrO 2 , RuO 2 , SrRuO 3 , and LaNiO 3. You may comprise so that it may be included.

次に、図2を参照して、薄膜コンデンサ10の製造方法を説明する。   Next, a method for manufacturing the thin film capacitor 10 will be described with reference to FIG.

まず、金属箔11が、誘電体薄膜を形成するための基体として準備され(S1)、還元雰囲気又は真空雰囲気で焼鈍処理が施される(S2:焼鈍工程)。焼鈍温度は、金属箔11内の結晶の粒成長が生じる程度に高温であり、800℃以上であればよく、900℃〜1300℃がより好ましく、1000℃〜1300℃がさらに好ましい。また、焼鈍時間は、1分〜4時間が好ましい。この焼鈍処理は、金属箔11の箔内歪を緩和するためになされるものである。金属箔の箔内歪は、焼鈍温度と焼鈍時間によって制御することができ、高温焼鈍ほど短時間で結晶内の歪を緩和することができる。金属箔11の箔内歪を緩和した状態とは、具体的には金属箔11のビッカース硬度が100HV程度より小さいことが好ましい。焼鈍温度と焼鈍時間との関係は、焼鈍温度が高温になるほど、焼鈍時間は短時間とすることができる。   First, the metal foil 11 is prepared as a substrate for forming a dielectric thin film (S1), and is subjected to an annealing treatment in a reducing atmosphere or a vacuum atmosphere (S2: annealing process). The annealing temperature is high enough to cause crystal grain growth in the metal foil 11, may be 800 ° C or higher, more preferably 900 ° C to 1300 ° C, and further preferably 1000 ° C to 1300 ° C. The annealing time is preferably 1 minute to 4 hours. This annealing process is performed in order to relieve strain in the foil of the metal foil 11. The strain in the foil of the metal foil can be controlled by the annealing temperature and the annealing time, and the strain in the crystal can be relaxed in a shorter time as the high temperature annealing is performed. Specifically, the state in which the in-foil strain of the metal foil 11 is relaxed is preferably that the Vickers hardness of the metal foil 11 is smaller than about 100 HV. Regarding the relationship between the annealing temperature and the annealing time, the annealing time can be shortened as the annealing temperature becomes higher.

本実施形態における「真空雰囲気」とは、圧力が1×10Pa以下となる減圧雰囲気のことであり、一般的には、1×10−5〜1×10Paであることが好ましく、1×10−3〜10Paであることがより好ましい。特に金属箔11が主としてNiからなる場合には、上記圧力が2×10−3〜8×10−1Paであることが好ましく、金属箔11が主としてCuからなる場合には、上記圧力が4×10−1〜8×10−1Paであることが好ましい。また、「還元雰囲気」とは、窒素と水素および水蒸気の混合ガスからなる雰囲気のことであり、窒素中に水素を4vol%以下含有されていることが好ましい。このような条件化で熱処理することにより、Ni箔などの金属箔11の酸化が抑制される。 The “vacuum atmosphere” in the present embodiment is a reduced pressure atmosphere in which the pressure is 1 × 10 3 Pa or less, and is generally preferably 1 × 10 −5 to 1 × 10 2 Pa. It is more preferable that it is 1 × 10 −3 to 10 Pa. In particular, when the metal foil 11 is mainly made of Ni, the pressure is preferably 2 × 10 −3 to 8 × 10 −1 Pa. When the metal foil 11 is mainly made of Cu, the pressure is 4 × is preferably 10 -1 ~8 × 10 -1 Pa. The “reducing atmosphere” is an atmosphere composed of a mixed gas of nitrogen, hydrogen and water vapor, and preferably contains 4 vol% or less of hydrogen in the nitrogen. By performing the heat treatment under such conditions, the oxidation of the metal foil 11 such as the Ni foil is suppressed.

ここで「粒成長」について説明する。本実施形態では、「粒成長」とは、当初は微細な多結晶構造をしている金属箔を熱処理することにより、各微細結晶の粒界が移動し、隣接する結晶粒を侵食しながら大きくなる過程をいう。例えば、図3(a)に示すように、金属箔11は、当初、概ね20nm〜60nm程度の粒径をもつ、様々な大きさの微細な結晶により、箔厚Hの方向に対して多層構造となっている。そして粒成長が進むと、図3(b)、(c)に示すように、結晶粒径が箔厚H以上になるまで個々の結晶粒が大きくなり、箔厚方向に対して単層構造となる。なお、「結晶粒径」とは、結晶粒の大きさを示すものであり、具体的には後述する「コード法」により算出される平均粒子径である。結晶粒径の大きさは、金属箔内部の不純物、焼鈍温度、焼鈍時間によって制御することができる。   Here, “grain growth” will be described. In this embodiment, “grain growth” means that a metal foil having a fine polycrystalline structure is initially heat-treated to move the grain boundary of each fine crystal, while eroding adjacent crystal grains. The process. For example, as shown in FIG. 3A, the metal foil 11 has a multilayer structure with respect to the direction of the foil thickness H due to fine crystals of various sizes having a grain size of about 20 nm to 60 nm. It has become. Then, as the grain growth proceeds, as shown in FIGS. 3B and 3C, each crystal grain becomes larger until the crystal grain size becomes equal to or larger than the foil thickness H. Become. The “crystal grain size” indicates the size of the crystal grain, and is specifically an average particle size calculated by a “code method” described later. The size of the crystal grain size can be controlled by the impurities inside the metal foil, the annealing temperature, and the annealing time.

また、図3(c)に示すように、粒成長が進み、結晶粒径がある程度まで大きくなると、粒成長が飽和して粒径がそれ以上大きくならなくなる。このときの粒径を「飽和粒径」という。この飽和粒子径は概ね金属箔の箔厚の2.5倍程度である。すなわち、金属箔11の飽和粒径は、主に箔厚Hによって決められるものである。   Further, as shown in FIG. 3C, when the grain growth proceeds and the crystal grain size is increased to a certain extent, the grain growth is saturated and the grain size does not increase any more. The particle size at this time is called “saturated particle size”. The saturated particle diameter is approximately 2.5 times the foil thickness of the metal foil. That is, the saturated particle diameter of the metal foil 11 is mainly determined by the foil thickness H.

特に本実施形態においては、後述する誘電体薄膜の焼結処理において、加熱による金属箔11の粒成長を少なくするため、焼鈍処理後の金属箔11の結晶粒径が、金属箔11の箔厚H以上であるように、すなわち金属箔11が単層構造となるように焼鈍処理を施すことが好ましく、焼鈍処理後の結晶粒径が箔厚の1.4倍より大きいことがさらに好ましい。さらに、結晶粒径が飽和粒径まで粒成長するように金属箔11に焼鈍処理を施すと、後述する誘電体薄膜の焼結処理において金属箔の粒成長が発生しなくなるため、焼鈍処理後の結晶粒径が箔厚H以上かつ飽和粒径であることが特に好適である。従って、金属箔が酸化等のダメージを受けない限り、還元雰囲気や真空雰囲気などの酸素分圧の低い状態にて焼鈍処理を行えばよい。   In particular, in this embodiment, in order to reduce grain growth of the metal foil 11 due to heating in the dielectric thin film sintering process described later, the crystal grain size of the metal foil 11 after the annealing process is the foil thickness of the metal foil 11. It is preferable to carry out the annealing treatment so that the metal foil 11 has a single layer structure, and it is more preferred that the crystal grain size after the annealing treatment is larger than 1.4 times the foil thickness. Furthermore, if the annealing process is performed on the metal foil 11 so that the crystal grain size grows to a saturated grain size, grain growth of the metal foil does not occur in the sintering process of the dielectric thin film described later. It is particularly preferable that the crystal grain size is not less than the foil thickness H and the saturated grain size. Accordingly, as long as the metal foil is not damaged by oxidation or the like, the annealing process may be performed in a low oxygen partial pressure state such as a reducing atmosphere or a vacuum atmosphere.

次に、焼鈍処理が施された金属箔11の上にBSTなどの誘電体からなる前駆体層が形成される(S3:誘電体薄膜形成工程)。前駆体層の形成には、例えばスパッタ法、CSD法(化学溶液法)、CVD法、などが用いられる。CSD法等の場合、基板に溶液を塗布後、化学溶液中の物質をある程度分解させた状態にするために、結晶化に至らない程度に熱を加える。この熱を加えて、ある程度分解を進め、結晶化していない層をここでは化学溶液法を用いた場合の前駆体層という。このような状態の前駆体層は一般に、誘電体がアモルファスの状態にある。   Next, a precursor layer made of a dielectric material such as BST is formed on the annealed metal foil 11 (S3: dielectric thin film forming step). For the formation of the precursor layer, for example, a sputtering method, a CSD method (chemical solution method), a CVD method, or the like is used. In the case of the CSD method or the like, after applying the solution to the substrate, heat is applied to such an extent that the substance in the chemical solution is decomposed to some extent so as not to cause crystallization. A layer which is decomposed to some extent by applying this heat and is not crystallized is referred to herein as a precursor layer when a chemical solution method is used. In general, the precursor layer in such a state has an amorphous dielectric state.

ここで、特に本実施形態においては、前駆体層は、後述する誘電体薄膜の焼結処理において誘電体に加わる歪みによるクラック発生を回避すべく、ステップS2の焼鈍工程において焼鈍された金属箔11の結晶粒径D0と、前駆体層(誘電体薄膜)の膜厚tとの比D0/tが104〜560となるように形成されることが好ましい。さらにより一層の誘電体のリーク電流の低減を考慮すると、D0/tは144〜400がより好ましい。   Here, particularly in the present embodiment, the precursor layer is a metal foil 11 annealed in the annealing step of step S2 in order to avoid the generation of cracks due to distortion applied to the dielectric in the sintering process of the dielectric thin film described later. It is preferable that the ratio D0 / t between the crystal grain size D0 and the film thickness t of the precursor layer (dielectric thin film) be 104 to 560. Considering further reduction of the leakage current of the dielectric, D0 / t is more preferably 144 to 400.

誘電体薄膜形成工程において、このような条件下で誘電体薄膜12を形成することにより、後述の焼結処理においてクラック発生が抑制される。本実施形態では、ステップS2の焼鈍工程により金属箔11の結晶粒径が箔厚以上、好ましくは飽和粒径まで粒成長し、誘電体薄膜12の形成時には金属箔11の個々の結晶が肥大化するため、金属箔11の表面において、隣接する結晶粒子同士の境界(粒界)の段差が大きくなる。このため、誘電体薄膜12の膜厚が金属箔11の結晶粒径に対して過度に薄い場合、すなわちD0/tが過度に大きい場合、後述の焼結処理において、誘電体の結晶化に伴い誘電体薄膜12内に応力が発生すると、この粒界の段差により誘電体にクラックが生じる虞がある。本実施形態では、D0/tを104〜560、より好ましくは144〜400として誘電体薄膜12を形成することにより、金属箔11の結晶粒径及び箔厚に応じて、誘電体薄膜12の膜厚が好適な範囲に定められ、この結果、焼結処理におけるクラック発生が抑制されると考えられる。   In the dielectric thin film forming step, by forming the dielectric thin film 12 under such conditions, generation of cracks is suppressed in the sintering process described later. In the present embodiment, the crystal grain size of the metal foil 11 grows to a thickness equal to or greater than the foil thickness, preferably the saturated grain size, by the annealing process in step S2, and individual crystals of the metal foil 11 are enlarged when the dielectric thin film 12 is formed. For this reason, on the surface of the metal foil 11, the level difference at the boundary (grain boundary) between adjacent crystal grains becomes large. For this reason, when the film thickness of the dielectric thin film 12 is excessively thin with respect to the crystal grain size of the metal foil 11, that is, when D0 / t is excessively large, in the sintering process described later, the dielectric is crystallized. When stress is generated in the dielectric thin film 12, there is a possibility that cracks may occur in the dielectric due to the step of the grain boundary. In the present embodiment, by forming the dielectric thin film 12 with D0 / t of 104 to 560, more preferably 144 to 400, the film of the dielectric thin film 12 according to the crystal grain size and foil thickness of the metal foil 11. It is considered that the thickness is set in a suitable range, and as a result, generation of cracks in the sintering process is suppressed.

また、誘電体薄膜形成工程において、このような条件下で誘電体薄膜12を形成することにより、後述の焼結処理において金属箔11及び誘電体薄膜12の反りが抑制される。誘電体薄膜12の膜厚が金属箔11の結晶粒径に対して過度に厚い場合、すなわちD0/tが過度に小さい場合には、後述の焼結処理において、誘電体の結晶化に伴い誘電体薄膜12内に発生する応力と歪みが過大となる。このため、金属箔11との接面での力の均衡が崩れ、金属箔11が誘電体薄膜12の変形を抑えることができず、金属箔11及び誘電体12に反りが発生する虞がある。本実施形態では、D0/tを104〜560、より好ましくは144〜400として誘電体薄膜12を形成することにより、金属箔11の結晶粒径及び箔厚に応じて、誘電体薄膜12の膜厚が好適な範囲に定められ、この結果、焼結処理における金属箔11及び誘電体薄膜12の反りが抑制されると考えられる。   Further, in the dielectric thin film forming step, by forming the dielectric thin film 12 under such conditions, warping of the metal foil 11 and the dielectric thin film 12 is suppressed in the sintering process described later. When the film thickness of the dielectric thin film 12 is excessively large with respect to the crystal grain size of the metal foil 11, that is, when D0 / t is excessively small, in the sintering process described later, The stress and strain generated in the body thin film 12 are excessive. For this reason, the balance of force at the contact surface with the metal foil 11 is lost, the metal foil 11 cannot suppress the deformation of the dielectric thin film 12, and the metal foil 11 and the dielectric 12 may be warped. . In the present embodiment, by forming the dielectric thin film 12 with D0 / t of 104 to 560, more preferably 144 to 400, the film of the dielectric thin film 12 according to the crystal grain size and foil thickness of the metal foil 11. It is considered that the thickness is set in a suitable range, and as a result, warpage of the metal foil 11 and the dielectric thin film 12 in the sintering process is suppressed.

次に、金属箔11上に形成された前駆体層が、真空雰囲気又は還元雰囲気の下で加熱され、誘電体の結晶化が進行して焼結され、高い誘電率を有する誘電体薄膜12が得られる(S4:焼結工程)。焼結処理のための加熱温度は、300〜1300℃程度が好ましい。加熱時間は、10〜90分が好ましい。この焼結処理により高誘電率が得られる。   Next, the precursor layer formed on the metal foil 11 is heated in a vacuum atmosphere or a reducing atmosphere, and the dielectric thin film 12 having a high dielectric constant is sintered by progressing crystallization of the dielectric. Obtained (S4: sintering step). The heating temperature for the sintering treatment is preferably about 300 to 1300 ° C. The heating time is preferably 10 to 90 minutes. A high dielectric constant can be obtained by this sintering process.

ここで、特に本実施形態においては、焼結処理中の加熱による金属箔11の粒成長及び変形を抑制するために、焼結処理後における金属箔11の結晶粒径D1と、焼鈍処理後かつ前駆体層形成処理前における金属箔11の結晶粒径D0との比D1/D0が1.5以下となるように、より好ましくは1.22以下となるように焼結処理を施すことが好ましい。   Here, particularly in this embodiment, in order to suppress grain growth and deformation of the metal foil 11 due to heating during the sintering process, the crystal grain size D1 of the metal foil 11 after the sintering process, and after the annealing process and Sintering is preferably performed so that the ratio D1 / D0 to the crystal grain size D0 of the metal foil 11 before the precursor layer forming treatment is 1.5 or less, more preferably 1.22 or less. .

そして、焼結処理された誘電体薄膜12の上に上部電極13が形成される(S5)。上部電極13の形成方法としては、例えばスパッタ法などが挙げられる。   Then, the upper electrode 13 is formed on the sintered dielectric thin film 12 (S5). Examples of a method for forming the upper electrode 13 include a sputtering method.

このように、本実施形態に係る薄膜コンデンサ10の製造方法によれば、金属箔11を800℃以上の温度にて焼鈍し、さらに焼鈍された金属箔11の結晶粒径D0と誘電体薄膜12の膜厚tとの比D0/tが104〜560となるよう、より好ましくは144〜400となるよう金属箔11の上に誘電体薄膜12を形成することにより、薄膜コンデンサ10のリーク特性を向上させることができる。   Thus, according to the method for manufacturing the thin film capacitor 10 according to the present embodiment, the metal foil 11 is annealed at a temperature of 800 ° C. or more, and the crystal grain size D0 of the annealed metal foil 11 and the dielectric thin film 12 are increased. By forming the dielectric thin film 12 on the metal foil 11 so that the ratio D0 / t to the film thickness t is 104 to 560, more preferably 144 to 400, the leakage characteristics of the thin film capacitor 10 are improved. Can be improved.

また、焼鈍工程S2において、金属箔11の結晶粒径D0が箔厚H以上まで粒成長するよう金属箔を焼鈍することにより、焼結工程S4における加熱による金属箔11の粒成長が抑制され、薄膜コンデンサ10のリーク特性を向上させることができる。   Also, in the annealing step S2, by annealing the metal foil such that the crystal grain size D0 of the metal foil 11 grows to a foil thickness H or more, grain growth of the metal foil 11 due to heating in the sintering step S4 is suppressed, The leakage characteristics of the thin film capacitor 10 can be improved.

また、焼鈍工程S2後かつ誘電体薄膜形成工程S3前の金属箔11の結晶粒径D0と、焼結工程S4後の金属箔の結晶粒径D1との比D1/D0が、1.50以下であり、より好ましくは1.22以下であるため、焼結工程S4における高温加熱による金属箔11の粒成長がさらに抑制され、クラック発生をさらに抑制してリーク特性を向上させることができる。   Further, the ratio D1 / D0 between the crystal grain size D0 of the metal foil 11 after the annealing step S2 and before the dielectric thin film forming step S3 and the crystal grain size D1 of the metal foil after the sintering step S4 is 1.50 or less. More preferably, since it is 1.22 or less, grain growth of the metal foil 11 due to high-temperature heating in the sintering step S4 can be further suppressed, crack generation can be further suppressed, and leakage characteristics can be improved.

ここで、金属箔11が単層構造をとることによる利点を説明する。一般に、振動子や電気回路では、Q値が高いことが望ましい。電子工学分野において、Q値の定義は、コイルとコンデンサを用いた直列共振回路の場合、

Figure 0005375582


と表される。これは、インダクタンスLを大きく、キャパシタンスCを小さく、又は直列抵抗Rを小さくするほどQが大きくなることを示すものである。従って、本実施形態の薄膜コンデンサ10のQ値を高くするためには、金属抵抗、すなわち金属箔11の抵抗値を小さくすることが好ましい。 Here, advantages of the metal foil 11 having a single layer structure will be described. Generally, it is desirable that the Q value is high in a vibrator or an electric circuit. In the field of electronics, the definition of the Q value is the case of a series resonant circuit using a coil and a capacitor.
Figure 0005375582


It is expressed. This indicates that Q increases as inductance L increases, capacitance C decreases, or series resistance R decreases. Therefore, in order to increase the Q value of the thin film capacitor 10 of the present embodiment, it is preferable to decrease the metal resistance, that is, the resistance value of the metal foil 11.

一般に、金属内を電荷が移動する際に、隣接する粒子同士の境界(粒界)を電荷が通過すると、粒界では結晶が不連続であるため、電荷の流れが散乱され、金属抵抗が高くなる。従って、電荷が通過する粒界を多く含む微細結晶ほど抵抗値が高くなる。本実施形態では、金属箔11に焼鈍処理を施して金属層11が単層構造になると、個々の結晶粒が隣接する結晶を侵食して粗大結晶化するため、金属箔内部の粒界が少なくなり、金属粒界による抵抗の増大を抑制することができると考えられる。   In general, when charge moves through a metal, if the charge passes through the boundary (grain boundary) between adjacent particles, the crystal is discontinuous at the grain boundary, so the flow of charge is scattered and the metal resistance is high. Become. Therefore, the resistance value increases as the fine crystal contains more grain boundaries through which charges pass. In this embodiment, when the metal foil 11 is annealed to form a single layer structure, each crystal grain erodes adjacent crystals and coarsely crystallizes, so that there are few grain boundaries inside the metal foil. Thus, it is considered that an increase in resistance due to the metal grain boundary can be suppressed.

このように、本実施形態に係る薄膜コンデンサの製造方法によれば、金属箔11の結晶粒径を箔厚以上として単層構造とすることにより、金属箔11の電気抵抗を小さくし、Q値の高い薄膜コンデンサを得ることができる。   Thus, according to the manufacturing method of the thin film capacitor according to the present embodiment, the metal foil 11 has a single layer structure with a crystal grain size equal to or larger than the foil thickness, thereby reducing the electrical resistance of the metal foil 11 and reducing the Q value. A thin film capacitor with high thickness can be obtained.

以下、実施例を挙げて本発明についてより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
めっき法により作製されたNi箔(箔厚H:50μm、純度99.99%以上)に対して以下の条件で焼鈍処理を行い、焼鈍処理後の金属箔のビッカース硬度及び結晶粒径D0を測定した。
・焼鈍温度:1300℃
・焼鈍保持時間:1時間
・昇温温度:5℃/分
・焼鈍雰囲気:還元雰囲気(H+N混合ガス(H=3vol%)+水蒸気にて作製、流量1L/min、設定酸素分圧pO2=2.3×10−11atm)
Example 1
An Ni foil (foil thickness H: 50 μm, purity 99.99% or more) produced by plating is subjected to an annealing treatment under the following conditions, and the Vickers hardness and crystal grain size D0 of the metal foil after the annealing treatment are measured. did.
・ Annealing temperature: 1300 ℃
・ Annealing holding time: 1 hour ・ Temperature rising temperature: 5 ° C./min ・ Annealing atmosphere: reducing atmosphere (H 2 + N 2 mixed gas (H 2 = 3 vol%) + water vapor, flow rate 1 L / min, set oxygen content Pressure pO2 = 2.3 × 10 −11 atm)

次に、焼鈍処理したNi箔を研磨、洗浄した後に、以下の条件のスパッタ蒸着法(アルバックMPS−3000−C1−S)によりNi箔上に誘電体薄膜を蒸着した。
・ターゲット組成:(Ba+Sr)1.02TiO(Ba/Sr=70/30)
・基板温度:200℃
・雰囲気:Ar:O=3:1(vol%)
・真空度:1.7Pa、
・蒸着膜厚:500nm
Next, after polishing and washing the annealed Ni foil, a dielectric thin film was deposited on the Ni foil by a sputter deposition method (ULVAC MPS-3000-C1-S) under the following conditions.
Target composition: (Ba + Sr) 1.02TiO 3 (Ba / Sr = 70/30)
-Substrate temperature: 200 ° C
Atmosphere: Ar: O 2 = 3: 1 (vol%)
・ Vacuum degree: 1.7 Pa,
・ Deposition film thickness: 500 nm

次に、この試料を赤外線ランプアニール炉(RTA―3000)にて真空雰囲気(<10−2Pa)、加熱温度800℃、昇温速度100℃/分、保持時間30分で焼結させた。誘電体膜厚は光学式膜厚計(Filmetrics社製F20)を用いて測定した。 Next, the sample was sintered in an infrared lamp annealing furnace (RTA-3000) at a vacuum atmosphere (<10 −2 Pa), a heating temperature of 800 ° C., a temperature rising rate of 100 ° C./min, and a holding time of 30 minutes. The dielectric film thickness was measured using an optical film thickness meter (F20 manufactured by Filmmetrics).

その後、誘電体薄膜上にスパッタ法にてCuを主成分とする直径1mmの電極を蒸着した。作製した薄膜コンデンサについて、リーク特性、基板の反り具合、およびNi箔の結晶粒径D1を測定・観察した。   Thereafter, an electrode having a diameter of 1 mm containing Cu as a main component was deposited on the dielectric thin film by sputtering. The manufactured thin film capacitor was measured and observed for leakage characteristics, substrate warpage, and Ni foil crystal grain size D1.

金属箔の結晶粒径D0,D1は、コード法を用いて測定した。コード法とは表面を光学顕微鏡で観察し、観察面において任意に直線Lを引き、粒界との交点Nを勘定し、(1)式に示すように、LをNで割り、粒界と粒界との間の平均長lをもとめて、ある統計学的な数値k(ここではK=1.776とした)を掛け算し、それを平均粒子径Dとするものである(参考文献:「セラミックスのキャラクタリゼーション技術」社団法人 日本セラミックス協会 p7)。
D=k×(L/N) (1)
The crystal grain sizes D0 and D1 of the metal foil were measured using a code method. In the code method, the surface is observed with an optical microscope, a straight line L is arbitrarily drawn on the observation surface, the intersection N with the grain boundary is counted, and L is divided by N as shown in the equation (1). The average length l between the grain boundaries is obtained and multiplied by a certain statistical numerical value k (here, K = 1.7776) to obtain an average particle diameter D (references: "Ceramic characterization technology" Japan Ceramics Association p7).
D = k × (L / N) (1)

金属箔のビッカース硬度は、ビッカース硬度計(AKASHI MVK−03)にて測定した。Ni箔の表面に、ダイヤモンド正四角錘(対面角θ=136度)のビッカース圧子を所定荷重F(1〜50gf(サンプルの主成分により変更される))で20秒間押し込み、荷重を取り除いた後に保持部材表面に残った圧痕の対角線距離の平均値d(μm)を計測した。そしてこの対角線距離の平均値dと、荷重Fとに基づき、ビッカース硬度HVを(2)式により算出した。
HV=2Fsin(θ/2)/d2 =1854.4F/d2 (kgf/mm2) (2)
The Vickers hardness of the metal foil was measured with a Vickers hardness meter (AKASHI MVK-03). After pushing the Vickers indenter of diamond regular square pyramid (face angle θ = 136 degrees) into the surface of the Ni foil with a predetermined load F (1 to 50 gf (changed depending on the main component of the sample)) for 20 seconds and removing the load. The average value d (μm) of the diagonal distance of the indentation remaining on the surface of the holding member was measured. And based on the average value d of this diagonal distance, and the load F, Vickers hardness HV was computed by (2) Formula.
HV = 2Fsin (θ / 2) / d 2 = 1854.4F / d 2 (kgf / mm 2 ) (2)

リーク特性としては、室温下でNi箔及び上部電極間に4Vの直流電圧を印加することにより測定したリーク電流値を電極面積で除して得られるリーク電流密度(A/cm)を算出した。リーク電流値は、Agilent4156C半導体パラメータアナライザにて測定した。 As the leakage characteristics, the leakage current density (A / cm 2 ) obtained by dividing the leakage current value measured by applying a DC voltage of 4 V between the Ni foil and the upper electrode at room temperature by the electrode area was calculated. . The leakage current value was measured with an Agilent 4156C semiconductor parameter analyzer.

さらに、測定した結晶粒径D0,D1及び膜厚t、箔厚Hを用いて、D0/t、D1/D0、D0/Hを算出した。   Furthermore, D0 / t, D1 / D0, and D0 / H were calculated using the measured crystal grain diameters D0 and D1, the film thickness t, and the foil thickness H.

(実施例2)
焼鈍温度を1100℃とした点、及び焼鈍処理の設定酸素分圧pO2を1.0×10−13atmとした点以外は実施例1と同様の条件で薄膜コンデンサを作製し、実施例1と同様に、焼鈍処理後の金属箔のビッカース硬度及び結晶粒径D0、焼結処理後の金属箔の結晶粒径D1、並びにリーク特性及び基板の反りを測定・観察した。
(Example 2)
A thin film capacitor was fabricated under the same conditions as in Example 1 except that the annealing temperature was 1100 ° C. and the oxygen partial pressure pO2 of the annealing treatment was 1.0 × 10 −13 atm. Similarly, the Vickers hardness and crystal grain size D0 of the metal foil after the annealing treatment, the crystal grain size D1 of the metal foil after the sintering treatment, the leakage characteristics, and the warp of the substrate were measured and observed.

(実施例3)
焼鈍温度を1000℃とした点、及び焼鈍処理の設定酸素分圧pO2を3.5×10−15atmとした点以外は実施例1と同様の条件で薄膜コンデンサを作製し、実施例1と同様に、焼鈍処理後の金属箔のビッカース硬度及び結晶粒径D0、焼結処理後の金属箔の結晶粒径D1、並びにリーク特性及び基板の反りを測定・観察した。
(Example 3)
A thin film capacitor was fabricated under the same conditions as in Example 1 except that the annealing temperature was set to 1000 ° C. and the oxygen partial pressure pO2 for annealing was set to 3.5 × 10 −15 atm. Similarly, the Vickers hardness and crystal grain size D0 of the metal foil after the annealing treatment, the crystal grain size D1 of the metal foil after the sintering treatment, the leakage characteristics, and the warp of the substrate were measured and observed.

(実施例4)
焼鈍温度を900℃とした点及び焼鈍処理の設定酸素分圧pO2を7.0×10−17atmとした点以外は実施例1と同様の条件で薄膜コンデンサを作製し、実施例1と同様に、焼鈍処理後の金属箔のビッカース硬度及び結晶粒径D0、焼結処理後の金属箔の結晶粒径D1、並びにリーク特性及び基板の反りを測定・観察した。
Example 4
A thin film capacitor was fabricated under the same conditions as in Example 1 except that the annealing temperature was set to 900 ° C. and the oxygen partial pressure pO2 for annealing was set to 7.0 × 10 −17 atm. In addition, the Vickers hardness and crystal grain size D0 of the metal foil after the annealing treatment, the crystal grain size D1 of the metal foil after the sintering treatment, the leakage characteristics, and the warpage of the substrate were measured and observed.

(実施例5)
焼鈍温度を800℃とした点及び焼鈍処理の設定酸素分圧pO2を6.5×10−19atmとした点以外は実施例1と同様の条件で薄膜コンデンサを作製し、実施例1と同様に、焼鈍処理後の金属箔のビッカース硬度及び結晶粒径D0、焼結処理後の金属箔の結晶粒径D1、並びにリーク特性及び基板の反りを測定・観察した。
(Example 5)
A thin film capacitor was fabricated under the same conditions as in Example 1 except that the annealing temperature was set to 800 ° C. and the oxygen partial pressure pO2 for annealing was set to 6.5 × 10 −19 atm. In addition, the Vickers hardness and crystal grain size D0 of the metal foil after the annealing treatment, the crystal grain size D1 of the metal foil after the sintering treatment, the leakage characteristics, and the warpage of the substrate were measured and observed.

(比較例1)
焼鈍温度を600℃とした点及び焼鈍処理の設定酸素分圧pO2を2.4×10−24atmとした点以外は実施例1と同様の条件で薄膜コンデンサを作製し、実施例1と同様に、焼鈍処理後の金属箔のビッカース硬度及び結晶粒径D0、焼結処理後の金属箔の結晶粒径D1、並びにリーク特性及び基板の反りを測定・観察した。
(Comparative Example 1)
A thin film capacitor was fabricated under the same conditions as in Example 1 except that the annealing temperature was 600 ° C. and the oxygen partial pressure pO2 of the annealing treatment was 2.4 × 10 −24 atm. In addition, the Vickers hardness and crystal grain size D0 of the metal foil after the annealing treatment, the crystal grain size D1 of the metal foil after the sintering treatment, the leakage characteristics, and the warpage of the substrate were measured and observed.

(比較例2)
焼鈍温度を400℃とした点及び焼鈍処理の設定酸素分圧pO2を5.0×10−33atmとした点以外は実施例1と同様の条件で薄膜コンデンサを作製し、実施例1と同様に、焼鈍処理後の金属箔のビッカース硬度及び結晶粒径D0、焼結処理後の金属箔の結晶粒径D1、並びにリーク特性及び基板の反りを測定・観察した。
(Comparative Example 2)
A thin film capacitor was fabricated under the same conditions as in Example 1 except that the annealing temperature was 400 ° C. and the oxygen partial pressure pO2 of the annealing treatment was 5.0 × 10 −33 atm. In addition, the Vickers hardness and crystal grain size D0 of the metal foil after the annealing treatment, the crystal grain size D1 of the metal foil after the sintering treatment, the leakage characteristics, and the warpage of the substrate were measured and observed.

(比較例3)
焼鈍処理を行わない点以外は実施例1と同様の条件で薄膜コンデンサを作製し、実施例1と同様に、焼鈍処理後の金属箔のビッカース硬度及び結晶粒径D0、焼結処理後の金属箔の結晶粒径D1、並びにリーク特性及び基板の反りを測定・観察した。
(Comparative Example 3)
A thin film capacitor was produced under the same conditions as in Example 1 except that the annealing treatment was not performed, and the Vickers hardness and crystal grain size D0 of the metal foil after the annealing treatment, the metal after the sintering treatment, as in Example 1. The crystal grain size D1 of the foil, the leakage characteristics, and the warpage of the substrate were measured and observed.

上述の実施例1〜5及び比較例1〜3について、Ni箔の箔厚H、Ni箔作製法、焼鈍雰囲気、焼鈍温度、焼鈍処理後の金属箔の結晶粒径D0、焼鈍処理後の金属箔のビッカース硬度、誘電体薄膜の膜厚t、D0/t、焼結処理後の金属箔の結晶粒径D1、D1/D0、リーク電流密度、基板の反り、D0/Hを表1に示す。

Figure 0005375582

For Examples 1 to 5 and Comparative Examples 1 to 3 described above, the foil thickness H of the Ni foil, the Ni foil preparation method, the annealing atmosphere, the annealing temperature, the crystal grain size D0 of the metal foil after the annealing treatment, and the metal after the annealing treatment Table 1 shows the Vickers hardness of the foil, the thickness t, D0 / t of the dielectric thin film, the crystal grain size D1, D1 / D0, the leakage current density, the warp of the substrate, and D0 / H of the sintered metal foil. .
Figure 0005375582

表1に示すように、800℃以上にて焼鈍したNi箔を使用した実施例のコンデンサは、焼鈍後の金属箔のビッカース硬度が大きくとも102HV以下であり、900℃以上にて焼鈍したNi箔を使用した実施例のコンデンサは、90HV以下となっている。表1から分かるように実施例の薄膜コンデンサは比較例のものより軟化している。さらに、実施例の薄膜コンデンサは、薄膜形成後の基板の反りが無い。また、リーク電流特性を評価すると、焼鈍温度800℃の実施例5のリーク電流密度が1×10−5A/cmであり、焼鈍温度900℃以上の実施例1〜4のリーク電流密度が1×10−6A/cmであり、実施例の薄膜コンデンサは、比較的低いリーク電流密度であることが分かった。 As shown in Table 1, the capacitor of the example using the Ni foil annealed at 800 ° C. or higher had a Vickers hardness of 102 HV or less at the maximum after annealing, and the Ni foil annealed at 900 ° C. or higher. The capacitor of the example using this is 90 HV or less. As can be seen from Table 1, the thin film capacitor of the example is softer than that of the comparative example. Furthermore, the thin film capacitor of the example has no warping of the substrate after the thin film is formed. Further, when the leakage current characteristics are evaluated, the leakage current density of Example 5 at an annealing temperature of 800 ° C. is 1 × 10 −5 A / cm 2 , and the leakage current density of Examples 1 to 4 at an annealing temperature of 900 ° C. or more is as follows. It was 1 × 10 −6 A / cm 2 , and the thin film capacitor of the example was found to have a relatively low leakage current density.

また、焼鈍処理後の金属箔の結晶粒径D0と誘電体薄膜の膜厚tとの比D0/tは、リーク電流密度が1×10−5A/cmとなる実施例5では104であり、リーク電流密度が1×10−6A/cmとなる実施例1〜4では144以上となっている。すなわち、D0/tが104以上、より好ましくは144以上のときに、リーク電流密度が低減している。 The ratio D0 / t between the crystal grain size D0 of the annealed metal foil and the film thickness t of the dielectric thin film is 104 in Example 5 where the leakage current density is 1 × 10 −5 A / cm 2. In Examples 1-4 where the leakage current density is 1 × 10 −6 A / cm 2 , the leakage current density is 144 or more. That is, the leakage current density is reduced when D0 / t is 104 or more, more preferably 144 or more.

これに対し、600℃以下で焼鈍処理を行った比較例1,2及び焼鈍処理を行わない比較例3は、D0/tが104より小さくなり、リーク電流密度が1×10−3A/cmとなり実施例よりも著しく大きかった。 In contrast, in Comparative Examples 1 and 2 in which annealing treatment was performed at 600 ° C. or less and in Comparative Example 3 in which annealing treatment was not performed, D0 / t was smaller than 104, and the leakage current density was 1 × 10 −3 A / cm. 2 , which was significantly larger than the example.

また、焼鈍処理後の金属箔の結晶粒径D0と箔厚Hとの比D0/Hは、実施例では1倍以上となっていることがわかる。すなわち実施例の薄膜コンデンサでは、焼鈍処理の後に、金属箔の結晶粒径が箔厚以上となり、単層構造となっている。さらに、リーク電流密度が1×10−6A/cmとなる実施例1〜4では、D0/Hは1.44倍以上となっている。これに対し、比較例のD0/Hは1より小さく、比較例の薄膜コンデンサは焼鈍処理の後でも依然として多層構造となっている。 It can also be seen that the ratio D0 / H between the crystal grain size D0 and the foil thickness H of the annealed metal foil is 1 or more times in the examples. That is, in the thin film capacitor of the example, after the annealing treatment, the crystal grain size of the metal foil becomes equal to or greater than the foil thickness and has a single layer structure. Furthermore, in Examples 1 to 4 where the leakage current density is 1 × 10 −6 A / cm 2 , D0 / H is 1.44 times or more. On the other hand, D0 / H of the comparative example is smaller than 1, and the thin film capacitor of the comparative example still has a multilayer structure even after the annealing treatment.

また、誘電体前駆体が結晶化する前後のNi粒子径の変化率D1/D0は、実施例では1.50以下であることがわかる。さらにリーク電流密度が1×10−6A/cmとなる実施例1〜4では、D1/D0は1.22以下となっている。これに対し、比較例のD1/D0は実施例のものより大きい。実施例の薄膜コンデンサは、比較例と比較して、誘電体の結晶化アニール時にNiの再結晶化による再粒成長が抑制されていることがわかる。 It can also be seen that the change rate D1 / D0 of the Ni particle diameter before and after the dielectric precursor is crystallized is 1.50 or less in the examples. Furthermore, in Examples 1 to 4 where the leakage current density is 1 × 10 −6 A / cm 2 , D1 / D0 is 1.22 or less. In contrast, D1 / D0 of the comparative example is larger than that of the example. In the thin film capacitor of the example, it can be seen that regrown growth due to recrystallization of Ni is suppressed at the time of dielectric crystallization annealing as compared with the comparative example.

すなわち、実施例の薄膜コンデンサは、比較例に比べてリーク電流密度を1/100倍から1/1000倍程度に低減でき、リーク特性を向上できる。このように、本発明によれば、リーク特性を向上させることができることが確認された。   That is, the thin film capacitor of the example can reduce the leakage current density from about 1/100 to 1/1000 times that of the comparative example, and can improve the leakage characteristics. Thus, according to the present invention, it was confirmed that the leakage characteristics can be improved.

金属箔上の薄膜コンデンサにとって、薄膜形成時に、薄膜の結晶化に伴い、金属箔にも熱が加わるが、その熱により金属箔も再結晶化ならびに粒子の成長を引き起こす。そのため、あらかじめ、本願のような熱処理を施すと、薄膜形成時の金属箔の粒成長が抑制され、金属箔の動きに伴う膜のクラックの発生が抑制され、薄膜のリーク電流が向上したものと考えられる。その結果、金属箔上の薄膜コンデンサとして、誘電体の厚みおよび金属箔厚と金属箔の粒子径に上記のような関係を満たす関係が存在し、良好な電気特性を有する薄膜コンデンサが出来上がったとものと考えられる。   For a thin film capacitor on a metal foil, heat is applied to the metal foil along with the crystallization of the thin film at the time of forming the thin film, and the metal foil also causes recrystallization and particle growth due to the heat. Therefore, when heat treatment as in the present application is performed in advance, grain growth of the metal foil during thin film formation is suppressed, generation of cracks in the film accompanying movement of the metal foil is suppressed, and leakage current of the thin film is improved. Conceivable. As a result, as a thin film capacitor on a metal foil, there is a relationship satisfying the above relationship between the thickness of the dielectric and the thickness of the metal foil and the particle diameter of the metal foil, and a thin film capacitor having good electrical characteristics has been completed. it is conceivable that.

次に、金属箔厚および誘電体膜厚を変更して上記と同様の測定・観察を行った。なお、以降の実施例及び比較例では、金属箔の焼鈍温度は全て1100℃であり、上記実施例2と同様の焼鈍条件とした。   Next, measurement and observation similar to the above were performed by changing the metal foil thickness and the dielectric film thickness. In the following examples and comparative examples, the annealing temperatures of the metal foils were all 1100 ° C., and the annealing conditions were the same as in Example 2 above.

(実施例6)
金属箔の箔厚を30μmとした点、誘電体薄膜の膜厚を400nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Example 6)
A thin film capacitor was fabricated under the same conditions as in Example 2 except that the thickness of the metal foil was 30 μm and the thickness of the dielectric thin film was 400 nm, and the same measurement and observation as in Example 2 were performed. .

(実施例7)
金属箔の箔厚を30μmとした点、誘電体薄膜の膜厚を350nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Example 7)
A thin film capacitor was fabricated under the same conditions as in Example 2 except that the thickness of the metal foil was 30 μm and the thickness of the dielectric thin film was 350 nm, and the same measurement and observation as in Example 2 were performed. .

(実施例8)
金属箔の箔厚を30μmとした点、誘電体薄膜の膜厚を300nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Example 8)
A thin film capacitor was fabricated under the same conditions as in Example 2 except that the thickness of the metal foil was 30 μm and the thickness of the dielectric thin film was 300 nm, and the same measurement and observation as in Example 2 were performed. .

(実施例9)
金属箔の箔厚を50μmとした点、誘電体薄膜の膜厚を500nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
Example 9
A thin film capacitor was fabricated under the same conditions as in Example 2 except that the thickness of the metal foil was 50 μm and the thickness of the dielectric thin film was 500 nm, and the same measurement and observation as in Example 2 were performed. .

(実施例10)
金属箔の箔厚を50μmとした点、誘電体薄膜の膜厚を450nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Example 10)
A thin film capacitor was produced under the same conditions as in Example 2 except that the thickness of the metal foil was 50 μm and the thickness of the dielectric thin film was 450 nm, and the same measurement and observation as in Example 2 were performed. .

(実施例11)
金属箔の箔厚を30μmとした点、誘電体薄膜の膜厚を250nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Example 11)
A thin film capacitor was fabricated under the same conditions as in Example 2 except that the thickness of the metal foil was 30 μm and the thickness of the dielectric thin film was 250 nm, and the same measurement and observation as in Example 2 were performed. .

(実施例12)
金属箔の箔厚を50μmとした点、誘電体薄膜の膜厚を400nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Example 12)
A thin film capacitor was fabricated under the same conditions as in Example 2 except that the thickness of the metal foil was 50 μm and the thickness of the dielectric thin film was 400 nm, and the same measurement and observation as in Example 2 were performed. .

(実施例13)
金属箔の箔厚を70μmとした点、誘電体薄膜の膜厚を500nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Example 13)
A thin film capacitor was fabricated under the same conditions as in Example 2 except that the thickness of the metal foil was 70 μm and the thickness of the dielectric thin film was 500 nm, and the same measurement and observation as in Example 2 were performed. .

(実施例14)
金属箔の箔厚を50μmとした点、誘電体薄膜の膜厚を350nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Example 14)
A thin film capacitor was fabricated under the same conditions as in Example 2 except that the thickness of the metal foil was 50 μm and the thickness of the dielectric thin film was 350 nm, and the same measurement and observation as in Example 2 were performed. .

(実施例15)
金属箔の箔厚を30μmとした点、誘電体薄膜の膜厚を200nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Example 15)
A thin film capacitor was fabricated under the same conditions as in Example 2 except that the thickness of the metal foil was 30 μm and the thickness of the dielectric thin film was 200 nm, and the same measurement and observation as in Example 2 were performed. .

(実施例16)
金属箔の箔厚を70μmとした点、誘電体薄膜の膜厚を450nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Example 16)
A thin film capacitor was fabricated under the same conditions as in Example 2 except that the thickness of the metal foil was 70 μm and the thickness of the dielectric thin film was 450 nm, and the same measurement and observation as in Example 2 were performed. .

(実施例17)
金属箔の箔厚を50μmとした点、誘電体薄膜の膜厚を300nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Example 17)
A thin film capacitor was fabricated under the same conditions as in Example 2 except that the thickness of the metal foil was 50 μm and the thickness of the dielectric thin film was 300 nm, and the same measurement and observation as in Example 2 were performed. .

(実施例18)
金属箔の箔厚を70μmとした点、誘電体薄膜の膜厚を400nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Example 18)
A thin film capacitor was fabricated under the same conditions as in Example 2 except that the thickness of the metal foil was 70 μm and the thickness of the dielectric thin film was 400 nm, and the same measurement and observation as in Example 2 were performed. .

(実施例19)
金属箔の箔厚を50μmとした点、誘電体薄膜の膜厚を250nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Example 19)
A thin film capacitor was fabricated under the same conditions as in Example 2 except that the thickness of the metal foil was 50 μm and the thickness of the dielectric thin film was 250 nm, and the same measurement and observation as in Example 2 were performed. .

(実施例20)
金属箔の箔厚を70μmとした点、誘電体薄膜の膜厚を350nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Example 20)
A thin film capacitor was fabricated under the same conditions as in Example 2 except that the thickness of the metal foil was set to 70 μm and the thickness of the dielectric thin film was set to 350 nm, and the same measurement and observation as in Example 2 were performed. .

(実施例21)
金属箔の箔厚を70μmとした点、誘電体薄膜の膜厚を330nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Example 21)
A thin film capacitor was fabricated under the same conditions as in Example 2 except that the thickness of the metal foil was 70 μm and the thickness of the dielectric thin film was 330 nm, and the same measurement and observation as in Example 2 were performed. .

(実施例22)
金属箔の箔厚を70μmとした点、誘電体薄膜の膜厚を300nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Example 22)
A thin film capacitor was produced under the same conditions as in Example 2 except that the thickness of the metal foil was 70 μm and the thickness of the dielectric thin film was 300 nm, and the same measurement and observation as in Example 2 were performed. .

(実施例23)
金属箔の箔厚を50μmとした点、誘電体薄膜の膜厚を200nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Example 23)
A thin film capacitor was fabricated under the same conditions as in Example 2 except that the thickness of the metal foil was 50 μm and the thickness of the dielectric thin film was 200 nm, and the same measurement and observation as in Example 2 were performed. .

(実施例24)
金属箔の箔厚を70μmとした点、誘電体薄膜の膜厚を250nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Example 24)
A thin film capacitor was fabricated under the same conditions as in Example 2 except that the thickness of the metal foil was 70 μm and the thickness of the dielectric thin film was 250 nm, and the same measurement and observation as in Example 2 were performed. .

(比較例4)
金属箔の箔厚を70μmとした点、誘電体薄膜の膜厚を240nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Comparative Example 4)
A thin film capacitor was fabricated under the same conditions as in Example 2 except that the thickness of the metal foil was 70 μm and the thickness of the dielectric thin film was 240 nm, and the same measurement and observation as in Example 2 were performed. .

(比較例5)
金属箔の箔厚を70μmとした点、誘電体薄膜の膜厚を200nmとした点以外は実施例2と同様の条件で薄膜コンデンサを作製し、実施例2と同様の計測・観察を行った。
(Comparative Example 5)
A thin film capacitor was fabricated under the same conditions as in Example 2 except that the thickness of the metal foil was 70 μm and the thickness of the dielectric thin film was 200 nm, and the same measurement and observation as in Example 2 were performed. .

上述の実施例6〜24及び比較例4,5について、金属箔の箔厚H、Ni箔作製法、焼鈍雰囲気、焼鈍温度、焼鈍処理後の金属箔の結晶粒径D0、焼鈍処理後の金属箔のビッカース硬度、誘電体薄膜の膜厚t、D0/t、焼結処理後の金属箔の結晶粒径D1、D1/D0、リーク電流密度、基板の反り、D0/Hを表2に示す。

Figure 0005375582


表2に示すように、実施例6〜24の薄膜コンデンサでは、焼鈍処理後の金属箔の結晶粒径D0と誘電体薄膜の膜厚tとの比D0/tが560以下となり、リーク電流密度が1×10−5A/cm以下であることがわかる。さらに、D0/tが400以下となる実施例6〜20では、リーク電流密度が1×10−6A/cmとなった。 About the above-mentioned Examples 6-24 and Comparative Examples 4 and 5, foil thickness H of metal foil, Ni foil preparation method, annealing atmosphere, annealing temperature, crystal grain size D0 of metal foil after annealing, metal after annealing Table 2 shows the Vickers hardness of the foil, the thickness t, D0 / t of the dielectric thin film, the crystal grain size D1, D1 / D0, the leakage current density, the warp of the substrate, and D0 / H of the sintered metal foil. .
Figure 0005375582


As shown in Table 2, in the thin film capacitors of Examples 6 to 24, the ratio D0 / t between the crystal grain size D0 of the annealed metal foil and the film thickness t of the dielectric thin film was 560 or less, and the leakage current density Is 1 × 10 −5 A / cm 2 or less. Furthermore, in Examples 6 to 20 in which D0 / t was 400 or less, the leakage current density was 1 × 10 −6 A / cm 2 .

これに対し、比較例4,5の薄膜コンデンサでは、D0/tが560より大きくなり、リーク電流密度は1×10−2A/cm以上となり実施例よりも著しく大きかった。 On the other hand, in the thin film capacitors of Comparative Examples 4 and 5, D0 / t was larger than 560, and the leakage current density was 1 × 10 −2 A / cm 2 or more, which was significantly larger than that of the example.

すなわち、実施例6〜24の薄膜コンデンサも、実施例1〜5と同様に、比較例に比べてリーク電流密度を低減でき、リーク特性を向上できる。このように、本発明によれば、リーク特性を向上させることができることが確認された。   That is, the thin film capacitors of Examples 6 to 24 can also reduce the leakage current density and improve the leakage characteristics as compared with Comparative Examples, as in Examples 1 to 5. Thus, according to the present invention, it was confirmed that the leakage characteristics can be improved.

10…薄膜コンデンサ、11…金属箔、12…誘電体薄膜、13…上部電極。



DESCRIPTION OF SYMBOLS 10 ... Thin film capacitor, 11 ... Metal foil, 12 ... Dielectric thin film, 13 ... Upper electrode.



Claims (5)

金属箔を800℃以上の温度にて焼鈍する焼鈍工程と、
前記焼鈍された金属箔の結晶粒径D0と誘電体薄膜の膜厚tとの比D0/tが104〜560(140を除く)となるよう前記金属箔の上に前記誘電体薄膜を形成する誘電体薄膜形成工程と、
前記金属箔及び前記誘電体薄膜を加熱して前記誘電体薄膜を焼結させる焼結工程と、
前記焼結された誘電体薄膜の上に上部電極を形成する上部電極形成工程と、
を備えることを特徴とする薄膜コンデンサの製造方法。
An annealing step of annealing the metal foil at a temperature of 800 ° C. or higher;
The dielectric thin film is formed on the metal foil such that a ratio D0 / t of the crystal grain size D0 of the annealed metal foil and the film thickness t of the dielectric thin film is 104 to 560 (excluding 140). A dielectric thin film forming step;
A sintering step of sintering the dielectric thin film by heating the metal foil and the dielectric thin film;
Forming an upper electrode on the sintered dielectric thin film; and
A method of manufacturing a thin film capacitor, comprising:
前記焼鈍工程において、前記金属箔の結晶粒径D0が箔厚H以上まで粒成長するよう前記金属箔を焼鈍することを特徴とする、請求項1に記載の薄膜コンデンサの製造方法。   2. The method of manufacturing a thin film capacitor according to claim 1, wherein in the annealing step, the metal foil is annealed so that the crystal grain size D0 of the metal foil grows to a foil thickness H or more. 前記誘電体薄膜形成工程前の前記金属箔の結晶粒径D0と、前記焼結工程後の前記金属箔の結晶粒径D1との比D1/D0が、1.50以下であることを特徴とする、請求項1又は2に記載の薄膜コンデンサの製造方法。   A ratio D1 / D0 between a crystal grain size D0 of the metal foil before the dielectric thin film forming step and a crystal grain size D1 of the metal foil after the sintering step is 1.50 or less, The method of manufacturing a thin film capacitor according to claim 1 or 2. 前記誘電体薄膜形成工程前の前記金属箔の結晶粒径D0と、前記焼結工程後の前記金属箔の結晶粒径D1との比D1/D0が、1.22以下であることを特徴とする、請求項3に記載の薄膜コンデンサの製造方法。   The ratio D1 / D0 between the crystal grain size D0 of the metal foil before the dielectric thin film forming step and the crystal grain size D1 of the metal foil after the sintering step is 1.22 or less, The method of manufacturing a thin film capacitor according to claim 3. 前記誘電体薄膜形成工程において、前記焼鈍された金属箔の結晶粒径D0と誘電体薄膜の膜厚tとの比D0/tが144〜400となるよう前記金属箔の上に前記誘電体薄膜を形成することを特徴とする、請求項1〜4のいずれか1項に記載の薄膜コンデンサの製造方法。

In the dielectric thin film forming step, the dielectric thin film is formed on the metal foil such that a ratio D0 / t between the crystal grain size D0 of the annealed metal foil and the film thickness t of the dielectric thin film is 144 to 400. The method of manufacturing a thin film capacitor according to claim 1, wherein the thin film capacitor is formed.

JP2009286511A 2008-12-26 2009-12-17 Thin film capacitor manufacturing method Active JP5375582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009286511A JP5375582B2 (en) 2008-12-26 2009-12-17 Thin film capacitor manufacturing method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008333382 2008-12-26
JP2008333382 2008-12-26
JP2008333397 2008-12-26
JP2008333397 2008-12-26
JP2009286511A JP5375582B2 (en) 2008-12-26 2009-12-17 Thin film capacitor manufacturing method

Publications (2)

Publication Number Publication Date
JP2010171397A JP2010171397A (en) 2010-08-05
JP5375582B2 true JP5375582B2 (en) 2013-12-25

Family

ID=42703183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009286511A Active JP5375582B2 (en) 2008-12-26 2009-12-17 Thin film capacitor manufacturing method

Country Status (1)

Country Link
JP (1) JP5375582B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110760802B (en) * 2018-07-27 2023-04-11 浙江清华柔性电子技术研究院 Energy storage ceramic film
US11398354B2 (en) 2018-10-31 2022-07-26 Tdk Corporation Thin film capacitor, manufacturing method therefor, and substrate with built-in electronic component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049563A (en) * 2004-08-04 2006-02-16 Nikon Corp Method of suppressing degradation of optical element used for extreme ultraviolet ray exposure device
JP4670684B2 (en) * 2006-03-03 2011-04-13 Tdk株式会社 Method for forming oxide dielectric film
JP4876672B2 (en) * 2006-03-29 2012-02-15 Tdk株式会社 Capacitor manufacturing method
US7561406B2 (en) * 2006-03-30 2009-07-14 Tdk Corporation Nickel substrate thin film capacitor and method of manufacturing nickel substrate thin film capacitor
JP4983102B2 (en) * 2006-06-06 2012-07-25 Tdk株式会社 Dielectric element

Also Published As

Publication number Publication date
JP2010171397A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
CN1974472A (en) Composition for thin-film capacitive device, insulating film, thin-film capacitive device, and capacitor
JPWO2005102958A1 (en) Composition for thin film capacitor, high dielectric constant insulating film, thin film capacitor, thin film multilayer capacitor, and method for manufacturing thin film capacitor
JP2016029708A (en) Thin-film dielectric and thin-film capacitor element
JP2014007239A (en) Thin film capacitor
EP1770725B1 (en) Dielectric film production process and capacitor
JP2016139802A (en) Thin film capacitor
US7382013B2 (en) Dielectric thin film, dielectric thin film device, and method of production thereof
US20060072282A1 (en) Dielectric thin film, thin film capacitor element, and method for manufacturing thin film capacitor element
TW200923987A (en) High-capacitance density thin-film dielectrics having columnar grains formed on base-metal foils
JP2012015505A (en) Manufacturing method of thin film capacitor and thin film capacitor manufactured thereby
JP5375582B2 (en) Thin film capacitor manufacturing method
JP4941466B2 (en) Dielectric thin film element manufacturing method
CN1578994A (en) Thin film capacity element-use composition, high-permittivity insulation film, thin film capacity element and thin film multilayer capacitor
JP4604939B2 (en) Dielectric thin film, thin film dielectric element and manufacturing method thereof
JP5229113B2 (en) Thin film capacitor manufacturing method
US10002714B2 (en) Dielectric film and dielectric element
JP4983134B2 (en) Dielectric film manufacturing method and capacitor
US9455087B2 (en) Dielectric film and dielectric element
JP2000355760A (en) Sputtering target, barrier film and electronic parts
Halder et al. Microstructure and electrical properties of BaTiO 3 and (Ba, Sr) TiO 3 ferroelectric thin films on nickel electrodes
JP5445704B2 (en) Thin film capacitor manufacturing method
JP5278092B2 (en) Thin film capacitor and method of manufacturing thin film capacitor
JP2016060690A (en) Dielectric film and dielectric element
JP5267225B2 (en) Dielectric element manufacturing method
JP5307531B2 (en) Dielectric thin film element manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130418

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5375582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150